Jiang and Wiles Who Has First Proved
Fermat Last Theorem(2)

Abstract
D.Zagier(1984) and K.Inkeri(1990) said[7] Jiang mathematics is true, but Jiang
determinates the irrational numbers to be very difficult for prime exponent p>2.In 1991
Jiang studies the composite exponents n=15,21,33,...,3p and proves Fermat last theorem for
prime exponent p>3[1].In 1986 Gerhard Frey places Fermat last theorem at elliptic
curve ,now called a Frey curve.Andrew Wiles studies Frey curve.In 1994 Wiles proves
Fermat last theorem[9,10].Conclusion:Jiang proof is direct and very simple,but Wiles proof
is indirect and very complex. If China mathematicians and Academia Sinica had supported
and recognized Jiang proof on Fermat last theorem,Wiles would not have proved Fermat
last theorem,because in 1991 Jiang had proved Fermat last theorem[1].Wiles has received
many prizes and awards, he should thank China mathematicians and Academia Sinica.To
support and to publish Jiang Fermat last theorem paper is prohibited in Academia Sinica.
Remark. Chun-Xuan Jiang,A general proof of Fermat last theorem(Chinese),Mimeograph
papers,July 1978. In this paper using circulant matrix,circulant determinant and
permutation group theory Jiang had proved Fermat last theorem for odd prime exponent.
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Abstract

In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate
into two biquadrates, or in general any power higher than the second into powers of like degree: |
have discovered a truly marvelous proof, which this margin is too small to contain.”

This means: X" +y" =z"(n>2) has no integer solutions, all different from 0(i.e., it has
only the trivial solution, where one of the integers is equal to 0). It has been called Fermat’s last
theorem (FLT). It suffices to prove FLT for exponent 4. and every prime exponent P . Fermat
proved FLT for exponent 4. Euler proved FLT for exponent 3.

In this paper using automorphic functions we prove FLT for exponents 6P and P, where
P is an odd prime. The proof of FLT must be direct .But indirect proof of FLT is disbelieving.

In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic
fields
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From (2) we have its inverse transformation[5,7]
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(3) and (4) have the same form.
From (3) we have
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From (5) and (6) we have circulant determinant
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If S; #0, where 1=123,...,2n, then (7) have infinitely many rational solutions.
Let n=1.From (3)wehave A =t and A, =-t,.From (2) we have
S, =cht, S, =sht, (8
we have Pythagorean theorem
ch?t, —sh?t, =1 (9

(9) has infinitely many rational solutions.

Assume S, #0,S,#0,S; #0, where 1=3,....2n. S, =0 are (2n—2) indeterminate

equations with (2n—1) variables. From (4) we have
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Example. Let n =15. From (3) and (10) we have Fermat’s equation
7
exp[A + A, +2) (B;+D)]=S" -5 =(5/")°-(5;")°=1 D
j=1

From (3) we have
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From (10) we have
exp(A, +2B, +2B;) =S, +S; (13)

From (12) and (13) we have Fermat’s equation
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Euler prove that (19) has no rational solutions for exponent 3 [8]. Therefore we prove that (14) has
no rational solutions for exponent 5.
Theorem. Let n =3P where P isan odd prime. From (7) and (8) we have Fermat’s equation
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From (10) we have

From (16) and (17) we have Fermat’s equation
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Euler prove that (15) has no rational solutions for exponent 3[8]. Therefore we prove that (18) has
no rational solutions for prime exponent P [5,7].

Remark. It suffices to prove FLT for exponent 4. Let N =4P, where P is an odd prime. We
have the Fermat’s equation for exponent 4P and the Fermat’s equation for exponent P [2,5,7].
This is the proof that Fermat thought to have had. In complex hyperbolic functions let exponent
n be n=IIP, n=2I1P and n=4IIP. Every factor of exponent n has the Fermat’s
equation [1-7]. In complex trigonometric functions let exponent n be n=IIP, n=2[1P
and n = 4I1IP . Every factor of exponent n has Fermat’s equation [1-7]. Using modular elliptic
curves Wiles and Taylor prove FLT [9, 10]. This is not the proof that Fermat thought to have had.
The classical theory of automorphic functions, created by Klein and Poincare, was concerned with
the study of analytic functions in the unit circle that are invariant under a discrete group of
transformation. Automorphic functions are the generalization of trigonometric, hyperbolic, elliptic,
and certain other functions of elementary analysis. The complex trigonometric functions and
complex hyperbolic functions have a wide application in mathematics and physics.
Acknowledgments. We thank Chenny and Moshe Klein for their help and suggestion.
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Fermat’s Last Theorem

Fermat’ s last Theorem: There is no positive integers x, y, z, and n > 2
such that x™ y" = z

n

was broadcast on 15 January 1996

At the age of ten, browsing through his public library, Andrew Wiles
stumbled across the world’ s greatest mathematical puzzle. Fermat’ s Last
Theorem had baffled mathematicians for over 300 years. But from that day,
little Andrew dreamed of solving it. Tonight’s HORIZON tells the story
of his obsession, and how, thirty years later, he gave up everything to
achieve his childhood dream.

Deep in our classroom memories lies the enduring notion that “the square
of the hypotenuse is equal to the sum of the squares of the other two sides”:
Pythagoras’ s Theorem for right—angled triangles. Written down, it is also

2

the simplest of mathematical equations: x+ y = z°

In 1637, a French mathematician, Pierre de Fermat said that this equation

could not be true for x’ + vy’ = 7’ or for any equation x" + y' = 2" where
n is greater than 2. Tantalisingly, he wrote on his Greek text: ”I have



discovered a truly marvellous proof, which this margin is too narrow to
contain.” No one has found the proof, and for 350 years attempts to prove
"F.L.T.” attracted huge prizes, mistaken and eccentric claims, but met
with failure.

Simon Singh and John Lynch’s film tells the enthralling and emotional
story of Andrew Wiles. A quiet English mathematician, he was drawn into
maths by Fermat’ s puzzle, but at Cambridge in the ’ 70s, FLT was considered
a joke, so he set it aside. Then, in 1986, an extraordinary idea linked
this irritating problem with one of the most profound ideas of modern
mathematics: the Taniyama—Shimura Conjecture, named after a young
Japanese mathematician who tragically committed suicide. The link meant
that if Taniyama was true then so must be FLT. When he heard, Wiles went
after his childhood dream again. ”“I knew that the course of my life was
changing. ” For seven years, he worked in his attic study at Princeton,
telling no one but his family. "My wife has only known me while I was
working on Fermat”, says Andrew. In June 1993 he reached his goal. At a
three—day lecture at Cambridge, he outlined a proof of Taniyama — and with
it Fermat’ s Last Theorem. Wiles’ retiring life-style was shattered.
Mathematics hit the front pages of the world s press.

