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Abstract
With a little help from the wave equation, we show that
the square of the first derivative of the psi-function with
respect to time is an energy density. We then use potential
and electromagnetic theories to develop special relativity’s

mass-energy relation.

The square of the first derivative with respect to time of the wave equation’s psi-function
yields special relativity’s mass-energy,
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We prove this by recalling that
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In potential theory, we have mass potential, electric potential, and magnetic potential, each of
which has a distribution from a source center

y=— (3)
r

where k is the quantity distributed along the radius vector r. We take the first derivative of (3)
with respect to the radial vector,



r__ 4
or r? )
which is, as we know, the classical inverse square law. We now multiply equation (4) by
velocity:
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where c is taken to be the limit of velocity. The square of (5) produces
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where the left-hand side of the equality is the expression for energy per unit volume. This means
that the ratio k?/r* represents the mass density, which we now prove.

In electromagnetism, mass is defined as
m=— (7

where e is electric charge in electromagnetic units (emu). We see therefore that the k in
equation (6) is in fact e, allowing us to rewrite (6) as
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where we observe that is a mass density. After eliminating the volume from both sides of

the equation, we obtain

E =mc® (9)
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