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The interplay between continuous and discrete structures results in a duality between the moduli space for
black hole types and AdS7 spacetime. The 3 and 4 Q-bit structures of quantum black holes is equivalent to
the conformal completion of AdS.

Prior to the 20th century physics was perfectly continuous in its formulation. Classical physics was founded
with the calculus of limits of continuous functions. Max Planck proposed a statistics with discrete energy
packets, which solved the black body radiation problem and paved the way for quantum mechanics. These
discrete energy units lead to quantization action, where the loop integral of action for a system

∮
pdq = nh̄

is discrete. Products of conjugate observables with units of action are not in involution [q, p] = ih̄ and
satisfy an uncertainty relationship ∆p∆q ≥ h̄/2. Wave dynamics often imposes a spectrum of discrete
eigenvalues that are physically relevant, while continuous wave functions have no direct measurable content.
Hence what we observe is discrete, but these are information which evolves as potential information according
to a wave function which does not conform to classical notions of reality. This loss of reality in a local sense
is demonstrated with the violations of Bell’s inequalities and the CHSH inequality.

It is of course the case that in our modern age we have digital computers which process all information in
discrete units of binary code. The computer is employed in many lattice codes, such as with QCD. Spacetime
has a minimal length scale `p =

√
Gh̄/c3, which is a discrete cut off . Models with lattices, grids, and

related structure impose independent degrees of freedom on each vertex (a Planck unit of volume), which
results in difficulties. The holographic principle by contrast works with entangled degrees of freedom which
are nonlocal. Events, space and momenta are emergent properties [1][2]. The Planck scale is a discrete
cut off, not necessarily a discrete lattice with independent degrees of freedom. Holographically a string
longitudinal coordinate contracts on the stretched horizon to the string scale `s > `p

Discrete structure of time and quantum paths

Complementarity between conjugate observables is a foundation of quantum mechanics. However, that does
not hold between time and energy. Quantum mechanics converts the Poisson brackets into commutators,
{q, p} = 1, → [q, p] = ih̄. The Poisson brackets, {q, p} = (∂q/∂q)(∂p/∂p) − (∂p/∂q)(∂q/∂p), gives a
unit for the bracket transformation of the units of action. The quantum commutator evaluates the action
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of a system per units of discrete action h̄. The quantum wave function is described in configuration space,
or position coordinates employed in the Lagrangian for a particular system. The configuration space has
a cotangent bundle T ∗M of conjugate momentum. Every cotangent bundle is a symplectic space, but not
every symplectic space is a T ∗M . Symplectic structure is more fundamental than coordinates or momentum,
which carries over to quantum commutators.

Commutators between conjugate variables imply the development of one variable is generated by it conjugate.
A quantum state |q〉 is developed into |q′〉 by |q′〉 = e−ip(q′ − q)/h̄|q〉, where the momentum is an operator.
The converse is also true; development of momentum is generated by position. These exponential operators
are unitary, central to the structure of quantum mechanics. Similarly the development of a state with time
is generated by Hamiltonian operator with energy eigenvalues |ψ(t′)〉 = e−iH(t′ − t)/h̄|ψ(t)〉, and the energy
here is . The variation of this time developed state vector with respect to time gives the Schrödinger wave
equation.

Energy and time as a product give units of action, and while there is an operator for energy there is none for
time. A time operator would imply some energy development unitary operator that prohibits discrete energy
spectra for the Hamiltonian not in general bounded below. This result of Wolfgang Pauli demonstrated there
is no general time operator [3]. The result is not that surprising, for there are no Poisson brackets in classical
mechanics between energy and time.

It is possible to define a discrete time operator, one which jumps the time eigenbasis along a discrete set of
time jumps. This prevents the problem with a time operator generating a continuous energy development
that is not properly bounded [4]. A discrete form of the operator results in the recovery of a discrete
energy eigenstate, and further the discrete structure of this time operator must be tailored to the energy
eigenspectrum. This matter might appear rather academic, but it illustrates one power of discrete systems,
and this may be extended into a discrete structure in general relativity.

