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Jiang and Wiles Who Has First Proved 
Fermat Last Theorem(2) 

Abstract 
D.Zagier(1984) and K.Inkeri(1990) said[7] Jiang mathematics is true, but Jiang 

determinates the irrational numbers to be very difficult for prime exponent p>2.In 1991 
Jiang studies the composite exponents n=15,21,33,…,3p and proves Fermat last theorem for 

prime exponent p>3[1].In 1986 Gerhard Frey places Fermat last theorem at elliptic 
curve ,now called a Frey curve.Andrew Wiles studies Frey curve.In 1994 Wiles proves 

Fermat last theorem[9,10].Conclusion:Jiang proof is direct and very simple,but Wiles proof 
is indirect and very complex. If China mathematicians and Academia Sinica had supported 
and recognized Jiang proof on Fermat last theorem,Wiles would not have proved Fermat 
last theorem,because in 1991 Jiang had proved Fermat last theorem[1].Wiles has received 
many prizes and awards, he should thank China mathematicians and Academia Sinica.To 
support and to publish Jiang Fermat last theorem paper is prohibited in Academia Sinica.  
Remark. Chun-Xuan Jiang,A general proof of Fermat last theorem(Chinese),Mimeograph 

papers,July 1978. In this paper using circulant matrix,circulant determinant and 
permutation group theory Jiang had proved Fermat last theorem for odd prime exponent.   

 
 
 
 
 
 
 

1978 年 7 月 19 日下午在中科院数学所由王元组织蒋春暄费马大定理讨论会, (这次讨

论会是国家科委主任方毅指示下进行的 ) 蒋春暄首先报告, 接着数学所发言, 陈绪明(现在

加拿大) 发言: 你没理解蒋春暄讲话内容. 最后宣布散会. 后来蒋春暄单位收到数学所耒信, 
领导对蒋春暄说, 内容大概如下: <你们单位好好教育蒋春暄, 为社会主义作些有益工作, 不
要做些对社会主任无用的工作>。在这次讨论会上蒋春暄巳经证明了费马大定理。如果数学

所所长华罗庚对这件事关心, 组织有关专家邦助并发表. 费马大定理在上世纪七十年代就解

决了。不会出现怀尔斯事件。蒋春暄最后证明费马大定理是在这次报告基础进一步完成的, 
基本思路没有变化。这是一种证明费马大定理新的数学方法。华罗庚数学学派他们不相信中

国人能证明费马大定理, 华罗庚对中国证明费马大定理人有句名言: 骑自行登月是不可能

的。所以蒋春暄是做骑自行登月的事. 所以到今天, 中国不承认不支持, 连蒋春暄母校北京

航空航天大学也不支持。2009 年蒋春暄因首先证明费马大定理获国际金奖, 中国不承认这个

金奖, 蒋春暄证明费大定理得到部分人支持,没有人否定蒋春暄证明。一句话中国只承认怀尔

斯证明费马大定理, 不承认中国蒋春暄证明费马大定理。2010 年 8 月出版王元主编<数学大

辞典> , 王元宣布费马大定理是由怀尔斯 1994年解决的, 这件事总会解决, 利用网络来宣传

这件数学大事, 可能要下代, 怀尔斯学派力量太强大, 它是日本德国美国法国英国顶尖数学

家成果, 最后由怀尔斯完成。蒋春暄单枪匹马斗不过他们, 但科学真理力量是巨大, 最后胜

利一定是属于蒋春暄的。历史将会作出最后结论。蒋春暄证明费马大定理主要宣传他划时代

Automorphic function. 这和微分方程, 群论, 函数论, 代数, 几何等学科都有联系, 三角函数
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非常有用, 它是三角函数推广。用它可解决自然界最复杂问题。这个问题研究几百年, 最后

由蒋春暄解决。蒋春暄用他发明新数学, 这种新数学就包括费马大定理, 不用任何数论知识, 
直接证明了费马大定理, 这种证明一般数学家都能理解。说明这种数学非常有用。怀尔斯没

有发明新数学, 利用与费马大定理没有直接关系数学, 硬把它和费马大定理联系在一起,间
接证明费马大定理。 
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                                 Abstract 
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate 

into two biquadrates, or in general any power higher than the second into powers of like degree: I 
have discovered a truly marvelous proof, which this margin is too small to contain.” 

This means: ( 2)n n nx y z n+ = >  has no integer solutions, all different from 0(i.e., it has 

only the trivial solution, where one of the integers is equal to 0). It has been called Fermat’s last 

theorem (FLT). It suffices to prove FLT for exponent 4. and every prime exponent P . Fermat 

proved FLT for exponent 4. Euler proved FLT for exponent 3. 
In this paper using automorphic functions we prove FLT for exponents 6P  and P , where 

P  is an odd prime. The proof of FLT must be direct .But indirect proof of FLT is disbelieving. 
 
 
In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic 

fields 
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where J  denotes a 2n th root of unity, 2 1nJ = , n is an odd number, it  are the real numbers. 

iS  is called the automorphic functions(complex hyperbolic functions) of order 2n  with 
2 1n −  variables [5,7]. 
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where   1,..., 2i n= ; 
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From (2) we have its inverse transformation[5,7] 
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(3) and (4) have the same form. 
From (3) we have 
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From (4) we have 
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where   ( ) i
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[7].. 

From (5) and (6) we have circulant determinant 
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If 0≠iS ，where ni 2,...,3,2,1= , then (7) have infinitely many rational solutions. 

Let 1=n . From (3) we have 11 tA =  and 12 tA −= . From (2) we have 

                  11 ch tS =       12 sh tS =                    （8） 

we have Pythagorean theorem 
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(9) has infinitely many rational solutions. 

