The Diophantine Equations $a^2 \pm mb^2 = c^n$,

$$a^3 \pm mb^3 = d^2$$
 and $y_1^4 \pm my_2^4 = R^2$

Chun-Xuan Jiang
P. O. Box 3924, Beijing 100854. China
jcxuan@sina.com

Abstract

The Diophantine equations $a^2 \pm mb^2 = c^n$, and $a^3 \pm mb^3 = d^2$ have infinitely many nonzero integer solutions, Using the methods of infinite descent and infinite ascent we prove $y_1^4 \pm my_2^4 = R^2$.

The Diophantine equation

$$a^2 + b^2 = c^3, (1)$$

has infinitely many nonzero integer solutions. But it is difficult to prove this [1,2]. In this paper we prove some theorems.

Theorem 1. The Diophantine equation

$$a^2 + mb^2 = c^n \tag{2}$$

has infinitely many nonzero integer solutions.

We define supercomplex number [3]

$$z = \begin{pmatrix} x & -my \\ y & x \end{pmatrix} = x + yJ, \qquad (3)$$

where

$$J = \begin{pmatrix} 0 & -m \\ 1 & 0 \end{pmatrix}, \quad J^2 = -m \ .$$

Then from equation (3)

$$z^{n} = (x + yJ)^{n} = a + bJ.$$

$$\tag{4}$$

Let n be an odd number

$$a = \sum_{k=0}^{(n-1)/2} \binom{n}{2k} (-m)^k x^{n-2k} y^{2k}, b = \sum_{k=0}^{(n-1)/2} \binom{n}{2k+1} (-m)^k x^{n-2k-1} y^{2k+1},$$

Let n be an even number

$$a = \sum_{k=0}^{n/2} \binom{n}{2k} (-m)^k x^{n-2k} y^{2k}, b = \sum_{k=0}^{n/2-1} \binom{n}{2k+1} (-m)^k x^{n-2k-1} y^{2k+1}.$$

Then from (4) the circulant matrix

$$\begin{pmatrix} x & -my \\ y & x \end{pmatrix}^n = \begin{pmatrix} a & -mb \\ b & a \end{pmatrix},$$
 (5)

Then from (5) circulant determinant

$$\begin{vmatrix} x & -my \\ y & x \end{vmatrix}^n = \begin{vmatrix} a & -mb \\ b & a \end{vmatrix} , \tag{6}$$

Then from equation (6)

$$c^n = a^2 + mb^2, (7)$$

where

$$c = x^2 + my^2.$$

We prove that (2) has infinitely many nonzero integer solutions.

Theorem 2. The Diophantine equation

$$a^2 - mb^2 = c^n \tag{8}$$

has infinitely nonzero integer solutions.

Define supercomplex number [3]

$$z = \begin{pmatrix} x & my \\ y & x \end{pmatrix} = x + yJ, \tag{9}$$

where

$$J = \begin{pmatrix} 0 & m \\ 1 & 0 \end{pmatrix}, \quad J^2 = m .$$

Then from equation (9)

$$z^{n} = (x + yJ)^{n} = a + bJ. (10)$$

Let n be an odd number

$$a = \sum_{k=0}^{(n-1)/2} \binom{n}{2k} m^k x^{n-2k} y^{2k}, b = \sum_{k=0}^{(n-1)/2} \binom{n}{2k+1} m^k x^{n-2k-1} y^{2k+1}.$$

Let n be an even number

$$a = \sum_{k=0}^{n/2} \binom{n}{2k} m^k x^{n-2k} y^{2k}, b = \sum_{k=0}^{n/2-1} \binom{n}{2k+1} m^k x^{n-2k-1} y^{2k+1}.$$

Then from (10) circulant matrix

$$\begin{pmatrix} x & my \\ y & x \end{pmatrix}^n = \begin{pmatrix} a & mb \\ b & a \end{pmatrix}.$$
 (11)

Then from (11) circulant determinant

$$\begin{vmatrix} x & my \\ y & x \end{vmatrix}^n = \begin{vmatrix} a & mb \\ b & a \end{vmatrix}. \tag{12}$$

Then from equation (12)

$$c^n = a^2 - mb^2, (13)$$

where

$$c = x^2 - my^2.$$

We prove that (8) has infinitely many nonzero integer solutions.

