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Abstract

A Clifford Cl(5, C) Unified Gauge Field Theory of Conformal Gravity,
Maxwell and U(4)×U(4) Yang-Mills in 4D is rigorously presented extend-
ing our results in prior work. The Cl(5, C) = Cl(4, C)⊕Cl(4, C) algebraic
structure of the Conformal Gravity, Maxwell and U(4)×U(4) Yang-Mills
unification program advanced in this work is that the group structure
given by the direct products U(2, 2)×U(4)×U(4) = [SU(2, 2)]spacetime×
[U(1) × U(4) × U(4)]internal is ultimately tied down to four-dimensions
and does not violate the Coleman-Mandula theorem because the space-
time symmetries (conformal group SU(2, 2) in the absence of a mass gap,
Poincare group when there is mass gap) do not mix with the internal sym-
metries. Similar considerations apply to the supersymmetric case when
the symmetry group structure is given by the direct product of the super-
conformal group (in the absence of a mass gap) with an internal symmetry
group so that the Haag-Lopuszanski-Sohnius theorem is not violated. A
generalization of the de Sitter and Anti de Sitter gravitational theories
based on the gauging of the Cl(4, 1, R), Cl(3, 2, R) algebras follows. We
conclude with a few remarks about the complex extensions of the Metric
Affine theories of Gravity (MAG) based on GL(4, C) ×s C4, the realiza-
tions of twistors and theN = 1 superconformal su(2, 2|1) algebra purely in
terms of Clifford algebras and their plausible role in Witten’s formulation
of perturbative N = 4 super Yang-Mills theory in terms of twistor-string
variables.
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1 Introduction

Clifford, Division, Exceptional and Jordan algebras are deeply related and es-
sential tools in many aspects in Physics [7], [8], [9], [20]. The Extended Rel-
ativity theory in Clifford-spaces ( C-spaces ) is a natural extension of the or-
dinary Relativity theory [18] whose generalized polyvector-valued coordinates
are Clifford-valued quantities which incorporate lines, areas, volumes, hyper-
volumes.... degrees of freedom associated with the collective particle, string,
membrane, p-brane,... dynamics of p-loops (closed p-branes) in D-dimensional
target spacetime backgrounds. Octonionic gravity has been studied by [26], [25].

Grand-Unification models in 4D based on the exceptional E8 Lie algebra
have been known for sometime [1], [4]. The supersymmetric E8 model has more
recently been studied as a fermion family and grand unification model [2]. Su-
persymmetric non-linear sigma models of Exceptional Kahler coset spaces are
known to contain three generations of quarks and leptons as (quasi) Nambu-
Goldstone superfields [3]. The low-energy phenomenology of superstring-inspired
E6 models has been reviewed by [6].

A Chern-Simons E8 Gauge theory of Gravity, based on the octic E8 invariant
construction by [12], was proposed [10] as a unified field theory (at the Planck
scale) of a Lanczos-Lovelock Gravitational theory with a E8 Generalized Yang-
Mills field theory which is defined in the 15D boundary of a 16D bulk space. The
role of the Clifford algebra Cl(16) associated with a 16D bulk was essential [10].
In particular, it was discussed how an E8 Yang-Mills in 8D, after a sequence of
symmetry breaking processes based on the non− compact forms of exceptional
groups as follows E8(−24) → E7(−5) × SU(2)→ E6(−14) × SU(3)→ SO(8, 2)×
U(1), leads to a Conformal gravitational theory in 8D based on gauging the
non-compact conformal group SO(8, 2) in 8D. Upon performing a Kaluza-
Klein-Batakis [13] compactification on CP 2, involving a nontrivial torsion which
bypasses the no-go theorems that one cannot obtain SU(3) × SU(2) × U(1)
from a Kaluza-Klein mechanism in 8D, leads to a Conformal Gravity-Yang-
Mills unified theory based on the Standard Model group SU(3)×SU(2)×U(1)
in 4D.

A candidate action for an Exceptional E8 gauge theory of gravity in 8D
was constructed [11]. It was obtained by recasting the E8 group as the semi-
direct product of GL(8, R) with a deformed Weyl-Heisenberg group associated
with canonical-conjugate pairs of vectorial and antisymmetric tensorial gener-
ators of rank two and three. Other actions were proposed, like the quartic
E8 group-invariant action in 8D associated with the Chern-Simons E8 gauge
theory defined on the 7-dim boundary of a 8D bulk. The E8 gauge theory of
gravity can be embedded into a more general extended gravitational theory in
Clifford spaces associated with the Clifford Cl(16) algebra due to the fact that
E8 ⊂ Cl(8)⊗ Cl(8) = Cl(16).

Quantum gravity models in 4D based on gauging the (covering of the)
GL(4, R) group were shown to be renormalizable by [16] however, due to the
presence of fourth-derivatives terms in the metric which appeared in the quan-
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tum effective action, upon including gauge fixing terms and ghost terms, the
prospects of unitarity were spoiled. The key question remains if this novel gravi-
tational model based on gauging the E8 group in 8D may still be renormalizable
without spoiling unitarity at the quantum level.

Most recently it was proposed in [35] how a Conformal Gravity, Maxwell
and U(4) × U(4) Yang-Mills Grand Unification model in four dimensions can
be attained from a Clifford Gauge Field Theory formulated in C-spaces (Clifford
spaces). More precisely, the ordinary Cl(4)-algebra valued one-forms (AA

µ ΓA) dxµ

of a 4D spacetime are extended to polyvector-valued (AA
M ΓA) dXM differen-

tial forms defined over the Clifford-space (C-space) associated with the Cl(4)
algebra. XM is a polyvector valued coordinate corresponding to the C-space
of dimensionality 24 = 16. Other approaches to unification based on Clifford
algebras and Noncommutative Geometry can be found in [22], [21], [23], [32],
[29].

The main aim of this work is to show rigorously how a Clifford Cl(5, C)
Unified Gauge Theory of Conformal Gravity, Maxwell and U(4) × U(4) Yang-
Mills in 4D can be attained without having to recur to polyvector valued
differential forms in the (24) 16-dim C-space. The upshot of the Cl(5, C) =
Cl(4, C)⊕ Cl(4, C) algebraic structure of the Conformal Gravity, Maxwell and
U(4)×U(4) Yang-Mills unification program in 4D advanced in this work is that
the group structure given by the direct products

U(2, 2)×U(4)×U(4) = [SU(2, 2)]spacetime×[U(1)×U(4)×U(4)]internal (1.1)

is ultimately tied down to four-dimensions and does not violate the Coleman-
Mandula theorem because the spacetime symmetries (conformal group SU(2, 2)
in the absence of a mass gap, Poincare group when there is mass gap) do not mix
with the internal symmetries. Similar considerations apply to the supersymmet-
ric case when the symmetry group structure is given by the direct product of the
superconformal group (in the absence of a mass gap) with an internal symmetry
group so that the Haag-Lopuszanski-Sohnius theorem is not violated. Further-
more, the complex Clifford algebra Cl(5, C) is associated with the tangent space
of a complexified 5D spacetime which corresponds to 10 real dimensions and
which is the arena of the anomaly free quantum superstring [30].