Assume 0,0,0 21 ≠≠≠ iSSS , where ni 2,...,3= . 0=iS  are )22( −n  indeterminate 

equations with )12( −n  variables. From (4) we have 
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Example. Let 15=n . From (3) and (10) we have Fermat’s equation  
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From (3) we have 
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From (10) we have 
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From (12) and (13) we have Fermat’s equation 
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Euler prove that (19) has no rational solutions for exponent 3 [8]. Therefore we prove that (14) has 
no rational solutions for exponent 5. 
Theorem. Let Pn 3=  where P  is an odd prime. From (7) and (8) we have Fermat’s equation 
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From (3) we have 

                

P

jP
j

j

P

j

tBA
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+ ∑∑

=

−

=

5

1
3

2
1

1
1 exp2exp                 (16) 

From (10) we have 
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From (16) and (17) we have Fermat’s equation 
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Euler prove that (15) has no rational solutions for exponent 3[8]. Therefore we prove that (18) has 
no rational solutions for prime exponent P [5,7]. 
 
Remark. It suffices to prove FLT for exponent 4. Let Pn 4= , where P  is an odd prime. We 
have the Fermat’s equation for exponent P4  and the Fermat’s equation for exponent P [2,5,7]. 
This is the proof that Fermat thought to have had. In complex hyperbolic functions let exponent 
n  be Pn Π= , Pn Π= 2  and Pn Π= 4 . Every factor of exponent n  has the Fermat’s 
equation [1-7]. In complex trigonometric functions let exponent n  be Pn Π= , Pn Π= 2  
and Pn Π= 4 . Every factor of exponent n  has Fermat’s equation [1-7]. Using modular elliptic 
curves Wiles and Taylor prove FLT [9, 10]. This is not the proof that Fermat thought to have had. 
The classical theory of automorphic functions, created by Klein and Poincare, was concerned with 
the study of analytic functions in the unit circle that are invariant under a discrete group of 
transformation. Automorphic functions are the generalization of trigonometric, hyperbolic, elliptic, 
and certain other functions of elementary analysis. The complex trigonometric functions and 
complex hyperbolic functions have a wide application in mathematics and physics. 
Acknowledgments. We thank Chenny and Moshe Klein for their help and suggestion. 
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Fermat's Last Theorem 

Fermat's last Theorem: There is no positive integers x, y, z, and n > 2 

such that x
 n
+ y

n
 = z

n
  

was broadcast on 15 January 1996 

At the age of ten, browsing through his public library, Andrew Wiles 

stumbled across the world's greatest mathematical puzzle. Fermat's Last 

Theorem had baffled mathematicians for over 300 years. But from that day, 

little Andrew dreamed of solving it. Tonight's HORIZON tells the story 

of his obsession, and how, thirty years later, he gave up everything to 

achieve his childhood dream.  

Deep in our classroom memories lies the enduring notion that "the square 

of the hypotenuse is equal to the sum of the squares of the other two sides": 

Pythagoras's Theorem for right-angled triangles. Written down, it is also 

the simplest of mathematical equations: x
 2
+ y

2
 = z

2
  

In 1637, a French mathematician, Pierre de Fermat said that this equation 

could not be true for x
3
 + y

3
 = z

3
 or for any equation x

n
 + y

n
 = z

n
 where 

n is greater than 2. Tantalisingly, he wrote on his Greek text: "I have 
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discovered a truly marvellous proof, which this margin is too narrow to 

contain." No one has found the proof, and for 350 years attempts to prove 

"F.L.T." attracted huge prizes, mistaken and eccentric claims, but met 

with failure.  

Simon Singh and John Lynch's film tells the enthralling and emotional 

story of Andrew Wiles. A quiet English mathematician, he was drawn into 

maths by Fermat's puzzle, but at Cambridge in the '70s, FLT was considered 

a joke, so he set it aside. Then, in 1986, an extraordinary idea linked 

this irritating problem with one of the most profound ideas of modern 

mathematics: the Taniyama-Shimura Conjecture, named after a young 

Japanese mathematician who tragically committed suicide. The link meant 

that if Taniyama was true then so must be FLT. When he heard, Wiles went 

after his childhood dream again. "I knew that the course of my life was 

changing." For seven years, he worked in his attic study at Princeton, 

telling no one but his family. "My wife has only known me while I was 

working on Fermat", says Andrew. In June 1993 he reached his goal. At a 

three-day lecture at Cambridge, he outlined a proof of Taniyama - and with 

it Fermat's Last Theorem. Wiles' retiring life-style was shattered. 

Mathematics hit the front pages of the world's press.  

Then disaster struck. His colleague, Dr Nick Katz, made a tiny request 

for clarification. It turned into a gaping hole in the proof. As Andrew 

struggled to repair the damage, pressure mounted for him to release the 

manuscript - to give up his dream. So Andrew Wiles retired back to his 

attic. He shut out everything, but Fermat.  

A year later, at the point of defeat, he had a revelation. "It was the 

most important moment in my working life. Nothing I ever do again will 

be the same." The very flaw was the key to a strategy he had abandoned 

years before. In an instant Fermat was proved; a life's ambition achieved; 

the greatest puzzle of maths was no more.  

 

 

PROF. ANDREW WILES: 

Perhaps I could best describe my experience of doing mathematics in terms 

of entering a dark mansion. One goes into the first room and it's dark, 

completely dark, one stumbles around bumping into the furniture and then 

gradually you learn where each piece of furniture is, and finally after 

six months or so you find the light switch, you turn it on suddenly it's 

all illuminated, you can see exactly where you were.  

