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Abstract

In Newtonian gravitational physics, as currently understood, the spin of a gravitating
body has no effect on the nature of the gravitational field emergent from this gravitating
body. This position has been questioned by the Azimuthally Symmetric Theory of Grav-
itation (ASTG-model; in Nyambuya 2010). From the ASTG-model – which is a theory
resulting from the consideration of the azimuthally symmetric solutions of the well known
and well accepted Poisson-Laplace equation for gravitation, it has been argued that it is
possible to explain the unexpected perihelion shift of Solar planetary orbits. However, as
it stands in the present, the ASTG-model suffers from the apparent diabolic defect that
there are unknown parameters (λ’s) in the theory that up to now have not been able to be
adequately deduced from theory. If this defect is not taken care of, it would consume the
theory altogether, bringing it to a complete standstill, to nothing but an obsolete theory.
Effort in resolving this defect has been made in the genesis reading of the theory i.e. in
Nyambuya (2010a). This initial effort in trying to resolve this problem is not complete.
In this short reading, we present what we believe is a significant improvement to the
resolution of this problem. If this effort proves itself correct, then the ASTG-model is set
on a sure pedal to make predictions without having to relay on observations to deduce
these unknown parameters. Other than resolving the λ-parameter problem, this reading
is designed to serve as an exposition of the ASTG-model as it currently stands.

Keywords: gravitation – astrometry – celestial mechanics – Solar system: general
PACS (2011):

1 Introduction

It is bona-fide scientific consensus that Einstein’s General Theory of Relativity (GTR),
completed and published in 1915, is today regarded by the majority of researchers
as the unquestionable doctrine and standard paradigm of gravitation. Further, it is
a widely held view that Einstein’s theory has so far passed all the “crucial” experi-
mental tests to which it has been subjected to. Strangly, this vigorously defended,
dominant and prevalent view is held in full view of the fact that the gravitational
waves predicted by it [i.e. the GTR] at its inspection, have up to now, not been
positively and directly detected (see e.g. Will 2006). “Massive” financial investment
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has gone into the search for gravitational waves and much against the desideratum,
this investment has so far not brought any significant results. Furthermore, despite
the impressive array of experimental success, there is an uncomfortable side of grav-
itation that most of the unquestioning GTR-advocates seem to pay little attention
to. There exists puzzling gravitational anomalies in the Solar system such as the
secular increase in the Earth-Sun (Krasinsky & Brumberg 2004, Standish 2005), the
Earth-Moon distance (Williams & Boggs 2009, Williams & Dickey 2003, Williams
et al. 2001), the Pioneer Anomaly (Anderson et al. 1998, Turyshev & Toth 2010) and
the Earth Flyby Anomalies (see e.g. Anderson et al. 2008, and references therein).

Much to the surprise of the assuming researcher, these anomalies have forcefully
surfaced, and it is prudent to say that they seem to be beyond the abilities of Einstein’s
GTR. That is, in its bare and unmodified form, Einsteins GTR strongly appears
unable to offer an explanation to these ponderous anomalous observations. From these
vexing observations, it would appear that the time for amendments or replacement of
Einsteins GTR is something whose time has perhaps arrived or is imminent. The just
stated opinion, is nothing but our limited and narrow view born out of the pine and
need for the advancement of our knowledge horizons on the frontiers of gravitational
physics.

Far from the shores and provinces of mundane astronomy, we learn that when
the pre-eminent British physicist, Paul A. M. Dirac (1902 − 1984), formulated his
theory (Dirac 1928a,8), a theory which predicted the existence of antimatter, and, a
theory which he called the theory of the Electron; its immediate success and crowning
achievement was its natural explanation of the existence of quantum spin and as-well
(and more so), the gyromagnetic ratio of the Electron ge. Despite its great success,
the (then and only available) theory of Schrödinger could not explain the existence of
spin and the gyromagnetic ratio of the Electron. Dirac’s then new theory did explain
these problems but new ones arose.

Classical theory coupled with Schrödinger’s theory would only give the value
ge = 1, and experiment would give a value that is about twice this. Dirac’s the-
ory readily explained the experimental value of the Electron gyromagnetic ratio of
ge = 2. However, while Dirac’s theory gave a value of exactly ge = 2, the exact exper-
imental value found is ge = 2.0011596521811 ± 0.00000000000075 [see any good book on
Quantum Electrodynamics (QED)]. What this meant is that Dirac’s theory had an
anomalous gyromagnetic ratio of, ge − 2 = 0.0011596521811 ± 0.00000000000075, which
it could not account for. This paltry sum is very easy to dismiss with the simple
remark that it is marginally insignificant and perhaps an experimental error.

