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Abstract: A quantisation-field model has been developed to explain the 

general dependence of angular momentum on mass squared of astronomical 

bodies. The gravito-cordic field is proposed as a real controlling force acting 

azimuthally, in harmony with normal gravity acting radially, to encourage 

long-term stability of astronomical systems. The quantisation of the field 

involves a gravitational de Broglie wavelength and associated force, which 

organises material into stable orbits.  Optimum coupling between the field and 

orbiting material occurs for a specific velocity and spatial dimensions, as 

derived by way of electromagnetic theory. For every system, the atomic fine 

structure constant )137/1( ≈α  has appeared as the major factor. 
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1.   Introduction 

It will be shown that numerical commensurabilities can be generated in 

astronomical systems if we assume that a quantising gravito-cordic field is emitted by 

orbiting and rotating masses. The original derivation of this field (Wayte 2010, 

hereinafter Paper 1) [1], described how it propagates around orbits, contributing to the 

binding and long-term stability of rotating systems. The quantised field model is a 

mathematical analogy to the Bohr model of the atom, and we shall see the frequent 

appearance of the inverse atomic fine structure constant )137( 1 ≈α− , which suggests a 

deep connection between electromagnetism and gravity. Detailed explanation of 

quantisation in terms of electromagnetic theory is to be given in Section 3, but practical 

inferences will be applied first to the observations in Section 2. Several aspects have 

already been given in Paper 1 for galactic spirals and rings. Logically, quantisation 

itself implies that material was moved forcibly into certain orbits and held there against 

the perturbing forces which must have existed during the creation period. Thus the 

infinite variety of spins and orbits and classes available according to Newtonian theory 

was reduced to those which obey a few rules extrapolated from atomic theory. 

 

2.   The J proportional to M2 law 

Figure 1, taken from Paper 1, shows how galaxy-clusters, spiral galaxies, globular 

clusters, binary stars, main sequence stars and planetary bodies fit the J proportional to 

M2 law. Although all these individual classes do not lie on the main line, they each 

have their own parallel line, signifying a special proportionality constant. We shall try 

to account for this observed degree of order in each astronomical class by proposing 

that they have a quantisation-field which governs their angular momentum. It also 

accounts for the conspicuous absence of objects between the classes. The field is 

therefore proposed as a real controlling force, acting in addition to normal gravity.  
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Fig.1    The angular momentum versus mass relationship for various astronomical 

bodies, showing a theoretical average line for J = 2.00 x 10-15 M2 over 40 decades. 

Data taken from Allen (1973) [3]. 

 

Within each of these classes the angular momentum is proportional to mass 

squared, for no known classical reason. The constant of proportionality varies from 

class to class, and will be found to correspond to a preferred quantisation wavelength in 

each case. Then the number of wavelengths around a given body has a characteristic 

value or increases monotonically with body size. That is,  

   2πr = Nλ = N(h / mjv)    ,                                                        (2.1) 

where N is usually an integer, mj  is an effective mass characteristic of the quantisation 

species (electron, meson, proton, hydrogen-electron) to be derived, h is Planck's 

constant; therefore λ is the gravitational de Broglie wavelength for mj travelling at 

velocity v. This explanation is unique in establishing some control in the creation of 

astronomical bodies as a whole. The quantisation force appears relatively weak and is 

easily destroyed by turbulence, which results in a scatter range of sizes in each class. 

However, for the larger systems, the ratio (2πrmax / λ) only varies by a factor of 3 from 
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the mean value. Definite gaps exist between the classes because suitable quantisation 

rules cannot be established there. Again, no classical explanations exist for these gaps, 

nor for the particular sizes of bodies. Characteristic features of galaxies and galaxy-

clusters have already been covered in Paper 1, so the remaining classes will be analysed 

here. 

A little preliminary theory, common to these classes, will be developed first. We 

wish to relate the angular momentum to the square of the body mass through some 

quantisation law. If angular momentum and mass are approximately conserved during 

the formation of the body, any law derived for present day bodies must reflect some 

conditions in the original gas clouds. Let those conditions be: 

   RVGM 2=   , and  2MpMVR)5/3(J ′==   ,  (2.2) 

where V is the rotational velocity at radius R, and p′ is a constant. Immediately, it 

follows that V must have been a preferred ideally constant velocity in each class. This 

will be interpreted to imply that there was a particular gravitational de Broglie 

wavelength, defined as: 
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where mj = ms(e2/Gm2)-1/2 is a characteristic mass of the real source particle mass ms 

emitting the gravito-cordic field. h is Planck’s constant and (e2/Gm2) is the electronic 

ratio of electric/gravitational force. Then an expression which describes the practical 

influence of λG on the orbit is: 

   
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where (GMmj /ћc) is the effective gravitational strength constant, analogous to the 

electromagnetic strength constant (e2/ћc = 1/137); and K = c/V is a constant for each 

particular class of object, when V is the preferred velocity. On Fig.1, the main line 

corresponds to a preferred velocity of [201kms-1 = (4π/1372)c] as described in Paper 1. 

