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A set of fundamental objects is presented that facilitates 

derivation of some new results with special interest in a variety 

of topics including Chu spaces, dynamical systems, symbolic 

dynamics and the theory of polynomials. Three alternative 

representations of the power set of binary patterns in their 

associated exponential intervals are presented in terms of 

polynomials and a natural conjecture on their fractal structure is 

deduced. Practical applications in Automata theory and Digital 

Signal Processing are proposed based on special functions 

defined on the new representation. 

1. Introduction 

Almost a century after the collapse of the initial proposal of 

Hilbert for a complete mechanization of mathematics, people 

turn their attention back to automated theorem proofs and high 

accuracy numerical calculations for inspiration and new, 

possibly counterintuitive formulas.  

Visualization as a tool for trivialization of proofs guided by 

intuition becomes attractive nowadays due to the enormous 

computational power accumulated and modern parallelization 

techniques [1, 2, 3]. 



Despite that, the basis of all of our modern computing power is 

still based on the notion of a Turing machine and Allonzo and 

Church’s λ-calculus [4, 5]. The question is then whether an 

alternative formulation that could possibly help to overcome 

limitations of the present paradigm can be revealed using 

experimental mathematics. 

In the present article, a new way of treating computations is 

established that combines at once the power of induction 

together with the power of visualization. It is based on the fact 

that powersets of n-ary symbolic alphabets are closely linked 

with n-ary trees which can then be deployed in the form of 

special matrices that form a recursively enumerable set which 

will here be known as the “Hierarchy of Universal Lexicons”. 

Moreover, a similar construct if endowed with special 

memebership functions automatically becomes a Chu Space [6, 

7, 8], with the set of symbols (or n-ary cyclic states) being 

isomorphic to points and the set of integer representations being 

the set of states. A fundamental fact that implies a deeper 

connection with other more abstract and general theories that 

may affect the whole of mathematics in the same way that 

Topos theory already attempts to do. Even more interesting for 

physical theories is the connection with Quantum Mechanics 

provided by Pratt in [8], recently reintroduced by Gregori in [9, 

10] albeit without mentioning their inherent connection. 

While the present work is of an introductory character with 

respect to the various branches of possible formal development, 

the possibility of merging the two parts of the analog/digital 

dichotomy becomes evident at an early stage thus leading to 

possible alternative realizations of universal computing 

machinery different form the original Turing paradigm. We also 

present examples where visualization reveals recursive and self-



similar structures. Similar results have recentl appeared in 

Kovalinka [20] but the present work attempts to shed some light 

on their origin that should be traced back to the primordial self-

similarity of the representation of the integers as revealed 

through the lexicon constructs. 

In the next section we introduce the necessary definitions, while 

in section 3, we present some interesting examples of 

applications in the theory of Automata. In section 4, we 

associate the recursive nature of the previously defined objects 

with a particular class of discrete dynamical systems of vast 

generality. In section 5, we study the connections with the 

theory of roots of polynomials and provide some possible 

alternative measures of complexity of possible use in DSP and 

discrete statistics problems. 

2. The Hierarchy of Universal Lexicons 

In this section we introduce some necessary tools and 

preliminary definitions that reformulate the context of symbolic 

series in any possible alphabet in a manner that allows 

simultaneous treatment of every possible case. By this we mean 

that any possible sequence either automatic or random for any 

possible length can be treated as a member of a special 

hierarchy of perfectly ordered objects (matrices) so that certain 

properties can be treated on an equal footing no matter what the 

origin of the particular sequence was. 

The fundamental notion is that of the geometric representation 

of the powerset of a set of symbols forming an alphabet which 

coincides with the set of the integers through the polynomial 

representation. This representation which in the binary case is 

used for the construction of truth tables and more general of the 

so called “factorial designs”, has a natural self-similarity 



inherent in the polynomial representation of the integers in any 

possible alphabet, albeit simpler than that of the Cantor set.  