In section 2 we present our construction of a Cl(5, C) Unified Gauge Theory
of Conformal Gravity, Maxwell and U(4)×U(4) Yang-Mills. In section 3 we ex-
tend our prior results [36] pertaining a generalization of the de Sitter and Anti de
Sitter gravitational theories based on the gauging of the Cl(4, 1, R), Cl(3, 2, R)
algebras. We end with a few concluding remarks about the complex exten-
sion of the Metric Affine theories of Gravity (MAG) [16] based in gauging the
semidirect product of GL(4, C) ×s C4; the realizations of twistors [38] and the
superconformal su(2, 2|1) algebra [34] purely in terms of Clifford algebras and
their plausible role in Witten’s formulation [39] of the scattering amplitudes of
perturbative N = 4 super Yang-Mills theory in terms of twistor-string variables.
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2 Cl(5, C) Unified Gauge Theory of Conformal
Gravity, Maxwell and U(4)× U(4) Yang-Mills

2.1 Clifford-algebra-valued Gauge Field Theories and
Conformal (super) Gravity, (super) Yang Mills

Let ηab = (−,+,+,+), ε0123 = −ε0123 = 1, the real Clifford Cl(3, 1, R) al-
gebra associated with the tangent space of a 4D spacetime M is defined by
{Γa,Γb} = 2ηab such that

[Γa,Γb] = 2Γab, Γ5 = − i Γ0 Γ1 Γ2 Γ3, (Γ5)2 = 1; {Γ5,Γa} = 0; (2.1)

Γabcd = εabcd Γ5; Γab =
1
2

(ΓaΓb − ΓbΓa) . (2.2a)

Γabc = εabcd Γ5 Γd; Γabcd = εabcd Γ5. (2.2b)

Γa Γb = Γab + ηab, Γab Γ5 =
1
2
εabcd Γcd, (2.2c)

Γab Γc = ηbc Γa − ηac Γb + εabcd Γ5 Γd (2.2d)

Γc Γab = ηac Γb − ηbc Γa + εabcd Γ5 Γd (2.2e)

Γa Γb Γc = ηab Γc + ηbc Γa − ηacΓb + εabcd Γ5 Γd (2.2f)

Γab Γcd = εab
cd Γ5 − 4δ

[a
[c Γb]

d] − 2δab
cd . (2.2g)

δab
cd =

1
2

(δa
c δb

d − δa
d δb

c ). (2.2.h)

the generators Γab,Γabc,Γabcd are defined as usual by a signed-permutation sum
of the anti-symmetrizated products of the gammas. A representation of the
Cl(3, 1) algebra exists where the generators

1; Γa = Γ1, Γ2, Γ3, Γ4 = −iΓ0; Γ5; a = 1, 2, 3, 4 (2.3)

are Hermitian; while the generators ΓaΓ5; Γab for a, b = 1, 2, 3, 4 are anti-
Hermitian. Using eqs-(2.1-2.3) allows to write the Cl(3, 1) algebra-valued one-
form as

A =
(

aµ 1 + bµ Γ5 + ea
µ Γa + fa

µ Γa Γ5 +
1
4
ωab

µ Γab

)
dxµ. (2.4)

The Clifford-valued gauge field Aµ transforms according to A′
µ = U−1 Aµ U+

U−1∂µU under Clifford-valued gauge transformations. The Clifford-valued field
strength is F = dA + [A,A] so that F transforms covariantly F ′ = U−1 F U .
Decomposing the field strength in terms of the Clifford algebra generators gives

Fµν = F 1
µν 1 + F 5

µν Γ5 + F a
µν Γa + F a5

µν Γa Γ5 +
1
4
F ab

µν Γab. (2.5)
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where F = 1
2 Fµν dxµ ∧ dxν . The field-strength components are given by

F 1
µν = ∂µaν − ∂νaµ (2.6a)

F 5
µν = ∂µbν − ∂νbµ + 2ea

µfνa − 2ea
νfµa (2.6b)

F a
µν = ∂µea

ν − ∂νea
µ + ωab

µ eνb − ωab
ν eµb + 2fa

µbν − 2fa
ν bµ (2.6c)

F a5
µν = ∂µfa

ν − ∂νfa
µ + ωab

µ fνb − ωab
ν fµb + 2ea

µbν − 2ea
νbµ (2.6d)

F ab
µν = ∂µωab

ν + ωac
µ ω b

νc + 4
(
ea
µeb

ν − fa
µf b

ν

)
− µ←→ ν. (2.6e)

At this stage we may provide the relation among the Cl(3, 1) algebra gener-
ators and the the conformal algebra so(4, 2) ∼ su(2, 2) in 4D . The operators of
the Conformal algebra can be written in terms of the Clifford algebra generators
as [18]

Pa =
1
2
Γa (1 − Γ5); Ka =

1
2
Γa (1 + Γ5); D = − 1

2
Γ5, Lab =

1
2

Γab.

(2.7)
Pa ( a = 1, 2, 3, 4) are the translation generators; Ka are the conformal boosts; D
is the dilation generator and Lab are the Lorentz generators. The total number
of generators is respectively 4+4+1+6 = 15. From the above realization of the
conformal algebra generators (2.7), the explicit evaluation of the commutators
yields

[Pa, D] = Pa; [Ka, D] = −Ka; [Pa, Kb] = − 2gab D + 2 Lab

[Pa, Pb] = 0; [Ka,Kb] = 0; ....... (2.8)

which is consistent with the su(2, 2) ∼ so(4, 2) commutation relations. We
should notice that the Ka, Pa generators in (2.7) are both comprised of Her-
mitian Γa and anti-Hermitian ±ΓaΓ5 generators, respectively. The dilation D
operator is Hermitian, while the Lorentz generator Lab is anti-Hermitian. The
fact that Hermitian and anti-Hermitian generators are required is consistent
with the fact that U(2, 2) is a pseudo-unitary group as we shall see bellow.

Having established this one can infer that the real-valued tetrad V a
µ field

(associated with translations) and its real-valued partner Ṽ a
µ (associated with

conformal boosts) can be defined in terms of the real-valued gauge fields ea
µ, fa

µ

as follows
ea
µ Γa + fa

µ ΓaΓ5 = V a
µ Pa + Ṽ a

µ Ka (2.9)

From eq-(2.7) one learns that eq-(2.9) leads to

ea
µ − fa

µ = V a
µ ; ea

µ + fa
µ = Ṽ a

µ ⇒

ea
µ =

1
2

(V a
µ + Ṽ a

µ ), fa
µ =

1
2
(Ṽ a

µ − V a
µ ). (2.10)
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The components of the torsion and conformal-boost curvature of conformal
gravity are given respectively by the linear combinations of eqs-(2.6c, 2.6d)

F a
µν − F a5

µν = F̃ a
µν [P ]; F a

µν + F a5
µν = F̃ a

µν [K] ⇒

F a
µν Γa + F a5

µν Γa Γ5 = F̃ a
µν [P ] Pa + F̃ a

µν [K] Ka. (2.11a)

