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Abstract

Nonassociative Octonionic Ternary Gauge Field Theories are revisited
paving the path to an analysis of the many physical applications of Ex-
ceptional Jordan Strings/Membranes and Octonionic Gravity. The old
octonionic gravity constructions based on the split octonion algebra Os

(which strictly speaking is not a division algebra) is extended to the full
fledged octonion division algebra O. A real-valued analog of the Einstein-
Hilbert Lagrangian L = R involving sums of all the possible contractions
of the Ricci tensors plus their octonionic-complex conjugates is presented.
A discussion follows of how to extract the Standard Model group (the
gauge fields) from the internal part of the octonionic gravitational con-
nection. The role of Exceptional Jordan algebras, their automorphism
and reduced structure groups which play the roles of the rotation and
Lorentz groups is also re-examined. Finally, we construct (to our knowl-
edge) generalized novel octonionic string and p-brane actions and raise
the possibility that our generalized 3-brane action (based on a quartic
product) in octonionic flat backgrounds of 7, 8 octonionic dimensions may
display an underlying E7, E8 symmetry, respectively. We conclude with
some final remarks pertaining to the developments related to Jordan ex-
ceptional algebras, octonions, black-holes in string theory and quantum
information theory.

Keywords: Octonions, ternary algebras, Lie 3-algebras, membranes, nonasso-
ciative gauge theories, nonassociative geometry, Exceptional Jordan Algebras,
Exceptional Groups, Grand Unification.

1 Introduction

Exceptional, Jordan, Division, Clifford, noncommutative and nonassociative al-
gebras are deeply related and are essential tools in many aspects in Physics, see
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[1], [2], [3], [4], [7], [8], [9], for references, among many others.
A thorough discussion of the relevance of ternary and nonassociative struc-

tures in Physics has been provided in [5], [10], [11]. The earliest example of
nonassociative structures in Physics can be found in Einstein’s special theory
of relativity. Only colinear velocities are commutative and associative, but
in general, the addition of non-colinear velocities is non-associative and non-
commutative.

Recently, tremendous activity has been launched by the seminal works of
Bagger, Lambert and Gustavsson (BLG) [12], [13] who proposed a Chern-
Simons type Lagrangian describing the world-volume theory of multiple M2-
branes. The original BLG theory requires the algebraic structures of generalized
Lie 3-algebras and also of nonassociative algebras. Later developments by [14]
provided a 3D Chern-Simons matter theory with N = 6 supersymmetry and
with gauge groups U(N)× U(N), SU(N)× SU(N). The original construction
of [14] did not require generalized Lie 3-algebras, but it was later realized that it
could be understood as a special class of models based on Hermitian 3-algebras
[15], [16]. For more recent developments we refer to [17] and references therein.

In this work we explore further physical applications of Exceptional Jordan
Strings/Membranes and Octonionic Gravity [24], [27], [18], [19]. The outline of
this work is organized as follows. In section 2 we present a review of Octonionic
Ternary Gauge Field Theories [28] and add new material pertaining octonionic-
valued SU(N) Yang-Mills and 3-Lie-algebra gauge field theories.

In section 3 we shall generalize the octonionic gravity construction based on
the split octonion algebra Os (which strictly speaking is not a division algebra)
studied by [18], [19] to the full fledged octonion division algebra O. A real-
valued analog of the Einstein-Hilbert Lagrangian L = R involving sums of
all the possible contractions of the Ricci tensors plus their octonionic-complex
conjugates is presented. Section 3 ends with a discussion of how to extract
the Standard Model group (the gauge fields) from the internal part of the
octonionic gravitational connection. The role of Exceptional Jordan algebras,
their automorphism and reduced structure groups which play the roles of the
rotation and Lorentz groups is also examined.

Finally, in section 4, we briefly discuss Exceptional Jordan Strings/Membranes
and provide a series of generalized octonionic string and p-brane actions (that
are novel to our knowledge) and raise the possibility that our generalized 3-
brane action (based on a quartic product) in octonionic flat backgrounds of
7, 8 octonionic dimensions may display an underlying E7, E8 symmetry, respec-
tively. We conclude with some final remarks pertaining to the developments
related to Jordan exceptional algebras, octonions, black-holes in string theory
and quantum information theory.
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2 Octonionic Ternary Gauge Field Theories

Recently [28] , a novel (to our knowledge) nonassociative and noncommutative
octonionic ternary gauge field theory was explicitly constructed that it is based
on a ternary-bracket structure involving the octonion algebra. The ternary
bracket obeying the fundamental identity (generalized Jacobi identity) was de-
veloped earlier by Yamazaki [29]. The field strength Fµν = ∂[νAµ] − [Aµ, Aν ,g]
is defined in terms of the 3-bracket [Aµ, Aν ,g] involving an octonionic-valued
field Aµ = (Aµ)aea, and an octonionic-valued coupling g = gaea. In this section
we shall review briefly the Octonionic Ternary Gauge Field Theory description
[28] and add some new material.

Given an octonion X it can be expanded in a basis (eo, em) as

X = xo eo + xm em, m, n, p = 1, 2, 3, .....7. (2.1)

where eo is the identity element. The Noncommutative and Nonassociative
algebra of octonions is determined from the relations

e2
o = eo, eoei = eieo = ei, eiej = −δijeo + cijkek, i, j, k = 1, 2, 3, ....7. (2.2)

where the fully antisymmetric structure constants cijk are taken to be 1 for
the combinations (124), (235), (346), (457), (561), (672), (713) [30]. The octonion
conjugate is defined by ēo = eo, ēm = −em

X̄ = xo eo − xm em. (2.3)

and the norm is

N(X) = | < X X > | 12 = | Real (X̄ X) | 12 = | (xo xo + xk xk) | 12 . (2.4)

The inverse

X−1 =
X̄

< X X >
, X−1X = XX−1 = 1. (2.5)

The non-vanishing associator is defined by

(X,Y,Z) = (XY)Z−X(YZ) (2.6)

In particular, the associator

(ei, ej , ek) = (eiej)ek − ei(ejek) = 2 dijkl el

dijkl =
1
3!

εijklmnp cmnp, i, j, k.... = 1, 2, 3, .....7 (2.7)

Yamazaki [29] define the three-bracket as
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[ u, v, x ] ≡ Du,v x =
1
2

( u(vx)− v(ux) + (xv)u − (xu)v + u(xv) − (ux)v ) .

(2.8)
For the octonionic algebra, after a straightforward calculation when the indices
span the imaginary elements a, b, c, d = 1, 2, 3, ......, 7, one has that

[ ea, eb, ec ] = fabcd ed = − [ dabcd − δac δbd + δbc δad ] ed (2.9a)

whereas
[ ea, eb, e0 ] = [ ea, e0, eb ] = [ e0, ea, eb ] = 0 (2.9b)

The ternary bracket (2.8) obeys the fundamental identity

[ [x, u, v], y, z ] + [ x, [y, u, v], z ] + [ x, y, [z, u, v] ] = [ [x, y, z], u, v ]
(2.10)

A bilinear positive symmetric product < u, v >=< v, u > is required such that
that the ternary bracket/derivation obeys what is called the metric compatibility
condition

< [u, v, x], y > = − < [u, v, y], x > = − < x, [u, v, y] > ⇒

Du,v < x, y > = 0 (2.11)

The symmetric product remains invariant under derivations. There is also the
additional symmetry condition required by [29]

< [u, v, x], y > = < [x, y, u], y > (2.12)

Thus, the ternary product provided by Yamazaki (2.8) obeys the key fun-
damental identity (2.10) and leads to the structure constants fabcd that are
pairwise antisymmetric but are not totally antisymmetric in all of their indices
: fabcd = −fbacd = −fabdc = fcdab; however : fabcd 6= fcabd; and fabcd 6= − fdbca.
The associator ternary operation for octonions (x, y, z) = (xy)z − x(yz) does
not obey the fundamental identity (2.10) as emphasized by [29]. For this reason
we cannot use the associator to construct the 3-bracket.