To explain the logic behind this design, assume the usual notion 

of a truth table in a binary alphabet. It is known that the rows of 

any such table are equivalent to the outputs of a binary counter 

or equivalently, a set of “clocks” or square oscillators that span 

an exponential interval [0, 2
N
-1] where N is the number of 

oscillators. The phases of each oscillator get intermixed as they 

pass from the first row of all zero states to the final state of all 

ones state which always corresponds to the integer 2
N
-1.  

The same principle can be applied to any arbitrary alphabet in 

base b for all integers in an exponential interval [0, b
N
-1] by 

taking a set of “ramp” instead of square oscillators thus forming 

a b-ary counter. We remind that every such ramp oscillator can 

be defined in continuous time through the family of functions  
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In the above “[ ]” denotes the floor function. It can be verified 

that (1) is periodic with period bτ  and by taking 2/1−= n
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restricting the index t to the set of the integers we can define an 
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The above simply extracts each symbol from the polynomial 

representation of any integer k in an exponential interval and 

assigns this symbol value to the associated matrix element (n, k).  

Any such set of oscillators creates a table which automatically 

inherits the primordial self-similarity of integer representations 

and which comes from the mixing of the oscillator states. We 



then formalize these observations by defining a hierarchy of 
Nb×Ν matrices which is both recursive and recursively 

enumerable due to the exact, 1-1 correspondence of each and 

every column with the integers through the polynomial 

representation. 

We choose to call the set of these matrices, the Universal 

Lexicons of order N in base b and write
N

bL . The matrices form a 

natural hierarchy in the sense that addition of a single oscillator 

adds a single row in every previous matrix with each symbol 

appearing exactly b times thus leading from the Nb×Ν to the 
)1()1( +×+Ν Nb  member of the hierarchy for which we can write  

......: 21 ⊂⊂⊂⊂ n

bbb

N

b LLLL
  (3) 

An example of such a matrix for the 4-ary alphabet is shown in 

Fig. 1 and 2 standing for the lexiconL −7

2  and the lexiconL −7

4  

respectively. 

We now briefly mention the three fundamental decompositions 

of any such matrix based on three fundamental symmetries 

inherent in all members of the hierarchy. 

 

A) Complementation: every Lexicon matrix is decomposable into 

exactly b bands for which every element of each row of the 

previous band is mapped to every element of the next band under 

the complementation operation that carries its symbol to the next 

mod b. 

 

 B) Reflection: every Lexicon matrix admits decomposition into 

three distinct sets SPS ∪∪ where S is a generating set, S  is its 

mirror image under reflection with respect to the first bottom or 

last top row and P is a set of Palindromes (self-mirroring strings).  

 



C) Cyclic Permutation: every Lexicon matrix admits a 

decomposition into a special number #(b,n) of distinct cyclic 

permutations groups {Gi } of which the set of generators defined 

as the first element of each set { }ig1  is sufficient to reproduce the 

whole matrix. No known analytical expression was found for #(b,n) 

as yet. 

We next examine some implications of the above for generic 

automata. 

3. Theory of Automata 

An important property of the ramp oscillators allows for another 

representation of symbolic alphabets above the binary one, to 

the complex roots of unity. Thus we give the following lemma 

Lemma 1.1 (Complex Representation of Symbolic 

Alphabets): every symbolic dynamics realized in the integer 

interval ]1,0[ −b  through a generic map ]1,0[: −→ bNφ  is 

isomorphic to a permutation of a discritized harmonic 

oscillator states through the correspondence of the ordered 

set of symbols in the interval [0, b-1] to the set of the 

complex roots of unity of order b given as 

( )[ ]{ } 1

0
/)1(2exp

−
=− b

n
bniπ .  

This is based on the simple fact that the steps of the evolution of 

any cyclic procedure like the ramp oscillator introduced by (1) 

and (2) are isomorphic to a set of equidistantly sampled points 

of a harmonic oscillator of amplitude 1 or, equivalently to a set 

of equidistantly sampled points from the unit complex circle. 