Then disaster struck. His colleague, Dr Nick Katz, made a tiny request
for clarification. It turned into a gaping hole in the proof. As Andrew
struggled to repair the damage, pressure mounted for him to release the
manuscript — to give up his dream. So Andrew Wiles retired back to his
attic. He shut out everything, but Fermat.

A year later, at the point of defeat, he had a revelation. “It was the
most important moment in my working life. Nothing I ever do again will
be the same.” The very flaw was the key to a strategy he had abandoned
years before. In an instant Fermat was proved; a 1ife’ s ambition achieved;
the greatest puzzle of maths was no more.

PROF. ANDREW WILES:

Perhaps I could best describe my experience of doing mathematics in terms
of entering a dark mansion. One goes into the first room and it’ s dark,
completely dark, one stumbles around bumping into the furniture and then
gradually you learn where each piece of furniture is, and finally after
six months or so you find the light switch, you turn it on suddenly it’s
all illuminated, you can see exactly where you were.

At the beginning of September I was sitting here at this desk when suddenly,
totally unexpectedly, I had this incredible revelation. It was the most,



the most important moment of my working life. Nothing I ever do again
will... I’m sorry.

NARRATOR:

This is the story of one man’s obsession with the world s greatest
mathematical problem. For seven years Professor Andrew Wiles worked in
complete secrecy, creating the calculation of the century. It was a
calculation which brought him fame, and regret.

ANDREW WILES:

So I came to this. I was a 10—year—old and one day I happened to be looking
in my local public library and I found a book on math and it, it told a
bit about the history of this problem that someone had resolved this
problem 300 years ago, but no—one had ever seen the proof, no—one knew
if there was a proof, and people ever since have looked for the proof and
here was a problem that I, a 10-year—old, could understand, but none of
the great mathematicians in the past had been able to resolve, and from
that moment of course I just, just tried to solve it myself. It was such
a challenge, such a beautiful problem.

This problem was Fermat’ s last theorem.

NARRATOR:

Pierre de Fermat was a 17th—century French mathematician who made some
of the greatest breakthroughs in the history of numbers. His inspiration
came from studying the Arithmetica, that Ancient Greek text.

PROF. JOHN CONWAY:

Fermat owned a copy of this book, which is a book about numbers with lots
of problems, which presumably Fermat tried to solve. He studied it, he,
he wrote notes in the margins.

NARRATOR:

Fermat’ s original notes were lost, but they can still be read in a book
published by his son. It was one of these notes that was Fermat’ s greatest
legacy.

JOHN CONWAY:
And this is the fantastic observation of Master Pierre de Fermat which
caused all the trouble. ”“Cubum autem in duos cubos”

NARRATOR:

This tiny note is the world’ s hardest mathematical problem. It’s been
unsolved for centuries, yet it begins with an equation so simple that
children know it off by heart.



CHILDREN:
The square of the hypotenuse is equal to the sum of the squares of the
other two sides.

JOHN CONWAY:

Yes well that’ s Pythagoras’ s theorem isn’t it, that’s what we all did at
school. So Pythagoras’ s theorem, the clever thing about it is that it tells
us when three numbers are the sides of a right—angle triangle. That happens
just when x squared plus y squared equals z squared.

ANDREW WILES:

X squared plus y squared equals zee squared, and you can ask: well what
are the whole numbers solutions of this equation? And you quickly find
there’ s a solution 3 squared plus 4 squared equals 5 squared. Another one
is 5 squared plus 12 squared is 13 squared, and you go on looking and you
find more and more. So then a natural question is, the question Fermat
raised: supposing you change from squares, supposing you replace the two
by three, by four, by five, by six, by any whole number 'n’, and Fermat
said simply that you’ 11 never find any solutions, however, however far
you look you’ 11 never find a solution.

NARRATOR:

You will never find numbers that fit this equation, if n is greater than
2. That’ s what Fermat said, and what’s more, he said he could prove it.
In a moment of brilliance, he scribbled the following mysterious note.

JOHN CONWAY:

Written in Latin, he says he has a truly wonderful proof “Demonstrationem
mirabilem” of this fact, and then the last words are: “Hanc marginis
exigiutas non caperet” — this margin is too small to contain this.

NARRATOR:
So Fermat said he had a proof, but he never said what it was.

JOHN CONWAY:

Fermat made lots of marginal notes. People took them as challenges and
over the centuries every single one of them has been disposed of, and the
last one to be disposed of is this one. That’s why it’s called the last
theorem.

NARRATOR:
Rediscovering Fermat’ s proof became the ultimate challenge, a challenge
which would baffle mathematicians for the next 300 years.



JOHN CONWAY:
Gauss, the greatest mathematician in the world...

BARRY MAZUR:
Oh yes, Galois...

JOHN COATES:
Kummer of course...

KEN RIBET:
Well in the 18th-century Euler didn’ t prove it.

JOHN CONWAY:
Well you know there’s only been the one woman really...

KEN RIBET:
Sophie Germain

BARRY MAZUR:
Oh there are millions, there are lots of people

PETER SARNAK:
But nobody had any idea where to start.

ANDREW WILES:

Well mathematicians just love a challenge and this problem, this
particular problem just looked so simple, it just looked as if it had to
have a solution, and of course it’ s very special because Fermat said he
had a solution.

NARRATOR:

Mathematicians had to prove that no numbers fitted this equation but with
the advent of computers, couldn’t they check each number one by one and
show that none of them fitted?

JOHN CONWAY:

Well how many numbers are there to beat that with? You' ve got to do it
for infinitely many numbers. So after you’ ve done it for one, how much
closer have you got? Well there s still infinitely many left. After you ve
done it for 1,000 numbers, how many, how much closer have you got? Well
there’ s still infinitely many left. After you’ ve done a few million,
there’ s still infinitely many left. In fact, you haven’ t done very many
have you?
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NARRATOR:
A computer can never check every number. Instead, what’s needed is a
mathematical proof.

PETER SARNAK:
A mathematician is not happy until the proof is complete and considered
complete by the standards of mathematics.

NICK KATZ:
In mathematics there’s the concept of proving something, of knowing it
with absolute certainty.