Interestingly, the agile and formidable quantum theorist of the time was not at
all happy with this seemingly paltry anomalous gyromagnetic ratio of the Electron;
they wanted it explained to “the dot” and to the “bone-marrow”. The ingenious
effort to explain this to “the dot” and to the “bone-marrow” led to great advances in
quantum physics i.e., this lead to the historic construction of QED, which is widely
held and admired by the esoteric as the most accurate theory ever invented by the
human-mind.

Perhaps, like the great quantum theorists that pioneered QED, the GTR theorists
must take a leaf and follow in the footsteps of these great pioneers and demand that
the GTR must explain all gravitational phenomenon to “the dot” and to the “bone-
marrow” so that any deviation and or anomaly must be taken very seriously, much
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on the same if not better level than that which led to the ingenious formulation of
QED and the great advances thereof.

This invariably means that all anomalous Solar astrometries must be taken very
seriously as “embarrassing” holes in the beautiful fabric of the GTR. Actually, to
be frank and factual, the experimental success of the GTR is in the regime of weak
gravitational fields (see e.g. Will 2006). This is the same regime in which anomalous
Solar astrometries are observed. That said; in search of furthering its universal appli-
cability by expanding on the regime on which the GTR has been shown to be valid,
the current quest is to test it in the regime of strong gravitation (see e.g. Will 2006).
In the strong gravity regime, interesting to note is that, every test of the GTR on this
level is either a potentially deadly test that would bring its “authority” to question or
further cement it, or perhaps, it is a possible probe for new physics. This is because
the predictions of the GTR are fixed. Other than the controversial and delicate cos-
mological constant, the theory contains little room for adjustable constants, so not
much can be changed.

Further, if the GTR is the correct description of Nature, it is expected to give
excellent results in the strong gravity regime because this is the regime which it
is designed to deal with. If the GTR passes the future tests in the strong gravity
regime, then, despite the holes due to the anomalous Solar astrometries, it would be
very difficult to think of an alternative to it, therefore, it (possibly) would have to be
patched so that it successfully stands in the face of the seemingly inexplicable new
data on the anomalous Solar astrometries.

Ironically, while we may seek to test the GTR in this regime of strong gravitation,
from the foregoing, it is not entirely correct to say it has successfully passed the
weak gravity regime unless off cause the origins of the measured anomalous Solar
astrometries (Pioneer and Flyby anomalies; the secular increase of the Earth-Sun
and Earth-Moon distance) are not gravitational in nature. It appears unlikely that
these anomalous Solar astrometries may in the end turnout not to be gravitational
in nature.

Furthermore, we ask; is there a way to explain these anomalous Solar astrometries?
Though more work is under-way, we have hinted that the Azimuthally Symmetric
Theory of Gravitation (hereafter ASTG-model) is in-principle capable of explaining
the Flyby anomalies (Nyambuya 2010c, hereafter Paper IV) and the secular increase
of the Earth-Sun and Earth-Moon distance (Nyambuya 2010a, hereafter Paper I).
The ASTG-model is nothing more than the azimuthally symmetric Poisson-Laplace
theory applied to gravitation. Given that the GTR is designed such that in the
spherically symmetric case of the weak field approximation, the theory must reduce
to the well known spherically symmetric Poisson-Laplace theory, it would appear
logical to assume that the ASTG-model is a subset of the GTR. This gravitational
Law of Einstein (with the latter modification of the cosmological constant Λgµν term,
where Λ is the controversial cosmological constant and gµν is the metric tensor of
spacetime) is:

Rµν −
1

2
Rgµν = κTµν +Λgµν , (1)

where κ = 8πG/c4 is Einstein’s constant of gravitation, G = 6.667 × 10−11 kg−1m3s−2

is Newton’s universal constant of gravitation, c = 2.99792458 × 108 ms−1 is the speed

c© 2012 G. G. Nyambuya



What role does Spin play on the resultant gravitational field? 4

of light in vacuum, Tµν is the stress and energy tensor, Rµν is the Ricci tensor, R
the Ricci scalar. As afore-stated, Einstein was able to show that in the spherically
symmetric case of weak gravitational fields, his equation does reduce to the wave
equation:

∇
2gµν(r)−

1

c2
∂gµν(r)

∂t2
= κTµν , (2)

(see e.g. Kenyon 1990, or any good book on the GTR). It is from this equation (2)
that gravitational waves where predicted; they [gravitational waves] are expected to
propagate in empty space where Tµν = 0. When Einstein discovered his equation,
the constant was unknown. In order to deduce this constant, he demanded of his
equation that it must reduce to Newtonian gravitation, the invariable meaning of
which is that to first order approximation, this theory must agree with the Newtonian
phenomenology. For this to be so, it meant that the above equation must reduce to
Poisson’s equation. Inspection of its 10 unique components, meant the 00-component
which is associated with mass-energy density distribution, is what must reduce to the
Poisson equation.