At the beginning of September I was sitting here at this desk when suddenly, 

totally unexpectedly, I had this incredible revelation. It was the most, 
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the most important moment of my working life. Nothing I ever do again 

will... I'm sorry.  

NARRATOR:  

This is the story of one man's obsession with the world's greatest 

mathematical problem. For seven years Professor Andrew Wiles worked in 

complete secrecy, creating the calculation of the century. It was a 

calculation which brought him fame, and regret.  

ANDREW WILES:  

So I came to this. I was a 10-year-old and one day I happened to be looking 

in my local public library and I found a book on math and it, it told a 

bit about the history of this problem that someone had resolved this 

problem 300 years ago, but no-one had ever seen the proof, no-one knew 

if there was a proof, and people ever since have looked for the proof and 

here was a problem that I, a 10-year-old, could understand, but none of 

the great mathematicians in the past had been able to resolve, and from 

that moment of course I just, just tried to solve it myself. It was such 

a challenge, such a beautiful problem.  

This problem was Fermat's last theorem.  

NARRATOR:  

Pierre de Fermat was a 17th-century French mathematician who made some 

of the greatest breakthroughs in the history of numbers. His inspiration 

came from studying the Arithmetica, that Ancient Greek text.  

PROF. JOHN CONWAY:  

Fermat owned a copy of this book, which is a book about numbers with lots 

of problems, which presumably Fermat tried to solve. He studied it, he, 

he wrote notes in the margins.  

NARRATOR:  

Fermat's original notes were lost, but they can still be read in a book 

published by his son. It was one of these notes that was Fermat's greatest 

legacy.  

JOHN CONWAY:  

And this is the fantastic observation of Master Pierre de Fermat which 

caused all the trouble. "Cubum autem in duos cubos"  

NARRATOR:  

This tiny note is the world's hardest mathematical problem. It's been 

unsolved for centuries, yet it begins with an equation so simple that 

children know it off by heart.  
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CHILDREN: 

The square of the hypotenuse is equal to the sum of the squares of the 

other two sides.  

JOHN CONWAY:  

Yes well that's Pythagoras's theorem isn't it, that's what we all did at 

school. So Pythagoras's theorem, the clever thing about it is that it tells 

us when three numbers are the sides of a right-angle triangle. That happens 

just when x squared plus y squared equals z squared.  

ANDREW WILES:  

X squared plus y squared equals zee squared, and you can ask: well what 

are the whole numbers solutions of this equation? And you quickly find 

there's a solution 3 squared plus 4 squared equals 5 squared. Another one 

is 5 squared plus 12 squared is 13 squared, and you go on looking and you 

find more and more. So then a natural question is, the question Fermat 

raised: supposing you change from squares, supposing you replace the two 

by three, by four, by five, by six, by any whole number 'n', and Fermat 

said simply that you'll never find any solutions, however, however far 

you look you'll never find a solution.  

NARRATOR:  

You will never find numbers that fit this equation, if n is greater than 

2. That's what Fermat said, and what's more, he said he could prove it. 

In a moment of brilliance, he scribbled the following mysterious note.  

JOHN CONWAY:  

Written in Latin, he says he has a truly wonderful proof "Demonstrationem 

mirabilem" of this fact, and then the last words are: "Hanc marginis 

exigiutas non caperet" - this margin is too small to contain this.  

NARRATOR:  

So Fermat said he had a proof, but he never said what it was.  

JOHN CONWAY:  

Fermat made lots of marginal notes. People took them as challenges and 

over the centuries every single one of them has been disposed of, and the 

last one to be disposed of is this one. That's why it's called the last 

theorem.  

NARRATOR:  

Rediscovering Fermat's proof became the ultimate challenge, a challenge 

which would baffle mathematicians for the next 300 years.  
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JOHN CONWAY:  

Gauss, the greatest mathematician in the world...  

BARRY MAZUR:  

Oh yes, Galois...  

JOHN COATES:  

Kummer of course...  

KEN RIBET:  

Well in the 18th-century Euler didn't prove it.  

JOHN CONWAY:  

Well you know there's only been the one woman really...  

KEN RIBET:  

Sophie Germain  

BARRY MAZUR:  

Oh there are millions, there are lots of people  

PETER SARNAK: 

But nobody had any idea where to start.  

ANDREW WILES:  

Well mathematicians just love a challenge and this problem, this 

particular problem just looked so simple, it just looked as if it had to 

have a solution, and of course it's very special because Fermat said he 

had a solution.  

NARRATOR:  

Mathematicians had to prove that no numbers fitted this equation but with 

the advent of computers, couldn't they check each number one by one and 

show that none of them fitted?  

JOHN CONWAY:  

Well how many numbers are there to beat that with? You've got to do it 

for infinitely many numbers. So after you've done it for one, how much 

closer have you got? Well there's still infinitely many left. After you've 

done it for 1,000 numbers, how many, how much closer have you got? Well 

there's still infinitely many left. After you've done a few million, 

there's still infinitely many left. In fact, you haven't done very many 

have you?  
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NARRATOR:  

A computer can never check every number. Instead, what's needed is a 

mathematical proof.  

PETER SARNAK: 

A mathematician is not happy until the proof is complete and considered 

complete by the standards of mathematics.  

NICK KATZ:  

In mathematics there's the concept of proving something, of knowing it 

with absolute certainty.  

PETER SARNAK: 

Which, well it's called rigorous proof.  

KEN RIBET:  

Well rigorous proof is a series of arguments...  

PETER SARNAK: 

...based on logical deductions.  

KEN RIBET:  

...which just builds one upon another.  

PETER SARNAK: 

Step by step.  

KEN RIBET:  

Until you get to...  

PETER SARNAK: 

A complete proof.  

NICK KATZ:  

That's what mathematics is about.  