PETER SARNAK:
Which, well it’s called rigorous proof.

KEN RIBET:
Well rigorous proof is a series of arguments...

PETER SARNAK:
...based on logical deductions.

KEN RIBET:
...which just builds one upon another.

PETER SARNAK:
Step by step.

KEN RIBET:
Until you get to...

PETER SARNAK:
A complete proof.

NICK KATZ:
That’ s what mathematics is about.

NARRATOR:

A proof is a sort of reason. It explains why no numbers fit the equation
without haaving to check every number. After centuries of failing to find
a proof, mathematicians began to abandon Fermat in favour of more serious
maths.

In the 70s Fermat was no longer in fashion. At the same time Andrew Wiles
was just beginning his career as a mathematician. He went to Cambridge
as a research student under the supervision of Professor John Coates.
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JOHN COATES:

I’ ve been very fortunate to have Andrew as a student, and even as a research
student he, he was a wonderful person to work with. He had very deep ideas
then and it, it was always clear he was a mathematician who would do great
things.

NARRATOR:

But not with Fermat. Everyone thought Fermat’ s last theorem was impossible,
so Professor Coates encouraged Andrew to forget his childhood dream and
work on more mainstream maths.

ANDREW WILES:

The problem with working on Fermat is that you could spend years getting
nothing so when I went to Cambridge my advisor, John Coates, was working
on Iwasawa theory and elliptic curves and I started working with him.

NARRATOR:
Elliptic curves were the in thing to study, but perversely, elliptic
curves are neither ellipses nor curves.

BARRY MAZUR:
You may never have heard of elliptic curves, but they re extremely
important.

JOHN CONWAY:
0K, so what’s an elliptic curve?

BARRY MAZUR:
Flliptic curves — they re not ellipses, they re cubic curves whose
solution have a shape that looks like a doughnut.

PETER SARNAK:
It looks so simple yet the complexity, especially arithmetic complexity,
is immense.

NARRATOR:

Every point on the doughnut is the solution to an equation. Andrew Wiles
now studied these elliptic equations and set aside his dream. What he
didn’ t realise was that on the other side of the world elliptic curves
and Fermat’s last theorem were becoming inextricably linked.

GORO SHIMURA:

I entered the University of Tokyo in 1949 and that was four years after
the War, but almost all professors were tired and the lectures were not
inspiring.
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NARRATOR:

Goro Shimura and his fellow students had to rely on each other for
inspiration. In particular, he formed a remarkable partnership with a
young man by the name of Utaka Taniyama.

GORO SHIMURA:

That was when I became very close to Taniyama. Taniyama was not a very
careful person as a mathematician. He made a lot of mistakes, but he, he
made mistakes in a good direction and so eventually he got right answers
and I tried to imitate him, but I found out that it is very difficult to
make good mistakes.

NARRATOR:
Together, Taniyama and Shimura worked on the complex mathematics of
modular functions.

NICK KATZ:
I really can’ t explain what a modular function is in one sentence. I can
try and give you a few sentences to explain it.

PETER SARNAK:
LAUGHS

NICK KATZ:
I really can’t put it in one sentence.

PETER SARNAK:
Oh it’s impossible.

ANDREW WILES:

There’ s a saying attributed to Eichler that there are five fundamental
operations of arithmetic: addition, subtraction, multiplication,
division and modular forms.

BARRY MAZUR:

Modular forms are functions on the complex plane that are inordinately
symmetric. They satisfy so many internal symmetries that their mere
existence seem like accidents, but they do exist.

NARRATOR:

This image is merely a shadow of a modular form. To see one properly your
TV screen would have to be stretched into something called hyperbolic
space. Bizarre modular forms seem to have nothing whatsoever to do with
the humdrum world of elliptic curves. But what Taniyama and Shimura
suggested shocked everyone.
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GORO SHIMURA:
In 1955 there was an international symposium and Taniyama posed two or
three problems.

NARRATOR:

The problems posed by Taniyama led to the extraordinary claim that every
elliptic curve was really a modular form in disguise. It became known as
the Taniyama—Shimura conjecture.

JOHN CONWAY:
The Taniyama—Shimura conjecture says, it says that every rational
elliptic curve is modular and that’s so hard to explain.

BARRY MAZUR:

So let me explain. Over here you have the elliptic world the elliptic curve,
these doughnuts, and over here you have the modular world, modular forms
with their many, many symmetries. The Shirmura—Taniyama conjecture makes
a bridge between these two worlds. These worlds live on different planets.

It’s a bridge, it’s more than a bridge, it’s really a dictionary, a
dictionary where questions, intuitions, insights, theorems in the one
world get translated to questions, intuitions in the other world.

KEN RIBET:

I think that when Shirmura and Taniyama first started talking about the
relationship between elliptic curves and modular forms people were very
incredulous. I wasn’t studying mathematics yet. By the time I was a
graduate student in 1969 or 1970 people were coming to believe the
conjecture.

NARRATOR:

In fact, Taniyama—Shimura became a foundation for other theories which
all came to depend on it. But Taniyama—Shimura was only a conjecture, an
unproven idea, and until it could be proved, all the maths which relied
on it was under threat.

ANDREW WILES:
Built more and more conjectures stretched further and further into the
future but they would all be completely ridiculous if Taniyama—Shimura
was not true.

NARRATOR:

Proving the conjecture became crucial, but tragically, the man whose idea
inspired it didn’t live to see the enormous impact of his work. In 1958,
Taniyama committed suicide.
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GORO SHIMURA:
I was very much puzzled. Puzzlement may be the best word. Of course I was
sad that, see it was so sudden and I was unable to make sense out of this.

NARRATOR:

Taniyama—Shimura went on to become one of the great unproven conjectures.
But what did it have to do with Fermat’s last theorem?

ANDREW WILES:
At that time no—one had any idea that Taniyama—Shimura could have anything
to do with Fermat. Of course in the 80s that all changed completely.

NARRATOR:
Taniyama—Shimura says: every elliptic curve is modular and Fermat says:
no numbers fit this equation. What was the connection?

KEN RIBET:

Well, on the face of it the Shimura—-Taniyama conjecture which is about
elliptic curves, and Fermat’ s last theorem have nothing to do with each
other because there’ s no connection between Fermat and elliptic curves.
But in 1985 Gerhard Frey had this amazing idea.

NARRATOR:

Frey, a German mathematician, considered the unthinkable: what would
happen if Fermat was wrong and there was a solution to this equation after
all?