Taking a spherically symmetric metric, as deduced from the Schwarzchild metric
(and latter justified by gravitational red-shift experiments), it is found that: g00(r) =
1 + 2Φ(r)/c2; Einstein inserted this into the above equation and made his posteriori
justified simplifying assumptions that led him to: ∇

2Φ(r) − Φ̈/c2 = κρ(r)c4/2. He
[Einstein] assumed that the time variation of ϕ was in the Newtonian limit (which is
the regime of low energy and spacetime curvature), so small that one would neglect
the term Φ̈ entirely. This meant that the resultant equation or emergent theory from
his reduction thesis is given by: ∇

2Φ(r) = κρ(r)c4/2. By comparing this with the
spherically symmetric Poisson-Laplace equation:

∇
2Φ(r) = 4πGρ(r), (3)

he [Einstein] was able to deduce that κ = 8πG/c4. In (3), ρ(r) is the density of matter
encased in sphere of radius r and the operator ∇

2 written for a spherical coordinate
system [see figure (1) for the coordinate set-up] is given by:

∇
2 =

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin θ

∂2

∂ϕ2
, (4)

where the symbols have their usual meanings. From the above presentation, it would
appear as though the ASTG-model is nothing but a subset of Einstein’s GTR in the
weak field limit.We are going to argue in §(2) that this is not true, the ASTG-model
is a fully-fledged theory whose results are different from Einstein GTR for a rotating
gravitating mass.

2 Kerr Metric

Like the Schwarzchild metric, the Kerr metric is an exact vacuum solution of Ein-
stein’s field equation (1), it is a generalization of the Schwarzschild metric in the case
of a rotating massive gravitating body. It was discovered in 1963 by the New Zealan-
der Roy Kerr. This metric describes the geometry of spacetime around a rotating
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Figure (1): This figure shows a generic spherical coordinate system, with the radial coordinate denoted
by r, the zenith (the angle from the North Pole; the colatitude) denoted by θ, and the azimuth (the
angle in the equatorial plane; the longitude) by ϕ.

massive body. It is often used to describe a rotating black hole. Such a black hole
has a different surface to that of the Schwarzchild black hole because there exists two
closed paraboloid surfaces where the metric exhibits the singular condition; the size
and shape of these surfaces depends on the black hole’s mass and angular momentum.
This same metric can also be used to study slow spinning massive bodies such as the
Sun and the stars.

In this section, we are going to use the Kerr metric to study slow spinning massive
bodies, the aim of which is to show that this metric does not give the same results as
that obtained from the ASTG-model were one is able to infer the existence of outflows
as a gravitational phenomenon that is inherently and intrinsically tied to the spin of
the star. If the just said is true, then the ASTG-model can not be a subset of the
GTR, but a fully fledged theory in its own right.

To demonstrate our assertion that the Kerr metric and the ASTG-model give
different results for a spinning gravitating star, we have to go to the Kerr metric
itself. We direct the reader unfamiliar with the Kerr metric to any good book on the
GTR were a treatment of the Kerr metric is conducted. What is important for our
purposes in this metric is the 00-component of the Kerr metric. This 00-component
is given by:

g00 = 1−
2GMstar

rc2

(

1 +
ω2
starR

4
star cos

2 θ

rc2

)−1

, (5)

where Mstar is the mass of the spinning gravitating star, Rstar is its radius and ωstar

is its spin angular frequency.
For our purposes, it suffices to take on the 00-component of the Kerr metric and the
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reason for this is that we shall assume the weak field case were the gravitating bodies
are not nearing their Schwarzchild limit, and, at the same time, these objects are not
fast spinning objects nearing their critical spin state were the equatorial centrifugal
forces are much stronger than the gravitational force so that the star beings to be torn
apart by these centrifugal forces. In this case, the 00-component of the Kerr metric
is a good approximation of the gravitational potential around a spinning gravitating
massive body. Clearly and obviously, from this metric 00-component, the azimuthally
symmetric gravitational potential is given by:

Φ(r, θ) = −
2GMstar

rc2

(

1 +
ω2R4

star cos
2 θ

rc2

)−1

, (6)

Now, using the fact that the radial component of the gravitational force is given by
Fr(r, θ) = −dΦ(r, θ)/dr, it follows that:

Fr(r, θ) = −
GMstar

r2

(

1 +
ω2R4

star cos
2 θ

rc2

)−1

, (7)

and now, as in the case of the ASTG-model, we shall ask; when is Fr(r, θ) > 0? that
is, “where in the gravitational field of the spinning gravitating mass, is the radial component
of the gravitational force repulsive?”. The answer is simple; this will occur when the
term in the square bracket in equation (7) is negative, and this is when:

r <

(

ωR2
star

c

)

cos θ = αRstar cos θ where α =
ωR2

star

c
. (8)