The analogous equation in the first Bohr orbit of hydrogen is of course: 
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2.1   Stars 

 Let us consider normal dwarf and giant stars as a function of spectral class with 

regard to mass M, radius R and rotation as listed by [3]. For the best fit, the proton mass 

will be introduced for mj in Eq.(2.3), where: 
   mjp = mp(e2/Gm2)-1/2  .                                                            (2.6) 

Then Table 1 lists (2πR/ λGp) spanning unity, and (GMmjp /ћc) spanning 1/137. The 

cross-over points are at spectral type A8.5 for dwarfs and F7.5 for giants, whereupon: 

   
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
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1371

R2 jp

pG h
        .    (2.7)  

The fact that (GMmjp /ћc ≈ 1/137) for the proton/star entity, is exceptional evidence for 

the electromagnetic nature of gravitation. Equation (2.7) is directly analogous to the 

first Bohr orbit in the hydrogen atom; although stars are now in hydrostatic 

equilibrium. 

 

 Table 1. Quantisation values for dwarf and giant stars. 
 

Dwarf  
stars 

  Giant  
stars 

  

 
Type 

Ratio 
2πR/λGp 

Strength 
factor 
GMmjp/ћc 

 Ratio 
2πR/λGp 

Strength 
factor 
GMmjp/ћc 

O5 18.26 18.74/137 B0 8.14 7.99/137 
B0 8.20 7.99 /137 B5 6.49 3.33/137 
B5 4.52 3.33 /137 A0 4.78 1.67/137 
A0 2.70 1.67 /137 A5 3.31 1.03/137 
A5 1.54 1.03 /137 F0 2.34 0.84/137 
F0 0.69 0.84 /137 F5 1.29 0.66/137 
F5 0.16 0.665/137 G0 0.68 1.18/137 
G0 0.068 0.505/137 G5 0.65 1.49/137 
G5 0.061 0.439/137 K0 1.03 1.87/137 
K0 0.055 0.38 /137 K5 1.63 2.36/137 
K5 0.048 0.33 /137    

 
It is interesting to note that if there was an original cloud of uniform density 

which condensed into many stars, then the many protostellar cloud circumferences 

would have varied either side of the mean value by less than a factor 2, from stellar 

type O5 to K5. This could signify effective control that the quantisation field had 

during the star formation period. 



 

6

Given that a star’s equatorial orbit is being considered stabilised in the above 

analysis, it is possible that the star’s bulk may also be stabilised. Bulk mixing would 

probably be impeded to some extent, so evolution of the star might be slower. 

 

2.2   Planets 

 In the case of planetary spins, π-mesons of approximately 250 electron masses 

will be taken as the source of the quantisation field, so mass mj in Eq.(2.3) is to be 

given by: 
    mjπ  ≈ mπ(e2/Gm2)-1/2  .     (2.8) 

 
 Table 2. Quantisation values for the planets. 
 

Planet Ratio 
2πR/λCGπ 

Strength 
factor 
GMmjπ/ћVs 

Mercury 0.77≈3/4 1.05/137 
Venus 1.93≈2 26.5/137 
Earth 2.02≈2 0.13/137 
Mars 1.08≈1 0.026/137 
Jupiter 22.6 1.47/137 
Saturn 19.1 0.55/137 
Uranus 7.80 0.21/137 
Neptune 8.00 0.36/137 
Pluto 1.02≈1 0.24/137 

 

However, because the gravitational de Broglie wavelength, ( sj Vm/hG ππ =λ ), is large 

compared with the planetary circumference, the gravitational Compton wavelength 

( cm/h jCG ππ =λ ) will be used instead; see 2πR/λCGπ in Table 2. For rotational stability, 

this quotient should ideally be an integer or simple fraction, and follows from 

modifying Eq.(2.4): 

   




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=
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π s

j

V

GMm
K

R2

CG h
     .                                             (2.9) 

Here the gravitational strength factor normalised for spin velocity (GMmjπ /ћVs) is seen 

to be clustered around 1/137, for no known classical reason given that the planets are 

now either solid or in hydrostatic equilibrium. It is possible that quantisation fields 

helped produce the present Solar System from a gaseous nebula and continue to 
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stabilise the orbiting planets, see Wayte (1982) [2]. Binary stars and clusters also obey 

the equations of quantisation as follows.  

