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Abstract

Transcendence of a number implies the irrationality of powers of a
number, but in the case of π there are no separate proofs that powers
of π are irrational. We investigate this curiosity. Transcendence proofs
for e involve what we call Hermite’s technique; for π’s transcendence
Lindemann’s adaptation of Hermite’s technique is used. Hermite’s
technique is presented and its usage is demonstrated with irrational-
ity proofs of e and powers of e. Applying Lindemann’s adaptation
to a complex polynomial, π is shown to be irrational. This use of
a complex polynomial generalizes and powers of π are shown to be
irrational. The complex polynomials used involve roots of i and yield
regular polygons in the complex plane. One can use graphs of these
polygons to visualize various mechanisms used to proof π2, π3, and π4

are irrational. The transcendence of π and e are easy generalizations
from these irrational cases.

1 Introduction

There are curiosities in the treatment of the transcendence and irra-
tionality of π and e. One such curiosity is the absence of proofs that
powers of π are irrational. Certainly π2 is proven to be irrational fre-
quently [4, 21, 37], but not higher powers.1 Proofs of the irrationality
of powers of e [12, 28, 32]2 are given in text books, making it all the
more odd that the irrationality of powers of π are not even mentioned.

1Han̈cl does give a proof of the irrationality of π4 [11].
2An attempt is made to give references to both primary and easily available secondary

sources.
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Another curiosity is that the proofs of the irrationality of π (and π2),
e, and the powers of e are not presented as special cases of transcen-
dence. In both cases, e and π, it is obvious that the techniques used
to prove transcendence of these numbers must work to prove their
irrationality and the irrationality of their powers: if the polynomial
nxk − m is an integral polynomial and n/m = πk, (i.e. πk is assumed
rational) k ≥ 1, then π is its root, a contradiction of transcendence.

Ideally the proofs of the irrationality of e and π would serve as
base cases for transcendence proofs. We might also hope that proofs
of the irrationality of e would suggest a means for proving that π is
irrational. Historically, the transcendence proofs of these two con-
stants followed this pattern. We demonstrate that this ideal sequence
is possible, giving, apparently for the first time, an independent (from
transcendence) proof that powers of π are irrational. Transcendence
proofs for both numbers follow relatively easily from proofs that their
powers are irrational. We demonstrate this.

2 The case of e

In this article four results are given: the irrationality of e, ej , π, and
πj , where j here and throughout this article is a natural number.
We wish to use the latest (easiest) transcendence proofs to establish
the irrationality of e and π and their powers. In the case of e the
transcendence proof of Hurwitz is the one we use [16, 18].

2.1 e is irrational

One can use a property of e with an assumption of its irrationality in
the following way.3 If we use a linear function to embed the assumption
that e is rational, we have f(x) = c1x + c0 is such that f(e) = 0 or
e = −c0/c1, where cj is an integer here and throughout this article.
We have then, using composition and the mean value theorem (MVT),

f(e1) − f(e0)
1 − 0

= [f(eζ)]′ = c1e
ζ

or
−c1 − c0 = [f(eζ)]′ = c1e

ζ ,

3The proof of e’s irrationality that occurs in textbooks, such as [3, 31], is attributed to
Fourier [9].
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with ζ ∈ (0, 1). This has the pattern of a left side consisting of the
sum of integers and the right side a power. If the sum on the left
side can be made to have a factor of n!, all else remaining the same
on the right side, a contradiction follows: an integer equals a power
over a factorial. This is the general pattern of what we call Hermite’s
technique.

Composition of two functions gives the idea; the details follow from
considering how a polynomial can yield integers divisible by n!. If r,
an integer, is a root of multiplicity n of an integral polynomial, r
will also be a root of the polynomial’s 0 through n − 1 derivatives
[5]. After the nth derivative all surviving coefficients will have factors
of n!. When these derivatives are evaluated at such a root they will
yield integers divisible by n!. The sum of all derivatives of such a
polynomial evaluated at such a root will also be divisible by n!.