Theorem 3. The Diophantine equation

$$a^{3} + mb^{3} + m^{2}c^{3} - 3mabc = d^{n}$$
 (14)

has infinitely many nonzero integer solutions

Define supercomplex number [3]

$$w = \begin{pmatrix} x & mz & my \\ y & x & mz \\ z & y & x \end{pmatrix} = x + yJ + zJ^{2}, \tag{15}$$

where

$$J = \begin{pmatrix} 0 & 0 & m \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad J^2 = \begin{pmatrix} 0 & m & 0 \\ 0 & 0 & m \\ 1 & 0 & 0 \end{pmatrix}, \quad J^3 = m.$$

Then from (15)

$$w^{n} = (x + yJ + zJ^{2})^{n} = a + bJ + cJ^{2}$$
(16)

Then from equation (16) circulant matrix

$$\begin{pmatrix} x & mz & my \\ y & x & mz \\ z & y & x \end{pmatrix}^{n} = \begin{pmatrix} a & mc & mb \\ b & a & mc \\ c & b & a \end{pmatrix}$$
(17)

Then from equation (17) circulant determinant

$$\begin{vmatrix} x & mz & my \\ y & x & mz \\ z & y & x \end{vmatrix} = \begin{vmatrix} a & mc & mb \\ b & a & mc \\ c & b & a \end{vmatrix}$$
 (18)

Then from equation (18)

$$d^{n} = a^{3} + mb^{3} + m^{2}c^{3} - 3mabc$$
 (19)

where

$$d = x^3 + my^3 + m^2z^3 - 3mxyz (20)$$

We prove that (14) has infinitely many nonzero integer solutions.

Suppose n = 2 and c = 0. Then from (19)

$$a^3 + mb^3 = d^2 (21)$$

when n = 2 from (16)

$$a = x^2 + 2myz \neq 0$$
, $b = 2xy + mz^2 \neq 0$, $c = y^2 + 2xz = 0$ (22)

Then from (22) $y^2 = -2xz$.

Let
$$z = -2, x = P^2, y = 2P,$$
 (23)

where P > 1 is an odd number.

Substituting (23) into (20) and (22)

$$d = P^6 + 20mP^3 - 8m^2$$
, $a = P^4 - 8mP$, $b = 4P^3 + 4m$ (24)

Using equation (24) we prove that (21) has infinitely many nonzero integer solutions.

Theorem 4. The Diophantine equation

$$a^{3} - mb^{3} + m^{2}c^{3} + 3mabc = d^{n}$$
(25)

has infinitely many nonzero integer solutions.

Define supercomplex number [3]

$$w = \begin{pmatrix} x & -mz & -my \\ y & x & -mz \\ z & y & x \end{pmatrix} = x + yJ + zJ^{2}, \tag{26}$$

where

$$J = \begin{pmatrix} 0 & 0 & -m \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad J^2 = \begin{pmatrix} 0 & -m & 0 \\ 0 & 0 & -m \\ 1 & 0 & 0 \end{pmatrix}, \quad J^3 = -m,$$

Then from (26)

$$w^{n} = (x + yJ + zJ^{2})^{n} = a + bJ + cJ^{2}$$
(27)

Then from (27) circulant matrix

$$\begin{pmatrix} x & -mz & -my \\ y & x & -mz \\ z & y & x \end{pmatrix}^{n} = \begin{pmatrix} a & -mc & -mb \\ b & a & -mc \\ c & b & a \end{pmatrix}, \tag{28}$$

Then from equation (28) circulant determinant

$$\begin{vmatrix} x & -mz & -my \\ y & x & -mz \\ z & y & x \end{vmatrix}^n = \begin{vmatrix} a & -mc & -mb \\ b & a & -mc \\ c & b & a \end{vmatrix}.$$
 (29)

Then from (29)

$$d^{n} = a^{3} - mb^{3} + m^{2}c^{3} + 3mabc$$
 (30)

where

$$d = x^3 - my^3 + m^2 z^3 + 3mxyz. (31)$$

We prove that (25) has infinitely many nonzero integer solutions.

Suppose n = 2 and c = 0. Then from (30)

$$a^3 - mb^3 = d^2 (32)$$

When n = 2 from (27)

$$a = x^2 - 2myz \neq 0, \quad b = -mz^2 + 2xy \neq 0, \quad c = y^2 + 2xz = 0$$
 (33)

Then from (33) $y^2 = -2xz$

Let
$$z = -2$$
, $x = P^2$, $y = 2P$, (34)

where P > 1 is an odd numer.