 

2.3   Binary stars 

 Many stars are members of binary systems, so it is interesting to know how 

these are stabilised in orbit by a quantised gravito-cordic field. Table 3 lists the relevant 

parameters derived from [3] for visual and eclipsing binaries. For orbiting bodies, the 

quantisation law changes from Eq.(2.4) to: 
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where M=(M1 + M2 ),  λG1,2  = h / mjV1,2  , and K′ = p′c /G. The meson and proton 

masses have been used for mj in eclipsing and visual binaries respectively, as they give 

the best values for the strength factor (GMmj /ћc ~ 1/137), and orbit fitting (2πR/λG). 

Average radii in elliptical orbits have been used.  

Table 3.  Quantisation values for eclipsing and visual binaries.  
 

Eclipsing  
binary 

Ratio 
2πR1  

λGπ1 

Ratio 
2πR2  

λGπ2 

Strength 
factor 

GMmjπ  

ћc 

Visual 
 binary 

Ratio 
2πR1  
λGp1 

Ratio 
2πR2  
λGp2 

Strength 
factor 
GMmjp  

ћc 
        
σAq1 0.864 1.369 0.79/137 ηCas 1.52x137 4.00x137 0.715/137 
WW Aur 0.515 0.526 0.25   " O2 EriBc 0.485  " 2.22   " 0.311/137 
AR Aur 0.703 0.864 0.31   " ξBoo 1.61    " 2.06   " 0.753/137 
β Aur 0.704 0.755 0.30   " 70 Oph 1.06    " 2.03   " 0.730/137 
yz Cas 0.339 1.440 0.32   " αCenAB 1.37    " 2.07   " 0.923/137 
AR Cas 0.305 4.800 0.97   " Sirius 0.739  " 4.00   " 1.53 /137 
AH Cep 1.593 2.151 2.00   " Kru60 0.234  " 0.811 " 0.202/137 
αCrB 0.263 2.074 0.22   " Procyon 0.455  " 3.33   " 1.13 /137 
AR Lac 0.394 0.400 0.17   " ζHer 0.880  " 1.65   " 0.871/137 
U Oph 0.803 1.043 0.65   " 85Peg 1.01    " 1.06   " 0.763/137 
VV Ori 0.415 3.613 1.56   " Ross614AB 0.123  " 0.378 " 0.104/137 
AF Per 0.811 1.042 0.62   " Fu46 0.322  " 0.496 " 0.264/137 
ξ Phe 0.383 0.781 0.33   "  Averages 0.817x137 2.01x137 0.692/137 
RS Sgr 0.256 0.569 0.15   "     
R CMa 0.016 0.073 0.039 "     
RZ Cas 0.085 0.695 0.16   "     
U Cep 0.255 1.093 0.28   "     
U Her 0.283 2.256 0.69   "     
δ Lib 0.192 1.075 0.24   "     
β Per 0.086 2.270 0.40   "     
V Pup 0.940 2.700 1.71   "     
U Sge 0.224 2.514 0.57   "     
V356 Sgr 0.710 4.625 1.08   "     
V505 Sgr 0.194 0.718 0.23   "     
µ´ Sco 0.957 2.217 1.50   "     
λ Tau 0.202 1.263 0.21   "     
TX UMa 0.125 1.361 0.24   "     
RS Vul 0.200 2.160 0.39   "     
Averages 0.458 1.659 0.58/137     
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 It can be seen that the visual binaries differ as a group from the eclipsing 

binaries in that the orbit length relative to the gravitational de Broglie wavelength is 

consistently around 137 times larger. On Fig.1, the short line through the visual binaries 

corresponds to a preferred nominal velocity of c/(4x1372) in Eq.(2.2). Several of the 

ratios 2πR/λGπ for the eclipsing binaries are small, such that a proton mass instead of a 

meson mass for mj would be much better suited (x7) to bring the ratio near to unity. 

Both mesons and protons could assist in the quantisation process, at the same time. 

From Table 3 it is plain that the various ratios of orbit length to gravitational de 

Broglie wavelength are around unity or 137, and the strength factors around 1/137; so 

the quantisation phenomenon must have selected these from the continuum of classical 

dimensions.  