We defined in [28] the ternary field strength in terms of the ternary bracket
as

Fµν = ∂µBν − ∂νBµ + [ Bµ, Bν , g ] (2.13)

where g = gaea is an octonionic-valued ”coupling” function which is not inert
under octonionic gauge transformations. Only the scalar part of g remains
invariant. It was shown in [28] after some algebra that under the local gauge
transformations

δ(Bm
µ em) = Λab(x) [ea, eb, B

c
µ ec] (2.14)
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and
δ(gm em) = Λab(x) [ea, eb, g

c ec] (2.15)

one can ensure that the ternary field strength Fµν defined in terms of the 3-
brackets (2.13) transforms properly (homogeneously) under the ternary gauge
transformations if, and only if, the bivector gauge parameters Λab(x) obey the
”self-duality” equations 1

2dabcmΛab(x) = Λcm(x). If this is so then Fµν trans-
forms homogeneously under the infinitesimal ternary gauge transformations as

δ(Fm
µν em) = Λab [ ea, eb, F c

µν ec ] = Λab F c
µν f m

abc em ⇒ δFm
µν = Λab F c

µν f m
abc

(2.16)
The result (2.16) is a direct consequence of the fundamental identity (2.10)
because the 3-bracket (2.8) is defined as a derivation

[ [ea, eb, Bµ], Bν , g ] + [ Bµ, [ea, eb, Bν ], g ] + [ Bµ, Bν , [ea, eb, g] ] =

[ ea, eb, [Bµ, Bν , g] ] (2.17)

The parameter Λo(x) involved in the transformation δBo
µ = ∂µΛo(x), corre-

sponding to the real (identity) element e0 of the octonion algebra, leads to
δF 0

µν = 0 where the field strength component is Abelian-Maxwell-like F 0
µν =

∂µB0
ν − ∂νB0

µ.
One can verify that the expression for U = exp (−αΛab[ea, eb]); U−1 = Ū =

exp (αΛab[ea, eb]), where one excludes the identity element e0 from the above
definition of U because it yields the trivial transformation U = 1, and α = 1

4 is
a real numerical constant, yields the finite gauge transformations

F ′ = e−αΛab[ ea, eb ] (F c tc) eαΛab[ ta, tb ]. (2.18)

which agree with the ternary ones (2.17) when the real parameters Λab are
infinitesimals

δF = F ′ − F = Λab F c [ ea, eb, ec ] = − α Λab F c [ [ ea, eb ], ec] ⇒

Λab F c fabcm em = − α Λab F c (2cabd) (2cdcm) em ⇒ −4 α cabd cdcm = fabcm.
(2.19)

Therefore, by choosing α = 1
4 one arrives at the condition among the structure

constants given by cabd cdcm = − fabcm and which is indeed obeyed for the
octonion algebra as shown in [30]; i.e. the Yamazaki 3-bracket (2.8) satisfies the
identity for octonions when a, b, c, m = 1, 2, 3, ....., 7

[ ea, eb, ec ] = fabcm em = − [ dabcm − δac δbm + δbc δam ] em =

− 1
4

[ [ ea, eb ], ec ] = − cabd cdcm em ⇒

cabd cdcm = dabcm − δac δbm + δbc δam (2.20)
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dabcm are the associator structure constants given by the duals to the octonion
structure constants as shown in eq-(2.7). A series of identities involving the
structure constants of octonions can be found in [30]. Therefore, by choosing
α = 1

4 , the equality in eq-(2.20) is indeed satisfied for the octonion algebra
and such that for infinitesimal real valued parameters Λab eq-(2.18) yields to
lowest order δF = F ′ − F = Λab[ea, eb, F ] recovering the homogeneous ternary
infinitesimal gauge transformations for the field strengths as expected.

Given the octonionic valued field strength Fµν = F a
µν ea , with real valued

components F 0
µν , F i

µν ; i = 1, 2, 3, ....., 7, a gauge invariant action under ternary
infinitesimal gauge transformations in D-dim is

S = − 1
4κ2

∫
dDx < Fµν Fµν > (2.21)

κ is a numerical parameter introduced to make the action dimensionless and
it can be set to unity for convenience. The < > operation is defined as
< XY >= Real(X̄Y ) =< Y X >= Real(Ȳ X). Under infinitesimal ternary
gauge transformations of the action one has

δ S = − 1
4

∫
dDx < Fµν (δFµν) + (δFµν) Fµν > =

− 1
4

∫
dDx < F c

µν ec Λab [ea, eb, Fµν n en] > +

− 1
4

∫
dDx < Λab [ea, eb, F c

µν ec] Fµν n en > =

−1
4

∫
dDx Λab F c

µν Fµν n ( < ec fabnk ek > + < fabck ek en > ) = 0.

(2.22)
since

< ec fabnk ek > + < fabck ek en > = fabnk δck + fabck δkn = fabnc + fabcn =

− [ dabnc − δan δbc + δbn δac ] − [ dabcn − δac δbn + δbc δan ] = 0 (2.23)

because dabnc+dabcn = 0; dnabc+dcabn = 0, due to the total antisymmetry of the
associator structure constant dnabc under the exchange of any pair of indices. In-
variance δS = 0, only occurs if, and only if, δF = Λab[ea, eb, F

cec] 6= Λab[F cec, ea, eb].
The ordering inside the 3-bracket is crucial. One can check that if one sets
δF = Λab[F cec, ea, eb], the variation δS leads to a term in the integral which is
not zero

fnabc + fcabn = − [ dnabc − δnb δac + δab δnc ]− [ dcabn − δcb δan + δab δcn ] 6= 0
(2.24)

However, under δF = Λab[ea, eb, F
cec], the variation δS is indeed zero as shown.

This is a consequence of the fact that [ea, eb, ec] 6= [ec, ea, eb] when the 3-bracket
is given by eq-(2.8).
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To show that the action is invariant under finite ternary gauge transforma-
tions requires to follow a few steps. Firstly, one defines

< x y > ≡ Real [ x̄ y ] =
1
2

( x̄ y + ȳ x ) ⇒ < x y > = < y x > (2.25)

Despite nonassociativity, the very special conditions

x(x̄u) = (xx̄)u; x(ux̄) = (xu)x̄; x(xu) = (xx)u; x(ux) = (xu)x (2.26)

are obeyed for octonions resulting from the Moufang identities. Despite that
(xy)z 6= x(yz) one has that their real parts obey

Real [ (x y) z ] = Real [x (y z) ] (2.27)

Due to the nonassociativity of the algebra, in general one has that (UF )U−1 6=
U(FU−1). However, if and only if U−1 = Ū ⇒ ŪU = UŪ = 1, as a result of the
the very special conditions (2.26) one has that F ′ = (UF )U−1 = U(FU−1) =
UFU−1 = UFŪ is unambiguously defined.