Because αc is a measure of the speed of the particles on the surface of the rotating
star α < 1 and, because of this, what the above invariably means is that the repulsive
gravitational field can never protrude outside of the surface of the spinning star as
is the case in the ASTG-model. Obviously, this means that for a rotating star in
general relativity, repulsive polar gravitational fields are not predicted as is the case
in the ASTG-model. Therefore, it follows that the ASTG-model and the GTR do
give different results for spinning gravitating masses, hence the ASTG-model can not
be viewed as a subset of the GTR. For the interested reader that may have the time
to go through the reading (Nyambuya 2010d, hereafter Paper (V)), they will realise
that in this reading [Paper (V)], gravity is cast not as a metric theory as is the case
in Einstein’s GTR, but as a scaler theory i.e.:

∇
2Φ−

1

c2
∂2Φ

∂t2
= 4πGρ, (9)

where Φ is the scaler gravitational potential. The metric of spacetime (gµν) in Paper
(V) describes not the gravitational field, but the electromagnetic, the weak and the
strong nuclear forces. In the light of the ideas presented in Paper (V), the ASTG-
model can be viewed not as a subset of the GTR but as a fully-fledged theory because
the ASTG-model will emerge from (9) as the static solution for the azimuthally
symmetric case. Whether or not the reader does or does not concur with the ideas
presented in Paper (V), this does not affect the ASTG-model because this model
can be viewed as a pure Poisson-Laplace theory. We should make this clear to the
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reader, that the ASTG-model is being developed from the vantage point of the ideas
presented in Paper (V).

3 ASTG-model in a Nutshell

In the present section, we give an overview of the ASTG-model. We shall start from
Newtons Law of universal gravitation, which can be written in a more general and
condensed form as Poisson’s Law i.e., ∇

2Φ = 4πGρ. For a spherically symmetric
setting where Φ = Φ(r), the solution to Poisson’s equation outside the vacuum space
(where ρ = 0) of a central gravitating body of mass M is given by the traditional
inverse distance Newtonian gravitational potential which is given by:

Φ(r) = −
GMstar

r
, (10)

where r is the radial distance from the center of the gravitating body. The Poisson
equation for the case (ρ = 0) is known as the Laplace equation. The Poisson equation
is an extension of the Laplace equation. Because of this, we have resorted to calling the
Poisson equation as the Poisson-Laplace equation. In the case where there is material
surrounding this central mass, we must take this into account by considering all the
mass encased in the sphere of radius r i.e., M = M(r). In more general terms:

M(r) =

∫ r

0

∫ 2π

0

∫ 2π

0

r2ρ(r, θ, ϕ)dθdϕdr. (11)

To take the circumstellar mass into account, we must, in (10), make the replacement:
Mstar −→ M(r). As already argued in Paper I, if the gravitating body in question
is spinning, we ought to consider an Azimuthally Symmetric Gravitational Field
(ASGF). For this ASGF, we need to take into account the distribution of matter
for the non-empty space scenario. We did solve (3) in Nyambuya (2010b) [hereafter
Paper (III)] the azimuthally symmetric setting for both cases of empty and non-empty
space. We shall present these in the subsequent subsections.

3.1 Empty Space Solutions

The Poisson-Laplace equation for empty space has been “solved” for a spinning grav-
itating system and the solution to it is:

Φ(r, θ;λ) = −c2
∞
∑

`=0

λ`

(

GMstar

rc2

)`+1

P`(cos θ), (12)

where λ` : ` = {0, 1, 2, ...,∞}, is an infinite set of dimensionless parameters with λ0 = 1
and the rest of the parameters (i.e. for which ` > 1) generally take values different from
unity. Notice that unlike in Papers (I) and (II), we have not written the gravitational
potential as Φ(r, θ) but as Φ(r, θ;λ) – why? This is to express the fact that the λ’s
are not mere constants but significant and important parameters of the theory: i.e.
λ = λ(R, ω). In the normal Poisson-Laplace theory the λ’s are pure constants, they are
un-changing. In the ASTG-model, the λ’s are not constants but dynamic variables
dependent on the angular frequency and the radius of the rotating gravitating body.
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This is a significant difference which sets apart the ASTG-model from pure Poisson-
Laplace theory.

Also, this fact the λ’s are in the ASTG-model dynamic variables dependent on
the angular frequency and the radius of the rotating gravitating body, set the ASTG-
model apart from any other known theory of gravitation. At the inspection of the
ASTG-model, we were prudent so as to distance ourself from the thinking that the
ASTG-model is a new theory of gravitation. With the new light gained that the
λ’s are significant and very important dynamic variables, this view has changed: the
ASTG-model is indeed a new theory of gravitation and must be viewed as such.

