Fermat Last Theorem
Controversy(2)

The Fermat last theorem controversy is an argument between
20™ century mathematicians Jiang Chun-Xuan(1992) and
Andrew Wiles(1995) over who has first proved Fermat last

theorem.

Abstract
D.Zagier(1984) and K.Inkeri(1990) said[7] Jiang mathematics is true, but Jiang
determinates the irrational numbers to be very difficult for prime exponent p>2.In 1991
Jiang studies the composite exponents n=15,21,33,...,3p and proves Fermat last theorem for
prime exponent p>3[1].In 1986 Gerhard Frey places Fermat last theorem at elliptic
curve ,now called a Frey curve.Andrew Wiles studies Frey curve.In 1994 Wiles proves
Fermat last theorem[9,10].Conclusion:Jiang proof is direct and very simple,but Wiles proof
is indirect and very complex. If China mathematicians and Academia Sinica had supported
and recognized Jiang proof on Fermat last theorem,Wiles would not have proved Fermat
last theorem,because in 1991 Jiang had proved Fermat last theorem[1].Wiles has received
many prizes and awards, he should thank China mathematicians and Academia Sinica.To
support and to publish Jiang Fermat last theorem paper is prohibited in Academia Sinica.
Remark. Chun-Xuan Jiang,A general proof of Fermat last theorem(Chinese),Mimeograph
papers,July 1978. In this paper using circulant matrix,circulant determinant and



permutation group theory Jiang had proved Fermat last theorem for odd prime exponent.
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Abstract
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate
into two biquadrates, or in general any power higher than the second into powers of like degree: |
have discovered a truly marvelous proof, which this margin is too small to contain.”

This means: X" +y" =z"(n>2) has no integer solutions, all different from 0(i.e., it has
only the trivial solution, where one of the integers is equal to 0). It has been called Fermat’s last
theorem (FLT). It suffices to prove FLT for exponent 4. and every prime exponent P . Fermat

proved FLT for exponent 4. Euler proved FLT for exponent 3.
In this paper using automorphic functions we prove FLT for exponents 6P and P, where
P isan odd prime. The proof of FLT must be direct .But indirect proof of FLT is disbelieving.

In 1974 Jiang found out Euler formula of the cyclotomic real numbers in the cyclotomic
fields

exp(zi1 tiJ‘j:i S,J" D)
i=1 i=1

where J denotesa 2nth root of unity, J*" =1, nisan odd number, t, are the real numbers.
S, is called the automorphic functions(complex hyperbolic functions) of order 2n with
2n—1 variables [5,7].
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From (2) we have its inverse transformation[5,7]
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(3) and (4) have the same form.
From (3) we have
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From (4) we have
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From (5) and (6) we have circulant determinant
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If S; #0, where 1=123,...,2n, then (7) have infinitely many rational solutions.
Let n=1.From (3)wehave A =t and A, =-t,.From (2) we have
S, =cht, S, =sht, (8
we have Pythagorean theorem
ch?t, —sh?t, =1 (9

(9) has infinitely many rational solutions.

Assume S, #0,S,#0,S; #0, where 1=3,....2n. S, =0 are (2n—2) indeterminate

equations with (2n—1) variables. From (4) we have

eh =S, +S,, e*=5,-5S, e =5?+52125.35,(-1) cos 7,
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e?” =S2 4521255, (-1) " cosI% (10)
n

Example. Let n =15. From (3) and (10) we have Fermat’s equation
7
exp[A + A, +2) (B;+D)]=S" -5 =(5/")°-(5;")=1 aD
j=1

From (3) we have
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From (10) we have
exp(A, +2B, +2B;) =S, +S; (13)

From (12) and (13) we have Fermat’s equation
5
exp(A, +2B, +2B;) =S + S5 =[exp(Q t;))° (14)
j=1

Euler prove that (19) has no rational solutions for exponent 3 [8]. Therefore we prove that (14) has
no rational solutions for exponent 5.
Theorem. Let n =3P where P isan odd prime. From (7) and (8) we have Fermat’s equation
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From (3) we have
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From (10) we have

From (16) and (17) we have Fermat’s equation
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exp| A +2) By |=S7 +S; = {exp[z tjpﬂ (18)
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Euler prove that (15) has no rational solutions for exponent 3[8]. Therefore we prove that (18) has
no rational solutions for prime exponent P [5,7].

Remark. It suffices to prove FLT for exponent 4. Let n=4P, where P is an odd prime. We
have the Fermat’s equation for exponent 4P and the Fermat’s equation for exponent P [2,5,7].
This is the proof that Fermat thought to have had. In complex hyperbolic functions let exponent
n be n=IIP, n=2I1P and n=4IIP. Every factor of exponent n has the Fermat’s
equation [1-7]. In complex trigonometric functions let exponent N be n=TIIP, n=2[1P
and n = 4I1IP . Every factor of exponent n has Fermat’s equation [1-7]. Using modular elliptic
curves Wiles and Taylor prove FLT [9, 10]. This is not the proof that Fermat thought to have had.
The classical theory of automorphic functions, created by Klein and Poincare, was concerned with
the study of analytic functions in the unit circle that are invariant under a discrete group of



transformation. Automorphic functions are the generalization of trigonometric, hyperbolic, elliptic,
and certain other functions of elementary analysis. The complex trigonometric functions and
complex hyperbolic functions have a wide application in mathematics and physics.
Acknowledgments. We thank Chenny and Moshe Klein for their help and suggestion.
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