Dropping the spacetime indices for convenience in the expressions for Fµν , Fµν ,
and by repeated use of eqs-(2.25-27), when U−1 = Ū , the action density is also
invariant under finite gauge transformations of the form

< F ′ F ′ > = Re [F̄ ′ F ′] = Re [(UF̄U−1) (UFU−1)] = Re [(UF̄ ) ( U−1 (UF U−1) )] =

Re [(U F̄ ) (U−1 U) (FU−1)] = Re [(UF̄ ) (FU−1)] = Re [(FU−1) (UF̄ )] =

Re [F ( U−1 (U F̄ ) )] = Re [F (U−1U) F̄ ] = Re [F F̄ ] = Re [F̄ F ] = < F F > .
(2.28)

Since the action (2.21) is invariant under finite and infinitesimal ternary
gauge transformations, this means that S[Aa

µ; ga] = S[(Aa
µ)′; (ga)′ = Ca], where

C = Caea is a constant octonionic-valued coupling which can be obtained from
gauging the octonionic-valued coupling function g(x) to a constant C. This can
be attained by performing a finite gauge transformation with Ū = U−1 such
that C = U(x)g(x)U−1(x) ⇒ g(x) = U−1(x)CU(x) and whose components are
ga =< ea(U−1(x)CU(x)) >. Because the real parts go = Co remain invariant
one may identify go = Co with a physical coupling constant. The physical
interpretation of the remaining 7 vector charges/couplings Ci, i = 1, 2, 3, ....7
deserves further investigation.

As is well known, the ordinary 2-bracket does not obey the Jacobi identity

[ ei, [ ej , ek ] ] + [ ej , [ ek, ei ] ] + [ ek, [ ei, ej ] ] = 3 dijkl el 6= 0 (2.29)

If one has the ordinary Yang-Mills expression for the field strength

Fµν = ∂µAν − ∂νAµ + [ Aµ, Aν ] (2.30)

because the 2-bracket does not obey the Jacobi identity, one has an extra (spu-
rious) term in the expression for
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[ Dµ, Dν ] Φ = [ Fµν , Φ ] + ( Aµ, Aν , Φ ) (2.31)

given by the crucial contribution of the non-vanishing associator (Aµ, Aν ,Φ) =
(AµAν)Φ − Aµ(AνΦ) 6= 0. For this reason, due to the non-vanishing condition
(2.29), the ordinary Yang-Mills field strength does not transform homogeneously
under ordinary gauge transformations involving the parameters Λ = Λaea

δAµ = ∂µΛ + [Aµ,Λ] (2.32)

and it yields an extra contribution of the form

δFµν = [Fµν ,Λ] + ( Λ, Aµ, Aν) (2.33)

As a result of the additional contribution (Λ, Aµ, Aν) in eq-(2.33), the ordinary
Yang-Mills action S =

∫
< FµνFµν > will no longer be gauge invariant. Under

infinitesimal variations eqs-(2.33), the variation of the action is no longer zero
but receives spurious contributions of the form δS = −4F l

µνΛiAµjAνkdijkl 6= 0
due to the non-associativity of the octonion algebra.

Antisymmetric tensor field theories based on octonionic valued fields Aµν =
Aa

µνea, Aµν = −Aνµ can also be constructed. The rank-three octonionic-valued
antisymmetric tensor field strength is defined in terms of the 3-bracket as

Fµνρ = ∂µ Aνρ + ∂ν Aρµ + ∂ρ Aµν +

[ Aµ, Aνρ, g ] + [ Aν , Aρµ, g ] + [ Aρ, Aµν , g ] (2.34)

There is another rank-three tensor given by

Hµνρ = [ Aµ, Aν , Aρ ]. (2.35)

which is only anti-symmetric in the first pair of indices Hµνρ = −Hνµρ. Since the
3-bracket obeys the Fundamental identity, under ternary gauge transformations

δAµ = Λab [ ea, eb, Aµ ], δAµν = Λab [ ea, eb, Aµν ] (2.36)

one has that

δFµνρ = Λab [ ea, eb, Fµνρ ], δHµνρ = Λab [ ea, eb, Hµνρ ] (2.37)

if, and only if, the bivector gauge parameters obey the ”self-duality” conditions
Λab = 1

2dabcdΛcd as shown in [28]. An invariant action involving the octonionic
valued fields Fµνρ and Hµνρ in D-dim is of the form

S =
1

2κ2

∫
dDx <

1
3!

Fµνρ Fµνρ +
1
2!

Hµνρ Hµνρ > (2.38)

where κ is a parameter with the suitable dimensions to render the action di-
mensionless.
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To finalize this section we discuss further constructions, like having an
octonionic-valued and SU(N)-valued gauge field Aµ = Aam

µ (ea⊗Tm) involving
the SU(N) algebra generators Tm,m = 1, 2, 3, ...., N2−1 and the octonion alge-
bra generators ea, a = 0, 1, 2, 3, ...., 7; i.e. one has octonionic-valued components
for the SU(N) gauge fields. The commutator is

[ Aµ, Aν ] = [ Aam
µ (ea ⊗ Tm), Abn

ν (eb ⊗ Tn) ] =

1
2

Aam
µ Abn

ν {ea, eb} ⊗ [Tm, Tn] +
1
2

Aam
µ Abn

ν [ea, eb]⊗ {Tm, Tn} (2.38)

where
{ea, eb} = − 2 δab eo, [ea, eb] = 2 cabc ec (2.39)

and

{Tm, Tn} =
1
N

δmn + dmnp Tp, [Tm, Tn] = fmnp Tp (2.40)

One may note that the r.h.s of (2.38) involves both commutators and anti-
commutators. Due to the fact that the octonion algebra does not obey the
Jacobi identities this will spoil the gauge invariance of typical Yang-Mills actions
as described before. Let us have instead a ternary Lie algebra (3-Lie algebra)
obeying the ternary commutation relations

[ Tm, Tn, Tp ] = fmnpq Tq (2.41)

and such that the ternary-bracket structure-constants fmnpq obey the fun-
damental identity. A 3-Lie-algebra and octonionic-valued field is defined by
Aµ ≡ Ama

µ (Tm ⊗ ea). However, the triple commutator

[ Aµ, Aν , Aρ ] = [ Ami
µ (Tm ⊗ ei), Anj

ν (Tn ⊗ ej), Apk
ρ (Tp ⊗ ek) ] (2.42)

would furnish a very complicated expression for the r.h.s of eq-(2.42). To sim-
plify matters one could define the ternary bracket as

[ Aµ, Aν , Aρ ] = Ami
µ Anj

ν Apk
ρ [Tm, Tn, Tp]⊗ [ei, ej , ek] =

Ami
µ Anj

ν Apk
ρ fmnpq fijkl (Tq ⊗ el) (2.43)

so that one has closure in the r.h.s of (2.43). It is warranted to explore fur-
ther these generalized ternary gauge field theories involving 3-Lie algebras and
octonions.
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3 Octonionic Gravity

In this section we shall generalize the octonionic gravity construction based
on the split octonion algebra Os (which strictly speaking is not a division al-
gebra) [18], [19] to the full fledged octonion division algebra O. Gµν is an
octonionic-valued metric (Gµν)oeo + (Gµν)iei obeying the Hermiticity condi-
tion G†

µν = Ḡνµ = Gµν , and from which one can infer that the real part of
the metric is symmetric (G(µν))o, and the 7 imaginary components are anti-
symmetric (G[µν])i in their µ, ν indices. The bar denotes octonionic ”complex”
conjugation : ēo = eo; ēi = −ei; i = 1, 2, 3, ....., 7. The diagonal components of
Gµν are comprised of real-valued entries; and the off-diagonal ones are com-
prised of octonionic-valued entries.