NARRATOR:  

A proof is a sort of reason. It explains why no numbers fit the equation 

without haaving to check every number. After centuries of failing to find 

a proof, mathematicians began to abandon Fermat in favour of more serious 

maths.  

In the 70s Fermat was no longer in fashion. At the same time Andrew Wiles 

was just beginning his career as a mathematician. He went to Cambridge 

as a research student under the supervision of Professor John Coates.  
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JOHN COATES:  

I've been very fortunate to have Andrew as a student, and even as a research 

student he, he was a wonderful person to work with. He had very deep ideas 

then and it, it was always clear he was a mathematician who would do great 

things.  

NARRATOR:  

But not with Fermat. Everyone thought Fermat's last theorem was impossible, 

so Professor Coates encouraged Andrew to forget his childhood dream and 

work on more mainstream maths.  

ANDREW WILES:  

The problem with working on Fermat is that you could spend years getting 

nothing so when I went to Cambridge my advisor, John Coates, was working 

on Iwasawa theory and elliptic curves and I started working with him.  

NARRATOR:  

Elliptic curves were the in thing to study, but perversely, elliptic 

curves are neither ellipses nor curves.  

BARRY MAZUR:  

You may never have heard of elliptic curves, but they're extremely 

important.  

JOHN CONWAY:  

OK, so what's an elliptic curve?  

BARRY MAZUR:  

Elliptic curves - they're not ellipses, they're cubic curves whose 

solution have a shape that looks like a doughnut.  

PETER SARNAK: 

It looks so simple yet the complexity, especially arithmetic complexity, 

is immense.  

NARRATOR:  

Every point on the doughnut is the solution to an equation. Andrew Wiles 

now studied these elliptic equations and set aside his dream. What he 

didn't realise was that on the other side of the world elliptic curves 

and Fermat's last theorem were becoming inextricably linked.  

GORO SHIMURA: 

I entered the University of Tokyo in 1949 and that was four years after 

the War, but almost all professors were tired and the lectures were not 

inspiring.  
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NARRATOR:  

Goro Shimura and his fellow students had to rely on each other for 

inspiration. In particular, he formed a remarkable partnership with a 

young man by the name of Utaka Taniyama.  

GORO SHIMURA:  

That was when I became very close to Taniyama. Taniyama was not a very 

careful person as a mathematician. He made a lot of mistakes, but he, he 

made mistakes in a good direction and so eventually he got right answers 

and I tried to imitate him, but I found out that it is very difficult to 

make good mistakes.  

NARRATOR:  

Together, Taniyama and Shimura worked on the complex mathematics of 

modular functions.  

NICK KATZ:  

I really can't explain what a modular function is in one sentence. I can 

try and give you a few sentences to explain it.  

PETER SARNAK: 

LAUGHS  

NICK KATZ:  

I really can't put it in one sentence.  

PETER SARNAK: 

Oh it's impossible.  

ANDREW WILES:  

There's a saying attributed to Eichler that there are five fundamental 

operations of arithmetic: addition, subtraction, multiplication, 

division and modular forms.  

BARRY MAZUR:  

Modular forms are functions on the complex plane that are inordinately 

symmetric. They satisfy so many internal symmetries that their mere 

existence seem like accidents, but they do exist.  

NARRATOR:  

This image is merely a shadow of a modular form. To see one properly your 

TV screen would have to be stretched into something called hyperbolic 

space. Bizarre modular forms seem to have nothing whatsoever to do with 

the humdrum world of elliptic curves. But what Taniyama and Shimura 

suggested shocked everyone.  
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GORO SHIMURA:  

In 1955 there was an international symposium and Taniyama posed two or 

three problems.  

NARRATOR:  

The problems posed by Taniyama led to the extraordinary claim that every 

elliptic curve was really a modular form in disguise. It became known as 

the Taniyama-Shimura conjecture.  

JOHN CONWAY:  

The Taniyama-Shimura conjecture says, it says that every rational 

elliptic curve is modular and that's so hard to explain.  

BARRY MAZUR:  

So let me explain. Over here you have the elliptic world the elliptic curve, 

these doughnuts, and over here you have the modular world, modular forms 

with their many, many symmetries. The Shirmura-Taniyama conjecture makes 

a bridge between these two worlds. These worlds live on different planets.  

It's a bridge, it's more than a bridge, it's really a dictionary, a 

dictionary where questions, intuitions, insights, theorems in the one 

world get translated to questions, intuitions in the other world.  

KEN RIBET:  

I think that when Shirmura and Taniyama first started talking about the 

relationship between elliptic curves and modular forms people were very 

incredulous. I wasn't studying mathematics yet. By the time I was a 

graduate student in 1969 or 1970 people were coming to believe the 

conjecture.  

NARRATOR:  

In fact, Taniyama-Shimura became a foundation for other theories which 

all came to depend on it. But Taniyama-Shimura was only a conjecture, an 

unproven idea, and until it could be proved, all the maths which relied 

on it was under threat.  

ANDREW WILES:  

Built more and more conjectures stretched further and further into the 

future but they would all be completely ridiculous if Taniyama-Shimura 

was not true.  

NARRATOR:  

Proving the conjecture became crucial, but tragically, the man whose idea 

inspired it didn't live to see the enormous impact of his work. In 1958, 

Taniyama committed suicide.  
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GORO SHIMURA:  

I was very much puzzled. Puzzlement may be the best word. Of course I was 

sad that, see it was so sudden and I was unable to make sense out of this.  

NARRATOR:  

Taniyama-Shimura went on to become one of the great unproven conjectures. 

But what did it have to do with Fermat's last theorem?  