Suppose then that H(x) is the sum of the derivatives of a poly-
nomial with roots 0 and 1 each of multiplicity n: that is let h(x) =
xn(1−x)n and H(x) be the sum of its derivatives. We have, using the
mean value theorem on the product e−xH(x),

e−1H(1)− H(0)
1 − 0

= −e−ζ(H(ζ)− H ′(ζ)) = −e−ζh(ζ), (1)

for some ζ ∈ (0, 1). Our assumption that e = −c0/c1 can be combined
with this auxiliary work to give

H(1) +
c0

c1
H(0) = −e−ζζn(1− ζ)n (2)

or
c1H(1) + c0H(0) = −c1e

−ζζn(1− ζ)n, (3)

an integer divisible by n! equals a product of powers. As the product
of powers never can equal zero, we have a contradiction: we know
ζn/n! → 0 as n → ∞ for any real or complex ζ.

2.2 Hermite’s technique with Leibniz’s formula

Hermite’s technique uses the sum of the derivatives of a polynomial.
Leibniz’s formula,

h(n)(x) =
n∑

k=0

(
n

k

)
f (k)(x)g(n−k)(x), (4)
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gives the nth derivative of product of two functions. Hermite’s tech-
nique, as used in transcendence theorems of e and π, generates non-
zero integers divisible by (p − 1)! (p a prime) by stipulating that one
root of a polynomial have multiplicity p − 1 and all other roots have
multiplicity p. One can view this situation as the product of two poly-
nomials: f(x) = xp−1 and g(x) = cM [

∏
(x−rs)]p. Such a product has

a root x = 0 of multiplicity p − 1 and rs roots of multiplicity p. We
take c as some constant to be specified raised to some natural number
power M , also to be specified: the cM factor is used to insure integer
coefficients in [

∏
(z − zs)]p. Using repeated applications of Leibniz’s

formula, we have

H(x) =
sp+p−1∑

n=0

n∑

k=0

(
n

k

)
f (k)g(n−k)(x). (5)

The term with f (p−1)(x)g(0)(x) in this sum is critical to establishing
the non-zero integer property. We call it the pivot of the Leibniz table
for H(x). All the terms in (5) can be depicted in a Leibniz table
[21]; this allows the divisibility patterns to become apparent and the
importance of the pivot to be seen.

In Table 1 all the derivatives of f(x) are given along the top and all
the derivatives of g(x) are given in the left most column. The interior
cells are the summands of (5) where the binomial coefficients of (5),
immaterial to the divisibility pattern we are interested in, are omitted.
One can determine H(0) be noting that the top row will all be zero
at x = 0, except for the last entry: (p − 1)!. The left column will
have p factors in all but the first entry. The product of p with (p− 1)!
yields a p! factor in all terms, except the pivot term. Looking at the
pivot, then, we must stipulate that p is greater than max{c,

∏
rs} in

order to force (p−1)!|H(0), but p - H(0). Similar reasoning gives that
p!|

∑
H(rs).

The combination of this divisibility patterns gives p - (H(0) +∑
H(rs)) and this means H(0) +

∑
H(rs) is potentially a non-zero

integer: the coefficients have the right pattern for this property. If
the roots, rs, are those of an integer polynomial, then, using Newton’s
identities [35, p. 38], the sum of their powers is an integer and the
non-zero integer is generated.
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zp−1 (p − 1)zp−2 . . . (p − 1)!
cM [

∏
(z − zs)]

p ∗
p . . .

...
p! . . .

...

Table 1: Leibniz table with an asterisk indicating its pivot.

2.3 ej is irrational

Let h(x) = xp−1(j − x)p and H(x) be the sum of the derivatives of
h(x). Assume, to obtain a contradiction, ej = −c1/c0. The pivot of
h(x) is (p− 1)!(j− x)p; at x = 0, this is (p− 1)!j, so we stipulate that
p > j to ensure that p - H(0). Using the MVT, we have

e−jH(j)− e0H(0)
j − 0

= −eζh(ζ),

for some ζ ∈ (0, j). Using our assumption, we obtain

c1H(j) + c0H(0) = −jc1e
j−ζh(ζ). (6)

We must stipulate that p > |c0|. Upon division of both sides of (6) by
(p − 1)!, the absolute value of the left side shrinks to less than one, a
contradiction.