Feynman’s path integral describes paths according to probability amplitudes that start at some initial point
and end at a terminal point. The individual paths are given by complex valued amplitudes. The sum
over histories constructs the wave mechanics, such as constructive and destructive interferences between
amplitudes, which propagates observables between the initial and final points. This is equal to an additional
summation over points where these histories meet. Consider intermediate points between the initial and
final points, a sum over all possible intermediate points, such as an integration, the original path integral is
recovered.

This may be reduced to a simple system of associative and commutative arithmetic. Philip Goyal demon-
strated how the above summation over intermediate points is equivalent in a discrete setting to the concate-
nation of measurements, where the summation is over all possible outcomes [5]. The complex amplitudes are
products of complex numbers, and in a discrete setting this is a multiplication rule which requires complex
numbers. The result is that quantum mechanics is reduced to a simple system of associative and commu-
tative mathematics of complex numbers with no reference to classical mechanics, or any notion of space or
spacetime. However, the one requirement is that the points intermediate to the initial and final points be
intermediate in time.

The Goyal logic is a summation of Stern-Gerlach experiments. The intermediate point corresponds to some
intermediate measurement between the source of particles and the final Stern-Gerlach (SG) apparatus. If

2



the outcome of the intermediate SG apparatus is ignored, or no measurement is performed of their outcomes,
the split beams recombine as a discrete summation. So the intermediate SG apparatus represents a sum over
elementary quantum events. This summation in the complex algebra corresponding to this logic recovers
the quantum superposition.

These summations over SG experiments occur in a sequence. There is no ambiguity in the ordering of these
events. Further, the process appears well defined in a discrete setting. The Goyal approach for discrete
quantum mechanics, even if the number of elements is enormous, but not infinite, indicates some sort of
quantization of time, and a discrete spacetime.

Discrete spacetime structures

Black holes are familiar to even those with a casual interest in general relativity. The canonical spacetime is
the Schwarzschild metric. This spacetime is a radial gravity field where the concentration of mass is so large
an event horizon is generated and the mass is folded up within a region outside the universe. For a mass
M the horizon occurs at a radius r = 2GM/c2, which is a region of infinite time dilation so the exterior
observer never witnesses anything cross the horizon, even the material which formed it. This is the basis of
the holographic principle.

Taub-NUT spacetime is similar to the black hole. The principal difference is the mass is replaced by a dual
field source that shares a role the magnetic monopole holds in electromagnetism and the field dependency
depends on time. The event horizon occurs at a time, a time in the past of the timelike region, and the metric
coefficient is A(t) = −1 + 2(Nt + a2)/(t2 + a2), where N is the NUT parameter, the magnetic monopole
analogue to mass, and a is the angular momentum [6]. For a = 0 this is similar to the Schwarzschild metric.
The duality between mass and the NUT parameter is an interchange between radial and time coordinates.

The Taub-NUT spacetime has the topology S3 ×R, which is generically similar to the geometry of a black
hole. The metric signature for time is contained in the three-sphere instead of the real number line R. This
means the hyperbolic structure of the spacetime is embedded in the 3-sphere. The spacetime is then depicted
with two dimensions removed as a cylinder with spiraling geodesics. The periodicity which results from this
solution means hyperbolic surfaces in the spacetime have a discrete structure with the periodic solutions of the
spacetime [6]. This periodic structure exists on hyperboloids of constant proper time. This discrete structure
defines a Hausdorff manifold within two adjacent patches of the Penrose conformal diagram. The discrete
structure is unable to cover three patches as there are sharp geodesic separations that exist which prevent
a hyperboloid of constant proper time from being extended continuously across three regions. Hawking and
Ellis discuss this matter in their Large Scale Structure of Space-Time [6]. The manifold is also a quotient
manifold, which it shares with the Anti de Sitter (AdS) spacetime.