PETER SARNAK:

Frey showed how starting with a fictitious solution to Fermat’ s last
equation if such a horrible, beast existed, he could make an elliptic curve
with some very weird properties.

KEN RIBET:
That elliptic curve seems to be not modular, but Shimura—-Taniyama says
that every elliptic curve is modular.

NARRATOR:
So if there is a solution to this equation it creates such a weird elliptic
curve it defies Taniyama—Shimura.

KEN RIBET:
So in other words, if Fermat is false, so is Shimura-Taniyama, or said
differently, if Shimura-Taniyama is correct, so is Fermat’ s last theorem.
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NARRATOR:
Fermat and Taniyama—Shimura were now linked, apart from just one thing.

KEN RIBET:

The problem is that Frey didn’ t really prove that his elliptic curve was
not modular. He gave a plausibility argument which he hoped could be filled
in by experts, and then the experts started working on it.

NARRATOR:

In theory, you could prove Fermat by proving Taniyama, but only if Frey
was right. Frey s idea became known as the epsilon conjecture and everyone
tried to check it. One year later, in San Francisco, there was a
breakthrough.

KEN RIBET:

I saw Barry Mazur on the campus and I said let’s go for a cup of coffee
and we sat down for cappuccinos at this caf #Hind I looked at Barry and
I said you know, I'm trying to generalise what I’ ve done so that we can
prove the full strength of Serre’ s epsillon conjecture and Barry looked
at me and said well you’ ve done it already, all you have to do is add on
some extra gamma zero of m structure and run through your argument and
it still works, and that gives everything you need, and this had never
occurred to me as simple as it sounds. I looked at Barry, I looked to my
cappuccino, I looked back at Barry and said my God, you’ re absolutely
right.

BARRY MAZUR:
Ken’ s idea was brilliant.

ANDREW WILES:

I was at a friend s house sipping iced tea early in the evening and he
just mentioned casually in the middle of a conversation: by the way, do
you hear that Ken has proved the epsilon conjecture? And I was just
electrified. I, I knew that moment the course of my life was changing
because this meant that to prove Fermat’ s last theorem I just had to prove
Taniyama—Shimura conjecture. From that moment that was what I was working
on. I just knew I would go home and work on the Taniyama—-Shimura
conjecture.

NARRATOR:

Andrew abandoned all his other research. He cut himself off from the rest
of the world and for the next seven years he concentrated solely on his
childhood passion.
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ANDREW WILES:

I never use a computer. I sometimes might scribble, I do doodles I start
trying to, to find patterns really, so I'm doing calculations which try
to explain some little piece of mathematics and I'm trying to fit it in
with some previous broad conceptual understanding of some branch of
mathematics. Sometimes that’ 11 involve going and looking up in a book to
see how it’ s done there, sometimes it’s a question of modifying things
a bit, sometimes doing a little extra calculation, and sometimes you
realise that nothing that’ s ever been done before is any use at all, and
you, you just have to find something completely new and it’s a mystery
where it comes from.

JOHN COATES:

I must confess I did not think that the Shimura—-Taniyama conjecture was
accessible to proof at present. I thought I probably wouldn’t see a proof
in my lifetime.

KEN RIBET:

I was one of the vast majority of people who believe that the
Shimura-Taniyama conjecture was just completely inaccessible, and I
didn’ t bother to prove it, even think about trying to prove it. Andrew
Wiles is probably one of the few people on earth who had the audacity to
dream that you can actually go and prove this conjecture.

ANDREW WILES:

In this case certainly for the first several years I had no fear of
competition. I simply didn’t think I or any one else had any real idea
how to do it. But I realised after a while that talking to people casually
about Fermat was, was impossible because it just generates too much
interest and you can’t really focus yourself for years unless you have
this kind of undivided concentration which too many spectators will have
destroyed.

NARRATOR:
Andrew decided that he would work in secrecy and isolation.

PETER SARNAK:
I often wondered myself what he was working on.

NICK KATZ:
Didn’ t have an inkling.

JOHN CONWAY:
No, I suspected nothing.
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KEN RIBET:

This is probably the only case I know where someone worked for such a long
time without divulging what he was doing, without talking about the
progress he had made. It’s just unprecedented.

NARRATOR:

Andrew was embarking on one of the most complex calculations in history.
For the first two years, he did nothing but immerse himself in the problem,
trying to find a strategy which might work.

ANDREW WILES:

So it was now known that Taniyama-Shimura implied Fermat’ s last theorem.
What does Taniyama—Shimura say? It, it says that all elliptic curves

should be modular. Well this was an old problem been around for 20 years
and lots of people would try to solve it.

KEN RIBET:

Now one way of looking at it is that you have all elliptic curves and then
you have the modular elliptic curves and you want to prove that there are
the same number of each. Now of course you’ re talking about infinite sets,
so you can’ t just can t count them per say, but you can divide them into
packets and you could try to count each packet and see how things go, and
this proves to be a very attractive idea for about 30 seconds, but you
can’ t really get much further than that, and the big question on the

subject was how you could possibly count, and in effect, Wiles introduced
the correct technique.

NARRATOR:

Andrew’ s trick was to transform the elliptic curves into something called
Galois representations which would make counting easier. Now it was a
question of comparing modular forms with Galois representations, not
elliptic curves.

ANDREW WILES:

Now you might ask and it’ s an obvious question, why can’ t you do this with
elliptic curves and modular forms, why couldn’ t you count elliptic curves,
count modular forms, show they re the same number? Well, the answer is
people tried and they never found a way of counting, and this was why this
is the key breakthrough, that I found a way to count not the original
problem, but the modified problem. I found a way to count modular forms
and Galois representations.

NARRATOR:
This was only the first step, and already it had taken three years of
Andrew’ s life.
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ANDREW WILES:

My wife’ s only known me while I’ ve been working on Fermat. I told her a
few days after we got married. I decided that I really only had time for
my problem and my family and when I was concentrating very hard and I found
that with young children that’ s the best possible way to relax. When you’ re
talking to young children they simply aren’t interested in Fermat, at
least at this age, they want to hear a children’ s story and they re not
going to let you do anything else.

So I'd found this wonderful counting mechanism and I started thinking
about this concrete problem in terms of Iwasawa theory. Iwasawa theory
was the subject I’d studied as a graduate student and in fact with my
advisor, John Coates, I'd used it to analyse elliptic curves.

NARRATOR:
Andrew hopes that Iwasawa theory would complete his counting strategy.