Inserting the expressions for ea
µ, fa

µ in terms of the vielbein V a
µ and Ṽ a

µ given
by (2.10), yields the standard expressions for the Torsion and conformal-boost
curvature, respectively

F̃ a
µν [P ] = ∂[µ V a

ν] + ωab
[µ Vν]b − V a

[µ bν], (2.11b)

F̃ a
µν [K] = ∂[µ Ṽ a

ν] + ωab
[µ Ṽν]b + 2 Ṽ a

[µ bν], (2.11b)

The Lorentz curvature in eq-(2.6e) can be recast in the standard form as

F ab
µν = Rab

µν = ∂[µ ωab
ν] + ωac

[µ ωb
ν]c + 2( V a

[µ Ṽ b
ν] + Ṽ a

[µ V b
ν] ). (2.11c)

The components of the curvature corresponding to the Weyl dilation generator
given by F 5

µν in eq-(2.6b) can be rewritten as

F 5
µν = ∂[µ bν] +

1
2

( V a
[µ Ṽν]a − Ṽ a

[µ Vν]a ). (2.11d)

and the Maxwell curvature is given by F 1
µν in eq-(2.6a). A re-scaling of the

vielbein V a
µ /l and Ṽ a

µ /l by a length scale parameter l is necessary in order to
endow the curvatures and torsion in eqs-(2.11) with the proper dimensions of
length−2, length−1, respectively.

To sum up, the real-valued tetrad gauge field V a
µ (that gauges the trans-

lations Pa ) and the real-valued conformal boosts gauge field Ṽ a
µ (that gauges

the conformal boosts Ka) of conformal gravity are given, respectively, by the
linear combination of the gauge fields ea

µ ∓ fa
µ associated with the Γa, Γa Γ5

generators of the Clifford algebra Cl(3, 1) of the tangent space of spacetimeM4

after performing a Wick rotation −i Γ0 = Γ4.
In order to obtain the generators of the compact U(4) = SU(4) × U(1)

unitary group, in terms of the Cl(3, 1) generators, a different basis involving
a full set of Hermitian generators must be chosen of the form

Ma =
1
2
Γa (1 −i Γ5); Na =

1
2
Γa (1 +i Γ5); D =

1
2

Γ5, Lab = − i

2
Γab.

(2.12)
One may choose, instead, a full set of anti-Hermitian generators by multiplying
every generator Ma, Na,D,Lab by i in (2.12), if one wishes. The choice (2.12)
leads to a different algebra so(6) ∼ su(4) and whose commutators differ
from those in (2.8)

[Ma, D] = i Na; [Na, D] = − i Ma; [Ma, Nb] = − 2i gab D
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[Ma, Mb] = [Na, Nb] =
1
2

Γab = i Lab; ....... (2.13)

The Hermitian generators Ma, Na,D,Lab associated to the so(6) ∼ su(4) alge-
bra are given by the one-to-one correspondence

Ma =
1
2
Γa (1 − i Γ5) ←→ − Σa5; Na =

1
2
Γa (1 + i Γ5) ←→ Σa6

D =
1
2

Γ5 ←→ Σ56; Lab = − i

2
Γab ←→ Σab (2.14)

The so(6) Lie algebra in 6D associated to the Hermitian generators ΣAB (A,B =
1, 2, ...., 6) is defined by the commutators

[ΣAB , ΣCD] = i (gBC ΣAD − gAC ΣBD − gBD ΣAC + gAD ΣBC )
(2.15)

where gAB is a diagonal 6D metric with signature (−,−,−,−,−,−). One can
verify that the realization (2.12) and correspondence (2.14) is consistent with the
so(6) ∼ su(4) commutation relations (2.15). The extra U(1) Abelian generator
in U(4) = U(1)× SU(4) is associated with the unit 1 generator.

Since su(4) ∼ so(6) (isomorphic algebras) and the unitary algebra u(4) =
u(1)⊕ su(4) ∼ u(1)⊕ so(6), the Hermitian u(1)⊕ so(6) valued field Aµ may be
expanded in a Cl(3, 1, R) basis of Hermitian generators as

Aµ = aµ 1 + bµ Γ5 + ea
µ Γa + i fa

µ Γa Γ5 + i
1
4
ωab

µ Γab =

aµ 1 + A56
µ Σ56 + Aa5

µ Σa5 + Aa6
µ Σa6 +

1
4
Aab

µ Σab (2.16)

One should notice the key presence of i factors in the last two (Hermitian) terms
of the first line of eq-(2.16), compared to the last two terms of (2.4) devoid of i
factors. All the terms in eq-(2.4) are devoid of i factors such that the last two
terms of (2.4) are comprised of anti-Hermitian generators while the first three
terms involve Hermitian generators. The dictionary between the real-valued
fields in the first and second lines of (2.16) is given by

aµ = aµ, bµ = A56
µ , Aa5

µ = ea
µ − fa

ν , Aa6
µ = ea

µ + fa
ν , Aab

µ = ωab
µ (2.17)

the dictionary (2.17) is inferred from the relation

ea
µ Γa + i fa

µ Γa Γ5 = Aa5
µ Σa5 + Aa6

µ Σa6 (2.18)

and from eq-(2.12) (all terms in (2.18) are comprised of Hermitian generators as
they should). The evaluation of the u(1)⊕so(6) valued field strengths Fµν , FMN

µν ,
M,N = 1, 2, 3, ...., 6 proceeds in a similar fashion as in the conformal Gravity-
Maxwell case based on the pseudo-unitary algebra u(2, 2) = u(1) ⊕ su(2, 2) ∼
u(1)⊕ so(4, 2).
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Gauge invariant actions involving Yang-Mills terms of the form
∫

Tr(F ∧∗F )
and theta terms of the form

∫
Tr(F ∧F ) are straightforwardly constructed. For

example, a SO(4, 2) gauge-invariant action for conformal gravity is [33]

S =
∫

d4x εabcd εµνρσ Rab
µν Rcd

ρσ (2.19)

where the components of the Lorentz curvature 2-form Rab
µνdxµ∧dxν are given by

eq-(2.11c) after re-scaling the vielbein V a
µ /l and Ṽ a

µ /l by a length scale param-
eter l in order to endow the curvature with the proper dimensions of length−2.
The conformal boost symmetry can be fixed by choosing the gauge bµ = 0
because under infinitesimal conformal boosts transformations the field bµ trans-
forms as δbµ = −2 ξa eaµ = −2 ξµ; i.e the parameter ξµ has the same number
of degrees of feedom as bµ. After further fixing the dilational gauge symmetry,
setting the torsion to zero which constrains the spin connection ωab

µ (V a
µ ) to be of

the Levi-Civita form given by a function of the vielbein V a
µ , and eliminating the

Ṽ a
µ field algebraically via its (non-propagating) equations of motion [5] leads to

the de Sitter group SO(4, 1) invariant Macdowell-Mansouri-Chamseddine-West
action [14], [15] (suppressing spacetime indices for convenience)

S =
∫

d4x ( Rab(ω) +
1
l2

V a∧V b ) ∧ ( Rcd(ω) +
1
l2

V c∧V d ) εabcd. (2.20)

the action (2.20) is comprised of the topological invariant Gauss-Bonnet term
Rab(ω) ∧ Rcd(ω)εabcd; the standard Einstein-Hilbert gravitational action term
1
l2 Rab(ω)∧ V c ∧ V dεabcd, and the cosmological constant term 1

l4 V a ∧ V b ∧ V c ∧
V dεabcd. l is the de Sitter throat size; i.e. l2 is proportional to the square of the
Planck scale (the Newtonian coupling constant).