The proofs of the irrationality of e and powers of e just given ap-
pear to be new, although relatively easy applications of the transcen-
dence of e proof by Hurwitz. Existing irrationality proofs for rational
powers of e [12, 28, 32], an easy generalization from ej is irrational,
are needlessly difficult and use Hermite’s original transcendence proof
[13] of e. We, thus, have provided an update for irrationality proofs
for rational powers of e via the more recent evolution4 of Hermite’s
original transcendence proof: that of Hurwitz.

4A telltale sign of an early transcendence and irrationality proof is the unmotivated
definition of a complicated polynomial.
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3 The case of π

Upon Hermite’s success with proving the transcendence of e [2, 13, 14],
Lindemann took up the case of proving the transcendence of π. He
succeeded in 1882 [2, 25]. The existing proofs of π’s irrationality circa
1882 are complicated and unrelated to Lindemann’s transcendence
proof [2, 15, 23, 24, 26]. For a review of these (and other) irrationality
proofs see [4, 36].

After Lindemann’s transcendence proof, then, the natural ques-
tion (a puzzle) is posed: can (or why can’t) an irrationality proof for
π be constructed based on Lindemann and, by extension, Hermite’s
transcendence proofs? Niven, perhaps seeing this puzzling lacuna,
succeeded in proving π is irrational using Hermite’s original technique
in 1947 [29]. His polynomials, however, do not generalize to prove all
powers of π are irrational, nor do they connect with a proof of the
transcendence of π directly as a special case. We show here that this
ideal, relative to economics of effort, can be realized. The e case points
the way to π, as it did historically. Complex polynomials, forbidden
in transcendence proofs, are the key.

3.1 A template for a proof

If the MVT worked for complex variables, a proof of π’s irrationality
could be easily achieved with the themes just used for proving e is
irrational. Briefly, with suitably defined h(z) and H(z), we would
have

e−πiH(πi)− e0H(0)
πi− 0

= −e−ζh(ζ). (7)

With some algebra, this becomes

eπiH(0) = H(πi) + πieπi−ζh(ζ). (8)

Adding H(0) to both sides, using Euler’s identity, and dividing both
sides by (p− 1)! gives the contradiction: we obtain a non-zero integer,
perhaps a non-zero Gaussian integer, with absolute value less than
one. Gaussian integers, numbers of the form x + iy with x and y

integers, are a subject of abstract algebra [1, 8] and number theory
[12].

Unfortunately the MVT does not work with complex variables:
the function eix on the general interval [a, b] is a counterexample [30,
p. 39]. Complex integration, however, does give a means of achieving
an irrationality proof for π.
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3.2 Complex calculus

We wish to show how transcendence techniques for π can prove its
irrationality. As with the transcendence of e, transcendence of π proofs
have evolved from Lindemann’s original proof. We use Niven’s proof
[27] and Niven, curiously enough, cites Hurwitz’s transcendence of e

proof [18] as his source for the use of e−zH(z).5 He introduces several
innovations. One of which is complex integration. The numerator
of the left side of (7) does remind one of an evaluation of a definite
integral.

3.3 π is irrational

Assume π = m/n. Using Hermite’s technique, let h(z) = zp−1(nz −
mi)p and H(z) be defined as the sum of its derivatives. The product
rule for derivatives gives

d

dx
e−zH(z) = −e−z(H(z)− H ′(z)) = −e−zh(z). (9)

Forming the complex integral with both sides of (9), we have
∫ πi

0

d

dz
[e−zH(z)]dz = −

∫ πi

0
e−zh(z)dz (10)

and this implies, using the fundamental theorem of calculus [33, The-
orem 3, p. 97],

e−πiH(πi)− H(0) = −
∫ πi

0
e−zh(z)dz. (11)

Multiplying (11) by eπi and using some algebra gives

eπiH(0) = H(πi) + eπi

∫ πi

0

e−zh(z)dz (12)

and, on adding H(0) to both sides of (12), we have, using Euler’s
formula,

0 = H(0)(eπi + 1) = H(0) + H(πi) + eπi

∫ πi

0
e−zh(z)dz. (13)

