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Abstract

The Diophantine equations a>+mb* =c", and a®+mb®=d? have infinitely many nonzero
integer solutions, Using the methods of infinite descent and infinite ascent we prove

y; £my; =R®.

The Diophantine equation

a’+b®=c’, (1
has infinitely many nonzero integer solutions. But it is difficult to prove this [1,2]. In this paper we
prove some theorems.
Theorem 1. The Diophantine equation

a’+mb®=c" (2)

has infinitely many nonzero integer solutions.
We define supercomplex number [3]

X —my
Z= =X+yJ, €P)
y X
where
0 -m )
J= , Jo=-m
1 0
Then from equation (3)
2"=(x+yJ)"=a+hJ. (4)

Let n be an odd number
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a= -m)*x"y* b= —m)* X"y,
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Let n be an even number

a= f n (_m)k Xn—2ky2k b= H/ZZ—:l n (—m)k Xn—zk—ly2k+1
2k ’ 2k +1 '

k=0

Then from (4) the circulant matrix

(x —my]n (a —mb]
= : (5)
y X b a

Then from (5) circulant determinant

n
X —my| |a -mb
= , (6)
y X b a
Then from equation (6)
¢" =a’ +mb?, (7
where
c=x>+my’.
We prove that (2) has infinitely many nonzero integer solutions.
Theorem 2. The Diophantine equation
a’-mb®=c" (8)
has infinitely nonzero integer solutions.
Define supercomplex number [3]
X my
Z= =X+yJ, (9
y X
where
0 m )
J= , J°=m
1 0
Then from equation (9)
2"=(x+yJ)"=a+hJ. (10

Let n be an odd number
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a= m*x"" b= mex" " Ty T
2 [ij y (Zk +1j d

Let n be an even number
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Then from (10) circulant matrix

x my) (a mb
y xJ) (b a)
Then from (11) circulant determinant

n

X myl |a mb
y X b al
Then from equation (12)
c"=a’—mb?,
where
c=x*—my’.

We prove that (8) has infinitely many nonzero integer solutions.
Theorem 3. The Diophantine equation

a®+mb®+m?c®-3mabc=d"

has infinitely many nonzero integer solutions
Define supercomplex number [3]

X mz my
w=ly x mz|=x+yl+2)?,
z y X
where
0 0 m 0O m O
J=[1 0 0, J?°=|0 0 m
1 0 1 0 0

Then from (15)

W' =(x+yJ+2J%)" =a+bJ +cl?

Then from equation (16) circulant matrix

x mz my) (a mc mb
y X mz|=/b a mc
Z Yy X c b a

Then from equation (17) circulant determinant

n
X mz myl |a mc mb
y X mzl =b a mc
Z Yy X c b a

Then from equation (18)

d" =a®+mb*+m?c® —3mabc
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where
d = x> +my® +m?z® —3mxyz (20)

We prove that (14) has infinitely many nonzero integer solutions.
Suppose N=2 and c¢=0. Then from (19)

a’+mb®=d?’ (21)
when n=2 from (16)

a=x"+2myz=0, b=2xy+mz*#0, c=y’+2x2=0 (22
Then from (22)  y* =-2xz.

Let 7=-2, x=P% y=2P, (23)

where P >1 isan odd number.
Substituting (23) into (20) and (22)

d =P°+20mP°-8m?, a=P*-8mP, b=4P°+4m (24)

Using equation (24) we prove that (21) has infinitely many nonzero integer solutions.
Theorem 4. The Diophantine equation

a®>—mb®*+m?c®+3mabc=d" (25)

has infinitely many nonzero integer solutions.
Define supercomplex number [3]

X —-mz -—my

w=ly x —mz|=x+yl+2]°, (26)
z y X
where
0 0 —m 0 -m O
J=[1 0 0] J*=/0 0 -m|, P=-m,
01 0 1 0 O
Then from (26)
W' =(x+yJ+2J%)"=a+bJ +cl’ 27

Then from (27) circulant matrix
n
X —mz —my a —mc -mb
y x -mz|=b a -mc|, (28)
z y X c b a

Then from equation (28) circulant determinant



x -mz -my|" la -mc -mb

y x -mzl =b a -mc|.

z y X c b a
Then from (29)

d" =a®-mb® +m*c® +3mabc
where

d=x>—my®+m?z® +3mxyz.