3.2 Non-Empty Space Solutions

We have argued in Paper (III) that the Poisson-Laplace equation for non-empty space
for a spinning gravitating system is:

Φ(r, θ;λ) = −c2
∞
∑

`=0

λ`

(

GM(r)

rc2

)`+1

P`(cos θ). (13)

To arrive at the non-empty space solution, one simply has to replace M(r) in (12)
with M(r). It is a straight forward replacement but comes along with the constraint
that the mass distribution must be dependent on the gravitational potential by the
relation:

ρ(r, θ;λ) = −
1

4πG

(

2

r

∂

∂r
−

1

r2

)

∂Φ(r, θ;λ)

∂r
. (14)

From the above, clearly; it is implied that the spin of the gravitating body affects the
distribution of matter around the nascent star. In a nutshell, we have presented the
ASTG-model for the empty and non-empty space cases. In the subsequent section, we
shall present the main task of this reading, namely, the revision of the λ-parameters.
This revision we hope places the ASTG-model on a sure pedestal to become a fully
fledged theory capable of making independent and testable predictions. It is impor-
tant to mention that in non-empty space case, there are two scenarios to consider
and these are the case where the spinning star co-rotates with the core in which it
is embedded and the second is when the core and the star have different rotational
angular frequencies.

4 Proposal for the λ-Parameters

In this section, first, we improve on the Solar value λ�
1 calculated in Paper (I) and;

thereafter, we proceed to make a revision of this parameter to give what we feel is a
more satisfying proposal of this parameter in general. That is, not only for the Solar
value but any general spinning gravitating body.

4.1 Improvement on the Solar Value λ
�
1

In Papers (I), (II) and (III), it has already been over emphasised that one of the draw
backs of the ASTG-model is that it is heavily dependent on observations for the values
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of λ have to be determined from observations.Without knowledge of the λ’s, one is
unable to produce the hard numbers required to make any numerical quantifications.
Clearly, a theory incapable of making any numerical quantifications is, useless; to be
more polite, it is of no use since true science is about measurements and not ideas
that are beyond the realm of measurement. In an effort to solve this problem, in
Paper (I), it has been proposed that:

λ` =

(

(−1)`+1

(``)!(``)

)

λ1, (15)

and using this proposal, it was found that for the Sun λ�
1 = 24.00 ± 7.00. Our first

task on the λ-parameters is to improve on this value. This value was determined
by means of a not so robust mathematical calculation in Paper (I). It is possible to
use graphical means. Using a graph is more powerful and gives one a good feeling
especially if one were to obtain a well behaved graph indicating a clear correlation.
To begin on this task, we direct the reader to equation (47) in Paper (I), that is:

Pp = Apλ
�
1 +Bpλ

�
2 , (16)

where the symbols are defined there-in Paper (I). Now, from (15), it follows that
λ�
1 = λ�

2 /96 and substituting this into the above, one is led to:

Pp = (Ap −Bp/96)λ
�
1 , (17)

Setting Xp = (Ap − Bp/96), implies Pp = λ�
1 Xp and since Pp and Xp are known and

λ�
1 is unknown, a plot of Pp vs Xp should produce a straight line whose slope is λ�

1 .
The values Ap, Bp, Pp and Xp are tabled in Table (I) and the corresponding graph is
plotted in figure (2). From the graph, we get:

λ�
1 = 21.00 ± 4.00. (18)

Obviously, by inspection of the graph in figure (2), it is clear that this value λ�
1 =

21.00 ± 4.00 is more accurate than our earlier value λ�
1 = 24.00 ± 7.00, hence we now

adopt the former i.e. λ�
1 = 21.00 ± 4.00.

That we are able to obtain a very good linear graph as shown in figure (2), this
points to the fact that our choice of the λ’s is a good one. More than just pointing to
a good choice, it points to the ASTG-model containing in it, a grain of truth. This
exercise, to demonstrate that our choice of the λ-parameter, is a good one, is one of
the main aims of the present reading. We believe that demonstrating this fact using
a well behaved graph as that in figure (2) gives impetus and credence to our choice
of the λ-parameters and more so, to the ASTG-model.

4.2 Improvement on the Choice of λ1

Contrary to conventional wisdom, in Paper (III), it has been argued that the ASTG-
model is able to explain outflows as a gravitational phenomenon. Pertaining to their
association with star formation activity, it is believed that molecular outflows are
a necessary part of the star formation process because their existence may explain
the apparent angular momentum imbalance. It is well known that the amount of
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Table I: Column (1) gives the planet while columns (3 to 5) give values of Ap, Bp, Pp and Xp for the
corresponding planets respectively. The values of A and B are adapted from table (I) in Paper (I).