The familiar Einstein-Hilbert gravitational action can also be obtained from
a coupling of gravity to a scalar field like it occurs in a Brans-Dicke-Jordan
theory of gravity

S =
1
2

∫
d4x
√

g φ

(
1
√

g
∂ν(
√

g gµν Dc
µφ) + bµ (Dc

µφ) +
1
6

R φ

)
.

(2.21a)
where the conformally covariant derivative acting on a scalar field φ of Weyl
weight one is

Dc
µφ = ∂µ − bµ φ (2.21b)

Fixing the conformal boosts symmetry by setting bµ = 0 and the dilational
symmetry by setting φ = constant leads to the Einstein-Hilbert action for
ordinary gravity.

This construction of Conformal Gravity and Yang-Mills based on a Clifford-
algebra valued gauge field theory can also be extended to the superconformal
Yang-Mills and conformal Supergravity case. The N = 1 superconformal al-
gebra su(2, 2|1) involving the additional fermionic generators Qα, Sα and the
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chiral generator A, admits a Clifford algebra realization as well [34]. The real-
ization of the 15 bosonic generators is given by (2.7) after one embeds the 4× 4
matrices into a 5 × 5 matrix where one adds zero elements in the 5-th column
and in the 5-th row. Whereas the 8 fermionic Qα, Sα generators are represented
by the 5× 5 matrices with zeros everywhere except in the four entries along the
5-th column and along the 5-th row as follows

(Qα)5β = − 1
2
(1− Γ5)αβ , (Qα)55 = 0, (Qα)β5 = [

1
2
(1 + Γ5)C]αβ

(Sα)5β =
1
2
(1 + Γ5)αβ , (Sα)55 = 0, (Sα)β5 = − [

1
2
(1−Γ5)C]αβ (2.22a)

The indices α, β = 1, 2, 3, 4. C = Cαβ is the charge conjugation matrix C =
−C−1 = −CT satisfying CΓµC−1 = −(Γµ)T . In the represenation chosen in
(2.22a) C = Γ0. The chiral generator A is represented by − i

4 times a diagonal
5× 5 matrix whose entries are (1, 1, 1, 1, 4). The nonzero (anti) commutators of
the N = 1 superconformal algebra su(2, 2|1) are [34]

{Qα, Q̄β} = 2(ΓµPµ)αβ , {Sα, S̄β} = − 2(ΓµKµ)αβ

{Qα, S̄β} = − 1
2
Cαβ D +

1
2

(ΓabC)αβ Lab + (iΓ5C)αβ A

[Sα, Lab] =
1
2

(Γab)αβ Sβ , [Qα, Lab] =
1
2

(Γab)αβ Qβ

[Sα, A] = i
3
4

(Γ5)αβ Sβ , [Qα, A] = − i
3
4

(Γ5)αβ Qβ

[Sα, D] = − 1
2

Sα, [Qα, D] =
1
2

Qα

[Sα, Pa] = − 1
2

(Γa)αβ Qβ , [Qα, Pa] = − 1
2

(Γa)αβ Sβ ..... (2.22b)

The remaining commutators involving the bosonic generators are given by (2.8).

2.2 U(p, q) from U(p + q) via the Weyl unitary trick

In general, the unitary compact group U(p+q;C) is related to the noncompact
unitary group U(p, q;C) by the Weyl unitary trick [17] mapping the anti-
Hermitian generators of the compact group U(p + q;C) to the anti-Hermitian
and Hermitian generators of the noncompact group U(p, q;C) as follows : The
(p+q)×(p+q) U(p+q;C) complex matrix generator is comprised of the diagonal
blocks of p×p and q×q complex anti-Hermitian matrices M†

11 = −M11; M†
22 =

−M22, respectively. The off-diagonal blocks are comprised of the q× p complex
matrix M12 and the p × q complex matrix −M†

12, i.e. the off-diagonal blocks
are the anti-Hermitian complex conjugates of each other. In this fashion the
(p + q) × (p + q) U(p + q;C) complex matrix generator M is anti-Hemitian
M† = −M such that upon an exponentiation U(t) = etM it generates a unitary
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group element obeying the condition U†(t) = U−1(t) for t = real. This is what
occurs in the U(4) case.

In order to retrieve the noncompact group U(2, 2;C) case, the Weyl uni-
tary trick requires leaving M11,M22 intact but performing a Wick rotation of
the off-diagonal block matrices i M12 and −i M†

12. In this fashion, M11,M22

still retain their anti-Hermitian character, while the off-diagonal blocks are now
Hermitian complex conjugates of each-other. This is precisely what occurs in
the realization of the Conformal group generators in terms of the Cl(3, 1, R)
algebra generators. For example, Pa,Ka both contain Hermitian Γa and anti-
Hermitian ΓaΓ5 generators. Despite the name ”unitary” group U(2, 2;C), the
exponentiation of the Pa and Ka generators does not furnish a truly unitary ma-
trix obeying U† = U−1. For this reason the groups U(p, q;C) are more properly
called pseudo-unitary. The complex extension of U(p + q, C) is GL(p + q;C).
Since the algebras u(p + q;C), u(p, q;C) differ only by the Weyl unitary trick,
they both have identical complex extensions gl(p+ q;C) [17]. gl(N,C) has 2N2

generators whereas u(N,C) has N2.
The covering of the general linear group GL(N,R) admits infinite-dimensional

spinorial representations but not finite-dimensional ones. For a thorough dis-
cussion of the physics of infinite-component fields and the perturbative renor-
malization property of metric affine theories of gravity based on (the covering
of ) GL(4, R) we refer to [16]. The group U(2, 2) consists of the 4× 4 complex
matrices which preserve the sesquilinear symmetric metric gαβ associated to
the following quadratic form in C4

< u, u > = ūα gαβ uβ = ū1u1 + ū2u2 − ū3u3 − ū4u4. (2.23a)

obeying the sesquilinear conditions

< λ v, u > = λ̄ < v, u >; < v, λ u > = λ < v, u > . (2.23b)

where λ is a complex parameter and the bar operation denotes complex conjuga-
tion. The metric gαβ can be chosen to be given precisely by the chirality (Γ5)αβ

4 × 4 matrix representation whose entries are 12×2, − 12×2 along the main
diagonal blocks, respectively, and 0 along the off-diagonal blocks. The Lie alge-
bra su(2, 2) ∼ so(4, 2) corresponds to the conformal group in 4D. The special
unitary group SU(p + q;C) in addition to being sesquilinear metric-preserving
is also volume-preserving.