The Taub-NUT metric may be extended to an AdS spacetime. For a range of the NUT parameter, just as
with the mass in the black hole case, the metric may be transformed into the AdS spacetime. For instance,
the region of spacetime around the singularity of a black hole is approximately an AdS spacetime. The
symmetries of the AdS spacetime defines a conformal field theory at its boundary. The boundary of the
AdS spacetime is a conformally flat spacetime, and the symmetries of the interior of the AdS spacetime are
holographically projected onto a theory of open strings on the boundary [7].
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The AdS spacetime on a patch is

ds2 =
1
x

(dt2 + dx2 −
∑

i

dzidzi)

which in the limit x → 0 defines a Minkowski metric

dx2 = −dt2 +
∑

i

dzidzi

which is a Minkowski spacetime. This means that the evolute of AdS from a spatial surface is an entire
spacetime, where additional Cauchy data is a conformal completion of AdS. The Cauchy data on the AdS

is defined on a conformal set of metrics. The boundary space ∂AdSn+1 is a Minkowski spacetime, or a
spacetime En. The theory is a holographic unification of particle physics, existing on the AdS boundary,
with the graviton in the interior of the AdS. An application of this to the QCD gauge field on the boundary
associates gluon chains and the graviton. Within a discrete group setting the extension of the Taub-NUT
spacetime gives a coset construction of the AdS. The quotient group on the AdS is a coset contruction with
a discrete group Γ with the AdSn+1 spacetime. The coset model then defines the boundary of the AdSn+1,
which is a conformally flat Einstein spacetime En.

The mathematics of discrete Klein groups on AdS is contained in appendix A and further information is
contained in appendix A and in [7][8]. The discrete structure on AdS defines the conformal action of AdS on
a sphere of one dimension lower. This is Klein group version of the AdS/CFT correspondence. The AdSn+1

group of isometries O(n, 2) contains a Möbius subgroup, or modular transformations, so that this discrete
group does not necessarily act effectively on AdSn+1. As a result the discrete group Γ is not necessarily
convergent. Convergence means there exists a sequence gi ∈ Γ which admits a ”north-south” dynamics of
poles p± on a sphere, which in the hyperbolic case defines the past and future portions of a light cone. From
this light cone structure emerges. Further the discrete group Γ is dense on the isomtries O(n, 2) of AdSn+1.

The Zariski topology leads to quantum structure. The discrete group action and Zariski topology constructs
the quantum logic of Goyal. Consider the affine space An as the n-dimensional space over a closed field F .
The topology is constructed from closed sets defined by the polynomial set S ∈ F by

V (S) = {x ∈ An|f(x) = 0; ∀f ∈ S}

For two polynomials in the set S we have the following rules:

V (p1) ∪ V (p2) = V (p1 × p2), V (p1) ∩ V (p2) = V (p1 + p2)

which serve as the representation map between the logic of outcomes and the algebra of quantum operations
demonstrated by Goyal. This closed set topology defines the Zariski topology on the affine set An. So a
connection to quantum mechanics exists within this system with respect to Zariski topology. This is the
topology of Étale and Grothendieck, or topos theory. An overview of topos theory in physics is in [9] by
Isham.

This connection to quantum structure is identified with the set of lightlike curves. This set of lightlike curves
is given by the quotient of the isometries of AdS with a subgroup with Zariski topology [8]. This constructs
a Borel subgroup which is a Heisenberg group of 3 × 3 + In matrices. As a result the emergence of light
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cones is in a discrete model associated with a coset structure for a Heisenberg group. The two emerge from
projective algebraic varieties, which are Zariski. The light cone is a projective space in a Lorentzian manifold.
Quantum mechanics has a similar structure. The Hilbert space contains a projective subspace, where the
fibration of the Hilbert space over the projective Hilbert space.

This connection between quantum physics and light cone structure is illustrated without the discrete group
structure above. The examination of the overlap between a state |ψ(t)〉 and |ψ(t) + δ|ψ(t)〉. This leads to
the expansion

|〈ψ(t)|ψ(t) + δψ(t)〉|2 = |〈ψ(t)|ψ(t)〉|2 − (〈H2〉 − 〈H〉2)δt2,

with
√
〈H2〉 − 〈H〉2 = δE. This also defines a phase

φ =
∫

dt
√
〈H2〉 − 〈H〉2 =

∫
dt∆E

which is the geometric or Berry phase. For certain systems the above overlap of states can be a measure of
the entanglement of states. This is also the Fubini-Study metric for the projective space CPn ⊂ Cn+1.
This projective structure is analogous to light cones in relativity. The connection is made further with the
observation that Heisenberg groups are nilpotent groups, which play crucial role further on.