5Niven’s proof is used, although it is not cited, in [7, 34], the distinguishing characteris-
tic being the use of complex integration. In contrast, the older [12, 17] use derivatives only
versions, such as the one by Gordan [10]. One can modify our proof of the irrationality
of π into a derivatives only version and the previous use of the mean value theorem for e
proofs into real integral versions.
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We need (H(0) + H(πi))/(p − 1)! to be non-zero. The pivot of
the Leibniz table for h(z) is (p − 1)!(nz − mi)p; at z = 0 this is
(p−1)!(−mi)p; we must stipulate that p > m to ensure this expression
is not divisible by p; with this stipulation and for all odd prime p,
(p−1)!(−mi)p is a purely imaginary Gaussian integer not divisible by
p.

To complete the proof it is easy to show (see Theorem 1 in section
6) that the integral of (13) becomes less than one upon division by
(p− 1)! for sufficiently large p. This being accomplished, (13) reduces
to

0 = R + ε, (14)

where R is a non-zero Gaussian integer and |ε| < 1: a contradiction.

4 The powers of π are irrational

Figure 1: The roots rk and Rk for the j = 2, 3, and 4 cases.

Niven’s proof of π’s irrationality was generalized to the π2 case by
Iwamoto in 1949 [20] but not to higher powers. Original proofs of π’s
irrationality seem to allow for exactly one generalization – the squared
case. Other recent examples of this are [6, 19, 21, 22, 37]. Will the
approach given here suffer the same fate?

8



4.1 π2 is irrational

Consider z2 − (πi)2 = (z − πi)(z + πi). We can get the same pattern
as (13) using

0 = H(0)(1 + eπi)(1 + e−πi) (15)

= H(0)(2 + eπi + e−πi) (16)
= 2H(0) + H(πi) + H(−πi) + 2ε, (17)

where ε gives a sum of two integral expressions that go to 0 upon
division by a factorial. Assuming π2 = m/n, we define

h(z) = n2p+p−1zp−1[(z−mi/n)(z+mi/n)]p = n2p+p−1zp−1[z2+m/n]p.
(18)

The power of n insures that all the coefficients of h(z) and hence
of H(z) are integers. The sum H(πi) + H(−πi) will be an integer
divisible by (p − 1)!, as the sum of odd powers of πi and −πi cancel
each other out and even powers fall under the rationality assumption.
The pivot for H(0) is n2p+p−1(m/n)p = n2p−1mp, so stipulating that
p > max{mn}, completes this application of Hermite’s technique. As
before we obtain a contradiction: π2 is irrational.

The pattern for proving powers of π are irrational and π is tran-
scendental follow from this π2 case!

4.2 π3 and π4 are irrational

Using the roots, rk, of f(z) = zj − (πi)j we can repeat this pattern for
general j powers. The roots of f(z) are the jth roots of the complex
number

π(ij mod 4)1/j. (19)

There are four cases corresponding to the value of ij :

π(cos(π/2 + 2kπ) + i sin(π/2 + 2kπ))1/j for ij = i (20)

π(cos(π + 2kπ) + i sin(π + 2kπ))1/j for ij = −1 (21)

π(cos(3π/2 + 2kπ) + i sin(3π/2 + 2kπ))1/j for ij = −i (22)

π(cos(2kπ) + i sin(2kπ))1/j for ij = 1. (23)

Let rk, 1 ≤ k ≤ j, designate the roots for each of these cases. One
such root will always be πi, insuring the zero value on the left of

0 = H(0)
(∏

(1 + erk )
)

= AH(0) +
∑

H(Rk) + ε. (24)
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j rk

1 πi
2 ±πi

3 πi, π
(

±
√

3
2

− i
2

)

4 ±πi,±π

Table 2: Roots of f(z) for first four powers.

j Rk non-zero No. of zero roots
∏

(z − Rk)
1 πi 0 z − πi
2 ±πi 1 z2 + π2

3 ±πi, π
(
±

√
3

2
± i

2

)
1 z6 + π6

4 ±πi,±π, π(±1± i) 3 (z4 − π4)2(z4 + 4π4)

Table 3: A few details for first four powers of π.