Substitutin (34) into (31) and (33)

$$d = P^6 - 20mP^3 - 8m^2$$
, $a = P^4 + 8mP$, $b = 4P^3 - 4m$ (35)

Using (35) we prove that (32) has infinitely many nonzero integer solutions.

Theorem 5. Define supercomplex number

$$W = \begin{pmatrix} x_1 & -mx_4 & -mx_3 & -mx_2 \\ x_2 & x_1 & -mx_4 & -mx_3 \\ x_3 & x_2 & x_1 & -mx_4 \\ x_4 & x_3 & x_2 & x_1 \end{pmatrix} = x_1 + x_2 J + x_3 J^2 + x_4 J^3,$$
(36)

where

$$J = \begin{pmatrix} 0 & 0 & 0 & -m \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad J^2 = \begin{pmatrix} 0 & 0 & -m & 0 \\ 0 & 0 & 0 & -m \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad J^3 = \begin{pmatrix} 0 & -m & 0 & 0 \\ 0 & 0 & -m & 0 \\ 0 & 0 & 0 & -m \\ 1 & 0 & 0 & 0 \end{pmatrix}, \quad J^4 = -m$$

Then from (36)

$$w^{n} = (x_{1} + x_{2}J + x_{3}J^{2} + x_{4}J^{3})^{n} = y_{1} + y_{2}J + y_{3}J^{2} + y_{4}J^{3}$$
(37)

Then from (37)

$$R^{n} = \left| y_{i} \right|, \tag{38}$$

where

$$R = x_1^4 + m(x_2^4 + 2x_1^2x_3^2 - 4x_1x_2^2x_3 + 4x_2x_1^2x_4) + m^2(x_3^4 + 2x_2^2x_4^2 + 4x_1x_3x_4^2 - 4x_2x_4x_3^2) + m^3x_4^4,$$

$$|y_i| = y_1^4 + m(y_2^4 + 2y_1^2y_3^2 - 4y_1y_2^2y_3 + 4y_2y_1^2y_4) + m^2(y_3^4 + 2y_2^2y_4^2 + 4y_1y_3y_4^2 - 4y_2y_4y_3^2) + m^3y_4^4.$$

(39)

We prove that (38) has infinitely many nonzero integer solutions,

Suppose n = 2, $y_1 \neq 0$, $y_2 \neq 0$, $y_3 = 0$ and $y_4 = 0$, from (38) and (39)

$$R^2 = y_1^4 + my_2^4 \tag{40}$$

When n = 2 from (37)

$$y_1 = x_1^2 - mx_3^2 - 2mx_2x_4 \neq 0, (41)$$

$$y_2 = 2(x_1 x_2 - mx_3 x_4) \neq 0, \tag{42}$$

$$y_3 = x_2^2 - mx_4^2 + 2x_1x_3 = 0, (43)$$

$$y_4 = 2(x_1 x_4 + x_2 x_3) = 0, (44)$$

Then from (44)

$$x_3 = -\frac{x_1 x_4}{x_2} \,. \tag{45}$$

Substituting (45) into (43)

$$x_4 = \frac{-x_1^2 \pm \sqrt{x_1^4 + mx_2^4}}{mx_2}. (46)$$

Then from (46)

$$R_1^2 = x_1^4 + mx_2^4. (47)$$

If (47) has no nonzero integer solutions, $R_1 < R$, using the method of infinite descent we prove

(40) has no nonzero integer solutions. If (47) has one nonzero integer solution, $R_1 < R$, using the method of infinite ascent we prove (40) has infinitely many nonzero integer solutions. Suppose m=1 from (47)

$$R_1^2 = x_1^4 + x_2^4 \tag{48}$$

has no integer solutions.

Suppose m = 2 from (47)

$$R_1^2 = x_1^4 + 2x_2^4 \tag{49}$$

has no nonzero integer solutions.

Suppose m = 8 [4] from (47)

$$R_1^2 = x_1^4 + 8 \times x_2^4 \tag{50}$$

We have a solution $3^2 = 1^4 + 8(1^4)$. Let $x_1 = 1$, $x_2 = 1$. Then from (45) and (46) $x_3 = 1/2$,

$$x_4 = -1/2$$
. Then from (41) and (42) $y_1 = 7$, $y_2 = 6$, $7^4 + 8 \times 6^4 = 113^2$

Let $x_1 = 7$, $x_2 = 6$, $x_3 = -14/9$, $x_4 = 4/3$. Then from (41) and (42) $y_1 = -\frac{7967}{81}$, $y_2 = \frac{9492}{81}$. $7967^4 + 8 \times 9492^4 = 262621633^2$.