Planet A B P X

Mercury 3.50 × 100 1.72 × 102 43.1000 ± 0.5000 1.71× 100

Venus 5.19 × 10−1 2.88 × 101 8.0000 ± 5.0000 4.89× 10−1

Earth 1.57 × 10−1 3.80 × 10−1 5.0000 ± 1.0000 1.53× 10−1

Mars 7.02 × 10−2 2.43 × 10−2 1.3624 ± 0.0005 7.00× 10−2

Jupiter 3.02 × 10−3 1.00 × 10−5 0.0700 ± 0.0040 3.32× 10−3

Saturn 7.59 × 10−4 1.72 × 10−7 0.0140 ± 0.0020 7.93× 10−4

Figure (2): A plot of the perihelion shift data points of Solar planetary orbits. This graph is (in
our opinion and view) the most convincing piece of evidence that the choice of the λ′s in Nyambuya
(2010a), may very well be a correct.
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initial angular momentum in a typical star-forming cloud core is several orders of
magnitude too large to account for the observed angular momentum found in formed
or forming stars (see e.g. Larson 2003a,3). The sacrosanct Law of Conservation of
angular momentum informs us that this angular momentum can not just disappear
into the oblivion of interstellar spacetime. So, the question is where does this angular
momentum go to? It is here that outflows are thought to come to the rescue as they
can act as a possible agent that carries away the excess angular momentum.

Additionally and perhaps more importantly, this angular momentum, if it where
to remain as part of the nascent star, it would, via the strong centrifugal forces1,
tear the star apart. This however does not explain, why they [outflows] exist and
how they come to exist but simple posits them as a vehicle needed to explain the
mystery of “The Missing Angular Momentum Problem” in star forming systems and
the existence of stars in their intact and compact form as firery balls of gas. At
the equator of the spinning star, once the gravitational acceleration gstar = −GM/R2

star, becomes less than centrifugal acceleration (i.e. gstar = ac). This condition will
commence once the period of the spin angular momentum P, of the star:

P =
3

2

(

R3
star

GMstar

)1/2

=

(

3π

Gρstar

)1/2

= Pon (19)

where ρstar is the density of the spinning star. In Paper (III), we drew from the
tacit thesis that “... outflows possibly save the star from the detrimental centrifugal forces
...”, the suggestion that λ1 = ζ(ac/gstar)

ζ0 where ζ and ζ0 where assumed to be pure
constants. In this way, we moved a step closer to resolving the λ-parameter problem.

Now, for a co-rotating star embedded in a core of radius Rcore, mass Mcore which
a density profile ρ(r) ∝ r−αρ where αρ : (0 ≤ αρ ≤ 3) is the density index, outflows will
occur in the region described by the cone θ : [125.3 < θ < 54.7] & [234.7 < θ < 305.3]
and this cone has a cap described by:

r <

[

λ1

(

2GMcore

c2Rcore

)

Rcore

]

|cos θ|
1

2−αρ = λ1R
s
core |cos θ|

1

2−α ρ (20)

where Rs
core is the Schwarzchild radius of the core. For a star in empty space, the

region of repulsive gravitational field (for a star whose the Schwarzchild radius is
Rs

star) is given described by the cone θ : [125.3 < θ < 54.7] & [234.7 < θ < 305.3] and
this cone has a cap described by:

r < λ1R
s
star cos θ, (21)

If outflows are there to save the nascent star from the wrath and ruthlessness of the
centrifugal forces, we argued in Paper (III) that, it is logical to imagine that at the
moment the centrifugal forces are about to rip the star apart, outflows will switch-
on, thus shedding off this excess spin angular momentum. The centrifugal forces
have their maximum toll on the equatorial surface of the star hence if the centrifugal
forces are to rip the nascent star apart, this would start at the equator of the nascent
star. The centrifugal force on the surface of the star acting on a particle of mass

1The centrifugal acceleration is given by: ac = ω2
R where ω = 2π/P is the spin angular frequency and P

is the period of the spin.
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m is Fc = mω2
starRstar = mac and the gravitational force on the same particle is Fg =

GMm/R2
star = mgstar. Now lets define the quotient Q = Fc/Fg = ac/gstar. If the particle

where to stay put on the surface of the star, then we will have Fc−Fg < 0) =⇒ Q < 1;
and if the particle where to fly off the surface, we will have Fc − Fg > 0 ) Q > 1. The
critical condition before the star begins to be torn apart is Fc −Fg = 0 =⇒ Q = 1. All
the above can be summarized as:

Qoutf :=







< 1 =⇒ No Outflow Activity
= 1 =⇒ Critical Condition
> 1 =⇒ Outflow Activity

(22)

We have dumbed the parameter Qoutf , the Outflow Control Quotient (OCQ). The
OCQ determines the necessary conditions for outflows to switch on. The OCQ can
be expressed in terms of the specific spin angular momentum Sstar = ωstarR

2
star and

the term S∗
star = (GMstarRstar)

1

2 , that is:

Qoutf =
Sstar

S∗
star

. (23)

The term S∗
star is actually the critical spin angular momentum, that is, the spin angular

momentum which is the star or gravitating object where to attain, it would switch
on the polar repulsive gravitational field.