 

2.4    Globular clusters, open clusters and T-associations.  

 Globular cluster dimensions fit the gravitational de Broglie wavelength emitted 

by the bound electron within the hydrogen atom. This wavelength is defined as: 

   













=λ

Vm
h

137
je

GH   ,                                                  (2.11) 

where mje = m(e2/Gm2)-1/2 , for electron mass m. Table 4 lists the relevant parameters of 

several globular clusters derived from [3]. The ratio of the cluster circumference 2πR to 

the wavelength λGH is scattered around 137, and the gravitational strength factor is of 

the order 1/137. It therefore looks as though the quantisation field from hydrogen 

governed the size of the globular clusters at some stage. On Fig.1, the short line for 

globular clusters corresponds to a preferred velocity of c/(1372) in Eq.(2.2). 

The long-term stability of globular clusters may be assisted by detailed control of 

stars throughout the body. Given the average result (2πR/λGH ~137), then around 137 

quantised interior orbits will also exist due to hydrogen-electrons. 
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 Table 4. Quantisation values for some globular clusters,  
   open clusters and T-associations.  
      

Globular 
clusters 

Ratio 
2πR 
λGH 

Strength 
factor 
GMmje/137 
ћc 

Open  
clusters 

Ratio 
2πR 
λGH 

Strength 
factor 
GMmje/137 
ћc 

      
M3 
M5 

0.53x137 
0.27   " 

0.39/137 
0.11   " 

M103 0.54 1.05/1373 
N752 0.76 2.10   " 

M4 0.24   " 0.11   " hPer 3.06 10.5   " 
M13 0.58   " 0.56   " XPer 2.56 8.43   " 
M92 0.38   " 0.26   " Stock2 1.08 4.21   " 
M22 2.56   " 13.1   " M34 0.68 2.10   " 
M15 2.62   " 11.2   " Perseus 1.37 2.81   " 
N104 0.74   " 0.99   " Pleiades 0.97 4.21   " 
Averages 0.99x137 3.34/137 Hyades 0.99 3.51   " 
   M38 1.17 3.51   " 
   M36 0.76 1.76   " 
   M37 1.76 7.01   " 
   SMon 0.84 2.10   " 
T- Ratio Strength 

factor 
τCMa 0.42 1.05   " 

associations 2πR GMmje/137 Praesepe 0.88 3.51   " 

 λGH  ћc   oVel 0.24 0.52   " 
   M67 0.79 2.81   " 
Tau T1 0.46 0.42/1373 θCar 0.38 0.88   " 
Tau T2 0.56 0.35   " N3532 1.33 4.54   " 
Aur T1 0.71 0.45   " Sco-Cen 4.64 3.86   " 
Ori T1 1.62 1.40   " Coma 0.74 1.40   " 
Ori T2 4.83 14.0   " KCru 0.48 1.05   " 
Mon T 13.38 4.90   " Ursa Maj 1.17 3.51   " 
Ori T3 2.21 3.15   " M21 0.56 1.40   " 
Sco T1 1.41 1.05   " M16 0.62 1.40   " 
Del T1 1.58 0.87   " M11 0.97 2.81   " 
Per T2 0.31 0.56   " M39 0.28 0.70   " 
Averages 2.71 2.72/1373 Averages 1.11 3.06/1373 

 
 

Open clusters and T-associations have diameters about half that of globular 

clusters, with masses 1372 times less on average. Nevertheless, the gravitational de 

Broglie wavelengths of the hydrogen-electron give very good fits to cluster 

circumferences, see 2πR/λGH in Table 4. The corresponding gravitational strength 

factor is 1372 times less typically. It is possible that the definite step in (2πR/ λGH), 

from 1 in open clusters to 137 in globular clusters, accounts for the dearth of 

intermediate-sized bodies. According to Newtonian theory, there is no reason for two 

such definite star cluster species to exist within an infinite continuum of sizes. On 

Fig.1, the short line for open clusters corresponds to a preferred velocity of c(4/1373) in 

Eq.(2.2). 
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3. Theory of quantisation of the gravito-cordic field 

 The previous section has shown that some astronomical phenomena may be 

explained by proposing the existence of a quantising gravito-cordic field. This field is 

emitted around orbits by the orbiting material, serving to increase the overall radial 

binding force and also to organise material and encourage long-term stability in 

preferred orbits.  Astronomical features explained so far are: flat rotation curves in disc 

galaxies, creation and maintenance of bar and spiral structures, rings of stars within the 

discs, the universal angular momentum / mass squared relationship, and the general 

masses and segregation of objects. 