The group U(4) consists of the 4 × 4 complex matrices which preserve the
sesquilinear symmetric metric gαβ associated to the following quadratic form
in C4

< u, u > = ūα gαβ uβ = ū1u1 + ū2u2 + ū3u3 + ū4u4. (2.24)

The metric gαβ is now chosen to be given by the unit 1αβ diagonal 4 × 4 ma-
trix. The U(4) = U(1) × SU(4) metric-preserving group transformations are
generated by the 15 Hermitian generators ΣAB and the unit 1 generator.
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In the most general case one has the following isomorphisms of Lie algebras
[17]

so(5, 1) ∼ su∗(4) ∼ sl(2,H); so∗(6) ∼ su(3, 1); so(3, 2) ∼ sp(4, R)

so(4, 2) ∼ su(2, 2); so(3, 3) ∼ sl(4, R); so(6) ∼ su(4), etc..... (2.25)

where the asterisks like su∗(4), so∗(6) denote the algebras associated with the
noncompact versions of the compact groups SU(4), SO(6). sl(2,H) is the spe-
cial linear Mobius algebra over the field of quaternions H. The SU(4) group is
a two-fold covering of SO(6) but their algebras are isomorphic.

2.3 U(4)× U(4) Yang-Mills and Conformal Gravity,
Maxwell Unification from a Cl(5, C) Gauge Theory

To complete this section it is necessary to recall the following isomorphisms
among real and complex Clifford algebras

Cl(2m + 1, C) = Cl(2m,C)⊕ Cl(2m,C) ∼M(2m, C)⊕M(2m, C) ⇒

Cl(5, C) = Cl(4, C)⊕ Cl(4, C) (2.26a)

and

Cl(4, C) ∼M(4, C) ∼ Cl(4, 1, R) ∼ Cl(2, 3, R) ∼ Cl(0, 5, R) (2.26b)

Cl(4, C) ∼M(4, C) ∼ Cl(3, 1, R)⊕i Cl(3, 1, R) ∼M(4, R)⊕i M(4, R) (2.26c)

Cl(4, C) ∼M(4, C) ∼ Cl(2, 2, R)⊕i Cl(2, 2, R) ∼M(4, R)⊕i M(4, R) (2.26d)

M(4, R),M(4, C) is the 4 × 4 matrix algebra over the reals and complex num-
bers, respectively. From each one of the Cl(3, 1, R) algebra factors in the
above decomposition (2.26c) of the complex Cl(4, C) algebra, one can gener-
ate a u(2, 2) algebra by writing the u(2, 2) generators explicitly in terms of
the Cl(3, 1, R) gamma matrices as displayed above in eqs-(2.7) ; i.e. one may
convert a Cl(3, 1, R) gauge theory into a Conformal Gravity-Maxwell theory
based on U(2, 2) = SU(2, 2) × U(1). Therefore, a Cl(4, C) gauge theory is al-
gebraically equivalent to a bi-Conformal Gravity-Maxwell theory based on the
complex group U(2, 2) ⊗ C = GL(4, C); i.e. the Cl(4, C) gauge theory is al-
gebraically equivalent to a complexified Conformal Gravity-Maxwell theory in
four real dimensions based on the complex algebra u(2, 2)⊕ i u(2, 2) = gl(4, C).
The algebra gl(N,C) is the complex extension of u(p, q) for all p, q such that
p + q = N .

Furthermore, from each Cl(3, 1, R) commuting sub-algebra inside the Cl(4, C)
algebra one can also generate a u(4) = u(1) ⊕ su(4) ∼ u(1) ⊕ so(6) algebra
by writing the latter generators in terms of the Cl(3, 1, R) gamma matrices
as displayed explicitly in eqs-(2.12). Therefore, the Cl(4, C) gauge theory is
also algebraically equivalent to a Yang-Mills gauge theory based on the algebra
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u(4) ⊕ i u(4) = gl(4, C) and associated with the two Cl(3, 1, R) commuting
sub-algebras inside Cl(4, C). The complex group is U(4)⊗C = GL(4, C) also.

From eq-(2.26d) : Cl(4, C) ∼ Cl(4, 1, R) one learns that the complex Clifford
Cl(4, C) algebra is also isomorphic to a real Clifford algebra Cl(4, 1, R) (and
also to Cl(2, 3, R), Cl(0, 5, R)). A Wick rotation (Weyl unitary trick) transforms
Cl(4, 1, R) → Cl(3, 2, R) = Cl(3, 1, R) ⊕ Cl(3, 1, R) ∼ M(4, R) ⊕M(4, R) such
that there are two commuting sub-algebras of Cl(3, 2, R) which are isomorphic
to Cl(3, 1, R). From each one of the latter Cl(3, 1, R) algebras one can build
an u(4) (and u(2, 2)) algebra as described earlier. A typical example of this
feature in ordinary Lie algebras is the case of so(3) ∼ su(2) such that there
are two commuting sub-algebras of so(4) and isomorphic to so(3) furnishing
the decomposition so(4) = su(2)⊕ su(2) ∼ so(3)⊕ so(3). Concluding, one can
generate a U(4)× U(4) Yang-Mills gauge theory from a Cl(4, C) gauge theory
via a Cl(4, 1, R) gauge theory (based on a real Clifford algebra) after the Wick
rotation (Weyl unitary trick) procedure to the Cl(3, 2, R) algebra is performed.

The physical reason why one needs a U(4) × U(4) Yang-Mills theory is be-
cause the group U(4) by itself is not large enough to accommodate the Standard
Model Group SU(3) × SU(2) × U(1) as its maximally compact subgroup [24].
The GUT groups SU(5), SU(2)×SU(2)×SU(4) are large enough to achieve this
goal. In general, the group SU(m+n) has SU(m)×SU(n)×U(1) for compact
subgroups. Therefore, SU(4)→ SU(3)×U(1) or SU(4)→ SU(2)×SU(2)×U(1)
is allowed but one cannot have SU(4) → SU(3) × SU(2). For this reason
one cannot rely only on a Cl(4, C) = Cl(3, 1, R) ⊕ i Cl(3, 1) gauge theory to
build a unifying model; i.e. because one cannot have the branching SU(4) →
SU(3)× SU(2), one would not able to generate the full Standard Model group
despite that the other group inside Cl(4, C) given by U(2, 2) = SU(2, 2)×U(1)
furnishes Conformal Gravity and Maxwell’s Electro-Magnetism based on U(1).