ANDREW WILES:  

At that time no-one had any idea that Taniyama-Shimura could have anything 

to do with Fermat. Of course in the 80s that all changed completely.  

NARRATOR:  

Taniyama-Shimura says: every elliptic curve is modular and Fermat says: 

no numbers fit this equation. What was the connection?  

KEN RIBET:  

Well, on the face of it the Shimura-Taniyama conjecture which is about 

elliptic curves, and Fermat's last theorem have nothing to do with each 

other because there's no connection between Fermat and elliptic curves. 

But in 1985 Gerhard Frey had this amazing idea.  

NARRATOR:  

Frey, a German mathematician, considered the unthinkable: what would 

happen if Fermat was wrong and there was a solution to this equation after 

all?  

PETER SARNAK: 

Frey showed how starting with a fictitious solution to Fermat's last 

equation if such a horrible, beast existed, he could make an elliptic curve 

with some very weird properties.  

KEN RIBET:  

That elliptic curve seems to be not modular, but Shimura-Taniyama says 

that every elliptic curve is modular.  

NARRATOR:  

So if there is a solution to this equation it creates such a weird elliptic 

curve it defies Taniyama-Shimura.  

KEN RIBET:  

So in other words, if Fermat is false, so is Shimura-Taniyama, or said 

differently, if Shimura-Taniyama is correct, so is Fermat's last theorem.  
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NARRATOR:  

Fermat and Taniyama-Shimura were now linked, apart from just one thing.  

KEN RIBET:  

The problem is that Frey didn't really prove that his elliptic curve was 

not modular. He gave a plausibility argument which he hoped could be filled 

in by experts, and then the experts started working on it.  

NARRATOR:  

In theory, you could prove Fermat by proving Taniyama, but only if Frey 

was right. Frey's idea became known as the epsilon conjecture and everyone 

tried to check it. One year later, in San Francisco, there was a 

breakthrough.  

KEN RIBET:  

I saw Barry Mazur on the campus and I said let's go for a cup of coffee 

and we sat down for cappuccinos at this caf 頡 nd I looked at Barry and 

I said you know, I'm trying to generalise what I've done so that we can 

prove the full strength of Serre's epsillon conjecture and Barry looked 

at me and said well you've done it already, all you have to do is add on 

some extra gamma zero of m structure and run through your argument and 

it still works, and that gives everything you need, and this had never 

occurred to me as simple as it sounds. I looked at Barry, I looked to my 

cappuccino, I looked back at Barry and said my God, you're absolutely 

right.  

BARRY MAZUR:  

Ken's idea was brilliant.  

ANDREW WILES:  

I was at a friend's house sipping iced tea early in the evening and he 

just mentioned casually in the middle of a conversation: by the way, do 

you hear that Ken has proved the epsilon conjecture? And I was just 

electrified. I, I knew that moment the course of my life was changing 

because this meant that to prove Fermat's last theorem I just had to prove 

Taniyama-Shimura conjecture. From that moment that was what I was working 

on. I just knew I would go home and work on the Taniyama-Shimura 

conjecture.  

NARRATOR:  

Andrew abandoned all his other research. He cut himself off from the rest 

of the world and for the next seven years he concentrated solely on his 

childhood passion.  
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ANDREW WILES:  

I never use a computer. I sometimes might scribble, I do doodles I start 

trying to, to find patterns really, so I'm doing calculations which try 

to explain some little piece of mathematics and I'm trying to fit it in 

with some previous broad conceptual understanding of some branch of 

mathematics. Sometimes that'll involve going and looking up in a book to 

see how it's done there, sometimes it's a question of modifying things 

a bit, sometimes doing a little extra calculation, and sometimes you 

realise that nothing that's ever been done before is any use at all, and 

you, you just have to find something completely new and it's a mystery 

where it comes from.  

JOHN COATES:  

I must confess I did not think that the Shimura-Taniyama conjecture was 

accessible to proof at present. I thought I probably wouldn't see a proof 

in my lifetime.  

KEN RIBET:  

I was one of the vast majority of people who believe that the 

Shimura-Taniyama conjecture was just completely inaccessible, and I 

didn't bother to prove it, even think about trying to prove it. Andrew 

Wiles is probably one of the few people on earth who had the audacity to 

dream that you can actually go and prove this conjecture.  

ANDREW WILES:  

In this case certainly for the first several years I had no fear of 

competition. I simply didn't think I or any one else had any real idea 

how to do it. But I realised after a while that talking to people casually 

about Fermat was, was impossible because it just generates too much 

interest and you can't really focus yourself for years unless you have 

this kind of undivided concentration which too many spectators will have 

destroyed.  

NARRATOR:  

Andrew decided that he would work in secrecy and isolation.  

PETER SARNAK: 

I often wondered myself what he was working on.  

NICK KATZ:  

Didn't have an inkling.  

JOHN CONWAY:  

No, I suspected nothing.  
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KEN RIBET:  

This is probably the only case I know where someone worked for such a long 

time without divulging what he was doing, without talking about the 

progress he had made. It's just unprecedented.  

NARRATOR:  

Andrew was embarking on one of the most complex calculations in history. 

For the first two years, he did nothing but immerse himself in the problem, 

trying to find a strategy which might work.  

ANDREW WILES:  

So it was now known that Taniyama-Shimura implied Fermat's last theorem. 

What does Taniyama-Shimura say? It, it says that all elliptic curves 

should be modular. Well this was an old problem been around for 20 years 

and lots of people would try to solve it.  

KEN RIBET:  

Now one way of looking at it is that you have all elliptic curves and then 

you have the modular elliptic curves and you want to prove that there are 

the same number of each. Now of course you're talking about infinite sets, 

so you can't just can't count them per say, but you can divide them into 

packets and you could try to count each packet and see how things go, and 

this proves to be a very attractive idea for about 30 seconds, but you 

can't really get much further than that, and the big question on the 

subject was how you could possibly count, and in effect, Wiles introduced 

the correct technique.  