The problem is to see how the gravito-cordic field generates a real ponderomotive 

force, which is physically capable of coercing material into specific orbits and 

velocities. Rules covering the quantisation aspect of the field will be based upon the 

Bohr atom and de Broglie hypothesis.  The effective wavelength of the field is actually 

to be the gravitational equivalent of the atomic de Broglie wavelength: 
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
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Here, ms is the mass of the emission source particle which couples best to the size of 

the astronomical object; for example, proton for stars, pion for binaries, electron for 

globular clusters and galaxies. h is Planck’s constant, v is the orbital velocity, and 

(e2/Gm2) is the electronic ratio of electromagnetic to gravitational force.  The 

quantisation field can be optimised around galactic orbits for a particular material 

velocity.  This will appear to be equivalent to tuning a waveguide system to match a 

microwave source.  Various properties of the field, which were arbitrarily introduced 

into the Paper 1, will now be derived in detail.  
By analogy with the Compton wavelength in electromagnetic theory it is proposed 

that the gravito-cordic field quanta emitted from particles of mass mo have a 

gravitational wavelength: 
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where mjo = mo(Gm2/e2)1/2 acts like a characteristic mass, but is not an actual particle 

mass. The wave amplitude at the particle, as seen by a local observer may be expressed 

as: 

   [ ]ooo t2iexpyy πν−=          ,                                                  (3.3)  

where frequency oo CG/c λ=ν . If, however, the particle has a velocity v in the x 

direction relative to a coordinate observer, the wave amplitude at the particle as seen by 

the coordinate observer is, by application of the Lorentz transformation: 

   
( )

( ) 2/122

2
o

o
c/v1

c/vxt2i
expyy

−

−πν−
′=′     .                                      (3.4a) 

This may be written as: 

   ( )[ ]x~t2iexpyy o υ−ν′π−′=′            ,                                      (3.4b) 

where ( ) 2/122
o c/v1

−
−ν=ν′   and 2c/v~ ν′=υ   . 

A Compton gravitational quantum emitted by a particle in the direction of motion in 

a circular orbit would be measured by a stationary coordinate observer as having a 

Doppler-frequency ( )c/v1+ν′ . Alternatively, a quantum emitted backwards would 

have a coordinate Doppler-frequency ( )c/v1−ν′ . Since these two quanta travel around 

the circular orbit and may interfere, the net amplitude at distance x from any designated 

origin on the orbit could be given as: 

 ( )( ){ }[ ] ( )( ){ }[ ]c/v1/xt2iexpyc/v1/xt2iexpyy oo −λ′+ν′π−++λ′−ν′π−=      

    ( ){ }[ ] { }[ ]x~t2iexp/xtc/v2cosy2 o υ−ν′π−λ′−ν′π=       .                             (3.5) 

Here ν′=λ′ /c , and t starts from zero as the particle crosses the origin. This is a 

circularly polarised wave of fundamental frequency in the exponential term: 

   ( ) ( )h/cmh/cc/v1m 2
j

22/122
jo =







 −=ν′
−

       ,               (3.6) 

where mj = mjo(1-v2/c2)-1/2 is the increased relativistic mass. In the cosine term, the beat 

frequency is ( )c/vν′ , and the beat wavelength is therefore: 

   ( ) Gvm/h~/1c/v/c j λ==υ=ν′=λ            ,                          (3.7a) 

which is the gravitational de Broglie wavelength. Hence, by superimposing or 

interfering two Doppler-shifted Compton quanta in a circular orbit, we get a standing 

wave pattern rotating around the orbit with the particle, and a simple interpretation of 
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the de Broglie wavelength υ=λ ~/1G . The individual Compton quanta propagate around 

the orbit at the velocity of light but we can show that the beats naturally stay fixed 

relative to the orbiting particle source, as follows. From Eq.(3.5) the condition for a 

beat maximum, for a given beat number s, is: 

   ( ){ } π=λ′−ν′π s/xtc/v2   .               (3.7b)   

Hence by differentiation, the beat envelope velocity is: 

   ( ) vc/vdt/dx =ν′λ′=     .                                                        (3.8) 

At an anti-node, a particle receives the two Compton quanta in phase with its 

emission so there is resonance at the particle. All particles around the orbit would like 

to align themselves so as to emit coherently because this is a lowest energy state. 

Furthermore, the amplitude Eq.(3.5) will be single-valued when λ′λ= /v/c G = integer 

n, if the orbit circumference is an integral number of de Broglie wavelengths. Then the 

amplitude repeats itself spatially every distance Gλ . 