The above also allows making contact with the theory of 

polynomials with complex coefficients for any b-ary alphabet. 

Additionally, it gives the opportunity to transcribe certain 

processes in higher alphabets into sampled states of continuous 

oscillators. For some of the examples mentioned below this 



might also mean the possibility of alternative universal analog 

computer architectures. 

While self-similarity is evident in fig. 1 and 2, a less trivial 

result exists for all functions that can be defined as bit-wise or 

more general as symbol-wise functions of many variables. We 

then have the following theorem 

Theorem 1. Let A be the set of all arithmetic functions 

NNf A →: and let B be the set of all bounded partial 

symbol-wise functions 

NSSSSSf iMMB ⊂→××× + ,...: 121 .  

Then AB ⊂ . 

The proof is elementary. Given any function of many variables 

over the integers ),...,( 1 Mxxf we restrict the DoD of each variable 

in the interval [0, b-1]. It then suffices to use the sequence of 

extraction functions (2) so that  

)())(),...,(( 1 kfkykyfyf BMBn ≅→o , [ ]1,0 −∈ Mbk    (4) 

This is equivalent with the concatenation operation Mxxx ||...|||| 21  

where “||” stands for the concatenation operator 1)]([log
||

++= xbybxyx  

and by which the set of variables { }M

iix
1= is mapped to a unique 

integer in an exponential interval for any possible combination. 

This emphasizes the point that all partial multidimensional 

functions over the integers are essentially “one-dimensional”.  

There is an important application of the above with possible 

technological applications in the case of ordinary automata the 

simplest of which are Turing machines. We examine such a case 

taking as an example the recent finding of the simplest (2,3)-

UTM without an Halting state by Wolfram and Smith [11, 12]. 

Its table is given in Table 1.   



To proceed we first expand the states {A, B} in to {AA, BA, 

AB, BB} where the second symbol is an “empty” state and 

expand the whole table by repeating its columns to the right. We 

also introduce an ‘empty” forth state in order to have a 

completely symmetric 4 x 4 matrix. We emphasize that the last 

row is an unreachable set of fixed points. The result is shown in 

Table 2.  

This is now equivalent to a discrete 2-variable function over the 

intervals [0, 2
2
-1] x [0, 2

2
-1]. Applying the concatenation 

operator it can be turned to a 1-dimensional graph in the 

combined [0, 2
4
-1] interval. This is the same as reading the table 

elements column-wise. Transcription is completed with the 

additional “Interpreter” function which assigns to the binary 

expansion of integer values in the above graph the special 

meaning of “colors” for the first two bits and “states” for the last 

two bits.  

We next show the existence of a method by which the above can 

be turned to a recursive map for deducing the equations of a 

universal dynamical system that imitates any possible (m, n)-

Turing Machine, where n are the tape symbols (n-ary system) 

and m is the number of internal control states. The first step is to 

replace the whole infinite tape by a single integer number which 

will be updated recursively starting from any finite initial 

condition. This is always possible due to the existence of a 

polynomial representation of any n-ary alphabet for any finite 

portion of the TM tape.  

At the next step, we will need to express the head’s position in a 

special manner. We introduce a convention by which the initial 

position of the TM’s head is always at 0 (1
st
 symbol of the 

polynomial representation). The problem then is how to avoid a 

“negative underflow” in case the head will be finally driven at a 



position below zero. This though, can be trivially incorporated 

into a pair of integers of which the second holds negative values 

but only its absolute part is taken into the actual computation. 

We may then introduce a vector ( )T

nnn yxz ,= where 0,0 <≥ nn yx  

and write the basic evolution equations as 
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Where hn is the head’s position at everyone time, σn is a kind of 

“spin” vector that alternates between the negative and positive 

representation of the tape and Bn is a symbol setting function 

assigning a new color to every new head’s position and 

removing the previous one (‘write’ operation).  