NARRATOR:  

Andrew's trick was to transform the elliptic curves into something called 

Galois representations which would make counting easier. Now it was a 

question of comparing modular forms with Galois representations, not 

elliptic curves.  

ANDREW WILES:  

Now you might ask and it's an obvious question, why can't you do this with 

elliptic curves and modular forms, why couldn't you count elliptic curves, 

count modular forms, show they're the same number? Well, the answer is 

people tried and they never found a way of counting, and this was why this 

is the key breakthrough, that I found a way to count not the original 

problem, but the modified problem. I found a way to count modular forms 

and Galois representations.  

NARRATOR:  

This was only the first step, and already it had taken three years of 

Andrew's life.  
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ANDREW WILES:  

My wife's only known me while I've been working on Fermat. I told her a 

few days after we got married. I decided that I really only had time for 

my problem and my family and when I was concentrating very hard and I found 

that with young children that's the best possible way to relax. When you're 

talking to young children they simply aren't interested in Fermat, at 

least at this age, they want to hear a children's story and they're not 

going to let you do anything else.  

So I'd found this wonderful counting mechanism and I started thinking 

about this concrete problem in terms of Iwasawa theory. Iwasawa theory 

was the subject I'd studied as a graduate student and in fact with my 

advisor, John Coates, I'd used it to analyse elliptic curves.  

NARRATOR:  

Andrew hopes that Iwasawa theory would complete his counting strategy.  

ANDREW WILES:  

Now I tried to use Iwasawa theory in this context, but I ran into trouble. 

I seemed to be up against a wall. I just didn't seem to be able to get 

past it. Well sometimes when I can't see what to do next I often come here 

by the lake. Walking has a very good effect in that you're in this state 

of concentration, but at the same time you're relaxing, you're allowing 

the subconscious to work on you.  

NARRATOR:  

Iwasawa theory was supposed to help create something called a class number 

formula, but several months passed and the class number formula remained 

out of reach.  

ANDREW WILES:  

So at the end of the summer of '91 I was at a conference. John Coates told 

me about a wonderful new paper of Matthias Flach, a student of his, in 

which he had tackled a class number formula, in fact exactly the class 

number formula I needed, so Flach using ideas of Kolyvagin had made a very 

significant first step in actually producing the class number formula. 

So at that point I thought this is just what I need, this is tailor-made 

for the problem. I put aside completely the old approach I'd been trying 

and I devoted myself day and night to extending his result.  

NARRATOR:  

Andrew was almost there, but this breakthrough was risky and complicated. 

After six years of secrecy, he needed to confide in someone.  
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NICK KATZ:  

January of 1993 Andrew came up to me one day at tea, asked me if I could 

come up to his office, there was something he wanted to talk to me about. 

I had no idea what, what this could be. Went up to his office. He closed 

the door, he said he thought he would be able to prove Taniyama-Shimura. 

I was just amazed, this was fantastic.  

ANDREW WILES:  

It involved a kind of mathematics that Nick Katz is an expert in.  

NICK KATZ:  

I think another reason he asked me was that he was sure I would not tell 

other people, I would keep my mouth shut, which I did.  

JOHN CONWAY:  

Andrew Wiles and Nick Katz had been spending rather a lot of time huddled 

over a coffee table at the far end of the common room working on some 

problem or other. We never knew what it was.  

NARRATOR:  

In order not to arouse any more suspicion, Andrew decided to check his 

proof by disguising it in a course of lectures which Nick Katz could then 

attend.  

ANDREW WILES:  

Well I explained at the beginning of the course that Flach had written 

this beautiful paper and I wanted to try to extend it to prove the full 

class number formula. The only thing I didn't explain was that proving 

the class number formula was most of the way to Fermat's last theorem.  

NICK KATZ:  

So this course was announced. It said calculations on elliptic curves, 

which could mean anything. Didn't mention Fermat, didn't mention 

Taniyama-Shimura, there was no way in the world anyone could have guessed 

that it was about that, if you didn't already know. None of the graduate 

students knew and in a few weeks they just drifted off because it's 

impossible to follow stuff if you don't know what it's for, pretty much. 

It's pretty hard even if you do know what's it for, but after a few weeks 

I was the only guy in the audience.  

NARRATOR:  

The lectures revealed no errors and still none of his colleagues suspected 

why Andrew was being so secretive.  
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PETER SARNAK: 

Maybe he's run out of ideas. That's why he's quiet, you never know why 

they're quiet.  

NARRATOR:  

The proof was still missing a vital ingredient, but Andrew now felt 

confident. It was time to tell one more person.  

ANDREW WILES:  

So I called up Peter and asked him if I could come round and talk to him 

about something.  

PETER SARNAK: 

I got a phone call from Andrew saying that he had something very important 

he wanted to chat to me about, and sure enough he had some very exciting 

news.  

ANDREW WILES:  

Said I, I think you better sit down for this. He sat down. I said I think 

I'm about to prove Fermat's last theorem.  

PETER SARNAK: 

I was flabbergasted, excited, disturbed. I mean I remember that night 

finding it quite difficult to sleep.  