We prove that (25) has infinitely many nonzero integer solutions.
Suppose N=2 and ¢=0. Then from (30)

a’—mb® =d?
When n=2 from (27)

a=x"-2myz#0, b=-mz®+2xy#0, c=y*+2xz=0
Then from (33)  y* =-2xz

Let 7=-2, x=P? y=2P,

where P >1 isan odd numer.
Substitutin (34) into (31) and (33)

d =P°-20mP®-8m?, a=P*+8mP, b=4P°®-4m

Using (35) we prove that (32) has infinitely many nonzero integer solutions.
Theorem 5. Define supercomplex number

X, —-mx, —-mx, -mx,

w=| e T T =X, +X,J +X%,3% +x,J°,

X, X% X,  —Mx,

X4 X3 X2 X1

where

0 00 —m 0 0 -m O 0 -m O
,jro0 0] oo o -m . jo 0 -m
010 O 10 0 O 0O 0 O
001 O 01 0 O 1 0 O

Then from (36)
W= (X +Xd + X7+ %,3%)" =y, +y,d +y, I 2 +y,J°
Then from (37)

R" =y,
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where
R =X +M(X; +2X2X2 — X X2 X, + X, XX, )+ M (X5 + 2X0XE + 4% X, X2 — 4X, X, X2)
+m3x;,

2

Vi = Vi + My, +2Y7Y5 =AY Yo Ys +4Y, Y Y,) + M2 (ys + 2V, V5 +4Y, Vs Yi —4Y,Y,Ys)

+my;.
(39)
We prove that (38) has infinitely many nonzero integer solutions,
Suppose N=2,y,#0,y,#0,y,=0 and y, =0, from (38) and (39)
R* =y, +my, (40)
When n=2 from (37)
y, = X7 —mx; —2mx,x, # 0, (41)
Y, :2(X1X2_mX3X4)¢0: (42)
Y, = X5 —mx; +2xX, =0, (43)
Y, =2(%X, +X,X;) =0, (44)
Then from (44)
X
Xy =— atl (45)

Substituting (45) into (43)

_—xf + /X +mx; (46>

Then from (46)
R =X +mx; . (47)

If (47) has no nonzero integer solutions, R, <R, using the method of infinite descent we prove

(40) has no nonzero integer solutions. If (47) has one nonzero integer solution, R, <R, using the

method of infinite ascent we prove (40) has infinitely many nonzero integer solutions.
Suppose m=1 from (47)

RZ = x! +x¢ (48)

has no integer solutions.
Suppose m=2 from (47)

RZ = x4 2%’ (49)
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has no nonzero integer solutions.
Suppose M = 8 [4] from (47)

R =X +8xX, (50)
We have a solution 3° =1 +8(1*). Let X, =1,x, =1. Then from (45) and (46) X, =1/2,
X, ==1/2.Then from (41)and (42) y,=7,Y,=6, 7°+8x6" =113
Let X, =7,X,=6,X=-14/9,x,=4/3 . Then from (41) and (42) Yy, = —796%1,
y, =9492/ . 7967°+8x9492" = 262621633".
Suppose m =73 [5]. From (47)
R =X +73xX; . (51)

We have 6*+73(1") =377, 1223* + 73x 444" = 2252593
Suppose M =89 [5]. From (47),
R =X +89xX; . (52)

We have 2% +89x3* =85%, 7193*+89x1020* = 52662001

If m=R’-1 and m=R}—X, then (40) has infinitely many nonzero integer solutions.

Theorem 6. The Diophantine equation

y, —my; =R?, (53)
where
Y, = X2 +mx; +2mx,X, # 0, (54)
Y, =2(X X, + Mx;X,) =0, (55)
Y, = X5 +MX; +2% %, =0, (56)
Yy =2(%X, +X,%;) =0. (57)
Then from (57)
&:—&M. (58)
X2

Substituting (58) into (56)



X, = : (59)
Then from (59)
X' —mx; =R/, (60)
If (60) has no nonzero integer solutions. R, < R, using the method of infinite descent we prove

(53) has no nonzero integer solutions. If (60) has one nonzero integer solution, R, <R, using the

method of infinite ascent we prove (53) has infinitely many nonzero integer solutions.
Suppose m=1 from (60)

X —x; =R’. (61)
has no nonzero integer solutions.
Suppose m = 2, from (60)
x; —2x; =R?, (62)
has no nonzero integer solutions.
Suppose m=7 from (60)
X' ~7x¢ =RZ. (63)
We have one solution
2'-7(1H) =73

Let X, =2,X,=1. Then from (58) and (59) X;=-2, X, =1. Then from (54) and (55)

y,=2x23, y,=-2x12. 23" -7x12* =367°. We prove (63) has infinitely many nonzero
integer solutions.
If m= Xf — Rf, then (53) has infinitely many nonzero integer solutions. Our method [3] is used

in studies of the Diophantine equations

yptmy, =R*,n=2,34,..;e=234,.,m=12,3,... (61)
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