Now, even if the emission from several particles around an orbit is totally 

incoherent, the resultant amplitude from q particles will, from Eq.(3.5) be: 

  ( ){ }[ ] { }[ ]x~t2iexp/xtc/v2cosy2qy o
2/1

q υ−ν′π−ϕ+λ′−ν′π≈  ,    (3.9) 

where ϕ  is some arbitrary constant phase, for constant velocity of all the particles. By 

convenient choice of origin, ϕ  may be set to zero. The average intensity Iq of the net 

quantisation-field due to q incoherent particle emitters is proportional to q, but there 

will be a superimposed intensity modulation at frequency )/c2(2 GG λ=ν  proportional 

to q1/2. That is, from Eq.(3.9) we get: 

   ( ){ }[ ]( ) 2

q
qoq /xtc/v2cosy2I ∑ ϕ+λ′−ν′π=    

       ( ) ( ) ( ){ }[ ]q
2

o
2/12

o /xtc/v22cosy2qy2q ϕ+λ′−ν′π+≈   .               (3.10)  

This intensity profile normally travels round the orbit at velocity v. It appears from the 

galactic bar and spiral pattern data that there are two stable nodes per Gλ  so this 

implies that incoherent matter is guided towards the two intensity minima per Gλ  by 

some longitudinal radiation pressure gradient of Eq.(3.10). Since the intensity minima 
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are 2/Gλ  apart, and the radiation pressure gradient must change direction across a 

minimum or across a maximum, the resultant longitudinal force probably has the form: 

   ( ){ }[ ]f/xtc/v24cosFF 0RP ϕ+λ′−ν′π=        ,                      (3.11) 

which exhibits two stable points and metastable points per Gλ  along the orbit. An 

estimate of force magnitude could be made by arbitrarily letting it be proportional to 

the gravito-cordic field strength given in Paper 1, Eq.(3.6). The directional nature of 

quantisation-field emission (see Section 4.4) helps to increase the quantisation force, 

whatever the degree of coherence. 

It is to be noted that the wave phenomenon expressed by Eqs.(3.5) to (3.11) is 

entirely due to interference of real circularly polarised quanta. There is no actual de 

Broglie-type quantum, although the interference is characterised by the gravitational de 

Broglie wavelength and propagates at the velocity of light. Gravito-cordic field quanta 

are emitted by orbiting particles (electrons, for example), and exist as loops of material 

attached continuously to their particles.  

 

4.   Matching the gravito-cordic field to orbital parameters 

It will be shown that the quantised gravito-cordic field may be optimised in its 

propagation around galactic orbits for a certain material velocity. This is equivalent to 

tuning a waveguide system to match a microwave source. In Paper 1 it was shown how 

orbit lengths in disc galaxies are stable when they satisfy the de Broglie condition for 

hydrogen-electrons, )Nr2( GHλ=π ; but the actual orbital velocity is also important. 

 

4.1 Basic relationships 

The average rotational velocity V for flat rotation curves in Sa,b,c galaxies is of the 

order of 201kms-1. In addition, the universal J proportional to M2 law for astronomical 

bodies has a slope linked to this velocity; see Paper 1, Section 7. Consequently, this 

velocity is probably not random, especially as it has a special relationship to the 

velocity of light: 

   2
2

4
137

4
c

V201 πα=
π

=    ,     (4.1) 
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where )137/1c/e( 2 ==α h  is the atomic fine structure constant. Given that hydrogen-

electrons emit the controlling gravito-cordic field in galaxies, it is appropriate to 

operate initially in atomic units. Thus, every unit is referred to the hydrogen 1st Bohr 

orbit such that (e = m = ћ = v1 = r1 = 1 and c = 137v1). Then Eq.(4.1) may be expressed: 

   πα= 4
v

V

1

201    .      (4.2) 

Now, there is no established interpretation for this formula, but electric impedance is 

inversely proportional to velocity, so this may represent a ratio of impedances. Then the 

πα4  term on the right turns out equal to the value in atomic units of the characteristic 

impedance of electromagnetic radiation, (alias impedance of vacuum Z0 = Ω73.376 ; see 

Glazier and Lamont 1958, p133; [4]). For this interpretation, an atomic unit of 

resistance is defined as the unit potential (e/r1), divided by the unit of current e/(r1/v1), 

and will be named an atohm. That is: 

   
( )

( ) atohm0.1
v
1

v/r/(e
r/e

111

1 ==  ,              (4.3a) 

or in SI units: 

    ohms 4108 =
)v/r/(e

re/4

11

10







 πε
 .               (4.3b) 

It follows that: 

   0Zohms73.376atohms4 ==πα  ,    (4.4) 

All electromagnetic radiation exhibits electric and magnetic fields in the ratio E/H = Z0 

ohms. By inference then, the controlling gravito-cordic field from hydrogen-electrons is 

an electromagnetic phenomenon. So Eq.(4.2) is able to relate the de Broglie wavelength 

of a galactic electron moving at velocity 201kms-1 to this most fundamental impedance.  