ANDREW WILES:

Now I tried to use Iwasawa theory in this context, but I ran into trouble.
I seemed to be up against a wall. I just didn’t seem to be able to get
past it. Well sometimes when I can’t see what to do next I often come here
by the lake. Walking has a very good effect in that you’ re in this state
of concentration, but at the same time you’ re relaxing, you re allowing
the subconscious to work on you.

NARRATOR:

Iwasawa theory was supposed to help create something called a class number
formula, but several months passed and the class number formula remained
out of reach.

ANDREW WILES:

So at the end of the summer of *91 I was at a conference. John Coates told
me about a wonderful new paper of Matthias Flach, a student of his, in
which he had tackled a class number formula, in fact exactly the class
number formula I needed, so Flach using ideas of Kolyvagin had made a very
significant first step in actually producing the class number formula.
So at that point I thought this is just what I need, this is tailor—made
for the problem. I put aside completely the old approach I’ d been trying
and I devoted myself day and night to extending his result.

NARRATOR:
Andrew was almost there, but this breakthrough was risky and complicated.
After six years of secrecy, he needed to confide in someone.
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NICK KATZ:

January of 1993 Andrew came up to me one day at tea, asked me if I could
come up to his office, there was something he wanted to talk to me about.
I had no idea what, what this could be. Went up to his office. He closed
the door, he said he thought he would be able to prove Taniyama—Shimura.
I was just amazed, this was fantastic.

ANDREW WILES:
It involved a kind of mathematics that Nick Katz is an expert in.

NICK KATZ:
I think another reason he asked me was that he was sure I would not tell
other people, I would keep my mouth shut, which I did.

JOHN CONWAY:

Andrew Wiles and Nick Katz had been spending rather a lot of time huddled
over a coffee table at the far end of the common room working on some
problem or other. We never knew what it was.

NARRATOR:

In order not to arouse any more suspicion, Andrew decided to check his
proof by disguising it in a course of lectures which Nick Katz could then
attend.

ANDREW WILES:

Well I explained at the beginning of the course that Flach had written
this beautiful paper and I wanted to try to extend it to prove the full
class number formula. The only thing I didn’t explain was that proving
the class number formula was most of the way to Fermat’s last theorem.

NICK KATZ:

So this course was announced. It said calculations on elliptic curves,
which could mean anything. Didn’ t mention Fermat, didn’ t mention
Taniyama—Shimura, there was no way in the world anyone could have guessed
that it was about that, if you didn’ t already know. None of the graduate
students knew and in a few weeks they just drifted off because it’s
impossible to follow stuff if you don’ t know what it’ s for, pretty much.
It’ s pretty hard even if you do know what’ s it for, but after a few weeks
I was the only guy in the audience.

NARRATOR:
The lectures revealed no errors and still none of his colleagues suspected
why Andrew was being so secretive.
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PETER SARNAK:
Maybe he’ s run out of ideas. That’s why he’s quiet, you never know why
they’ re quiet.

NARRATOR:
The proof was still missing a vital ingredient, but Andrew now felt
confident. It was time to tell one more person.

ANDREW WILES:
So I called up Peter and asked him if I could come round and talk to him
about something.

PETER SARNAK:

I got a phone call from Andrew saying that he had something very important
he wanted to chat to me about, and sure enough he had some very exciting
news.

ANDREW WILES:
Said I, I think you better sit down for this. He sat down. I said I think
I’m about to prove Fermat’s last theorem.

PETER SARNAK:
I was flabbergasted, excited, disturbed. I mean I remember that night
finding it quite difficult to sleep.

ANDREW WILES:

But there was still a problem. Late in the spring of 93 I was in this
very awkward position and I thought I’ d got most of the curves to be modular,
so that was nearly enough to be content to have Fermat’s last theorem,
but there was this, these few families of elliptic curves that had escaped
the net and I was sitting here at my desk in May of ~ 93 still wondering
about this problem and I was casually glancing at a paper of Barry Mazur’ s
and there was just one sentence which made a reference to actually what’ s
a 19th—century construction and I just instantly realised that there was
a trick that I could use, that I could switch from the families of elliptic
curves 1’ d been using, I’d been studying them using the prime three, I
could switch and study them using the prime five. It looked more
complicated, but I could switch from these awkward curves that I couldn’ t
prove were modular to a different set of curves which I’ d already proved
were modular and use that information to just go that one last step and
I just kept working out the details and time went by and I forgot to go
down to lunch and it got to about teatime and I went down and Nada was
very surprised that I’d arrived so late and then, then she, I told her
that I, I believed I'd solved Fermat’s last theorem.
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I was convinced that I had Fermat in my hands and there was a conference
in Cambridge organised by my advisor, John Coates. I thought that would
be a wonderful place. It’s my old home town, I’ d been a graduate student
there, be a wonderful place to talk about it if I could get it in good
shape.

JOHN COATES:
The name of the lectures that he announced was simply 'Elliptic curves
and modular forms’ There was no mention of Fermat’s last theorem.

KEN RIBET:

Well I was at this conference on L functions and elliptic curves and it
was kind of a standard conference and all of the people were there, didn’ t
seem to be anything out of the ordinary, until people started telling me
that they’ d been hearing weird rumours about Andrew Wiles' s proposed
series of lectures.

I started talking to people and I got more and more precise information.
I’ ve no idea how it was spread.

PETER SARNAK:
Not from me, not from me.

JOHN CONWAY:

Whenever any piece of mathematical news had been in the air, Peter would
say oh that’ s nothing, wait until you hear the big news, there’ s something
big going to break.

PETER SARNAK:
Maybe some hints, yeah.

ANDREW WILES:
People would ask me leading up to my lectures what exactly I was going
to say and I said well, come to my lecture and see.

KEN RIBET:

It’ s a very charged atmosphere a lot of the major figures of arithmetical,
algebraic geometry were there. Richard Taylor and John Coates, Barry
Mazur.

BARRY MAZUR:

Well I’ d never seen a lecture series in mathematics like that before. What
was unique about those lectures were the glorious ideas how many new ideas
were presented, and the constancy of his dramatic build-up that was
suspenseful until the end.
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KEN RIBET:

There was this marvellous moment when we were coming close to a proof of
Fermat’ s last theorem, the tension had built up and there was only one
possible punchline.

ANDREW WILES:

So after I’ d explained the 3/5 switch on the blackboard, I then just wrote
up a statement of Fermat’s last theorem, said I’ d proved it, said I think
I’11 stop there.