Furthermore, instead of having octonionic-valued metric functions of the
form [18] (Gµν)o(xρ) eo + (Gµν)i(xρ) ei, where xρ are ordinary real-valued
coordinates of a real manifold M whose real-dimension is dimR(M) = D, we
have octonionic-valued metric functions of the form

Gµν = (Gµν)o(Zρ, Z̄ρ) eo + (Gµν)i(Zρ, Z̄ρ) ei (3.1a)

Gµ̄ν = (Gµ̄ν)o(Zρ, Z̄ρ) eo + (Gµ̄ν)i(Zρ, Z̄ρ) ei (3.1b)

Gµν̄ = (Gµν̄)o(Zρ, Z̄ρ) eo + (Gµν̄)i(Zρ, Z̄ρ) ei (3.1c)

Gµ̄ν̄ = (Gµ̄ν̄)o(Zρ, Z̄ρ) eo + (Gµ̄ν̄)i(Zρ, Z̄ρ) ei (3.1d)

where Zρ, Z̄ρ are octonionic-valued coordinates. The (real and 7 imaginary)
components of the octonionic-valued metric

[(Gµν)o(Zρ, Z̄ρ), (Gµν)i(Zρ, Z̄ρ)]; [(Gµ̄ν̄)o(Zρ, Z̄ρ), (Gµ̄ν̄)i(Zρ, Z̄ρ)]; ......
(3.2)

are real-valued functions. In the bi-octonions case C×O, one can have complex-
valued functions for the components of the metric in eq-(3.2) with i = 1, 2, 3, ...., 7.
For the time being we concentrate in the octonions case.

The determinants of non-Hermitian matrices over the division algebras H,O
are not well defined. However the determinant of a 2 × 2 and 3 × 3 Hermitian
matrix over H,O is well defined and real-valued [23]. In the 3 × 3 Hermitian
matrix X case one requires to use the Freudenthal’s determinant definition given
by the trace of the cubic form detX = 1

3Tr(X ∗J (X ×F X)) in terms of the the
Jordan nonassociative (but commutative) ∗J product and the Freudental ×F

product. This is one of the reasons why it is important to impose the Hermiticity
condition on the octonionic-valued metric Gµν . The indices µ, ν range over the
number of plausible octonionic dimensions D = 1, 2, 3 where a determinant can
be defined and correspond to 8, 16, 24 real dimensions, respectively.

If one has now an octonionic-valued metric Gµν 6= Gνµ instead of the real-
valued metric ηµν = ηνµ, due to the nonassociativity and noncommutativity,
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the real-valued metric interval ds2 is defined to be

ds2 =
1
2

[ (dZµ Gµν) dZν + dZµ (Gµν dZν) ] +

1
2

[ (dZ̄ν Gµ̄ν̄) dZ̄µ + dZ̄ν (Gµ̄ν̄ dZ̄µ) ] +

1
2

[ (dZµ Gµν̄) dZ̄ν + dZµ (Gµν̄ dZ̄ν) ] +

1
2

[ (dZν Gµ̄ν) dZ̄µ + dZν (Gµ̄ν dZ̄µ) ] (3.3)

where the octonionic (and octonionic-complex conjugate) coordinates are

Zµ = (Zµ)o eo + (Zµ)i ei, µ = 1, 2, 3, ....., D (3.4a)

Z̄µ = (Zµ)o eo − (Zµ)i ei, µ = 1, 2, 3, ....., D (3.4b)

The components (Zµ)o, (Zµ)i; i = 1, 2, 3, ...., 7 are real-valued entries. In the bi-
octonions case C×O they could be complex-valued. The interval ds2 in eq-(3.3)
is comprised of sums of terms involving pairs of octonionic-complex conjugates
and for this reason it is real-valued. The first two terms, and the last two terms
of (3.3), are respective pairs of octonionic-complex conjugates. For example, in
ordinary complex manifolds one has a real-valued interval

ds2 = gµν dzµ dzν + gµ̄ν̄ dz̄µ dz̄ν + gµ̄ν dz̄µ dzν + gµν̄ dzµ dz̄ν (3.5)

due to the conditions under complex conjugation (gµν)∗ = gµ̄ν̄ , (gµ̄ν)∗ = gµν̄ ,
(gµν̄)∗ = gµ̄ν , the interval (3.5) is comprised of sums of terms involving pairs of
complex conjugates and for this reason it is real-valued.

One may define the analog of a phase rotation or unitary transformation in
terms of

U = e Λi(Zµ,Z̄µ) ei , i = 1, 2, 3, ........, 7 (3.6)

where Λi(Zµ, Z̄µ), for i = 1, 2, 3, ..., 7, are 7 real-valued functions of the oc-
tonionic spacetime coordinates Zµ, Z̄µ;µ = 1, 2, 3, ......, D; i.e. the functions
Λi(Zµ, Z̄µ) under octonionic conjugation ēi = −ei, ēo = eo, obey the conditions
Λ̄i(Z̄µ,Zµ) = Λi(Zµ, Z̄µ) due to the reality condition imposed on the Λi. As a
result, one has that U satisfies the condition U−1 = Ū which is the analog of a
unitary transformation (unitary matrix). A rigorous definition of an octonionic
exponential function, an octonionic Taylor expansion, the Fourier transform and
the Paley-Wiener theorem was provided by [20].

In section 2 ...... we learned from the Moufang identities that when U−1 =
Ū , the new coordinate

Z ′
µ = (U Zµ) Ū = U (Zµ Ū) = U Zµ Ū = U Zµ U−1 (3.7)

are unambiguously defined. Dropping the spacetime indices, and the bold face
notation for convenience in the octonionic-valued coordinates Zµ,Zµ , one can

11



again show, after a repeated use of eqs-(2.25-2.27) involving the Moufang iden-
tities, that the interval

ds2 = ηµν < dZµ dZν > = < dZµ dZµ > (3.8)

is invariant under the U -transformations (3.7) when U−1 = Ū ,

(ds′)2 = < dZ ′ dZ ′ > = Re [dZ̄ ′ dZ ′] = Re [(UdZ̄U−1) (UdZU−1)] =

Re [(UdZ̄) ( U−1 (UdZ U−1) )] = Re [(U dZ̄) (U−1 U) (dZU−1)] =

Re [(UdZ̄) (dZU−1)] = Re [(dZU−1) (UdZ̄)] =

Re [dZ ( U−1 (U dZ̄) )] = Re [dZ (U−1U) dZ̄] = Re [dZ dZ̄] = Re [dZ̄ dZ] =

< dZ dZ > = ds2 (3.9)

Therefore the interval ds2 = (ds′)2 remains invariant under the U -transformations
(3.7).

The octonionic-valued connection can be decomposed as

Yσ
µρ = (Γσ

µρ)
o eo + (Θσ

µρ)
i ei (3.10)

There are other components Yσ̄
µ̄ρ̄, Yσ̄

µ̄ρ, Yσ
µ̄ρ, ..... that must be included as well.

For simplicity we shall not write them down. In complex Hermitian manifolds
one has gµν = gµ̄ν̄ = 0, and gµν̄ , gµ̄ν are not zero [21]. The only non-vanishing
connection components are Γσ

µρ; Γ
σ̄
µ̄ρ̄; the only non-vanishing curvature compo-

nents are Rσ
µν̄ρ;R

σ̄
µ̄νρ̄. Lowering indices with the non-vanishing metric com-

ponents gτσ̄, gτ̄σ yields the non-vanishing curvature components Rτ̄µν̄ρ;Rσ̄
τµ̄νρ̄.

The Ricci tensor is Rµν̄ . In the octonionic case matters are more complicated
due to nonassociativity/noncommutativity.