Support for this special velocity-impedance relationship is illustrated in Figure 2 

where the hydrogen-electron's orbit around the proton p+ is aligned in the direction of 

galactic velocity V201 so that the electron describes a helix of pitch V201/v1 . Now, 

admittance is by definition the inverse of impedance and is equivalent to velocity in 

Eq.(4.3a); therefore, the admittance of electromagnetic radiation (Y0 = 1/Z0) is 

equivalent to a velocity V0 as shown in Figure 2b. It follows that along the helical 

trajectory we have a rather special arrangement: 
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0

1

1

201

V
v

v
V

tan ==θ  .                      (4.5a) 

Then, in terms of the impedances involved in the real electromagnetic interactions 

(where z1 = 1/v1 ), we get: 

   πα== 4
z
Z

Z
z

1

0

201

1    .               (4.5b) 

          

θ
θ

v1

V201 V0
p+

ve

v1

e
_

V201

ve

(a) (b)
 

Figure 2 (a) The electron in the first Bohr orbit of a hydrogen atom travelling around 

the galactic  orbit at velocity V201 describes a helical trajectory. (b) The instantaneous 

electron velocity is ve ,  with V201 and V0 occupying congruent triangles. 

 

To get this result, V0 had to be parallel to V201 , which is in the direction of net current 

flow and gravito-cordic field emission around the galactic orbit. Equation (4.5) is 

therefore taken to mean that at an orbit velocity of 201kms-1, the impedance of 

electromagnetic radiation is coupled to the hydrogen-electron impedance z1, and this 

optimises the emission and reception of gravito-cordic field quanta, analogous to a 

tuned helical radio antenna. 

 

4.2  Application to galaxies 

The next step is to apply this optimum propagation equation (4.5) directly to 

galactic structure. Practical units for the gravitational domain must be reinstated by 

putting mje = m(e2/Gm2)-1/2: then the gravitational de Broglie wavelength for hydrogen-

electrons (see Section 4.5) becomes  ])Gm/e(137)[mV/h( 2/122
201GH ×=λ , and r1 

becomes ])Gm/e(137[rr 2/122
1GH ×= . Equation (4.2) with (4.4) may now be written: 
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   πα=
















πλ
= 4

v
1

2/
r

Z
1GH

GH
0  atohms.   (4.6)  

Classical waveguide theory enables us to interpret this equation, (see [4], pp194, 

228). For a waveguide of dimensions a,b transmitting an H10 wave of guidewavelength 

gλ  and free space wavelength λ , the waveguide impedance is: 

   








λ

λ







π= g
g a

b
120Z    .     (4.7) 

Thus, for optimum coupling of a gravito-cordic field to such a galactic waveguide, Zg 

should probably be equal to Z0 . In the simplest case, let 2/GHg λ=λ  for intensity 

tuning, and GHr2π=λ  . As the radial separation of stable galactic orbits is πλ 2/GH , 

(Eq.(7.5) in Paper 1), let this define the waveguide width a. It follows that b = 2rGH is to 

be the effective waveguide height in Eq.(4.7). That is, each stable galactic orbit acts 

like a waveguide with dimensions defined by the hydrogen first Bohr radius and the 

gravitational de Broglie wavelength such that the waveguide impedance is optimally 

matched to Z0 for V = 201kms-1. The scatter of velocities around 201kms-1 for Sa,b,c 

galaxies indicates that the quantisation force is not strong enough to coerce the disc 

matter into perfect agreement with Eq.(4.6), but nevertheless there is no known 

classical reason why this particular average velocity should exist at all. 

 

4.3   Realisation of the de Broglie wavelength 

It has now been shown that the quantisation wavelength is matched to the 

dimensions of the stable orbits, as far as characteristic impedance is concerned. 

However, it was seen in Section 3 that there are no real de Broglie-type quanta, so the 

question arises as to why the orbital dimensions should match the interference 

wavelength GHλ . According to Eq.(3.9) the net field amplitude is a circularly polarised 

wave of frequency ν′  modulated at frequency ( )c/vν′ . In order to extract this 

modulation frequency it is necessary for the wave to interact with a body. 