Now, let λon
1 be the λ1-value when the polar repulsive gravitational field switches

on. Since Qoutf = 1 at the time when the polar repulsive gravitational field switches
on, it follows that λon

1 = ζ. Now, considering the non-empty space case, i.e. (21),
if polar repulsive gravitational field should switch-on when Qoutf = 1, then, at that
moment of switching-on, we must have λon

1 Rs
star = ζRs

star = Rs
star. From this, it follows

that:

ζ =
Rstar

Rs
star

. (24)

We see that in this case, ζ is not a constant as initially supposed in Paper (III).
If ζ where a constant, it is not difficult for one to deduce that the polar repulsive
gravitational field would not switch on in immediately when Qoutf = 1. This means
that the star will first have to be torn apart until the radius of that star reaches the
appropriate size for outflows to switch on. However, if we demand that once Qoutf = 1,
the polar repulsive gravitational field should switch-on in immediately, then we have
no choice but to accept that Qoutf is given as in (23). The new proposal (23) is a very
important revision of the ASTG-model.

If we accept the new proposal (23), then, there remains one unknown in the
parameter λ1 and this unknown is ζ0. From all the data that we have, it follows that:

λon
1 =

(

P2
star

4πR3
star/GMstar

)ζ0 ( Rstar

2GMstar/c2

)

=

(

Pstar

Pon

)2ζ0 Rstar

Rs
star

, (25)

Now, using the values for the Sun M� and R�, one finds that ζ0 = 0.92. It does
not look nor feel natural to have such a un-natural index. In close proximity to this
un-natural index, the most natural would be ζ0 = 1. If we are going to take ζ0 = 1,
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then, we are going to be forced to add a factor 12/5 to λ1 in (24) so that the resultant
expression gives the correct Solar value for λ1, that is:

λ1 = ζ

(

Sstar

S∗
star

)2ζ0

, (26)

In the foreseeable event that one is un-happy with the approach leading to (25),
they can stick to (24) and use the value ζ0 = 0.92. Whatever choice one make i.e. (24)
with ζ0 = 0.92 or (25), one thing is clear, the ASTG-model is set on a sure pedestal
to make independent testable predictions. In the end, the correct expression for λ1

will be decided by observations. For now until then, we propose the adoption of:

λ1 =

(

S

S∗

)
1

5 Rstar

Rs
=

(

Rstar

Rs

)

Q
1

5

outf
. (27)

Before we close, perhaps we should take this time to answer some criticism that
has and can be levelled against the ASTG-model. For example, Dr. A. J. Walsh’s
has expressed deep-seated worries about the ASTG-model (Private communication).
He believes or holds that “to posit that the gravitational field can have in its potential a
non-radial term is an extraordinary claim”. He goes on to say “extraordinary claims require
extraordinary proof”. As argued herein, the contrary appears to be the case. Newton’s
theory is a result of considering the spherically symmetric case of the Poisson-Laplace
equation. This yields an inverse square law that Sir Isaac Newton discovered some
345 years ago in the summer2 of 1666AD. The Poisson-Laplace equation can be
solved exactly for three symmetries, i.e. (1) the spherically symmetric case: Φ = ϕ(r),
(2) the azimuthally symmetric case: Φ = ϕ(r, ϕ), and (3) the polar symmetric case:
Φ = ϕ(r, ϕ, φ). Given that since the time Sir Isaac Newton enunciated his universal
Law of Gravitation, gravity has (in most cases) been modelled as an inverse square
law, it is natural and very much understandable for one to hold that “to posit that
the gravitational field can have in its potential a non-radial term is an extraordinary
claim”. But we must take into consideration that our belief – no matter how strong;
can not and can never dictate to Nature what is possible or impossible.