The ‘read’ operation will now be added with the aid of the ‘Bit 

Extraction Operator’ defined in (2) in order for (5a) to become 

a complete recursion. To this aim, we introduce the generic map 
m

n

m

nTMU Σ→Σ: with 
m

nΣ  being the expanded and symmetrized 

domain for an (n, m)-TM which is the result of the simple 

transcription of any table of a TM into an integer map described 

in the previous paragraphs. We can now complete the cycle 

represented by (5a) with the additional equations 
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where 
b

aX̂  stands for the function (2) acting on the intermediate 

result wn of a complete recursion over zn. The separate indices a 



and b that parametrize (2) correspond to the symbol position a 

for a b-ary alphabet respectively. The internal variable qn stands 

for any control bits that are simply carried over to the next step 

by UTM  without any other participation in the actual 

computation. 

By virtue of Th. 1 above, the set of equations (5a) and (5b) 

constitutes a complete recursive map which can be recast in the 

generic composite form 

( )[ ]
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The above is an algebraic form of an interpreter and from this 

point of view it corresponds to what is known as an 

“Arithmetization” of a TM. 

We note in passing that it is possible to turn this into a 

completely reversible scheme by introducing a new “memory” 

state that doubles the interval into [0, 2
5
-1] and separating the 

two symmetric parts of the graph by raising the second with a 

threshold of the order of 2
4
 similarly to a technique introduced 

previously by Bennett [13, 14]. Nevertheless, what is important 

for the present work is that if such an efficient transcription 

scheme exists –and this may include any possible digital circuit 

like an adder or even a whole CPU!- then there exists a special 

technique by which we can turn it into a cyclic process. We then 

provide the following theorem.  

 Theorem 2. Given a graph of a bounded partial function f 

over some subset of N there is a morphism that sends f to 

one of the Cyclic Groups Gi of KNL 2  where 

{ }( ) 1])(,max[log 2 += ιι νν fK  and N the number of graph points. 



The proof is again an elementary result of recursive 

concatenation. By taking the successive concatenation of all 

input output pairs { }N

iii f
0

)(| =νν   we construct a second mapping 

of the form )(|)(| 11 ++→ iiii ff νννν where indices are taken mod 

N. By repeating this process until all distinct N values have been 

included in each binary string, we end up with a unique mapping 

which has been restricted to one of the cyclic groups of a 

lexicon matrix of order analogous to the maximum bit of the set 

of all input output values by the number of distinct such values. 

That most of the symbol-wise functions inherit the natural self-

similarity of the representations of the integers becomes evident 

from the recursive structure of the Lexicon Hierarchy shown by 

(3). In the next section we examine an important class of such 

functions. 

4. Iterated Sequence Systems 

An elementary example of a fundamental class of self-similar 

functions can be given with the aid of a construct that we shall 

call an Iterated Sequence System (ISS). The simplest such 

function is the count of one bits in a binary Lexicon (the so 

called “checksum”).  

 Theorem 2. Let NL2 be the hierarchy of binary lexicons and 

let ∑
=

=
N

i

Bf
1

ισ where σi are the symbol values in each row of 

the lexicon matrix. Then, there is an iterative procedure 

that reproduces the graph of fB from a primordial 

“seed”set { }00 =S given by the recursion ( ){ }1,1 +=+ iii SSS . We 

shall call this sequence, the “Primordial Sequence”. 

The proof is again elementary. For every exponential interval 

there is a new bit added to each row of a binary lexicon matrix. 

The set concatenation operation doubles the cardinality of Si per 



step. Hence, for each integer of which the equivalent polynomial 

representation is contained in the associated matrix row, the 

number of one bits increases by 1 in every new set. 

