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  Abstract  

The solution to the unexplained anomalous precession of the perihelion  of 

Mercury, was the first success of GR (Einstein 1915), event which is near to 

reach its first centenary. We propose in this paper, to update  the classic test of 

relativity, studying the gradual progression of  one-orbit precession, not only in 

its perihelion, but also  along a complete trajectory around the Sun. Just to 

underline GR results, we have  confronted it with other virtual and 

mathematical potentials which, leading to an identical secular advance of the 

perihelion, offer different equations of motion with only theoretical  meaning. 

Spacecraft Messenger will begin to  orbit Mercury next March 18, and during 

twelve months, both will make 4.2 revolutions around the Sun. That  event 

should afterwards allow us, to measure  and draw accurately, the geometry of 

the  whole geodesic orbit as an open free-fall path, isolated from  other  planets 

gravitational interference. This update must  verify the GR issues with modern 

standards, throughout an accessible test to perform, with clear results, unlike a 

complex test, expensive and with  uncertain conclusions. 

 

PACS numbers:  04.25.Nx, 04.80.Cc, 96.30.Dz 
 

 

1.-  G.R. equations of the orbit of Mercury. 

 

Short time ago, professor C. M. Will remarked that  “... ironically, while Mercury’s 

perihelion advance is one of the three “crucial” tests of general relativity, is almost impossible to 

find a modern paper that quotes the latest observational results.” [1]. 

   In this paper, we propose to analyse the instantaneous relativistic precession of the 

orbit of Mercury, setting  its gradual progression along a single orbit and not just focused on the 

final and secular shift of the perihelion. Astronomical observations of Mercury have been difficult 

in the past, so  the precise detection of nodes and other points has not been easy and much less if 

we face  small actions like the  advance of its orbit. It was very remarkable for LeVerrier in 1859 

to detect it, regardless the gravitational disturbances of other planets, particularly Venus, Jupiter 

and Earth with also the precession of the equinoxes. 
  Those 42.95" arc / century, are the result of a secular  addition of only 5.019 x10

-7
 rad. / 

revolution,  roughly equivalent to a location shift  of  23.1 x10
3
 m at the end of each orbit. The 

question now, is how such action is achieved throughout the 88-day orbital period and what are the 

theoretical assumptions about the sequential and gradual progression of precession along one orbit.  

 Is it possible to measure it by modern radiometric observation techniques and compute 

positions, cut-off from other gravitational perturbations? 
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    If Mercury was the only planet in the solar system, its path would follow a single geodesic 

track, inside a curved space-time with gravitational geometry, in which the so call “anomalous 

precession” would not be such, but the natural and expected evolution, due to a free-fall and open 

straight-line trajectory.  

     Many GR textbooks and articles define and characterize the trajectory, starting from the 

Schwarzschild solution, which develops a geometry and a metric on a space-time with spherical 

symmetry. He was the first in 1916 to solve  the field equations that Einstein had proposed a year 

earlier. Point out that Einstein, developed few documents with his explanation of the perihelion 

advance, [2] although it was one of his most remarkable results and remains so, even today. The 

basic elements to determine the relativistic equations of motion of any particle with mass, and 

therefore also  Mercury around the Sun, is set for the effective potential and  the angular 

momentum.  
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   where  µ=GM/c
2
,  u=1/r  ,  h= angular momentum, M = Solar mass and  φ= true anomaly. 

    The relativistic term that modifies the newtonian equation, is the last one that depends on 

the square of the speed of light (c). On this basis, we can write the equation of the trajectory of 

Mercury’s  orbit  
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   where α(φ) is a small perturbation function that makes  GR different from the classic kepler- 

ellipse. From equation (0), we obtain a first solution for α(φ) 
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provided and checked by M. Hobson [3], S. Carroll [4], and many of the texts consulted. Thus, we 

obtain the equation of the orbit of Mercury. 
  The trajectory is equivalent to an orbit following a classic keplerian ellipse, that also turns 

around its focus by a slight precession measured by the advance of the perihelion after one orbit or 

 secular accumulation after 415 orbits fulfilled during a century. 