Table 2 gives these roots, rk, for j = 1, 2, 3, and 4. In Table 3 we
have the non-zero sums of these roots, Rk, taken one through j at a
time (per the algebra of

∏
(1 + erk)), the number of such sums that

total zero (reflected in the constant A in (24)), and the polynomial
that results from the non-zero roots. The ε in (24) reflects terms that
shrink to zero upon division by (p − 1)!. The two sets of roots, rk

(circles) and Rk (circles and diamonds), are depicted for cases j = 2,
3, and 4 in Figure 1.6

As before we assume, to get a contradiction, πj = m/n. Examining
the polynomials generated by the Rk roots shows that the coefficients
generated involve powers of π that are under the rationality assump-
tion for each case. Hence, multiplying the polynomials in Table 3 by
a sufficiently large power of n, njp+p−1, as we did with the π2 case,
insures all coefficients in h(z) are integers or Gaussian integers. The
sums of powers of the roots Rk will be, per Newton’s identities, Gaus-
sian integers. A Leibniz table indicates a lower bound on the prime p

that must be used. These powers of π are irrational. Curiously, the
general case is easier to prove than these specific cases.

6These graphs show roots of i, not unity. Like roots of unity, powers of i revolve around
a circle. Roots of unity are a topic of abstract algebra [8] and complex analysis [33].
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4.3 The general case

For the general jth power of π, the polynomial f(z) = zj − (πi)j

has only one coefficient and, under a rationality assumption, this is a
Gaussian rational. The sums of these roots of this polynomial taken
one through j at a time will be expressible with this rational.7 This
follows from the fundamental theorem of symmetric functions [35,
chapter 8]. We can form a polynomial

h(z) = njp+p−1zp−1[
∏

(z − Rk)]p (25)

using these roots. It will have Gaussian integer coefficients. The
sum of powers of such roots will be also expressible using this same
single coefficient. This follows as such sums are symmetric functions
of this single elementary symmetric function, the constant coefficient
(πi)j. Newton’s identities confirm the power of n needed and indicate
a possible factor of j with this coefficient. We see this with the j = 4
polynomial given in Table 3. Using this information with a Leibniz
table we stipulate that p > max{j, A, m, n} where A is defined by
(24). General powers of π are irrational.

5 The transcendence of e and π

It’s a curious twist in the saga of the transcendence of e and π that with
the above proofs of the irrationality of the powers of these numbers,
transcendence proper for π is now easier to prove than that for e. We
demonstrate this in this section.

The pattern for transcendence proofs is to combine an inference
from the assumption that the number in question solves a integer poly-
nomial with a property of the number and arrive at a contradiction.
Given f(z) is an integer polynomial, regardless of its roots, we can
make the following inferences. The first two were proven earlier.

Theorem 1 If f(x) is an integer polynomial of degree n with roots
rk there exists an integer, N , and integer polynomials H(x) such that

7Consider (x − r1)(x − r2)(x − (r1 + r2)). A transposition of the roots r1 and r2 gives
the same polynomial via commutativity of multiplication and addition. Permutations are
compositions of transpositions. So permutations of such polynomials built from sums of
roots give the same polynomial; the Rk roots yield coefficients that are symmetric functions
of the rk roots.
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for all prime numbers p, with p > N

H(0) +
n∑

k=1

H(rk) (26)

is divisible by (p − 1)! and not divisible by p.

Corollary 1 Under the assumptions of Theorem 1,

H(0) +
n∑

k=1

H(rk) (27)

is a non-zero integer.

The following result is implicitly given in proofs of the transcen-
dence of e and π.

Theorem 2 For any real or complex polynomial f(z) = (z−r1) . . .(z−
rn) = zn + c1z

n−1 + · · ·+ cn, if ra = max{|rk|}, then

|f(rk)| ≤ (2ra)n, (28)

for every root rk of f(z).