The above example, although trivial, shows the way symbol-

wise functions may inherit the primordial self-similarity of the 

set of all integer representations. A complete study of such 

functions is beyond the scope of the present paper and will be 

presented elsewhere. Nevertheless, there are a number of both 

elementary and fundamental results that stand as a starting point 

that we will summarize in the next few lemmas. 

We first, generalize the ISS as follows 

Definition 1. A generic ISS will be defined by a seed set S0 

of ordered values in some initial DoD, a set of 

parameters { }Κ
==Π

1ιιπ , an update function )(: ii gg ππ =′  , an 

arbitrary operator { }ιπΟ̂ of which the action is equivalent 

to some element-wise function ( )Κπππ ,...,,; 21

0

isf  and a 

recursion relation 

( ) ( ){ } )(11 ,, πgiii OOSOSOS →′′= Π−Π−Π    (7) 

The above are examples of dynamical systems with an 

exponentially increasing memory of previous instances of their 

orbit recorded in the whole sequence thus exhibiting higher 

order correlations. This is expressed in the following definition 

and the associated theorem. 

Definition 2. A canonical ISS will be defined by the choice 

( ){ } )(11 ,, πgiii OOSOSS →′′= Π−Π−     (8) 

The simplest example is given by the Primordial Sequence. 



Theorem 3. For every Canonical ISS there is an Expanded 

Canonical Form represented by the functional operator 

sequence ,...,,, 2110 ffff  acting on the seed set S0 where 0f  

means the identity operator, and of which the image 

indices follow the Primordial Sequence. 

The proof starts from the observation that every canonical ISS 

creates a doubling sequence of the form { }{ } { }{ }...,,, 2110 SSSS  where 

the number of elements increases as ||2 0Sν  and the images of 

the first set are defined by the element-wise application of f. 

Consequently, the sequence of indices of the set images 

increases by 1 per exponential interval thus following the 

Primordial Sequence. Therefore, from the definition 

( ) ( )0SfS
i

i =  we conclude that the sequence of image indices 

also follows the Primordial Sequence. 

An important application of non-canonical ISS is the case of 

SAT (satisfiability) problems for the so called CNF/DNF forms 

of 1
st
 Order Logic given as sequential disjunctions or 

conjunctions over an ordered set of logical variables. Given a 

list of logical variables { }K

iiX
1=  any CNF/DNF form can be 

constructed from a fundamental set of clauses of the form 

i

K

i X1=∧  or i

K

i X1=∨ . Inclusion of negative literals ( iX~ ) will be 

discussed below. 

We recall here that for K variables the total truth table can be 

constructed by an ordered set of all possible binary words which 

is identical with the KL2 -lexicon. The set of all possible Boolean 

functions is also identical with the ordered set of all 2
K
 words 

and therefore identical with the 
K

L2

2 -lexicon. The particular 

cases of conjunctive and disjunctive operations correspond to 

certain rows of the later. In such a case, we may try to construct 



a “Global Clause Function” (GCF) in the case the list of 

variables is complete by the recursion  

{ } { } { }ysorysSOSOSOS jjyiii ∨∧== −−+ )(ˆ),(ˆ),(ˆ
11101   (9) 

where we take the seed set as }1,0{0 =S .  

The significance of the above is evident as every new pair of 

values for the final truth table follows a doubling sequence with 

either 0 or 1 used for previous copies in the same manner a 

lexicon matrix is formed.  Such a function will be fairly simple 

in case no variable is missing from the list resulting either in a 

b1 = ]1...,1,1,0[ or a b2 = ]1,0,...,0,0[ bit vector. Inclusion of negative 

literals can be done with the aid of additional variables by taking 

their cross-section at the end.  Observe that these two obey a 

particular symmetry law expressed as ( ) ( )( )112
ˆ~~ˆ bbb µµ ==  where 

µ̂ is the reflection operator that reverses the bit order as 

mentioned in the classification of section 2. 