Further criticism; Dr. P. D. Smith of the University of South Africa in the Depart-
ment of Mathematics (Private communication) also holds that the ASTG-model can
not be, simply because this would have ground breaking implications – true that; it
would carry along with it ground breaking implications – actually, the ASTG-model
carries along with it ground breaking implications some which have already been
demonstrated in Nyambuya (2010b) where a gravitational connection as been made
to molecular outflows. Furthermore, Dr. Smith believes because Newton’s Law of
Gravitation is what has been used to send satellites to distant planets and that its
has been tested over the centuries, it can not be found critically and so much wanting
– true that. But we have the puzzling and unexpected flyby anomalies discovered
from space missions; we have the mysterious Pioneer anomaly; we have the vexing
secular increase in the Sun-Earth distance. All these but point to the very fact that

2As legend has it, while he (Sir Isaac Newton) was sitting under an apple tree he was struck by a falling
apple. This event caused him to go into a deep mediatory-state (while in contemplative mood) where upon he
pondered and excogitated deeply and from this meditation and excogitatory-state, he discovered the inverse
square law.
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something subtle is not right with Sir Isaac Newton’s model (and as-well Einstein’s
GTR). It (Newton’s theory) must – at the very least; be further replaced (and also
Einstein’s GTR must be replaced if it successfully fails to face the new data). It
must be said that all these seemingly inexplicable and ponderous observations; the
ASTG-model appears to have some seemingly plausible explanations. Work on this
is on-going and will be made publicly available soon.

5 Discussion and Conclusion

We have given an exposition of the ASTG-model. This exposition is meant to give
the reader a current wholesome picture of the model. Second, we have revised the
Solar value λ�

1 , from 24.00 ± 7.00 to 21.00 ± 4.00; this is a 10% improvement in the
error margin. The revised value is much more accurate as it has been obtained from
a superior method compared to that used to determine the old value. The graphical
method used to determine the new value gave (in our view) a well behaved linear graph
which strongly suggest a correlation, the invariable implication of which is that, the
ASTG-model strongly appears to contains in it, an element of truth; otherwise the
question naturally arises, how does it come about that such a reasonable linear fit
arises?

Other than revising the Solar value λ�
1 , we have revised the general expression for

the λ1-parameter. Previously, we proposed that λ1 be equal to ζQζ0 (see Paper III)
where was assumed to be a fixed constant, but now we have as a variable; to be
specific ζ = Rstar/Rs. This revised expression of the λ1-parameter is well designed
such that when the centrifugal forces begin their toll at the equator of the spinning
gravitating body, the polar repulsive gravitational force switches on, in which process
it sheds off the excess spin angular momentum. In this previous case where ζ was
fixed, the polar repulsive gravitational force would not switch on immediately when
the star begins to be torn apart at the equator. In this case, the polar repulsive
gravitational force would switch on when Rstar = ζRs, that is, the radius of the star
would have to be re-adjust and comply with this relation before the polar repulsive
gravitational field is switched on.

Surely, from the standpoint that the repulsive polar gravitational field solemnly
exists so as to shed off the excess spin angular momentum, it would not sound correct
that the star switches on the repulsive polar gravitational field much latter when
the centrifugal forces have already started their crusade to rip apart the star. We
believe the improvement made in the present version, does, logically sound good and
reasonable. On the deeper side of things, what this all means is that, the long held
supposition that (see e.g. Larson 2003b):

“Outflows possibly exist as a vehicle or a means by which accreting stars shed-off
excess spin angular momentum so as to save themselves from the detriment, wrath
and ruthlessness of the centrifugal forces3”;

may very well be correct. To verify this, we will need to study outflows under the

3This is not a direct quotation from R. B. Larson’s paper but in essence, the idea expressed in Larson’s
paper is pretty much the same as in the present statement.
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proposed ASTG-model of outflows and see if we get reasonable agreement with ob-
servations.

Given that the spherically symmetric Poisson-Laplace equation emerges out of
Einstein’s GTR in the weak field approximation may lead one to think that the
ASTG-model is a subset of Einstein’s GTR. We have argued that this is not the case.
We have argued that the ASGT-model must be viewed a fully fledge theory on its
own right. Yes, in the spherically symmetric case, it shares a common ground with
Einstein’s GTR but this common ground diverges when we consider the azimuthally
symmetric case. We have argued that Einstein’s GTR give different result to those
predicted by the ASTG-model. This is interesting in that this can be used as testing
grounds of Einstein’s GTR and the ASTG-model. For the interested reader, we have
pointed out that our approach to the Poisson-Laplace theory is guided by the Unified
Field Theory proposed in Paper (V). Importantly, the ASTG-model as it stands does
not depend on the correctness of the theory proposed in Paper (V). In this theory,
gravitation is no longer a metric theory but a scaler theory and the electromagnetic,
weak and the strong nuclear force emerge in the metric description of spacetime.

In-closing, allow us to say that, we believe that the ASTG-model is now set on
a sure and interesting pedestal to make testable predictions without the need to
resort to observations in-order to deduce the (dynamic) λ-parameters. The chronic
and diabolic problem of the λ-parameters appears to have been resolved (at least
for now). We are now going to focus our remaining energy and thrust on finding
grounds to test this theory further and as-well compare and contrast the theory with
Einstein’s GTR.
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