The connection between light cones and quantum physics is drawn tighter with the discrete structure.
Discrete structures are more appropriate for quantum information. In what follows the entanglement types
of 3 or 4 quantum bit system is equivalent to black hole types, which is extended to the AdS spacetime
as well. The Taub-NUT spacetime is essentially just a black hole with the meaning of radius and time
reversed in the metric elements. Consequently the association between entanglement types and black hole
types carries naturally over to Taub-NUT spacetime and to AdS.

Entanglements, quantum bits, moduli spaces and the classification of entanglements

The entanglement between two states is a nonlocal quantum effect. Most standard entangled states are
bipartite entangled states. A simple case is the bipartite entanglements between two spin systems with a
bases defined by a Pauli matrix σz the states |+〉 and |−〉 for spin up and down. The Pauli matrix acts
on these states as σz|±〉 = ±|±〉. These states are complex numbers, which means there are 2 variables
for each state and thus 4 altogether. However, there are constraints, such as the probability Born rule
1 = P+ + P−, P± = |a±|2 for a state |ψ〉 = a+|+〉 + a−|−〉, and irrelevance of a phase in real valued
measurements. This reduces the number of variables from 4 to 4 − 2 = 2.

Consider two spin systems, say two electrons. The use of electron spin state is not concrete, for these
arguments hold just as well for polarization direction of photons. So we have two sets of states and operators
{σz, |±〉}1{σz, |±〉}2 denoted with an additional index i = 1, 2 and we still have

σi
z|±〉i = ±|±〉i.

We can form two independent states |ψ〉i = ai
+|+〉i + ai

−|−〉i for the two spin systems. For each there are
4 variables and 2 constraints. This gives 2 degrees of freedom in tota, 2 less that for two independent spinsl.
These spin states are composed as

|ψ〉 = (1/
√

2)(|+〉|−〉 + eiφ|−〉||+〉),
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where the index is implicit, and eiφ is a phase, which intertwine singlet and triplet state configurations. This
is an entangled state, where access to |±〉1 then you also have access to |±〉2.
This basic form of entanglement is generalized for 3 and 4 qubit entanglement system in the W and Green-
berger Horne Zeilinger (GHZ) state. The W state is an entanglement of 3 qubits into a quantum state of
the form

|W 〉 =
1√
3
(|001〉 + |010〉 + |100〉),

for a set of three qubits with {0, 1} occupation states. A density matrix ρW = |W 〉〈W | under a trace of
one of the entries recovers a bipartite entangled state. The GHZ state is composed of 2 dimensional state
spaces for n > 2 qubits in the form

|GHZ〉 =
1√
2
(|0〉⊗n + |1〉⊗n)

where n = 3 for the 3-qubit system. A trace over one of the entry slots gives a density matrix
|00〉〈00| + |11〉〈11| which is an unentangled mixed state. Conversely a measurement of one of the three
states leaves |00〉 or |11〉, which are separable pure states. The 3 qubit state then leads to highly nonclassical
correlations. In particular the GHZ state results in a ”wringing out” more nonlocal versions of Bell inequal-
ities [10], where one measurement gives Bell’s inequality. Quantum mechanics is not a statistical theory, but
statistics are a result.

There are correspondences between these qubit entanglements and black hole types. The bipartite 2 , 3 and
4 qubit entanglements have 4, 8 and 16 complex numbers associated with them. These complex numbers
are a product of elementary groups SL(2, C)⊗n n = 2, 3, 4, and the quantum bits are defined by a
representation of a larger group of dimension 4, 8 or 16 in a quotient with this product. The product
GSLOCC = SL(2, C)⊗n defines the Stochastic Local Operations and Classical Communication (SLOCC)
group, and also maps uniquely to the group which acts on the moduli space for black hole types. Two states
have equivalent entanglements if they transform according to the SLOCC group. This quotient procedure
defines an invariant which maps to Noetherian numbers, conserved quantities, defined on the moduli space
of certain black hole types.