Assume now that instead of the complete list of variables we 

have partial clauses with consecutive variables. In the simplest 

case we could have { }∨∧→+ ,,1 oo ii XX . Then, expansion of the 0 

and 1 blocks gives a similar expansion of the first 0 block in the 

output vector which is always a word of the form 

( ) ( )νµ
10 with 11 2,2 +−− == iKi νµ . In general any such partial clause will 

be of the same form iff the variables are consecutive.  

The only other case that remains is that of a random selection of 

variables from the complete list forming a partial clause. In such 

a case though, the only additional effect is the appearance of 

additional 0 blocks. It is trivial to see that this is in fact a de-

synchronization effect due to the isomorphy between the rows 

of any lexicon matrix with a sampling of cyclic oscillators as 

indicated in section 1 and further by Lemma 1.1. Hence, it is 



always possible to construct a “Global Clause Function” in the 

form of a 2
K
 x 2

K
 matrix which simply takes into account all 

possible combinations of partial clauses.  

An example with 5 variables is shown in Fig. 4 for the “OR” 

and the “AND” case respectively where the recursive structure 

and the complementary nature of the two graphs is evident. 

These observations may lead to an effective algorithm for all 

SAT problems as well as an analog realization based on 

oscillator states that will be reported elsewhere. 

In the next section we concentrate in alternative representations 

of the rows of binary lexicons in terms of their associated 

polynomials and their possible relations with previously 

proposed complexity measures. 

5. Polynomial representations and sequence complexity 

There are at least two previous cases in the literature [15, 16] 

where the roots of polynomial representations of the integers has 

been studied. The first case has been studied by Odlyzko et al 

[15] for all polynomials of the form 

∑
=

∈
ν

ι

ν
ι σσ

1

]1,0[, iz     (10) 

and it is shown in fig. 3. A second case of closely associated 

“Rotated” Binary Patterns which give rise in the so called 

Littlewood polynomials [16] shown in fig. 4 can be defined as 

 ∑
=

−∈−=′′
ν

ι

ν σσσ
1

]1,1[21, iii z   (11) 

A third representation is introduced here for the first time. 

Representation Lemma 2.1: given an arbitrary finite binary 

sequence { }| [0,1], 1...is s i N∈ = and an encoding scheme 



: 2 1: [ 1,1]i i is s s s s′ ′ ′→ = − ∈ − we define the Cluster Representation C(s) 

of the same sequence 

1

1

:

( ) { } :
i i

k

j j j i

i s s

C s C N C s
+

=
=

= ∈ = ∑    (12) 

where k is the number of subsequent clusters of same symbols 

which shall be called the “Cluster Dimension”. The cluster 

representation contains the same information as the original 

sequence in the sense that it is absolutely invertible and the 

original can always be reconstructed by the contracted form of 

C(s). 

Based on the above, we also provide a possible complexity 

index for finite sequences. 

Definition: given a cluster representation of an arbitrary finite 

binary sequence we define the Cluster Index as  

2

1 1

1
| | log | |, | |

c cD D

c j j j

j jc

I C C C N
D = =

= =∑ ∑   (13) 

Dc being the “Cluster Dimension” and Cj the population of 

each cluster. 

Next, we construct a second type of index through a second 

representation, namely the associated polynomial root 

representation. 

Representation Lemma 2.2: given an arbitrary finite binary 

sequence { }| [0,1], 1...is s i N∈ = and its associated Cluster 

Representation of the same sequence C(s) we define the 

Polynomial Root Representation ρ(s) through the set of all 

complex roots of the associated polynomial 
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The root representation contains the same information as the 

original sequence in the sense that it is absolutely invertible and 

the original can always be reconstructed from the contracted 

form of ρ(s). 

The set of roots of (14) for 12

2L  is shown in Fig. 5. 

With the above, we may attempt a second alternative definition 

of a complexity index. 