ANDREW WILES:  

But there was still a problem. Late in the spring of '93 I was in this 

very awkward position and I thought I'd got most of the curves to be modular, 

so that was nearly enough to be content to have Fermat's last theorem, 

but there was this, these few families of elliptic curves that had escaped 

the net and I was sitting here at my desk in May of '93 still wondering 

about this problem and I was casually glancing at a paper of Barry Mazur's 

and there was just one sentence which made a reference to actually what's 

a 19th-century construction and I just instantly realised that there was 

a trick that I could use, that I could switch from the families of elliptic 

curves I'd been using, I'd been studying them using the prime three, I 

could switch and study them using the prime five. It looked more 

complicated, but I could switch from these awkward curves that I couldn't 

prove were modular to a different set of curves which I'd already proved 

were modular and use that information to just go that one last step and 

I just kept working out the details and time went by and I forgot to go 

down to lunch and it got to about teatime and I went down and Nada was 

very surprised that I'd arrived so late and then, then she, I told her 

that I, I believed I'd solved Fermat's last theorem.  
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I was convinced that I had Fermat in my hands and there was a conference 

in Cambridge organised by my advisor, John Coates. I thought that would 

be a wonderful place. It's my old home town, I'd been a graduate student 

there, be a wonderful place to talk about it if I could get it in good 

shape.  

JOHN COATES:  

The name of the lectures that he announced was simply 'Elliptic curves 

and modular forms' There was no mention of Fermat's last theorem.  

KEN RIBET:  

Well I was at this conference on L functions and elliptic curves and it 

was kind of a standard conference and all of the people were there, didn't 

seem to be anything out of the ordinary, until people started telling me 

that they'd been hearing weird rumours about Andrew Wiles's proposed 

series of lectures.  

I started talking to people and I got more and more precise information. 

I've no idea how it was spread.  

PETER SARNAK: 

Not from me, not from me.  

JOHN CONWAY:  

Whenever any piece of mathematical news had been in the air, Peter would 

say oh that's nothing, wait until you hear the big news, there's something 

big going to break.  

PETER SARNAK: 

Maybe some hints, yeah.  

ANDREW WILES:  

People would ask me leading up to my lectures what exactly I was going 

to say and I said well, come to my lecture and see.  

KEN RIBET:  

It's a very charged atmosphere a lot of the major figures of arithmetical, 

algebraic geometry were there. Richard Taylor and John Coates, Barry 

Mazur.  

BARRY MAZUR:  

Well I'd never seen a lecture series in mathematics like that before. What 

was unique about those lectures were the glorious ideas how many new ideas 

were presented, and the constancy of his dramatic build-up that was 

suspenseful until the end.  
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KEN RIBET:  

There was this marvellous moment when we were coming close to a proof of 

Fermat's last theorem, the tension had built up and there was only one 

possible punchline.  

ANDREW WILES:  

So after I'd explained the 3/5 switch on the blackboard, I then just wrote 

up a statement of Fermat's last theorem, said I'd proved it, said I think 

I'll stop there.  

JOHN COATES:  

The next day what was totally unexpected was that we were deluged by 

enquiries from newspapers, journalists from all around the world.  

ANDREW WILES:  

It was a wonderful feeling after seven years to have really solved my 

problem, I've finally done it. Only later did it come out that there was 

a, a problem at the end.  

NICK KATZ:  

Now it was time for it to be refereed which is to say for people appointed 

by the journal to go through and make sure that the thing was really 

correct.  

So for, for two months, July and August, I literally did nothing but go 

through this manuscript, line by line and what, what this meant concretely 

was that essentially every day, sometimes twice a day, I would E-mail 

Andrew with a question: I don't understand what you say on this page on 

this line. It seems to be wrong or I just don't understand.  

ANDREW WILES:  

So Nick was sending me E-mails and at the end of the summer he sent one 

that seemed innocent at first. I tried to resolve it.  

NICK KATZ:  

It's a little bit complicated so he sends me a fax, but the fax doesn't 

seem to answer the question, so I E-mail him back and I get another fax 

which I'm still not satisfied with, and this in fact turned into the error 

that turned out to be a fundamental error and that we had completely missed 

when he was lecturing in the spring.  

ANDREW WILES:  

That's where the problem was in the method of Flach and Kolyvagin that 

I'd extended, so once I realised that at the end of September, that there 

was really a, a problem with the way I'd made the construction I spent 
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the fall trying to think what kind of modifications could be made to the 

construction. There, are lots of simple and rather natural modifications 

that any one of which might work.  

PETER SARNAK: 

And every time he would try and fix it in one corner it would sort of some 

other difficulty would add up in another corner. It was like he was trying 

to put a carpet in a room where the carpet had more size than the room, 

but he could put it in in any corner and then when he ran to the other 

corner it would pop up in this corner and whether you could not put the 

carpet in the room was not something that he was able to decide.  

NICK KATZ:  

I think he externally appeared normal but at this point he was keeping 

a secret from the world and I think he must have been in fact pretty 

uncomfortable about it.  

JOHN CONWAY:  

Well you know we were behaving a little bit like Kremlinologists. Nobody 

actually liked to come out and ask him how he's getting on with, with the 

proof, so somebody would say I saw Andrew this morning. Did he smile? Well 

yes, but he didn't look too happy.  

ANDREW WILES:  

The first seven years I'd worked on this problem. I loved every minute 

of it. However hard it had been there'd been, there'd been setbacks often, 

there'd been things that had seemed insurmountable but it was a kind of 

private and very personal battle I was engaged in.  

And then after there was a problem with it doing mathematics in that kind 

of rather over-exposed way is certainly not my style and I have no wish 

to repeat it.  

NARRATOR:  

Other mathematicians, including his former student Richard Taylor, tried 

to help fix the mistake. But after a year of failure, Andrew was ready 

to abandon his flawed proof.  

