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1 introduction

Each of the two charged-particle-consisted systems A and B would acquire

its own probability density ρA and ρB. In the process to combine the two sys-

tems into one by starting from their probabilistic average values, the author

found the probabilistic average values showed changes. By using the Gibbs

∗ E-mail address: zhxzh46@163.com

2



inequality formula, we testified energy transfer from the high-potential sys-

tem to the low-potential one, during which the entropy of the two systems

showed corresponding changes. If the aforesaid process were repeated for

many times for the same system, it would be possible to materialize the en-

ergy transfer ε → 0 for the charged system, and see concurrent weakening of

the system’s electric field E.

2 Energy shift of charged particles in the po-

tential difference

We now make the probability of systems A and B in the phase space re-

spectively probability density ρA and ρB, merge systems A and B, and then

assume these are energy E and their potential ΦA > ΦB so as to set them

out of balance. In this system by normalized condition of probability density

ρ, we have [1]

1 =

∫ ∞

0

ρ dΩ, 〈E〉 =

∫ ∞

0

Eρ dΩ, 〈σ〉 = 〈ln ρ〉 =

∫ ∞

0

ρ ln ρ dΩ. (1)

By calculating the variation of (1) and multiplying the Lagrangian mul-

tipliers [2], α, ξ , and take variational we have

δ

∫
(ρ ln ρ + αEρ− ξρ) dΩ = 0, (2)

hence σ = ln ρ = K − αE , set K = ξ − 1, we have

σ + αE = K, (3)
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become σ = K − αE

ρ = exp(K − αE) = exp σ. (4)

After merging systems A and B into a system AB, both A and B will be

in an unstable state. At time t, the σ
′
and energy E ′ will take mean value

〈σ′A〉, 〈E ′A〉, 〈σ′B〉 and 〈E ′B〉.
At the initial time t = 0. have 〈σA(0)〉, 〈σB(0)〉. For A and B stay in

balance and takes its ρ maximum value. hence we have

〈σA(0)〉+ 〈σB(0)〉 ≥ 〈σ′A〉+ 〈σ′B〉. (5)

However, A and B have not yet reached the equilibrium state at time t,

and we assume a little shift ∆σ exists before the system reaches its equilib-

rium state, hence we change (3) into

σ
′
= ln ρ

′
= K − αE + ∆σ = σ + ∆σ, (6)

therefore, from (3) we have

ln ρ
′
= σ + ∆σ. (7)

Now, we calculate difference of the mean value of (3), (6) and (7), and

set (4)
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〈σ′ + αE〉 − 〈σ + αE〉 =

∫ ∞

0

[(K + ∆σ) exp(ln ρ
′
)−K exp(ln ρ)]dΩ

=

∫ ∞

0

∆σ exp(ln ρ
′
)dΩ

=

∫ ∞

0

[∆σ exp(∆σ + σ)− ρ
′
+ ρ]dΩ

=

∫ ∞

0

[∆σ exp(∆σ) exp(σ)− exp(∆σ) exp(σ) + exp(σ)]dΩ

=

∫ ∞

0

[∆σ exp(∆σ)− exp(∆σ) + 1] exp(σ)dΩ,

(8)

from the Gibbs inequality x exp x− exp x + 1 ≥ 0 [1], above formula (8),

we have
∫∞

0
[∆σ exp(∆σ)− exp(∆σ) + 1] exp(σ)dΩ ≥ 0, namely,

〈σ′ + αE〉 ≥ 〈σ + αE〉. (9)

For systems A and B, from (9) and E ′ = E+∆E ≥ E , we get the following

equation,

〈σ′A〉+ 〈αA(EA + ∆E)〉 ≥ 〈σA(0)〉+ 〈αAEA(0)〉

〈σ′B〉+ 〈αB(EB + ∆E)〉 ≥ 〈σB(0)〉+ 〈αBEB(0)〉,
(10)

by sorting up (10), we get

[〈σ′A〉+〈αAE ′A〉+〈σ
′
B〉+〈αBE ′B〉] ≥ [〈σA(0)〉+〈αAEA(0)〉+〈σB(0)〉+〈αBEB(0)〉],

(11)

from (5), we make (11)

〈αAE ′A〉+ 〈αBE ′B〉 − [〈αAEA(0)〉+ 〈αBEB(0)〉] ≥ 0, (12)
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or

αA[〈E ′A〉 − 〈EA(0)〉] + αB[〈E ′B〉 − 〈EB(0)〉] ≥ 0. (13)

According to energy conservation, the energy shift of systems A and B

should be equal

〈∆EA〉 = 〈E ′A〉 − 〈EA(0)〉 = −〈∆EB〉 = −(〈E ′B〉 − 〈EB(0)〉). (14)

By this time, from α = 1/(qΦ)[3], (13) and (14) would become

〈∆EA〉/(qΦA)− 〈∆EA〉/(qΦB) ≥ 0. (15)

Considering the initial assumption of ΦA ≥ ΦB, (14) would be

〈∆EA〉 ≤ 0. (16)

By this time, we may say that under the influence of potential difference,

energy of the system’s charged particles has shifted from the high-potential

level to the low-potential ones, and that the process of energy transmission

would not terminate till the system’s potential difference reaches zero. Such

a state is identical with what we already experienced.

3 The energy state of particles in entropy ∆S

In ith particle potetial ϕi =
∫ bi

ai
Eki

·dk [4], the coupling a particle q produces

both potential difference ∆ϕi and energy difference ∆εi

∆ϕi =

∫ bi

ai

Eki
· dk = ϕ(bi)− ϕ(ai), ∆εi = q∆ϕi, (17)

and a total number of N particles would produce energy in the system
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∆E =
∑

i

q∆ϕi. (18)

In a system, there are the energy of large number charge particles in

the potential function Φ and entropy function S , we have [5, 6] δE =
∑

i (1/C)M(Fi) dFi C exp(L(τ)) dτ =
∑

i ΦdSi, hence, in the system, the

potential Φ and the entropy S [6].

Φ =

∫

∞
C exp(L(τ)) dτ, (19)

S = (1/C)

∫

∞
M(F ) dF, (20)

the entropy difference would be

∆S = ∆E/Φ. (21)

If each of the particles in the system has field Ek → 0 then (17) would

have ∆ϕi → 0, and hence (18) and (19) also have∆E → 0, and ∆S → 0.

If we sequentially reduce the system’s ∆S and ∆Φ, and repeat the process

many times till the particles gradually lose their fields, and thus bring the

particles’ energy to their ground state, it would then be possible to set the

system’s ground in the ground state. Under the assumption that the system

is made up exclusively by free particles, we could use the above-mentioned

process to gradually cut the particle’s electric field E till E→ 0. Eventually,

the free charges will approach the state of bare charges. On the contrary,

when we continuously increase the system’s ∆S and ∆Φ, the particles would

continuously increase their E and the energy state of the particles would
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rise from the low-energy state to high-energy state, and the system’s energy

would also accordingly increase.
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