If one restricts the internal part of the octonionic connection in the following
form Θσ

µρ = δσ
ρ Θµ then eq- (3.10) becomes

Yσ
µρ = (Γσ

µρ)
o eo + δσ

ρ (Θµ)i ei (3.11)

The scalar (real) part is given by the spacetime connection

Γσ
µρ = Γσ

(µρ) + Γσ
[µρ] (3.12)

comprised of a symmetric Γσ
(µρ) and antisymmetric (torsion) piece T σ

µρ = Γσ
[µρ].

The internal (purely imaginary) part of the connection is given by δσ
ρ Θi

µ ei, with
i = 1, 2, 3, ....., 7, so that the commutator becomes [Θµ,Θν ] = 2 Θi

µ Θj
ν cijk ek.

The octonionic-valued curvature, when one restricts the internal part of the
connection to be Θσ

µρ = δσ
ρ Θµ, is given by

Rσ
µνρ = Rσ

µνρ eo + ( Pσ
µνρ )k ek ⇒

Rσ
µνρ = ∂µ Γσ

νρ − ∂ν Γσ
µρ + Γσ

µτ Γτ
νρ − Γσ

ντ Γτ
µρ (3.13)
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is the standard real part of the curvature. The internal (purely imaginary) part
of the curvature tensor can be written in terms of

Pµν = ∂µ Θν − ∂ν Θµ + [ Θµ, Θν ] =

( ∂µ Θk
ν − ∂ν Θk

µ ) ek + 2 Θi
µ Θj

ν cijk ek. (3.14)

such that
Pσ

µνρ = ( Pσ
µνρ )k ek = δσ

ρ (Pµν)k ek =

δσ
ρ ( ∂µ Θν − ∂ν Θµ + [ Θµ, Θν ] )k

ek, ek = e1, e2, e3, ......, e7. (3.15)

By derivatives in eqs-(3.13-3.15) it is understood that ∂µ = (∂/∂Zµ), ∂µ̄ =
(∂/∂Z̄µ). There are other components of the curvature involving derivatives of
the remaining connection components Yσ̄

µ̄ρ̄, Yσ
µ̄ρ, ..... that must be included as

well and yielding Rσ̄
µ̄ν̄ρ̄,R

σ
µ̄νρ, ........

When one does not restrict the internal part of the connection to be Θσ
µρ =

δσ
ρ Θµ = δσ

ρ Θi
µei, but instead if it is given by Θσ

µρ = (Θσ
µρ)

iei, then the expression
for the curvature is more complicated. In this case, due to cijk = −cjik one has
modified contributions to the curvature of the form

(Θσ
µτ )i ei (Θτ

νρ)
j ej − (Θσ

ντ )j ej (Θτ
µρ)

i ei =

−δij

(
(Θσ

µτ )i (Θτ
νρ)

j − (Θσ
ντ )j (Θτ

µρ)
i

)
eo +(

(Θσ
µτ )i (Θτ

νρ)
j + (Θσ

ντ )j (Θτ
µρ)

i
)
cijk ek (3.16)

Namely, the real part of the curvature will receive an additional contribution
to the prior real part in eq-(3.13) which is given by the second line of eq-(3.16).
And the third line of eq-(3.16) differs now from the commutator term δσ

ρ [Θµ,Θν ]
in eq-(3.15).

Covariant derivatives are defined by

∇µ Vρ = ∂µ Vρ + Γρ
σµ Vσ + [ Θµ, Vρ ] (3.17a)

∇µ̄ Vρ̄ = ∂µ̄ Vρ̄ + Γρ̄
σ̄µ̄ Vσ̄ + [ Θµ̄, Vρ̄ ] (3.17b)

etc .... For instance, the commutator will receive additional contributions

[ ∇µ, ∇ν ] Vτ = Rτ
µνσ Vσ + Γσ

[µν] (∇σ Vτ ) +

[ Pµν , Vτ ] + 6 ( Θµ, Θν , Vτ ) (3.18)

One may notice the contribution of the non-vanishing associator (Θµ,Θν ,Vτ ) to
the r.h.s of eq-( 3.18) . There is also the contribution of the term [Pµν ,Vτ ] due to
the noncommutativity of the octonions, as well as the contribution Γσ

[µν](∇σVτ ).
The antisymmetric part of the connection Γσ

[µν] contributes to a non-vanishing
torsion.

In ordinary Riemannian geometry the Bianchi identities ∇[ρR
τ
µν]σ = 0 are

obeyed as well as Rτ
[µνσ] = 0 [22], after an antisymmetrization of three indices is

performed. However, due to the non-associativity of octonions, this is no longer
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the case for the octonionic-valued curvature tensor Rτ
µνσ . In particular the

non-vanishing associator of three covariant derivatives acting on an octonionic-
valued vector is of the form

( ∇µ, ∇ν , ∇ρ ) Vτ = a1 ∇[ρRτ
µν]σ Vσ + a2 Rσ

[µνρ] ∇σ Vτ 6= 0 (3.19)

the numerical coefficients a1, a2 are real-valued. The antisymmetrization with
respect to the indices [µνρ] is a result of the total antisymmetry of the associator
structure constant dijkl, for example

( Θµ, Θν , Θρ ) = 2 Θi
µ Θj

ν Θk
ρ dijkl el (3.20)

There are many possible contractions of Rτ
µνσ,Rτ̄

µ̄ν̄σ̄, ....... due to the non-
commutativity/nonassociativity of octonions and to the position of the indices
in the metric because it is not symmetric. It obeys the Hermiticity condition
G†

µν = Ḡνµ = Gµν . Therefore, there are many possible contractions from the
family of possible octonionic-valued Ricci tensors to obtain octonionic-valued
curvature scalars. For example, given Rµσ = δν

τ R
τ
µνσ one has

Rµσ Gσµ 6= Rµσ Gµσ 6= Gσµ Rµσ 6= Gµσ Rµσ (3.21)

As a result of the identities < XY > = < Y X > = Re[X̄Y ] = Re[Ȳ X]
one has

< Rµσ Gσµ > = < Gσµ Rµσ > (3.22)

and which is not equal to

< Rµσ Gµσ > = < Gµσ Rµσ > (3.23)

Because there is torsion, and nonmetricity in general ∇ρGµν 6= 0;∇ρGµ̄ν̄ 6=
0; ......... the Ricci tensor can be decomposed into a symmetric R(µσ) and an-
tisymmetric piece R[µσ], for example. If one sets the torsion and nonmetricity
to zero, it will yield a relationship among the metric and the connection as in
ordinary Riemann geometry.

A real-valued analog of the Einstein-Hilbert Lagrangian L = R should
involve sums of all the possible contractions of the Ricci tensors plus their
octonionic-complex conjugates

L = c1 (Rµσ̄ Gσ̄µ + Gσµ̄ Rµ̄σ) + c2 (Rµ̄σ Gσµ̄ + Gσ̄µ Rµσ̄) +

c3 (Rµσ̄ Gµσ̄ + Gµ̄σ Rµ̄σ) + c4 (Rµ̄σ Gµ̄σ + Gµσ̄ Rµσ̄) +

d1 (Rµσ Gσµ + Gσ̄µ̄ Rµ̄σ̄) + d2 (Rµσ Gµσ + Gµ̄σ̄ Rµ̄σ̄) +

d3 (Gσµ Rµσ + Rµ̄σ̄ Gσ̄µ̄) + d4 (Gµσ Rµσ + Rµ̄σ̄ Gµ̄σ̄) (3.24)

where c1, c2, c3, c4, d1, d2, d3, d4 are real numerical coefficients. From (3.24) one
may notice that in this octonionic case one can construct 8 different real-valued
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curvature scalars from the contractions of the Ricci curvature tensors due to the
nonassociativity and noncommutativity. It is likely that due to symmetries not
all of these 8 quantities are independent from each other.

