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Abstract

An edge-colored graph G is rainbow edge-connected if any two vertices are con-

nected by a path whose edges have distinct colors. The rainbow connection of a con-

nected graph G, denoted by rc(G), is the smallest number of colors that are needed in

order to make G rainbow connected. Similarly, a vertex-colored graph G is rainbow

vertex-connected if any two vertices are connected by a path whose internal vertices

have distinct colors. The rainbow vertex-connection of a connected graph G, denoted

by rvc(G), is the smallest number of colors that are needed in order to make G rainbow

vertex-connected. We prove that both rc(G) and rvc(G) have sharp concentration in

classical random graph model G(n, p).
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1. Introduction

We follow the terminology and notation of [4] in this letter. A natural and interesting

connectivity measure of a graph was recently introduced in [6] and has attracted many

attention of researchers. An edge-colored graph G is called rainbow edge-connected if any

two vertices are connected by a path whose edges have distinct colors. Hence, if a graph is

rainbow edge-connected, then it must also be connected. Also notice that any connected

graph has a trivial edge coloring that makes it rainbow edge-connected. The rainbow

connection of a connected graph G, denoted rc(G), is the smallest number of colors that

are needed in order to make G rainbow edge-connected.
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If G has n vertices then rc(G) ≤ n − 1, since one can color the edges of a given

spanning tree of G with distinct colors, and color the remaining edges with one of the

already used colors. Obviously, rc(G) = 1 if and only if G is a complete graph, and that

rc(G) = n − 1 if and only if G is a tree. An easy observation gives rc(G) ≥ diam(G),

where diam(G) denotes the diameter of G. The behavior of rc(G) with respect to the

minimum degree δ(G) has been addressed in the work [5, 10, 11], which indicate that

rc(G) is upper bounded by the reciprocal of δ(G) up to a multiplicative constant (which

we will discuss later). Some related concepts such as rainbow path [9], rainbow tree [8]

and rainbow k-connectivity [7] have also been investigated recently.

The authors in [10] introduce a vertex coloring edition. A vertex-colored graph G is

called rainbow vertex-connected if any two vertices are connected by a path whose internal

vertices have distinct colors. Denote the rainbow vertex-connection of a connected graph

G by rvc(G), which is defined as the smallest number of colors that are needed in order

to make G rainbow vertex-connected. It is clear that rvcG ≤ n − 2, and rvcG = 0 if and

only if G is complete. Similarly, we have rvcG ≥ diam(G) − 1.

Note that rc(G) and rvc(G) are both monotonic property in the sense that if we add

an edge to G we cannot increase its rainbow edge/vertex-connection. Therefore, it is

desirable to study the random graph setting [3]. Motivating this idea, in this paper we

consider the rainbow edge/vertex-connection in Erdős-Rényi random graph model G(n, p)

with n vertices and edge probability p ∈ [0, 1]. Based on some known bounds of diameter

and degree of G(n, p), we establish the following concentration results:

Theorem 1. Suppose that ω = ω(n) → −∞ and c = c(n) → 0. Let d = d(n) ≥ 2 be a

natural number and 0 < p = p(n) < 1. If

np = ln n +
20n ln lnn

d + 1
− ω, (1)

pdnd−1 = ln
(n2

c

)
(2)

and
pn

(lnn)3
→ ∞ (3)

hold, then rc(G(n, p)) = d almost surely as n → ∞.

Theorem 2. Suppose that ω = ω(n) → −∞ and c = c(n) → 0. Let d = d(n) ≥ 2 be a
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natural number and 0 < p = p(n) < 1. If

np = ln n +
11n ln lnn

d
− ω, (4)

pdnd−1 = ln
(n2

c

)
(5)

and
pn

(lnn)3
→ ∞ (6)

hold, then rvc(G(n, p)) = d − 1 almost surely as n → ∞.

2. Proof of Theorem 1 and 2

In this section, we will first prove Theorem 1 and then Theorem 2 can be derived

similarly.

Let δ(G) be the minimum degree of a graph G. The following lemma gives upper

bounds of rainbow edge/vertex-connection.

Lemma 1.([10]) A connected graph G with n vertices has rc(G) < 20n/δ(G) and rvc(G) <

11n/δ(G).

Proof of Theorem 1. By Lemma 1 and the comments in the Section 1, we have

diam(G(n, p)) ≤ rc(G(n, p)) < 20n/δ(G(n, p)) (7)

if G(n, p) is connected.

To get the concentration result, we need to estimate the diameter and minimum degree

of random graph G(n, p). It follows from the assumptions (2) and (3) that diam(G(n, p)) =

d almost surely (see [2] or [3] pp.259). By the assumption (1), we get δ(G(n, p)) =

20n/(d + 1) (see [1] or [3] pp.65). Now we almost conclude our proof by (7).

There are nevertheless two things remain to check: (i) The assumptions (1)-(3) are

reasonable, that is, there really exist such p and d. (ii) G(n, p) is almost surely connected.

Define c = c(n) → 0 by the equation

ln ln
(n2

c

)
= (lnn) · ln lnn (8)

and let ω(n) → −∞ sufficiently slowly. By the assumption (1), we define a function of d

f(d) := (np)d =
(

lnn +
20n ln lnn

d + 1
− ω

)d
. (9)
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Take d = ln n, and we obtain

ln f(d) = (lnn) · ln
(

lnn +
20n ln lnn

1 + lnn
− ω

)
≥ (lnn) · ln

(n ln lnn

lnn

)
≥ lnn + (lnn) · ln lnn

= ln
(
n · ln

(n2

c

))
(10)

where the last equality holds by the definition (8).

Take d = ln ln n, and we have

ln f(d) = (ln lnn) · ln(lnn + 20n − ω)

≤ (ln lnn) · ln(21n)

≤ lnn + (lnn) · ln lnn

= ln
(
n · ln

(n2

c

))
(11)

where the last equality holds by the definition (8).

From (10), (11) and the fact that f(d) is continuous, we derive that there exists some

d ∈ [ln lnn, lnn] such that ln f(d) = ln(n ln(n2/c)) holds. Consequently, the assumption

(2) holds. For such d, by (9), we have

np = Ω
(n ln lnn

lnn

)
, (12)

which clearly satisfies the assumption (3), and G(n, p) is connected almost surely (c.f. [3]

pp.164).

Hence, both (i) and (ii) have been checked and the proof is finally completed. 2

Proof of Theorem 2. It can be proved similarly by noting the fact

diam(G(n, p)) − 1 ≤ rvc(G(n, p)) < 11n/δ(G(n, p)). (13)

We leave the details to the interested readers.2
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