Suppose m = 73 [5]. From (47)

$$R_1^2 = x_1^2 + 73 \times x_2^4. {(51)}$$

We have $6^4 + 73(1^4) = 37^2$, $1223^4 + 73 \times 444^4 = 2252593^2$.

Suppose m = 89[5]. From (47),

$$R_1^2 = x_1^4 + 89 \times x_2^4 \,. \tag{52}$$

We have $2^4 + 89 \times 3^4 = 85^2$, $7193^4 + 89 \times 1020^4 = 52662001^2$

If $m = R_1^2 - 1$ and $m = R_1^2 - x_1^4$, then (40) has infinitely many nonzero integer solutions.

Theorem 6. The Diophantine equation

$$y_1^4 - my_2^4 = R^2, (53)$$

where

$$y_1 = x_1^2 + mx_3^2 + 2mx_2x_4 \neq 0, (54)$$

$$y_2 = 2(x_1 x_2 + mx_3 x_4) \neq 0,$$
 (55)

$$y_3 = x_2^2 + mx_4^2 + 2x_1x_3 = 0, (56)$$

$$y_4 = 2(x_1 x_4 + x_2 x_3) = 0. (57)$$

Then from (57)

$$x_3 = -\frac{x_1 x_4}{x_2} \,. \tag{58}$$

Substituting (58) into (56)

$$x_4 = \frac{x_1^2 \pm \sqrt{x_1^4 - mx_2^4}}{mx_2}. (59)$$

Then from (59)

$$x_1^4 - mx_2^4 = R_1^2. (60)$$

If (60) has no nonzero integer solutions. $R_1 < R$, using the method of infinite descent we prove

(53) has no nonzero integer solutions. If (60) has one nonzero integer solution, $R_1 < R$, using the method of infinite ascent we prove (53) has infinitely many nonzero integer solutions. Suppose m=1 from (60)

$$x_1^4 - x_2^4 = R_1^2 \,. {(61)}$$

has no nonzero integer solutions.

Suppose m = 2, from (60)

$$x_1^4 - 2x_2^4 = R_1^2 \,, \tag{62}$$

has no nonzero integer solutions.

Suppose m = 7 from (60)

$$x_1^4 - 7x_2^4 = R_1^2. (63)$$

We have one solution

$$2^4 - 7(1^4) = 3^2$$
.

Let $x_1 = 2$, $x_2 = 1$. Then from (58) and (59) $x_3 = -2$, $x_4 = 1$. Then from (54) and (55) $y_1 = 2 \times 23$, $y_2 = -2 \times 12$. $23^4 - 7 \times 12^4 = 367^2$. We prove (63) has infinitely many nonzero integer solutions.

If $m = x_1^4 - R_1^2$, then (53) has infinitely many nonzero integer solutions. Our method [3] is used in studies of the Diophantine equations

$$y_1^n \pm my_2^n = R^e, n = 2, 3, 4, ...; e = 2, 3, 4, ...; m = 1, 2, 3, ...$$
 (61)

References

- [1] N. Terai, The Diophantine equation $a^x + b^y = c^z$, Proc. Japan. Acad., 70A, (1994), 22-26
- [2] M. H. Le, The pure exponential Diophantine equation $a^x + b^y = c^z$ for generalized Pythagorean triplets, Acta Math. Sinica, Chinese series, 53(6), (2010)1239-1248.
- [3] Chun-Xuan Jiang, Foundations of Santilli's isonumber theory with applications to new

cryptograms, Fermat's theorem and Goldbach's conjecture. Inter. Acad. Press, 2002, 299-306, MR2004c:11001.(http://www.i-b-r.org/docs/jiang.pdf) (http://www.wbabin.net/math/xuan13.pdf) (http://vixra.org/pdf/1004.0027v1.pdf).

- [4] K. H. Rosen, Elementary number theory and its applications, 5th edition, Addison Wesley, 622-625.
- [5] L. J. Mordell, The Diophantine equation $x^4 + my^4 = z^2$, The Quarterly Journal of Mathematics, 18(1967) 1-6. 21 February 2011.