Proof. The elementary symmetric functions are generated by expand-
ing the root form of the polynomial. So cj is the sum of the product
of roots rk taken j at a time. We have then

|f(z)| ≤ |f(|z|)| ≤ |z|n + |c1||z|n−1 + · · ·+ |cn|. (29)

Let Ck indicate the sum of the absolute values of the roots taken j at
a time. This implies, using once again the triangle inequality, that

|z|n + |c1||z|n−1 + · · ·+ |cn| ≤ |z|n + C1|z|n−1 + · · ·+ Cn. (30)

The right hand side of this inequality is the same as

(|z|+ |r1|) . . .(|z|+ |rn|), (31)

so we have
f(|z|) ≤ (|z|+ |r1|) . . .(|z|+ |rn|). (32)

This inequality is true for any z, so it is true for all rk. Thus

f(|rk|) ≤ (|rk| + |r1|) . . .(|rk| + |rn|) (33)

and given the definition of ra, we have

f(|rk|) ≤ (|rk| + |r1|) . . .(|rk|+ |rn|) ≤ (2ra)n. (34)

This with (29) gives (28).
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Corollary 2 Under the assumptions of Theorem 2,

lim
m→∞

[f(rk)]m

m!
= 0 (35)

and

lim
m→∞

n∑

k=1

[f(rk)]m

m!
= 0. (36)

Corollary 3 Under the assumptions of Theorem 2,
∣∣∣∣
∫ rk

0

f(z)dz

∣∣∣∣ ≤ ra(2ra)n (37)

and ∑∣∣∣∣
∫ rk

0
f(z)dz

∣∣∣∣ ≤ ra

∑
(2ra)n. (38)

Theorem 3 e is transcendental.

Proof. Suppose e solves cnxn + cn−1x
n−1 + · · ·+ c0 = 0. We showed

previously that all the powers of e are irrational using polynomials
with x = 0 and x = j roots. We combine these polynomials and
define

h(x) = xp−1

[
n∏

k=1

(k − x)

]p

, (39)

and, as usual, define H(x) as the sum of the derivatives of h(x).
We have, with repeated uses of the fundamental theorem of calcu-

lus (or the MVT),

cnH(n)− encnH(0) = εn (40)

cn−1H(n− 1)− en−1cn−1H(0) = εn−1 (41)
... (42)

c1H(1)− ec1H(0) = ε1. (43)

Adding all of the equations above gives
n∑

k=0

ckH(k) =
n∑

k=1

εk . (44)

We use c0 = −(cnxn + cn−1x
n−1 + · · ·+ c1x) in this equation. The left

hand side is an integer divisible by (p−1)!, but not by p, and the right
hand side, using Corollary 2, goes to zero upon division by (p − 1)!.
This yields a non-zero integer less than one, a contradiction.
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Theorem 4 π is transcendental.

Proof. Suppose πi solves cjx
j + cj−1x

j−1 + · · ·+ c0 = 0. Exactly as in
the proof that the powers of π are irrational, we form roots Rk from
the rk roots of this polynomial. Let

h(z) = njp+p−1zp−1[
∏

(z − Rk)]p (45)

where Rk are the roots rk summed one through j at a time. Let H(z)
be the sum of h(z) derivatives. Using Euler’s formula, we have

0 = H(0)
(∏

(1 + erk )
)

= AH(0) +
∑

H(Rk) + ε, (46)

where the ε term, using Corollary 3, goes to zero upon division by
(p− 1)!. As AH(0)+

∑
H(Rk), using the same reasoning as with the

powers of π proof, is a non-zero integer, we have a contradiction.

6 Conclusion

Apart from the general connecting the dots theme of this article, there
are additional benefits to this approach to the transcendence of π.
Technology allows for ease of computation and experimentation, as
well as the generation of visual elements to accompany proofs. The
author confirmed many hand calculations for Tables 2 and 3 using
Maple and Excel. It is also possible with Maple (other computer
algebra systems) to generate polygons giving the Rk roots for the
j = 3 and 4 cases: j = 5 is challenging. With such illustrations one
can get a visual corroboration of roots and sums of roots; one can see
the polynomial generated in the j = 3 case: z6+π6. Modern pedagogy
encourages students to explore and find solutions on their own; the use
of the treatment given here in classrooms might thus enable students
to find their own, so to speak, proofs about π: its powers.

Finally, it is hoped that this article will encourage others to recon-
sider classic mathematics and continue to explore it and simplify it
for the service of a new generation of mathematicians: they need to
build upon things difficult to us made a little easier. Such is, may I
proffer, the nature of good cultural evolution.
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