  This secular advance, can be characterized with the usual PPN formalism parameters, with 

the following result for one orbit  
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(regardless the much smaller Lense-Thirring effect) , where J2  is the quadrupole moment, i  is the 

inclination referred to solar equator.  Expressed in seconds-arc per century, 
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  The results of this formulation are consistent with the values measured by  radar detection,  
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[5] so  we can  state the adequate agreement with General Relativity [1] 

    The function α1(φ), shows  how is the advance  at the end of each orbit, how is  precession 

being produced gradually, and how are the oscillations around  its average value, linked with  the 

forward sequence of  the true-anomaly angle (φ). The key term is the last one  eφ sin (φ),  which 

produces a cumulative effect, constant and linear, true  reason of the perihelion’s advance. Also, 

the factor sin (φ) allows  the perturbing action, be incorporated with angular dimension –a slight 

angular precession ∆ (φ)– .The remaining terms, provide only limited and periodic variations of 

small entity. The classic relativity textbook "Gravitation" by W. Misner et al [6], concludes in a 

linear progression 
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   It follows that,  gradual progress of precession  is steady, with a fixed ratio, so that the 

advance along  one orbit, has a linear and constant accumulation without oscillations, till its final 

value. Point out that the ratio of precession (K), is fixed referred to the angle (φ), which means that 

the angular velocity of Mercury  (ω), will be identical and “drags” of the  "angular velocity" of 

precession. 

The constant rate of precession angle referred  to φ  is:           K= 8−= 1099.7
pc

GM3
2

 

With this linear advance, the perturbing function takes the form : 
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 Other authors, develop a similar  trajectory equation, with different  terms  also of small 

magnitude; among those,  we emphasize the method of professor M. Berry [7] that concludes in the 

following expression 
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   Equations α1(φ) and α3(φ), have not-periodic terms that are    “ ... insignificant 

contribution and their only effect is to change slightly the interpretation of  rmin  and  e.” [7]. In this 

last case means that, rmin, the axes of the ellipse and the distances to the aphelion, decreases about 

3.8 ·10
3
 m regarding their theoretical value.  

   As shown in Figure-1, α1(φ) produces in the ascending and rising-up branch from 

the Sun, a further advance of precession regarding to the linear, constant and theoretical one (GR). 

This is because the periodic terms of α1(φ), is always positive  and therefore, the radius r of the 

ellipse, will be always  smaller than  expected. In the ascending branch, the smaller radius is 

achieved in a slightly "previous" position and then, as a result of it, the precession must “move 

forward” to maintain Mercury in a dynamic equilibrium.    During the falling and approaching 

branch to the Sun, the smaller radius is located ahead, so the keplerian ellipse is dragged a little 

“backward”. The largest lead/lag angle with linear GR-precession,  is when φ = π/2 and φ = 3π/2,  

with a value of  Ω = ± 0.016 · K rad. 

     In the case of α3(φ), the periodic oscillation is bigger, producing a breaking point in 

the lead/lag precession, relative to its linear and constant average value (GR), located in the 

aphelion and also in the perihelion.  
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Figure-1 : Instantaneous and orbital precession for α1(φ)  and α3(φ) perturbation functions 
                          

 

 2.- Potential  "S" equations of the orbit of Mercury 

 

  Potential "S" is defined as a slight perturbation  to the newtonian gravitational 

potential, linked with the radial velocity of the object. Potential "S"  is an update of the Tisserand 

mathematical potential developed in 1872. It would also need a gravitational basement to explain 

its real application; it is only a theoretical and virtual potential with unclear physical meaning : 
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where Vr is the radial velocity of the object. S (φ) is a perturbation added to the newtonian 

potential, and produces exactly the same one-orbit perihelion advance as GR, when Vr << c. 

 

     We can check the perihelion advance produced by S (φ), using any of the existing 

methods for calculating the effect of a perturbing central acceleration on an elliptic keplerian orbit:  

Gauss, G. Adkins [8], O.Chaschina [9] and B. Davies [10]. We will use this last one. 
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where g(r) is the acceleration coefficient of the disturbing action versus the newtonian.  

The potential S(φ) produces a radial perturbing acceleration Ar, which has the following 

expression [11] y [12]. ( Vr, r&&  are the usual keplerian ellipse parameters.)  