Definition: given a polynomial root representation ρ(s) of an 

arbitrary finite binary sequence s we define the generic Root 

Index as  

∑
−

=

∈=
1

1

,
cD

j

j RI λρ λλ
ρ     (15) 

This is the only case where a non-trivial structure is revealed for 

the sum of roots index.  For l=1 the result is shown in Fig. 6 and 

it is always real as demanded by the Fundamental Theorem of 

Algebra. 

We may compare the measure provided by (5) with the Block-

complexity defined in Allouche [17] which is based on constant 

length “sliding” over an arbitrarily long sequence. A basic result 

is that for ultimately periodic sequences, the number of different 

blocks of length k scales as O(k).  

Karamanos in [19] and [20] also argued about the possibility of 

using the so called “lumping” technique where only successive 

blocks of constant length over a sequence are used. In this case, 



he shows that the same number becomes constant for sequences 

that are ultimately periodic. 

From what has been said in section 2, it is evident that all such 

sequences are members of a subset of the binary lexicon 

hierarchy. If a sequence becomes ultimately periodic with a 

period τ above some critical length N0 then there will be a 

subsequence of lexicon matrices { }ντ+0

2

N
L  such that each cluster 

of τ symbols will be either on the left half or the right half of 

each lexicon matrix as the two parts are always complementary 

with respect to the exchange operation (0 � 1, 1 � 0). Thus the 

cluster dimension of ultimately periodic sequences will be a 

symmetric function on any exponential interval. Moreover, as 

the number of clusters increases linearly with the iteration index 

ν, so must do the Cluster Dimension. Therefore we conclude the 

following 

Theorem 2: For any ultimately periodic binary sequence the 

associated Cluster Index scales as ττκνκ 20 log, =+C . 

Accordingly, the Cluster Dimension scales as O(ν). 

Alternatively, one can check the set of all cluster indices in an 

increasing sequence of exponential intervals for their associated 

lexicon matrices. An example is given in Fig. 7 for the 10

2L  case. 

As it is immediately evident, such a function is again self-

similar, thus its graph will be most probably associated with an 

appropriate ISS. If this is the case, then the graph of this and 

similar functions may be algebraically known beforehand which 

leads to the important conjecture that for every sequence of 

which the length is bounded from above we may know its 

degree of pseudo-randomness based on a hierarchy of properties 

of increasing complexity. That is to say that a possible complete 

classification of all finite sequences of arbitrary length might be 



possible due to the existence of self-similar index functions like 

(15).  

6. Conclusions 

The work presented here contains collective evidence from 

many areas of modern mathematics that appear to contain an 

algebraic structure and a natural self-similarity inherited from 

the primordial self-similarity of the natural numbers.  

Moreover, the targeting was towards a more fundamental 

foundation of the above conclusion in the lines of the old 

Kronecker saying according to which “God made the integers, 

all else is the work of man”. Thus, it represents a rather “Neo-

Pythagorian” approach to the whole subject of discrete 

mathematics.  

Nevertheless, from a practical viewpoint, it appears that the 

toolbox of the Universal Lexicons constructs can serve a 

number of practical purposes quite well, due to its ability to 

incorporate the power of induction through visualization. 

Hopefully, some of the applications discussed above will be 

further explored in future work especially with respect to the 

possibility of new, alternative computational architectures. 
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Fig. 1 (black � 0, white � 1) 

 

 

Fig. 2 (black � 0, green � 1, pink � 2, white � 3) 
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Fig. 4 (black � 0, white � 1) 
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Fig. 9 

 

 

 A B 

0 P1,R,B P2,L,A 

1 P2,L,A P2,R,B 

2 P1,L,A P0,R,A 

 

Table 1 

 

 

 



 AA(0) BA(1) AB(2) BB(3) 

0 P1,R,B P2,L,A P1,R,B P2,L,A 

1 P2,L,A P2,R,B P2,L,A P2,R,B 

2 P1,L,A P0,R,A P1,L,A P0,R,A 

3 P3,L,A P3,L,B P3,R,A P3,R,B 

 

Table 2 

 