For example, in the static coordinate reference frame there is a field amplitude yq in 

Eq.(3.9) acting on particles of internal field Eq.(3.4), so by Lenz’s law the interaction 

force is: 
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( )[ ]

( ) ( ){ }[ ]λ′−ν′π=

υ−ν′π+−=

/xtc/v2siniy2q

x~t2iexpyF

o
2/1

qc
   .   (4.8) 

Thus at any position x, the matter is excited by a field oscillating at the de Broglie 

frequency ( )c/vν′ . Now, from scattering theory, (van der Hulst 1957) [5] and radar 

theory ([4], p.273) it is known that Mie resonance is optimum when the particle is 

around ( πλ 2/ ) in radius; this actually corresponds with the spacing of the galactic 

orbits, ( πλ 2/GH ).  It is suggested therefore that the force Eq.(4.8) causes resonance at 

the gravitational de Broglie frequency in any orbiting gas clouds with this radius. Given 

that reception and radiation characteristics of antenae are identical, according to the 

Reciprocity Theorem, ([4], p.269), then the reception of the interference wave Eq (3.9) 

is also optimised by matching radiation impedance to the orbital dimensions.  Thus, the 

interference field Eq.(3.9) really is capable of exciting resonance through radiation 

reaction forces, (see Panofsky & Phillips, 1962) [6]. 

 

4.4   Polar diagram 

It is interesting to calculate the effective polar diagram of the ponderomotive force 

due to the gravito-cordic field around the orbit. The transverse force field Eq (4.8), 

vibrating at frequency ( )c/vν′  may be viewed as an equivalent dipole.  If there are 

)/R2N( GHλπ=  (typically several million) gravitational de Broglie wavelengths 

around an orbit, then there are effectively N dipoles properly phased to enhance one 

another in the forward direction.  Such an assembly of dipoles constitutes an “end-fire” 

aerial array ([4], p.314).  The main lobe total angular width is given by 

( 2/11 )N/32()N/41(cos2 ≈−=β − ), for large N. Therefore the beam width after one 

revolution is ( 2/1)N32(R2R GHλ=βπ=∆ ), and this corresponds to a spread over 

)2//(R GH πλ∆ orbits.  The total number of nodes in these orbits encompassed by this 

beam spread is then 2/13 )N32(2π .  Thus, the quantisation force of each orbit extends 

laterally across a range of orbits and tends to synchronise the de Broglie frequency, 

thereby encouraging production of flat rotation curves. Since, the overall 

synchronisation force increases with N3/2, the larger disc galaxies should show flatter 

rotation curves, except when turbulence destroys the coherence. 
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4.5   The gravitational de Broglie wavelength emitted by hydrogen-

electrons 

According to Eq.(3.7a), free electrons would carry a gravitational de Broglie 

wavelength ( Vm/h jeeG =λ ). However, in galaxies the quantisation field appears to be 

emitted from the atomic hydrogen-electron, because the replacement of eGλ  by 

( eGGH 137λ=λ ) fits the galactic parameters better and may be explained as follows. 

The hydrogen-electron’s motion around the proton in the 1st Bohr orbit of length 

C1 137r2 λ=π will modulate the gravito-cordic field from the electron itself at 137 times 

the Compton wavelength. This modulation introduces a factor 137 into Eqs.(3.1) and 

(3.7a), as was employed in Section 4.2. Orientation of the hydrogen atoms in the 

galactic orbits will not affect this process, although it was assumed that circularly 

polarised quanta would be optimum for the analysis in Section 4.1. 

 

5.   Conclusion 

Published astronomical data from a variety of sources [3] have been analysed to 

reveal significant quantisation of angular momenta and body parameters. Analogy with 

the Bohr atom is striking and the regular appearance of the fine structure constant 

implies that gravity is electromagnetic by nature. The gaps between classes may he 

attributed to a lack of quantisation rules to operate there. One aspect of the results is 

that the quantisation forces are strong enough to cause approximate quantisation but not 

so strong as to eliminate variety in each class. A great deal of further evidence for 

quantisation has already been presented in Paper 1 on the characteristic features of disc 

galaxies. 

 The gravitational de Broglie wavelength of the gravito-cordic field emitted by a 

particle has been calculated from first principles, and then the corresponding 

ponderomotive force derived. Emission of the gravito-cordic field has been found to be 

optimum for a particular velocity of 201kms-1 because of its dependence upon the 

characteristic impedance of electromagnetic radiation. This impedance was also found 

to be matched to galactic orbit dimensions in terms of classical waveguide theory. 
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Finally, a polar diagram for the gravito-cordic field radiation was calculated, which 

confirmed that larger disc galaxies should possess flatter rotation curves. 
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