A breaking [28], [31], [5] of U(4)×U(4) −→ SU(2)L×SU(2)R×SU(4) leads
to the Pati-Salam [27] GUT group which contains the Standard Model Group,
which in turn, breaks down to the ordinary Maxwell Electro-Magnetic (EM)
U(1)EM and color (QCD) group SU(3)c after the following chain of symmetry
breaking patterns

SU(2)L × SU(2)R × SU(4) → SU(2)L × U(1)R × U(1)B−L × SU(3)c →

SU(2)L × U(1)Y × SU(3)c → U(1)EM × SU(3)c. (2.27)

where B−L denotes the Baryon minus Lepton number charge; Y = hypercharge
and the Maxwell EM charge is Q = I3 + (Y/2) where I3 is the third component
of the SU(2)L isospin. It is noteworthy to remark that since we had already
identified the U(1)EM symmetry stemming from the (U(2, 2) group-based) Con-
formal Gravity-Maxwell sector, it is not necessary to follow the symmetry break-
ing pattern of the second line in (2.27) in order to retrieve the desired U(1)EM

symmetry.
The fermionic matter and Higgs sector of the Standard Model within the con-

text of Clifford gauge field theories has been analyzed in [35]. The 16 fermions of
each generation can be assembled into the entries of a 4×4 matrix representation
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of the Cl(3, 1) algebra. A unified model of strong, weak and electromagnetic
interactions based on the flavor-color group SU(4)f ×SU(4)c of Pati-Salam has
been described by Rajpoot and Singer [27]. Fermions were placed in left-right
multiplets which transform as the representation (4̄, 4) of SU(4)f × SU(4)c.
Further investigation is warranted to explore the group SU(4)f × SU(4)c of
Pati-Salam within the context of the U(4) × U(4) group symmetry associated
with the Cl(4, C) algebra presented here.

The u(4) algebra can also be realized in terms of so(8) generators, and in
general, u(N) algebras admit realizations in terms of so(2N) generators [5].
Given the Weyl-Heisenberg ”superalgebra” involving the N fermionic creation
and annihilation (oscillators) operators

{ai, a
†
j} = δij , {ai, aj} = 0, {a†i , a

†
j} = 0; i, j = 1, 2, 3, ..... N. (2.28)

one can find a realization of the u(N) algebra bilinear in the oscillators as
E j

i = a†i aj and such that the commutators

[E j
i , E l

k ] = a†i aj a†k al − a†k al a†i aj =

a†i (δjk − a†k aj) al − a†k (δli − a†i al) aj = a†i (δjk) al − a†k (δli) aj =

δj
k E l

i − δl
i E j

k . (2.29)

reproduce the commutators of the Lie algebra u(N) since

−a†i a†k aj al + a†k a†i al aj = − a†k a†i al aj + a†k a†i al aj = 0. (2.30)

due to the anti-commutation relations (2.28) yielding a double negative sign
(−)(−) = + in (2.30). Furthermore, one also has an explicit realization of the
Clifford algebra Cl(2N) Hermitian generators by defining the even-number and
odd-number generators as

Γ2j =
1
2

(aj + a†j); Γ2j−1 =
1
2i

(aj − a†j). (2.31)

The Hermitian generators of the so(2N) algebra are defined as usual Σmn =
i
2 [Γm,Γn] where m,n = 1, 2, ....2N . Therefore, the u(4), so(8), Cl(8) alge-
bras admit an explicit realization in terms of the fermionic Weyl-Heisenberg
oscillators ai, a

†
j for i, j = 1, 2, 3, 4. u(4) is a subalgebra of so(8) which in

turn is a subalgebra of the Cl(8) algebra. The Conformal algebra in 8D is
so(8, 2) and also admits an explicit realization in terms of the Cl(8) genera-
tors, similar to the realization of the algebra so(4, 2) ∼ su(2, 2) in terms of
the Cl(3, 1, R) generators as displayed in eq- (2.7). The compact version of
the group SO(8, 2) is SO(10) which is a GUT group candidate. In particular,
the algebras u(5), so(10), Cl(10) admit a realization in terms of the fermionic
Weyl-Heisenberg oscillators ai, a

†
j for i, j = 1, 2, 3, 4, 5.

Conclusion : The upshot of the Cl(5, C) = Cl(4, C) ⊕ Cl(4, C) algebraic
structure of the Conformal Gravity, Maxwell, U(4)×U(4) Yang-Mills unification
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program advanced in this work is that the group structure given by the direct
products

U(2, 2)×U(4)×U(4) = [SU(2, 2)]spacetime×[U(1)×U(4)×U(4)]internal (2.32)

is ultimately tied down to four-dimensions and does not violate the Coleman-
Mandula theorem because the spacetime symmetries (conformal group SU(2, 2)
in the absence of a mass gap, Poincare group when there is mass gap) do not mix
with the internal symmetries. Similar considerations apply to the supersymmet-
ric case when the symmetry group structure is given by the direct product of the
superconformal group (in the absence of a mass gap) with an internal symmetry
group so that the Haag-Lopuszanski-Sohnius theorem is not violated.

3 Generalized Gauge Theories of Gravity based
on Cl(4, 1, R), Cl(3, 2, R) Algebras

We saw in the last section that the complex Clifford algebra Cl(4, C) ∼M(4, C) ∼
Cl(4, 1, R) is isomorphic to a real Clifford algebra Cl(4, 1, R) which contains the
de Sitter algebra so(4, 1). In this section we will construct generalized gauge
theories of de Sitter (SO(4, 1)) and Anti de Sitter Gravity (SO(3, 2)) based
on the real Clifford Cl(4, 1, R), Cl(3, 2, R) Algebras. The Cl(4, 1, R), Cl(3, 2, R)
algebra-valued gauge field is defined as

A = Aµ 1+ Am
µ Γm + Amn

µ Γmn + Amnp
µ Γmnp + Amnpq

µ Γmnpq + Amnpqr
µ Γmnpqr

(3.1)
the spacetime indices are µ = 1, 2, 3, 4 as before. The gamma generators are

ΓI : 1; Γm = Γ1, Γ2, Γ3, Γ4, Γ5; Γm1m2 =
1
2
Γm1 ∧ Γm2 =

1
2
[Γm1 ,Γm2 ];

Γm1m2m3 =
1
3!

Γm1∧Γm2∧Γm3 ; ........, Γm1m2......m5 =
1
5!

Γm1∧Γm2∧.........∧Γm5

(3.2)
the indices m1,m2, .... run from 1, 2, 3, 4, 5. The above decomposition of the
connection Aµ = AI

µ ΓI contains Hermitian and anti-Hermitian components
(generators). It is common practice to split the de Sitter/Anti de Sitter alge-
bra gauge connection in 4D into a (Lorentz) rotational piece ωa1a2

µ Γa1a2 where
a1, a2 = 1, 2, 3, 4; µ, ν = 1, 2, 3, 4, and a momentum piece ωa5

µ Γa5 = 1
l V

a
µ Pa,

where V a is the physical vielbein field, l is the de Sitter/Anti de Sitter throat
size, and Pa is the momentum generator whose indices span a = 1, 2, 3, 4. One
may proceed in the same fashion in the Clifford algebra Cl(3, 2), Cl(4, 1), ....
case. The poly-momentum generator corresponds to those poly-rotations with
a component along the 5-th direction in the internal space.

Therefore, one may assign
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Γ5 = P0; Γa5 = l Pa, a = 1, 2, 3, 4; Γa1a25 = l2 Pa1a2 , a1, a2 = 1, 2, 3, 4

Γa1a2a35 = l3 Pa1a2a3 , a1, a2, a3 = 1, 2, 3, 4

Γa1a2a3a45 = l4 Pa1a2a3a4 , a1, a2, a3, a4 = 1, 2, 3, 4; (3.3)

In this way the 16 components of the (noncommutative) poly-momentum opera-
tor PA = P0, Pa, Pa1a2 , Pa1a2a3 , Pa1a2a3a4 are identified with those poly-rotations
with a component along the 5-th direction in the internal space. A length scale
l is needed to match dimensions.