 

)()( 63 rg
r

GM

c

rr

c

Vr

r

GM
Ar

22
2

2

−=




















−−= +
&&φ

 

 ;   
p
sinhe

rVr
φ== &  ;  

2

2

r

coshe
r

p

φ=&&      

    





 +−−= )cos1(cos2sin

3
)( φφφ eee

pc

GM
rg

22
2 ;                           inserting this in  (3) 

 

φφφφφφ
π

d)cos()cose1(cose2sine
e

1

pc

GM3
)(

2

0

∫ 



 +−−=∆ 22

2

 

   integrating we obtain 
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π=∆  , exactly the same precession as  GR. 

    Once we know that the final one-orbit precession is same as GR, we will study the 

gradual progression throughout one orbit. We will  use another formula that defines the precession 

for small disturbing potentials [13], [14].  We define δφ as the instantaneous precession at each 

point of the orbit, that gradually builds up until it reaches a final value (∆) at the end of one orbit. 
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  result whose integral, is also consistent with the same final precession. 

 

 
Figure-2 : Instantaneous and orbital precession for S (φ ), perturbation potential 

               

        As seen in Figure-2, the instantaneous precession δφ  is always positive, producing a 

forward advance in both branches of the orbit. This is because the perturbing potential 

produces a stable position which is always located in a "previous" position in the keplerian 

trajectory, and therefore the precession is always positive and with a symmetrical magnitude 

about the semi-major axis. However, progression is not constant nor linear, causing an angular 

lead/lag advance (Ω ) related to the fixed and linear GR movement. 

  The peak instantaneous precession  is at φ ≈> π / 2 and φ ≈ <3π  / 2, very close to the 

peak values of Vr. The maximum angular lead/lag is when φ = 5,424 rad  and   φ = 0.855 rad, 

with  Ω = · K ± 0.549 rad. 

 

  The peak positional lead/lag of  Mercury, would happen in A [φ = 2.462 rad.] and B 

[φ = 3.821 rad.] This is because in these points, the radius is significantly larger. In case A, 
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Mercury would be in a forward position regarding a GR precession. This relative position 

would be  i = 2.31 · 10
3
 m  and  j = ─ 0.36 · 10

3
 m, values which would be equal but with 

opposite sign in B. Also point out  that in about 23 days, Mercury would move from the peak 

forward position (A) to the most delayed (B), always referred to the relative location 

with a constant GR precession. 

 

 

3. The orbit precession of Mercury for the Yukawa potential 

 

  The Yukawa potential is a not-newtonian action, characterized by a strength α  and a 

range λ , that produces a slight disturbance to the classic  gravitational field. It is also a 

theoretical and virtual potential with the following expression : 
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  Being consistent with the real  perihelion advance, the coefficients should be : 

α = 3.57 · 10
-10

  and  λ = 2.89 · 10
10 

 [15].  Once we know the appropriate shift at the end of one 

orbit, we will analyse the gradual progression. The precession is determined by [15] 
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Figure-3 : Instantaneous and orbital precession for Yukawa potential 

                                                         

    Yukawa precession rate (Figure – 3), has a slight delay in the ascending and rising-up 

branch from the Sun and slight advance when Mercury approaches to the Sun, always referred to 

the linear precession GR. The maximum instantaneous precession comes in the aphelion.  The 

maximum angular precession is when φ = 1.91 rad. and φ = 4.38 rad. being  the difference referred 

to GR orbit, of  Ω  = 0.979 ± · K rad.  

  The peak positional lead/lag would happen when φ = 2,05 rad. and φ = 4,23 rad with a 

magnitude of   i = ±4.66 · 10
3
 m  and  j = �0,51 · 10

3
 m 
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4 .- Conclusions and proposals.  
 

   We propose in this paper, to update  the classic test of relativity, studying the gradual 

progression of  one-orbit precession, not only in its perihelion, but also  along a complete 

trajectory around the Sun. Just to underline GR results, we have  confronted it with other virtual 

and theoretical gravitational potentials which, leading to an identical secular advance of the 

perihelion, offer different equations of motion and different  progression of the orbital 

instantaneous precession. However, these mathematical potential have only theoretical  

meaning.  

  Spacecraft Messenger will begin to  orbit Mercury next March 18, and during twelve 

months, both will make 4.2 revolutions around the Sun. That  event should afterwards allow us, 

to measure  and draw accurately, the geometry of the  whole geodesic orbit as an open free-fall 

path, isolated from  other  planets gravitational interference. This update should  verify the GR 

issues with modern standards, throughout an accessible test to perform, with clear results, 

unlike a complex test, expensive and with  uncertain conclusions. 
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