JOHN COATES:
The next day what was totally unexpected was that we were deluged by
enquiries from newspapers, journalists from all around the world.

ANDREW WILES:

It was a wonderful feeling after seven years to have really solved my
problem, I’ve finally done it. Only later did it come out that there was
a, a problem at the end.

NICK KATZ:

Now it was time for it to be refereed which is to say for people appointed
by the journal to go through and make sure that the thing was really
correct.

So for, for two months, July and August, I literally did nothing but go
through this manuscript, line by line and what, what this meant concretely
was that essentially every day, sometimes twice a day, I would E-mail
Andrew with a question: I don’t understand what you say on this page on
this line. It seems to be wrong or I just don’t understand.

ANDREW WILES:
So Nick was sending me E-mails and at the end of the summer he sent one
that seemed innocent at first. I tried to resolve it.

NICK KATZ:

It’s a little bit complicated so he sends me a fax, but the fax doesn’ t
seem to answer the question, so I E-mail him back and I get another fax
which I’m still not satisfied with, and this in fact turned into the error
that turned out to be a fundamental error and that we had completely missed
when he was lecturing in the spring.

ANDREW WILES:

That’ s where the problem was in the method of Flach and Kolyvagin that
I’ d extended, so once I realised that at the end of September, that there
was really a, a problem with the way I’ d made the construction I spent
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the fall trying to think what kind of modifications could be made to the
construction. There, are lots of simple and rather natural modifications
that any one of which might work.

PETER SARNAK:

And every time he would try and fix it in one corner it would sort of some
other difficulty would add up in another corner. It was like he was trying
to put a carpet in a room where the carpet had more size than the room,
but he could put it in in any corner and then when he ran to the other
corner it would pop up in this corner and whether you could not put the
carpet in the room was not something that he was able to decide.

NICK KATZ:

I think he externally appeared normal but at this point he was keeping
a secret from the world and I think he must have been in fact pretty
uncomfortable about it.

JOHN CONWAY:

Well you know we were behaving a little bit like Kremlinologists. Nobody
actually liked to come out and ask him how he’ s getting on with, with the
proof, so somebody would say I saw Andrew this morning. Did he smile? Well
yes, but he didn’t look too happy.

ANDREW WILES:

The first seven years I’ d worked on this problem. I loved every minute
of it. However hard it had been there’ d been, there’ d been setbacks often,
there’ d been things that had seemed insurmountable but it was a kind of
private and very personal battle I was engaged in.

And then after there was a problem with it doing mathematics in that kind
of rather over—exposed way is certainly not my style and I have no wish
to repeat it.

NARRATOR:

Other mathematicians, including his former student Richard Taylor, tried
to help fix the mistake. But after a year of failure, Andrew was ready
to abandon his flawed proof.

ANDREW WILES:

In September, I decided to go back and look one more time at the original
structure of Flach and Kolyvagin to try and pinpoint exactly why it wasn’ t
working, try and formulate it precisely. One can never really do that in
mathematics but I just wanted to set my mind at rest that it really couldn’ t
be made to work. And I was sitting here at this desk. It was a Monday morning,
September 19th and I was trying convincing myself that it didn’ t work,
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just seeing exactly what the problem was when suddenly, totally
unexpectedly, I had this incredible revelation. I, I realised what was
holding me up was exactly what would resolve the problem I’d had in my
Iwasawa theory attempt three years earlier was, it was the most, the most
important moment of my working life. It was so indescribably beautiful,
it was so simple and so elegant and I just stared in disbelief for twenty
minutes. Then during the day I walked round the department, I’ d keep coming
back to my desk and looking to see it was still there, it was still there.
Almost what seemed to be stopping the method of Flach and Kolyvagin was
exactly what would make horizontally Iwasawa theory. My original approach
to the problem from three years before would make exactly that work, so
out of the ashes seemed to rise the true answer to the problem. So the
first night I went back and slept on it, I checked through it again the
next morning and by 11 o’ clock I satisfied and I went down, told my wife
I’ve got it, I think I’ ve got it, I’ ve found it, and it was so unexpected,
she, I think she thought I was talking about a children’ s toy or something
and said got what? and I said I've fixed my proof, I, I've got it.

JOHN COATES:
I think it will always stand as, as one of the high achievements of number
theory.

BARRY MAZUR:
It was magnificent.

JOHN CONWAY:
It’s not every day that you hear the proof of the century.

GORO SHIMURA:
Well my first reaction was: I told you so.

NARRATOR:
The Taniyama—Shimura conjecture is no longer a conjecture, and as a result
Fermat’ s last theorem has been proved. But is Andrew s proof the same as
Fermat’ s?

ANDREW WILES:
Fermat couldn’ t possibly have had this proof. It’s a 20th—century proof.
There’ s no way this could have been done before the 20th—century.

JOHN CONWAY:

I'm relieved that this result is now settled. But I'’m sad in some ways
because Fermat’ s last theorem has been responsible for so much. What will
we find to take its place?
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ANDREW WILES:

There’ s no other problem that will mean the same to me. I had this very
rare privilege of being able to pursue in my adult life what had been my
childhood dream. I know it’s a rare privilege but if, if one can do this
it’ s more rewarding than anything I could imagine.

BARRY MAZUR:

One of the great things about this work is it embraces the ideas of so
many mathematicians. I’ ve made a partial list: Klein, Fricke, Hurwitz,
Hecke, Dirichlet, Dedekind...

KEN RIBET:
The proof by Langlands and Tunnell...

JOHN COATES:
Deligne, Rapoport, Katz...

NICK KATZ:
Mazur’ s idea of using the deformation theory of Galois representations. ..

BARRY MAZUR:
Igusa, Eichler, Shimura, Taniyama...

PETER SARNACK:
Frey' s reduction. ..

NICK KATZ:
The list goes on and on...

BARRY MAZUR:
Bloch, Kato, Selmer, Frey, Fermat.