P0 does not transform as a Cl(3, 2), Cl(4, 1) algebra scalar, but as a vector.
Pa does not transform as a Cl(3, 2), Cl(4, 1) vector but as a bivector. Pa1a2

does not transform as Cl(3, 2), Cl(4, 1) bivector but as a trivector, etc.... What
about under Cl(3, 1) transformations ? One can notice [Γab,Γ5] = [Γab, P0] = 0
when a, b = 1, 2, 3, 4. Thus under rotations along the four dimensional subspace,
Γ5 = P0 is inert, it behaves like a scalar from the four-dimensional point of view.
This justifies the labeling of Γ5 as P0. The commutator

[Γab, Γc5] = [Γab, l Pc] = −ηacΓb5 + ηbcΓa5 = −ηac l Pb + ηbc l Pa (3.4)

so that Γc5 = lPc does behave like a vector under rotations along the four-dim
subspace. Thus this justifies the labeling of Γc5 as lPc, etc...

To sum up, one has split the Cl(3, 2), Cl(4, 1) gauge algebra generators into
two sectors. One sector represented byM which comprises poly-rotations along
the four-dim subspace involving the generators

1; Γa1 ; Γa1a2 ; Γa1a2a3 ; Γa1a2a3a4 , a1, a2, a3, a4 = 1, 2, 3, 4. (3.5)

and another sector represented by P involving poly-rotations with one coordi-
nate pointing along the internal 5-th direction as displayed in (2.8).

Thus their commutation relations are of the form

[P, P] ∼ M; [M, M] ∼ M; [M, P] ∼ P. (3.6)

which are compatible with the commutators of the Anti de Sitter, de Sitter
algebra SO(3, 2), SO(4, 1) respectively. To sum up, we have decomposed the
Cl(3, 2), Cl(4, 1) gauge connection one-form in a 4D spacetime as

Aµ dxµ = AI
µΓI dxµ =

(
ΩA

µ ΓA + EA
µ PA

)
dxµ; ΓA ⊂M, PA ⊂ P (3.7)

The components of the generalized curvature 2-form are defined by

Ra1a2
µ ν = ∂[µ Ωa1a2

ν] + Ωm
µ Ωr

ν < [γm, γr] γa1a2 > + Ωmn
µ Ωrs

ν < [γmn, γrs] γa1a2 > +

Ωmnp
µ Ωrst

ν < [γmnp, γrst] γa1a2 > + Ωmnpq
µ Ωrstu

ν < [γmnpq, γrstu] γa1a2 > +
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Ωmnpqk
µ Ωrstuv

ν < [γmnpqk, γrstuv] γa1a2 > . (3.8)

where the brackets < [γmn, γr] γa >,< [γmnpq, γrst] γa > indicate the scalar
part of the product of the Cl(4, 1, R), Cl(3, 2, R) algebra elements; i.e it extracts
the Cl(4, 1, R), Cl(3, 2, R) invariant contribution. For example,

< [γmn, γr] γa > = < −ηmr γn γa > + < ηnrγmγa > = −ηmr δa
n + ηnr δa

m.
(3.9)

The standard curvature tensor is given by

Ra1a2
µ ν = ∂[µ Ωa1a2

ν] + Ωmn
µ Ωrs

ν < [γmn, γrs] γa1a2 > . (3.10)

which clearly differs from the modified expression in (3.8). Since the indices
m,n, r, s in general run from 1, 2, 3, 4, 5 the standard curvature two-form be-
comes

Ra1a2
µν dxµ ∧ dxν = dΩa1a2 + Ωa1

c ∧ Ωca2 − η55 Ωa15 ∧ Ωa25 =

dΩa1a2 + Ωa1
c ∧ Ωca2 − η55

1
l2

V a1 ∧ V a2 ; Ωa5 =
1
l
V a (3.11)

where the vielbein one-form is V a = V a
µ dxµ. In the l →∞ limit the last terms

1
l2 V a1 ∧ V a2 in (3.11) decouple and one recovers the standard Riemmanian
curvature two-form in terms of the spin connection one form ωa1a2 = ωa1a2

µ dxµ

and the exterior derivative operator d = dxµ∂µ. From (3.11) one infers that
a vacuum solution Ra1a2

µν = 0 in de Sitter/ Anti de Sitter gravity leads to the
relation

Ra1a2(ω) ≡ dωa1a2 + ωa1
c ∧ ωca2 =

1
l2

η55 V a1 ∧ V a2 (3.12)

which is tantamount to having a constant Riemannian scalar curvature in 4D
R(ω) = ±(12/l2) and a cosmological constant Λ = ±(3/l2); the positive (nega-
tive) sign corresponds to de Sitter (anti de Sitter space) respectively ; i.e. the
de Sitter/ Anti de Sitter gravitational vacuum solutions are solutions of the
Einstein field equations with a non-vanishing cosmological constant.

A different approach to the cosmological constant problem can be taken as
follows. The modified curvature tensor in (3.8) is

Ra1a2
µ ν = Ra1a2

µν + extra terms =

dωa1a2 + ωa1
c ∧ ωca2 − η55

1
l2

V a1 ∧ V a2 + extra terms (3.13)

The extra terms in (3.13) involve the second and third lines of eq-(3.8). The
vacuum solutions Ra1a2

µν = 0 in (3.13) imply that

dωa1a2 + ωa1
c ∧ ωca2 =

1
l2

η55 V a1 ∧ V a2 − extra terms. (3.14)
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Consequently, as a result of the extra terms in the right hand side of (3.13)
obtained from the extra terms in the definition of Ra1a2

µν in (3.8), it could be
possible to have a cancellation of a cosmological constant term associated to
a very large vacuum energy density ρ ∼ (LPlanck)−4; i.e. one would have an
effective zero value of the cosmological constant despite the fact that the length
scale in eq-(3.14) might be set to l ∼ LPlanck.

For instance, one could have a cancellation (after neglecting the terms of
higher order rank in eq-(3.14) ) to the contribution of the cosmological constant
as follows

Ωm
µ Ωn

ν < [γm, γr] γa1a2 > + Ωm5
µ Ωr5

ν < [γm5, γr5] γa1a2 > = 0 ⇒

Ωa1 ∧ Ωa2 − η55 Ωa15 ∧ Ωa25 = 0. (3.15a)

Since the Cl(3, 2) algebra corresponds to the Anti de Sitter algebra SO(3, 2)
case one has

η55 = −1⇒ V a

l
= Ωa5

µ = ± i Ωa
µ (3.15b)

Hence, one can attain a cancellation of a very large cosmological constant term
in (3.15) if Ωa5

µ = ±i Ωa
µ. In the de Sitter case the group is SO(4, 1) so η55 = 1

and one would have instead the condition Ωa5
µ = ±Ωa

µ leading to a cancellation
of a very large value of the cosmological constant when l = LPlanck. Having an
imaginary value for Ωa

µ in the Anti de Sitter case fits into a gravitational theory
involving a complex Hermitian metric Gµν = g(µν) + ig[µν] which is associated
to a complex tetrad Ea

µ = 1√
2
(ẽa

µ + if̃a
µ) such that Gµν = (Ea

µ)∗Eb
νηab and the

fields are constrained to obey ẽa
µ = V a

µ ; if̃a
µ = iV a

µ = ∓l Ωa
µ. For further details

on complex metrics (gravity) in connection to Born’s reciprocity principle of
relativity [40], [41] involving a maximal speed and maximum proper force see
[42] and references therein.