ANDREW WILES:  

In September, I decided to go back and look one more time at the original 

structure of Flach and Kolyvagin to try and pinpoint exactly why it wasn't 

working, try and formulate it precisely. One can never really do that in 

mathematics but I just wanted to set my mind at rest that it really couldn't 

be made to work. And I was sitting here at this desk. It was a Monday morning, 

September 19th and I was trying convincing myself that it didn't work, 
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just seeing exactly what the problem was when suddenly, totally 

unexpectedly, I had this incredible revelation. I, I realised what was 

holding me up was exactly what would resolve the problem I'd had in my 

Iwasawa theory attempt three years earlier was, it was the most, the most 

important moment of my working life. It was so indescribably beautiful, 

it was so simple and so elegant and I just stared in disbelief for twenty 

minutes. Then during the day I walked round the department, I'd keep coming 

back to my desk and looking to see it was still there, it was still there. 

Almost what seemed to be stopping the method of Flach and Kolyvagin was 

exactly what would make horizontally Iwasawa theory. My original approach 

to the problem from three years before would make exactly that work, so 

out of the ashes seemed to rise the true answer to the problem. So the 

first night I went back and slept on it, I checked through it again the 

next morning and by 11 o'clock I satisfied and I went down, told my wife 

I've got it, I think I've got it, I've found it, and it was so unexpected, 

she, I think she thought I was talking about a children's toy or something 

and said got what? and I said I've fixed my proof, I, I've got it.  

JOHN COATES:  

I think it will always stand as, as one of the high achievements of number 

theory.  

BARRY MAZUR:  

It was magnificent.  

JOHN CONWAY:  

It's not every day that you hear the proof of the century.  

GORO SHIMURA:  

Well my first reaction was: I told you so.  

NARRATOR:  

The Taniyama-Shimura conjecture is no longer a conjecture, and as a result 

Fermat's last theorem has been proved. But is Andrew's proof the same as 

Fermat's?  

ANDREW WILES:  

Fermat couldn't possibly have had this proof. It's a 20th-century proof. 

There's no way this could have been done before the 20th-century.  

JOHN CONWAY:  

I'm relieved that this result is now settled. But I'm sad in some ways 

because Fermat's last theorem has been responsible for so much. What will 

we find to take its place?  
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ANDREW WILES:  

There's no other problem that will mean the same to me. I had this very 

rare privilege of being able to pursue in my adult life what had been my 

childhood dream. I know it's a rare privilege but if, if one can do this 

it's more rewarding than anything I could imagine.  

BARRY MAZUR:  

One of the great things about this work is it embraces the ideas of so 

many mathematicians. I've made a partial list: Klein, Fricke, Hurwitz, 

Hecke, Dirichlet, Dedekind...  

KEN RIBET:  

The proof by Langlands and Tunnell...  

JOHN COATES:  

Deligne, Rapoport, Katz...  

NICK KATZ:  

Mazur's idea of using the deformation theory of Galois representations...  

BARRY MAZUR:  

Igusa, Eichler, Shimura, Taniyama...  

PETER SARNACK: 

Frey's reduction...  

NICK KATZ:  

The list goes on and on...  

BARRY MAZUR:  

Bloch, Kato, Selmer, Frey, Fermat.  

 

 

国外数学家给王元信,请王元支持蒋春暄费马大定理证明。 
From: Moshe Klein  
To: ywang@math.ac.cn  
Sent: Wednesday, December 29, 2010 8:21 AM 
Subject: To Prof. Wang Yuan 
 
 
Dear Prof Yuan, 
 

My name is Moshe Klein and I am expert in mathematic education in Kindergarden. 
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During the last 4 month I study cheerfully the work of Jiang on Fermat Last Theorem 

I find it very interesting and promising direction. 
 

 I think that he need help of  great mathematician like you  

to improve his paper so it will accepted in respective journal 
I ask you please spent some of your  time to look on his paper  

and give us ( I work with him) some helpful hints to improve the presentation 

Please visit my web-site and look on the last version of his paper: 
 

 http://www.omath.org.il/112431/FLT 
 

Best regards 

Moshe Klein 
王元主编<数学大辞典>2010 年 8 月由科学出版出版, 华罗庚接班人王元代表中科院中国政

府在<数学大辞典>中宣布费马大定理最后是美国怀尔斯解决的, 不承认中国蒋春暄 1991年

证明费马大定理。蒋春暄因首先证明费马大定理荣获特勒肖-伽利略科学院 2009 年度金奖, 
但中国不承认这个金奖, 连蒋春暄母校北京航空航天大学不承认蒋春暄是北航的校友, 蒋
春暄成果献给母校被拒绝。怀尔斯因证明费马大定理获国际十五个大奖包括中国邵逸夫

2005 年百万美元数学大奖。如中国支持蒋春暄这些大奖都应该属于中国的。费马大定理证

明是 20 世纪最大数学成就。怀尔斯证明费马大定理是西方一大批数学家研究成果。他们 
看不起中国人, 他们大多数数学家都看到蒋春暄证明费马大定理比怀尔斯早三年, 但他们仍

是支持怀尔斯。 丘成桐就是坚决支持怀尔斯, 不承认中国人证明费马大定理。王元对蒋春

暄成果态度;Dear Prof.Tsang. I don't approach Jiang and also don't care of any of his result.  
Wang Yuan。王元关心是怀尔斯费马大定理怀尔斯证明, 他是在中国宣传怀尔斯干将。

www.baidu.com 点蒋春暄和费马大定理有 13100 条, 点蒋春暄和哥德巴赫猜想有 10900 条, 
点蒋春暄和黎曼假设有 7160 条,这三大数学难题都被蒋春暄彻底解决而且都己发表。 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 28

 



 29

 



 30

 



 31

 



 32

 

 



 33

 



 34

 



 35

 

 
 
 
 
 
 
 
 
 
 
 