[ S X 2 0RO USRS AR I Bl B R PR

From: Moshe Klein

To: ywang@math.ac.cn

Sent: Wednesday, December 29, 2010 8:21 AM
Subject: To Prof. Wang Yuan

Dear Prof Yuan,

My name is Moshe Klein and | am expert in mathematic education in Kindergarden.
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During the last 4 month | study cheerfully the work of Jiang on Fermat Last Theorem
| find it very interesting and promising direction.

| think that he need help of great mathematician like you

to improve his paper so it will accepted in respective journal

| ask you please spent some of your time to look on his paper

and give us ( | work with him) some helpful hints to improve the presentation
Please visit my web-site and look on the last version of his paper:

http://www.omath.org.il/112431/FLT

Best regards

Moshe Klein
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Solving Fermat: Andrew Wiles

Andrew Wiles devoted much of his entire career to proving Fermat's Last Theorem, the world’s
most famous mathematical problem. In 1993, he made front-page headlines when he announced
a proof of the problem, but this was not the end of the story; an error in his calculation
jeopardized his life's work. Andrew Wiles spoke to NOVA and described how he came to terms
with the mistake, and eventually went on to achieve his life's ambition.

NOVA: Many great scientific discoveries are the result of obsession, but inyour case that
obsession has held you since you were a child.

ANDREW WILES: | grews up in Cambridge in England, and my love of mathematics
dates from those early childhood days. | lowved doing problems in school. I'd take them
home and make up new ones of my own. But the best problem | ever found, | found in my
local public librany. [was just browsing through the section of math books and | found this
one book, which was all about one particular problem—Fermat's Last Theorem. This
problem had been unsolved by mathematicians for 300 years. It looked so simple, and
yet all the great mathematicians in history couldn't solve it. Here was a problem, that |, a
ten year old, could understand and | knew from that moment that Dwiould never let it go. |
had to solve it.

NOVA: YWho was Fermat and what was his Last Theorem?

AW: Fermat was a 17th-century mathematician who wrote a note in the margin of his
book stating a particular proposition and claiming to have proved it. His proposition was
about an equation which is closely related to Pythagoras' equation. Pythagoras' eguation
JIvEs yoL:

w2+ yd = 72
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You can ask, what are the whole number solutions to this equation, and you can see thal

R

and

5ol 122 = 3%

And if you go on looking then you find more and more such solutions. Fermat then
considered the cubed wersion of this equation:

Byds

He raised the guestion: canyou find solutions to the cubed equation? He claimed that
there were none. In fact, he claimed that for the general family of equations:

XM+ = ZVwhere nis bigger than 2
itis impossible to find a solution. That's Fermat's Last Theorem.

NOVA: 5o Fermat said because he could not find any solutions to this equation, then
there were no solutions?

29



AW: He did more than that. Just because we can't find a solution it doesn't mean that
there isn't one. Mathematicians aren't satisfied because they know there are no solutions
up to four million or four billion, they really want to know that there are no solutions up to
infinity. And to do that we need a proof. Fermat said he had a proof. Unfortunately, all he
everwrote down was: "l have a truly marvelous demaonstration of this proposition which
this margin Is too narrow to contain ™

NOVA: What doyou mean by a proof?

AW: In a mathematical proof you have a line of reasoning consisting of many, many
steps, that are almost self-evident. If the proof we write dowin is really rigorous, then
nobody can ever prove itwrong. There are proofs that date back to the Greelks that are
still walid today.

NOVA: 5o the challenge was to rediscover Fermat's proof of the Last Theorem Why did
it become so famous”?

AW: el some mathematics problems ook simple, and you try them for a year or 5o,
and then you try them for a hundred years, and it turns out that they're extremely hard to
solve. There's no reason why these problems shouldn't be easy, and yet they turn out to
be extremely intricate. The Last Theorem is the most beautiful example of this.

NOVA: Eut finding a proof has no applications in the realworld; it is a purely abstract
guestion. So why have people put so much effort into finding a proof?

AW: Fure mathematicians just love to try unsolved problems—they love a challenge . And
as time passed and no proof was found, it became a real challenge. I've read letters in
the early 19th century which said that it was an embarrassment to mathematics that the
Last Theorem had not been solved. And of course, it's wery special because Fermat said
that he had a proof.
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NOVA: How did you begin looking for the proof?

AW: In my early teens | tried to tackle the problem as | thought Fermat might have tried it |
reckoned that he wouldn't hawve known much more math than | knew as a teenager. Then
when | reached college, | realized that many people had thought about the problem during
the 15th and 19th centuries and so | studied those methods. But | still wasn't getting
amywhere. Then when | became a researcher, | decided that | should put the problem
aside. It's not that | forgot about it—it was always there—but | realized that the only
technigques we had to tackle it had been around for 130 years It didn't seem that these
technigues were really getting to the root of the problem. The problem with working on
Fermat was that you could spend years getting nowhere. It's fine to worl on any problem,
50 long as it generates interesting mathematics along the way—ewven if you don't solve it
at the end of the day. The definition of a good mathematical problem is the mathematics
it generates rather than the problem itself.

NOVA: It seems that the Last Theorem was considered impossible, and that
mathematicians could not risk wasting getting nowhere. But then in 1986 evendhing
changed. A breakthrough by Ken Ribet at the University of California at Berkeley linked
Fermat's Last Theorem to another unsolved problem, the Taniyama-Shimura conjecture.
Canyol remember how you reacted to this news”?

AW: |t was one evening at the end of the summer of 1986 when | was sipping iced tea at
the house of a friend. Casually in the middle of a conversation this friend tald me that Ken
Fibet had proved a link between Taniyama-=himura and Fermat's Last Theorem. | was
electrified. | knew that moment that the course of my life was changing because this
meant that to prove Fermat's Last Theorem all | had to do was to prove the Taniyama-
Shimura conjecture . It meant that rmy childhood dream was now a respectable thing to
wiork on. | just knews that | could never let that go.

NOVA: 5o, because Taniyama-shimura was a modern problerm, this meant that working
anit, and by implication trying to prove Fermat's Last Theorem, was respectable.
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AW: Yes Mobody had any idea how to approach Taniyama-Shimura but at least itwas
mainstream mathematics. | could try and prove results, which, even if they didn't get the
wihole thing, would be worthwhile mathematics. So the romance of Fermat, which had
held me all my life, was now combined with a problem that was professionally acceptable.

NOVA: At this point you decided towork in complete 1solation. You told nobody that you
were embarking on a proof of Fermat's Last Theorem. Why was that?

AW: | realized that anything to do with Fermat's Last Theorem generates too much
Interest. You can't really focus yourself for years unless you have undivided concentration,
wihich too many spectators would have destroyved.

NOVA: But presumably you told your wife what you were doing?

AW: MWy wife's only known me while ['ve beenworking on Fermat. | told her on our
honeymoon, Just a few days after we got married. My wife had heard of Fermat's Last
Theorem, but at that time she had no idea of the romantic significance it had for
mathematicians, that it had been such a thorn in our flesh for so many years.