The modified torsion is

T a
µ ν = Ra5

µ ν = ∂[µ Ωa5
ν] +

Ωm
µ Ωr

ν < [γm, γr] γa5 > + Ωmn
µ Ωrs

ν < [γmn, γrs] γa5 > +

Ωmnp
µ Ωrst

ν < [γmnp, γrst] γa5 > + Ωmnpq
µ Ωrstu

ν < [γmnpq, γrstu] γa5 > +

Ωmnpqk
µ Ωrstuv

ν < [γmnpqk, γrstuv] γa5 > . (3.16)

Form (3.16) one can see that the Cl(3, 2), Cl(4, 1)-algebraic expression for
the torsion T a

µ ν contains many more terms than the standard expression for
the torsion in Riemann-Cartan spacetimes

T a
µν dxµ ∧ dxν = Ra5

µν dxµ ∧ dxν = l (d Ωa5 + Ωa
b ∧ Ωb5 ) =

d V a + Ωa
b ∧ V b. (3.17)
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The vielbein one-form is V a = V a
µ dxµ = l Ωa5

µ dxµ and the spin connection
one-form is Ωab = Ωab

µ dxµ (it is customary to denote the spin connection by ωab
µ

instead).
The analog of the Abelian U(1) field strength sector is F0

µν = ∂[µ Ω0
ν]. The

other relevant components of the Cl(3, 2)-valued gauge field strengths/curvatures
FA

µν (RA
µν) are

Ra
µν = ∂[µ Ωa

ν] + Ωmn
µ Ωr

ν < [γmn, γr] γa > + Ωmnpq
µ Ωrst

ν < [γmnpq, γrst] γa > .
(3.18)

A quadratic Cl(3, 2), Cl(4, 1) gauge invariant action in a 4D spacetime in-
volving the modified curvature RA

µν and torsion terms T A
µν is given by∫

d4x
√
|g| [ (R0

µν)2 + (Ra
µν)2 + (Ra1a2

µν )2 + ........ (Ra1a2a3a4
µν )2 +

(R5
µν)2 + (Ra5

µν)2 + (Ra1a5
µν )2 + ........ (Ra1a2a35

µν )2 + (Ra1a2a3a45
µν )2 ] (3.19)

The modifications to the ordinary scalar Riemmanian curvature R(ω) is
given in terms of the inverse vielbein V µ

a by the expression Ra1a2
µν V

[µ
[a1

V
ν]
a2]

which
is comprised of R(ω), plus the cosmological constant term , plus the extra terms
stemming from the additional connection pieces in (3.8)

Ωa1 ∧ Ωa2 , Ωa1
b1b2
∧ Ωb1b2a2 , ......., Ωa1

b1b2b3b4
∧ Ωb1b2b3b4a2 (3.20)

One can introduce an SO(3, 2), SO(4, 1)-valued scalar multiplet φ1, φ2, ....., φ5

and construct an SO(3, 2), SO(4, 1) invariant action of the form

S =
∫

M

d4x
(

φ5 Rab
µν Rcd

ρσ + φa Rbc
µν Rd5

ρσ + ........
)

εabcd5 εµνρσ. (3.21)

As described above the modified curvature two-form Rab
µν dxµ∧dxν is given by

the standard expression Rab
µν(ω) dxµ∧dxν+ 1

l2 V a
µ dxµ∧V b

ν dxν plus the addition of
many extra terms as shown in (3.8, 3.20). Also the modified torsion Ra5

µν dxµ ∧
dxν in (3.16) is given by the standard torsion expression plus extra terms.
Therefore, by a simple inspection, the action (3.21) contains many more terms
than the Macdowell-Mansouri-Chamseddine-West gravitational action given by
eq-(2.20).

An invariant action linear in the curvature is

S =
1

2κ2

∫
d4x

√
|g| Ra1a2

µν V
[µ
[a1

V
ν]
a2]

; gµν = V a
µ V b

ν ηab, |g| = |det gµν |.

(3.22)
where κ2 = 8πGN , GN is the Newtonian gravitational constant, V µ

a is the
inverse vielbein and the components of the curvature two-form are antisym-
metric under the exchange of indices by construction Ra1a2

µν = −Ra1a2
νµ , Ra1a2

µν =
−Ra2a1

µν . The action (3.22) contains clear modifications to the Einstein-Hilbert
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action due to the extra terms stemming from the corrections to the curvature
as shown by eq-(3.8, 3.20).

The generalized gravitational theory based on the Cl(4, 1, R) ∼ Cl(4, C) and
Cl(3, 2, R) algebras, must not be confused with a Metric Affine Gravitational
(MAG) theory based on the complex affine group GA(4, C) = GL(4, C) ×s C4

given by the semi-direct product of GL(4, C) with the translations group in C4

and involving 32 + 8 = 40 generators. The real MAG based on GA(4, R) =
GL(4, R)×s R4 is a very intricate non-Riemannian theory of gravity with prop-
agating non-metricity and torsion [16]. The most general Renormalizable La-
grangian of MAG contains a very large number of terms. We refer to [16] for
an extensive list of references. The rich particle classification and dynamics
in GL(2, C) Gravity was analyzed by [37]. In addition to orbits associated
with standard massive and massless particles, a number of novel orbits can be
identified based on the quadratic and quartic Casimirs invariants of GL(2, C).
Noncommutative generalizations of GL(2, C) gravity based on star products
and the Seiberg-Witten map should be straightforward [19].

The Cl(5, C) algebra-valued gauge field theory defined over a 4D real space-
time raises the possibility of embedding this gauge theory into one defined over
the full fledged Clifford-space (C-space) associated with the tangent space of a
complexified 5D spacetime. Namey, having the ordinary one-forms (AI

µ ΓI) dzµ

of a complexified 5D spacetime extended to polyvector-valued (AI
M ΓI) dZM

differential forms defined over the complex Clifford-space (C-space) associated
with the complexified Cl(5, C) algebra. ZM is a polyvector valued coordinate
corresponding to the complex Clifford-space. Since a complexified 5D spacetime
has 10 real-dimensions, this is a very suggestive task due to the fact that 10-
dimensions are the critical dimensions of an anomaly-free quantum superstring
theory [30]. Since twistors admit a natural reformulation in terms of Clifford
algebras [38], and in section 2 we displayed the realization of the superconformal
su(2, 2|1) algebra generators explicitly in terms of Clifford algebra generators
[34], it is very natural to attempt to reformulate Witten’s twistor-string picture
[39] of N = 4 super Yang-Mills theory from the perspective of Clifford alge-
bras, mainly because C-space is the natural background where point particles,
strings, membranes, ... , p-branes propagate [18] .
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