By analogy with what occurs in complex Hermitian manifolds endowed with
a Hermitian metric, if the non-vanishing components of the octonionic metric
are Gµν̄ ,Gµ̄ν one can define the determinant in D = 2, 3 octonionic dimensions
as

det (G) =
√

det (Gµν̄) det (Gµ̄ν) (3.25)

and the analog of the Einstein-Hilbert action is

1
16πGN

∫
[dΩ]

√
|det(G)| L (3.26)

where the (real-valued) L in this particular case is obtained after setting the last
two lines in eq-(3.24) to zero. [dΩ] is a suitable measure in an octonionic D-dim
spacetime. The values D = 2, 3 have a correspondence to 16, 24 real-dimensions,
respectively. For example, in D = 3 octonionic dimensions, the measure is

(dx0∧dx1∧ ....... ∧dx7) ∧ (dy0∧dy1∧ ....... ∧dy7) ∧ (dz0∧dz1∧ ....... ∧dz7).
(3.27)

The components of the metric G = Gµν are

G ≡

 g11 go
(12)eo + gi

[12]ei go
(13)eo + gi

[13]ei

go
(21)eo + gi

[21]ei g22 go
(23)eo + gi

[23]ei

go
(31)eo + gi

[31]ei go
(32)eo + gi

[32]ei g33

 =

 g11 go
(12)eo + gi

[12]ei go
(13)eo + gi

[13]ei

go
(12)eo − gi

[12]ei g22 go
(23)eo + gi

[23]ei

go
(13)eo − gi

[13]ei go
(23)eo − gi

[23]ei g33

 (3.28)

It is clear from the second matrix in (3.28) that it is Hermitian from the octo-
nionic point of view. The 3× 3 Hermitian matrix G has the same structure as a
Jordan matrix belonging to the exceptional Jordan-Albert algebra J3[O]. The
real-valued Freudenthal determinant is given by the trace of the cubic form

det G =
1
3

Tr( G ∗J ( G ×F G ) ) (3.29)

The nonassociative but commutative Jordan product of two Jordan matrices
X, Y is

X ∗J Y =
1
2

( X Y + Y X ) (3.30)
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The (symmetric) Freudenthal product is

X ×F Y = X ∗J Y −1
2

[ Y Tr(X) + X Tr(Y ) ] +
1
2

[ Tr(X) Tr(Y )− Tr(X∗JY ) ] 1

(3.31)
the last term involves the unit matrix 1. Hence, the Freudental determinant
allows to construct the Einstein-Hilbert action (3.26) in this case. In D = 2
octonionic-dimensions one has the Exceptional Jordan algebra J2[O] involving
2× 2 Hermitian matrices with a well defined determinant.

Similar 3×3 Hermitian matrix representations as eq-(3.28) exist for the other
components of the octonionic metric as described by eqs-(3.1) and obeying the
relations Gµ̄ν̄ = Ḡµν = Gνµ; Gµ̄ν = Ḡµν̄ = Gν̄µ; Gµν̄ = Ḡµ̄ν = Gνµ̄. Their
Freudenthal determinant will be computed in the same way as in eq-(3.29).
In particular, this will allow us to evaluate the expression for the measure in
eq-(3.25) to be used in the action (3.26) for the very special case that the non-
vanishing components of the metric are Gµν̄ ,Gµ̄ν .

One could add torsion and curvature squared terms to the action (3.26),
and other terms if one wishes, like a cosmological constant and derivatives of
curvature terms. At the moment we shall focus on the simplest of actions linear
in the curvature. Clearly, due to the nonassociativity and noncommutativity of
octonions there are clear generalizations and modifications of ordinary gravity.

Before we finalize this section one ought to mention what is the analog of the
rotation and Lorentz group when octonions and Exceptional Jordan algebras are
the ingredients of a physical model. There are several ways in which Lie groups
can be defined by Jordan algebras. The analog of the rotation group is the
automorphism group of a Jordan algebra consisting of linear transformations
preserving its multiplication table. These transformations can be expressed in
terms of the associator (A,B,C) = (AB)C −A(BC) as [25]

M ′ = M + ( A, M, B ) +
1
2!

( A, (A, M, B), B ) + ..... (3.32)

where A,B are traceless elements of the Jordan algebra. The transformation
(3.32) is just the ”exponentiation” of the infinitesimal transformation δM =
(A,M,B). The analog of the Lorentz group is the reduced structure group with
infinitesimal transformations of the form δM = (A,M,B)+C ∗J M where C is
also a traceless element of the Jordan algebra. The finite transformations under
the reduced structure group obtained by ”exponentiation” are defined as [25]

δfiniteM = δM +
1
2!

δ(δM) +
1
3!

(δ(δ(δM))) + .... ⇒

M ′ −M = ( A, M, B ) + C∗JM +
1
2!

[ ( A, [ ( A, M, B ) + C ∗J M ], B ] +

1
2!

C ∗J [ ( A, M, B ) + C ∗J M ] + .... (3.33)

The automorphism (rotation) and reduced structure group (Lorentz) of the
J3[O] algebra are F4, E6(−26) respectively. Inspired by the magic Tits square,
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Gunaydin et al [33] extended the automorphism (rotation) and reduced struc-
ture (Lorentz) groups to the so-called conformal and quasi-conformal case lead-
ing to non-compact forms of E7, E8, respectively. The authors [23] provided a
different approach to the Lorentz group. In particular in D = 10, the analog of
Octonionic Mobius (nested) transformations and 3-component Cayley spinors
were constructed.

The key question is : can one extract the Standard Model group (the gauge
fields) from the internal part δρ

σ(Θµ)iei of the octonionic gravitational connec-
tion ? Instead of having pure octonionic gravity based solely on octonions, one
could have the metric and connection fields taking values in a composition alge-
bra of the form C×H×O a la Dixon [7]. The complex numbers are related to a
U(1) symmetry associated with the circle S1. The quaternions are related to a
SU(2) symmetry associated with the 3-sphere S3. The octonions are related to
a SU(3) symmetry associated with the 7-sphere S7. The SU(3) is a subgroup of
the 14-dim automorphism group of the octonions G2 which leaves invariant the
idempotents 1

2 (eo ± ie7). One may include the algebra R of the real numbers
which is associated to S0 and corresponds to the two end-points ±1 of a line
segment. It is more reminiscent of a discrete symmetry like C,P, T .

Therefore, a gravitational theory based on composition algebra of the form
C ×H × O a la Dixon [7] would encode the Standard Model group SU(3) ×
SU(2) × U(1). Naturally, since the octonionic gravity program described in
this section involves D = 2, 3 octonionic dimensions, which correspond to 16, 24
real dimensions, it is amenable to a Kaluza-Klein compactification mechanism
to generate the Yang-Mills (GUT, Standard Model) group in lower dimensions
from the isometry group of the internal space. A Kaluza-Klein theory without
extra dimensions involving a metric in curved Clifford space was analyzed by
[34].