NOVA: Cn a day-to-day basis, how did you go about constructing your proof?

AW: | used to come up to my study, and start trying to find patterns. | tried doing
calculations which explain some little piece of mathematics. | tried to fit it in with some
previous broad conceptual understanding of some part of mathematics that would clarify
the particular problem was thinking about. Sometimes that would involve going and
looking it up in a book to see how it's done there. Sometimes itwas a question of
modifying things a bit, doing a little exra calculation. And sometimes | realized that
nothing that had ever been done before was any use at all. Then | just had to find
something completely new; it's a mystery where that comes from. | carried this problem
around in rmy head basically the whole time . would wake up with it first thing in the
marning, lwould be thinking about it all day, and 1'would be thinking about it when | went to
sleep . WWithout distraction, | would have the same thing going round and round in my mind.
The only way | could relax was when | was with my children. Young children simplhy aren't
interested in Fermat. They just want to hear a story and they're not going to let you do
amything else.

NOVA: Usually people worl in groups and use each other for support. What did you do
wihen you hit a brick wall?

AW: When | got stuck and | didn't know what to do next, | would go out for a walk. I'd often
wialk dowm by the lake Walking has a very good effect in that you're in this state of
relaxation, but at the same time you're allowing the sub-conscious to work on you. And
often if you have one particular thing buzzing in your mind then you don't need anything to
wirite with or any deslk I'd always have a pencil and paper ready and, if | really had an
idea, I'd sit dowin at a bench and I'd start scribbling aweay

NOVA: So for seven years you're pursuing this proof. Presumably there are periods of
self-doubt mixed with the periods of success,
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AW: Perhaps | can best describe my experience of doing mathematics in terms of a
journey through a darlk unexplored mansion. You enter the first room of the mansion and
it's completely dark. You stumble around bumping into the furmiture, but gradually you
learn where each piece of furniture is. Finally, after six months or so, you find the light
switch, you turn it on, and suddenly it's all illuminated. You can see exactly where you
wiera. Then you move into the next room and spend another six months in the dark. So
each of these breakthroughs, while sometimes they're momentary, sometimes over a
period of a day ar twio, they are the culmination of—and couldn't exist without—the many
maonths of stumbling around in the dark that proceed them.

NOVA: And during those seven years, you could never be sure of achieving a complete
proof.

AW: | really believed that | was on the right tracl, but that did not mean that | would
necessarily reach my goal. It could be that the methods needed to take the next step may
simply be beyond present day mathematics. Perhaps the methods | needed to complete
the proof would not be invented for a hundred years. So even if | was on the right traclk, |
could be living in the wrong century.

NOVA: Then eventually in 1993, you made the crucial breakthrough.

AW: Yes, itwas one morning in late May. My wife, Nada, was out with the children and |
wias sitting at my desk thinking about the last stage of the proof. | was casually looking at
a research paper and there was one sentence that just caught my attention. [t mentioned
a 19th-century construction, and | suddenly realized that | should be able to use that to
complete the proof. [went on into the afternoon and | forgot to go dowen far lunch, and by
about three or four o'cloclk, was really convinced that this would solve the last remaining
problem. It got to about tea time and | went downstairs and MNada was very surprised that
I'd arrived so late. Then [told her I'd solved Fermat's Last Theorem.

33



NOVA: The New York Times exclaimed "At Last Shout of 'Eurelal’ in Age-Old Math
Mlystery " but unknowm to them, and to you, there was an error in your proof. What was the
error?

AW: [twas an errorin a crucial part of the argument, but it was something so subtle that
I'd missed it completely until that point. The erraris so abstract that it can't really be
described in simple terms. Even explaining it to a mathematician would require the
mathematician to spend two or three months studying that part of the manuscript in great
detail.

NOWVA: Eventually, after a year of work, and after inviting the Cambridge mathematician
Fichard Taylor to wiork with you on the error, you managed to repair the proof. The
question that everybody asks is this; is your proof the same as Fermat's?

AW: There's no chance of that. Fermat couldn't possibly have had this proof. [t's 150
pages long. It's a 20th-century proof. It couldn't hawve been done in the 15th century, let
alone the 17th century. The technigues used in this proof just weren't around in Fermat's
time.

NOVA: So Fermat's original proof is still out there somewhere.

AW: | don't believe Fermat had a proof. [ think he fooled himself into thinking he had a
proof. But what has made this problem special for amateurs is that there's a tiny
possibility that there does exist an elegant 1 7th-century proof.

NOVA: So some mathematicians might continue to look for the original proof. What wiill
Yol do next?
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AW: There's no problem that will mean the same to me. Fermat was my childhood
passion. There's nothing to replace it 'l try other problems. I'm sure that some of them
willl e wery hard and I'll have a sense of achievement again, but nothing will mean the
same to me. There's no other problem in mathematics that could hold me the way that this
one did. There is a sense of melancholy. We've lost something that's been with us for so
long, and something that drewe a lot of us into mathematics. But perhaps that's ahways the
wiay with math problems, and we just hawve to find new ones to capture our attention.
Feople have told me 've taken away their problem—can't | give them something else? |
feel some sense of responsibility. | hope that seeing the exciterment of solving this
problem will make young mathematicians realize that there are lots and lots of other
problems in mathematics which are going to be just as challenging in the future.

NOVA: What is the main challenge now?

AW: The greatest problem for mathematicians now 15 probably the Riemann Hypothesis.
Butit's not a problem that can be simply stated.

NOVA: And is there any one particular thought that remains with you now that Fermat's
Last Theorem has been laid to rest?

AW: Certainly one thing that I've learmed is that itis important to pick a problem based on
how much you care about it. However impenstrable it seems, if you don't try it, then you
can never do it Always try the problem that matters most to you. | had this rare privilege of
being able to pursue in my adult life, what had been my childhood dream . | know it's a
rare privilege, but if one can really tackle something in adult life that means that much to
you, then it's more rewiarding than anything | can imagine.

NOVA: And now that journey i1s aver, there must be a certain sadness?

AW: There is a certain sense of sadness, but at the same time there is this tremendous
sense of achievement. There's also a sense of freedom . 'was so obsessed by this
problem that [ was thinking about it all the time—when | woke up in the moming, when |
went to sleep at night—and that went on for eight years. That's a long time to think about
one thing. That particular odyssey 15 now over. My mind 1S now at rest.
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