4 Octonionic Branes, Exceptional Jordan Strings
and Membranes

Given an ordinary string’s world-sheet parametrized by the real-valued coordi-
nates σ1, σ2 and embedded in an octonionic-valued target spacetime background
Zµ, µ = 1, 2, 3, .....D, in the form Zµ(σ1, σ2) = (Zµ)o(σ1, σ2) eo + (Zµ)i(σ1, σ2) ei,
allows to formulate the octonionic analog of the Eguchi-Schild string action
(area-squared) as

S = − T

4

∫
d2σ < [ { Zµ, Zν }PB ] [ { Zµ, Zν }PB ] > =

T

4

∫
d2σ Real

(
[ { Z̄ν , Z̄µ }PB ] [ { Zµ, Zν }PB ]

)
(4.1)
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where T is the string’s tension and the Poisson bracket (PB) is defined as usual

{ Zµ, Zν }PB = (∂aZµ) (∂bZν) − (∂bZµ) (∂aZν); ..... (4.2)

One should note the ordering of the indices in eq-(4.2) due to the noncommu-
tativity. Another (real-valued) action that can be constructed is

S = − T

8

∫
d2σ ( [ { Zµ, Zν }PB ] [ { Zµ, Zν }PB ] + o.c.c ) . (4.3)

by adding the octonionic-complex conjugate (o.c.c).
Despite the nonassociativity, the real parts of the cubic product obey the

equality

Re [ (ei ej) ek ] = Re [ ei (ej ek) ] (4.4)

however the real parts of the quartic products differ

Re [ (ei ej) (ek el) ] 6= Re [ ei (ej ek) el ] (4.5)

For this reason one must specify the ordering of the quartic products in the
specific form as shown in eqs-(4.1, 4.3) .

The analog of the Polyakov-Howe-Tucker action for an octonionic p-brane
action is

S = −Tp

2

∫
dp+1σ

√
|h| hab

4
[ (∂aZµ Gµν) ∂bZν + ∂aZµ (Gµν ∂bZν) + ......... ] +

(p− 1)
2

Tp

∫
dp+1σ

√
|h| (4.6)

where the ellipsis ....... denote the other contributions from the Gµ̄ν̄ ,Gµ̄ν , .....
components of the metric and the Z̄µ coordinates. The terms inside the brackets
in eq-(4.6) are comprised of sums of terms involving pairs of octonionic-complex
conjugates in order to render the action real-valued, exactly as it was done
in eq-(3.3) to obtain a real-valued interval ds2. Tp is the p-brane’s tension of
mass dimension (mass)p+1; hab is the auxiliary p + 1-dim world-volume metric
corresponding to the p-brane. When p = 1, one recovers the string action. After
the algebraic elimination of the auxiliary p+1-dim world-volume metric hab via
its equations of motion, one will recover the Nambu-Goto-Dirac action for the
p-brane. The (real-valued) induced world-volume metric h̃ab is

h̃ab =
1
4

[
(∂aZµ Gµν) ∂bZν + ∂aZµ (Gµν ∂bZν) + ∂bZ̄ν (Gµ̄ν̄ ∂aZ̄µ) + ...........

]
(4.7)

after inserting this on-shell value for h̃ab back into the action (4.5) hab = h̃ab,
it yields the Nambu-Goto-Dirac p-brane action

S = − Tp

∫
dp+1σ

√
det |h̃ab| . (4.8)
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Naturally, when the background metric is real-valued Gµν = gµν there is no
ambiguity in the ordering in eqs-(4.5).

Other constructions of string and membrane actions based on the nonasso-
ciative octonion algebra are possible. For example, a nonassociative formulation
of Exceptional Jordan bosonic strings in D = 26 was presented by [24] where
the string embedding coordinates belong to the 3 × 3 matrix elements of the
(traceless) Jordan algebra J3(O) and carry internal charges belonging to rep-
resentations of the exceptional F4 algebra. The automorphism group of J3(O)
is F4. The traceless condition is required to obtain a 26-dim algebra since the
Exceptional Jordan-Albert algebra J3[O] is 27-dimensional [26].

A construction of the nonassociative Chern-Simons membrane action from
the large N limit of an Exceptional Jordan Matrix Model, corresponding to
the direct product of the Exceptional Jordan algebra J3(C × O) with the Lie
algebra SU(N), was advanced by [27]. Such Chern-Simons membrane action
had a rigid global E6 invariance. The E6 Exceptional Jordan Matrix Model was
developed by [31] and the F4 Jordan Matrix Model was studied by [32]. In [27]
we proposed also that the generalized spacetime coordinates X may belong to
a real Freudenthal algebra defined in Zorn matrix notation as(

a J3[O]
J3[O] b

)
(4.9)

the two real variables a, b lie along the diagonal The dimension of the algebra
Fr[O] is 2 + 2 × 27 = 2 + 54 = 2 × 28 = 56. In [27] we argued why the
latter 56 dimensions may permit the complexified formulation of the bosonic
28-dimensional version of F theory. The connection between the 28-dim bosonic
formulation F theory and quaternionic Jordan algebras of degree four J4[H] has
also been raised by Smith [26]. The automorphism group of the Freudenthal
algebra Fr[O] is E6 which is a Grand Unification group.

The generalized spacetime coordinates X may belong also to the complexified
Freudenthal algebra : (

a1 + i a2 J3[C ×O]
J3[C ×O] b1 + i b2

)
(4.10)

with two complex variables a1 + ia2; b1 + ib2 along the diagonal. The dimension
of the algebra Fr[C × O] is 2 × (2 + 54) = 4 × 28 = 112 which may permit
a quaternionic formulation of the bosonic 28-dimensional version of F theory.
The automorphism group of the complexified Freudenthal algebra Fr[C ×O] is
E7.

Gunaydin et al [33] have constructed the conformal (like SO(10, 2), ”two
times” ) and quasi-conformal (like SO(10 + 2, 4) = SO(12, 4), ”four times”)
nonlinear realizations of the Exceptional Lie groups E7(7), E8(8) based on the
3-grading and 5-grading decompositions of the noncompact groups E7(7) and
E8(8), respectively. The 56 dim representation of E7(7) admits the 3-grading
decomposition under the E6(6) ×D(dilations) subgroup

56 = 1⊕ (2̄7⊕ 27)⊕ 1. (4.11)
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The 5-grading decomposition of E8(8) w.r.t the subgroup E7(7) ×D is

248 = 1⊕ 56⊕ (133⊕ 1)⊕ 56⊕ 1 (4.12)

There are no quadratic E7(7) invariants in the 56 representation, nevertheless a
real quartic E7(7) invariant I4 can be constructed by means of the Freudenthal
ternary product [X, Y, Z] → W and a skew-symmetric bilinear form < X,Y >
as [33]

I4 =
1
48

< [X, X, X], X > = XijXjkXklXli −
1
4
XijXijX

klXkl +

1
96

εijklmnpqXijXklXmnXpq +
1
96

εijklmnpqX
ijXklXmnXpq. (4.13)

the symplectic invariant of two 56 representations, like the area element in phase
space

∫
dp ∧ dq, is given by

< X,Y > = Xij Yij − Xij Y ij (4.14)

where the fundamental 56 dimensional representation of E7(7) is spanned by the
anti-symmetric real tensors ( bi-vectors ) Xij , Xij built from SL(8, R) indices
1 ≤ i, j ≤ 8 so that 56 = 28 + 28. An SL(8, R) bi-vector has 28 independent
components. The triple product [X, Y, Z] is defined as [33]

[X, Y, Z]ij = − 8 Xik Ykl Zlj − 8 Y ik Xkl Zlj − 8 Y ik Zkl X lj − i ↔ j −

2 Y ij Xkl Zkl − 2 Xij Y kl Zkl − 2 Zij Y kl Xkl +
1
2

εijklmnpq Xkl Ymn Zpq (4.15a)

[X, Y, Z]ij = 8 Xik Y kl Zlj + 8 Yik Xkl Zlj + 8 Yik Zkl Xlj − i ↔ j +

2 Yij Zkl Xkl + 2 Xij Zkl Ykl + 2 Zij Xkl Ykl −
1
2

εijklmnpq Xkl Y mn Zpq (4.15b)

Gunaydin et al [33] have shown that one may exhibit a nonlinear realization
of the algebra E8(8) on a 1 + 56 = 57-dimensional real vector space where the
generalized spacetime coordinates belong to the algebra Fr[O] ⊕ R and such
that X = (Xij , Xij , x). The X forms the 56 ⊕ 1 representation of E7(7). The
quartic invariant under the action of the E8(8) group is given by

N4 = I4(Xij , Xij) − x2. (4.16)

The finite displacement in the 57-dim generalized spacetime is defined as
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δ(X, Y ) = (Xij − Y ij , Xij − Yij , x− y + < X,Y > ) = (Zij , Zij , z) (4.17)

the ”light-cone” in 57-dim which is invariant under E8(8) is defined by the null
condition

N4 [δ(X, Y )] = I4(Zij , Zij) − z2 = 0. (4.18)

The z generalized coordinate in (4.18) was interpreted as ”entropy” by [33].
To sum up, Gunaydin et al [33] concluded that a nonlinear realization of E8(8)

on a space of 57 real dimensions is quasi-conformal in the sense that it leaves
invariant the ”light” cone in (4.18). A further complexification leads to a ”light
cone” in C57 dimensions which is invariant under the complex group E8(C).

Okubo, de Wit-Nicolai and Gursey-Tze constructed (independently) an oc-
tonionic triple-product among three octonionic x, y, z variables [4]

[ x, y, z ]Okubo =
1
2

( (x, y, z) + < x|eo > [y, z] + < y|eo > [z, x] ) +

1
2

( < z|eo > [x, y] − < z|[x, y] > eo ) . (4.19)

where eo is the Octonion unit element; < x|y >=< y|x >= Re[x̄y] = Re[ȳx] is
a symmetric bilinear non-degenerate form, and (x, y, z) = (xy)z − x(yz) is the
non-vanishing associator for the octonionic variables. The triple product (4.19)
is totally antisymmetric in x, y, z whereas the triple product (4.15a, 4.15b) is
not. A quartic invariant among four octonionic variables can be defined from
the triple product (4.19) and the bilinear form as < w|[x, y, z] >. It is totally
antisymmetric in the four variables x, y, z, w. This latter total antisymmetry
property will permit us to construct a Nambu-Goto-Dirac 3-brane action corre-
sponding to a 3+1-dim world volume (our world ?) which is embedded into an
octonionic spacetime background with a real-valued flat metric ηµν , and whose
octonionic coordinates are Zµ, µ = 1, 2, ....., D. Hence, we propose the following
3-brane action on a octonionic flat background

S = −T3

∫
d4σ

√
[ < ∂σ1Zµ1 | [ ∂σ2Zµ2 , ∂σ3Zµ3 , ∂σ4Zµ4 ] > ]2 (4.20)

T3 is the 3-brane tension. The square [....]2 is

< ∂σ1Zµ1 | [ ∂σ2Zµ2 , ∂σ3Zµ3 , ∂σ4Zµ4 ] > < ∂σ1
Zµ1 | [ ∂σ2

Zµ2 , ∂σ3
Zµ3 , ∂σ4

Zµ4 ] >
(4.21)

where µ1, µ2, µ3, µ4 = 1, 2, 3, ....., D ≥ 4. The quantity inside the square root
(4.20) plays the same role in ordinary p-branes actions as the determinant of
the induced world-volume metric resulting from the embedding of the p+1-dim
world-volume into a flat target spacetime background
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det hab = det ( ∂aXµ ∂bX
ν ηµν) =

{ Xµ1 , Xµ2 , ........., Xµp+1 }NPB { Xµ1 , Xµ2 , ........., Xµp+1 }NPB (4.22)

where the brackets NPB are given by the standard Nambu-Poisson brackets. If
the target background is not flat, one must contract the spacetime indices of
(4.22) in the following form

{Xµ1 , Xµ2 , ........., Xµp+1 } {Xν1 , Xν2 , ........., Xνp+1 } gµ1ν1(X) gµ2ν2(X) ...... gµp+1νp+1(X)
(4.23)

An octonionic background endowed with an octonionic-valued metric Gµν will
complicate the expression inside the square root of eq-(4.20) resulting from the
nonassociativity and noncommutativity. For this reason we opted to choose a
real-valued flat metric ηµν which permits us to contract spacetime indices in a
simple fashion leading to a suitable sum of brackets squared (4.21).

An interesting question would be if the 3-brane action (4.20) involving a
quartic product displays any symmetry under E7 when the number of back-
ground octonionic dimensions is 7 and corresponding to 8×7 = 56 real-dimensions.
The latter 56 real dimensions were required to construct the E7(7) quartic I4

invariant < [X, X, X], X > described by eq-(4.13). For a 3-brane action to dis-
play a symmetry under E8 one would require (at least) a background whose
octonionic dimensions is 8 and corresponding to 8 × 8 = 64 real-dimensions;
i.e. the rank 7, 8 algebras E7, E8 would require a background of 7, 8 octonionic
dimensions, respectively where the 3-brane lives.

To summarize the main results of this section, we have provided generalized
octonionic string and brane actions given by eqs-(4.1, 4.3, 4.6, 4.20) that are
novel to our knowledge and raised the possibility that the 3-brane action (4.20)
(based on the quartic product) in octonionic flat backgrounds of 7, 8 octonionic
dimensions may display a E7, E8 symmetry. We conclude with some final re-
marks pertaining to the developments related to Jordan exceptional algebras,
octonions, black-holes in string theory and quantum information theory.

The E7 Cartan quartic invariant was used by [36] to construct the entangle-
ment measure associated with the tripartite entanglement of seven quantum-bits
represented by the group SL(2, C)3 and realized in terms of 2× 2× 2 cubic ma-
trices. It was shown by [37] that this tripartite entanglement of seven quantum-
bits is entirely decoded into the discrete geometry of the octonion Cayley-Fano
plane. The analogy between quantum information theory and supersymmetric
black holes in 4D string theory compactifications was extended further by [37].
The role of Jordan algebras associated with the homogeneous symmetric spaces
present in the study of extended supergravities, BPS black holes, quantum at-
tractor flows and automorphic forms can be found in [35]. An extensive review
of the established relationships between black hole entropy in string theory and
the quantum entanglement of qubits and qutrits in quantum information theory
can be found in [36].

The classification of symmetric spaces associated with the scalars of N ex-
tended Supergravity theories, emerging from compactifications of 11D super-
gravity to lower dimensions, and the construction of the U -duality groups as
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spectrum-generating symmetries for four-dimensional BPS black-holes [35], [38]
also involved exceptional symmetries associated with the exceptional magic Jor-
dan algebras J3[R,C,H, O]. The discovery of the anomaly free 10-dim heterotic
string for the algebra E8 × E8 was another hallmark of the importance of Ex-
ceptional Lie groups in Physics. Exceptional Jordan strings [24] carry internal
charges that might bear a relation to the charges associated with the BPS states
in the black hole solutions of N = 8 Supergravity. Finally, we may ask if the
four-dim measure (4.20) associated with the 3 brane action, and defined by an
invariant quartic product over the octonions, bears any connection to an entan-
glement Entropy function given by the square root of a hyper-determinant [36].
All this deserves further investigation.
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