The measure of entanglements is given by the determinant of these complex numbers. For the 2 qubit
bipartite entanglement the entropy is a standard 2 × 2 determinant, which computes the entanglement
entropy. A 3 qubit entanglement has a 2 × 2 × 2 tensor determinant is different, it is not diagonalizable in
the standard way, and is a hyper-determinant which exploits the SL(2, C)⊗3 invariants, plus the covariants
associated with each SL(2, C). From these are four entanglement measures σij , i, j = a, b, c for Alice,
Bob and Charlie, where these construct the W state, and σabc for the GHZ state. For the 4 qubit system
things are further different. Here the SLOCC group is composed of SL(2, C)⊗4, with and 4 times the 3
parameters of each SL(2, C) and there are 16 complex parameters to the states ψabcd. There is a continuous
coset space space (C2)⊗4/SL(2, C)⊗4 for the remaining 4, which departs from the discrete structure for 3
qubit entanglement [11].

A moduli space is a geometric space of points which represent quantities which are fixed under the action
of some group or map. These are important in gauge theory, where a gauge choice defines a moduli space
of points which are fixed to that gauge. Another version are moduli spaces over algebraic curves. A moduli
space then defines the set of all possible parameterizations of some element which retain the properties of
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the initial element. The SLOCC group would then be an example of a group on a moduli, for that group
preserves the entanglement class of a state. The correspondence with a black hole is with a moduli space
for the solution type. The classification of extremal black hole types is with nilpotent orbits on the moduli
space, which have a Lie algebra isomorphism to the SLOCC group for entanglement types.

The GSLOCC for the orbits of ψabcd is transformed into the orbits of SO(4)×SO(4), and the nilpotent orbits
are classified on SO(8, C). Nilpotency is defined for elements X of a semisimple algebra g if the adjoint
action adX : g → g, defined by a commutator adX(Y ) = [X, Y ] for some integer n satisfies (adX)n = 0.
The STU model of supergravity contains an action for gravitation coupled to four vector fields. The Type
IIA theory compactifies the field on T 6 = (T 2)⊗3, where each T 2 corresponds to the qubit A, B, C. The
T 6 is in the presence of Dp-branes, for p = 0, 2, 4, 6. The solutions with the Dp-branes are parameterized
by the independent electric and magnetic charges associated with the four vector fields. The solution is
spherically symmetric, conforming to the general geometry of black holes, which means the Killing vectors
for the solution are timelike. In this setting the equations of motion for the orbits on the moduli space for
these black holes are nilpotent orbits governed by real group representations, which conserve Noetherian
charges. The connection is the black hole entropy is equivalent to the hyperdeterminant for the 4 qubit
entanglement. The difference is that the roots or charges of the SUGRA are real valued and SL(2, R), while
the corresponding complex amplitudes for the entanglements are complex. However, the correspondence is
established with the Kostant-Sekiguchi theorem [11][12]. So the occurrence of Dp-branes with the SUGRA
compactification of the type IIA string is formally equivalent to the entanglement structure for a 4 qubit
system.

AdS coset structure and exceptional group realizations

The AdS spacetime is a quotient manifold, AdSn = O(n − 1, 2)/O(n − 1, 1). The AdS spacetime may
be studied in Bengtsson [13]. This quotient structure with the coset construction with discrete groups is
a double coset Clifford-Klein form. The AdS7 = SO(6, 2)/SO(6, 1) is related to the G2 group which
fixes a vector basis in S7 according to a a triality condition in the Jordan algebra J3(O). The triality
group is SO(8) where spin(7) ∼ SO(7) fixes a vector with the transitive action of spin(7) on the S7,
spin(7)/G2 = S7. The SO(8) has a 28 where the group action which fixes the a frame in the octonions is
the smallest exceptional group G2 [14].

The fixing of a vector in spin(7), or framing of S7, defines the exceptional group G2. G2 is defined by a three
form on a 7-dimensional space. The G2 imposes cubic constraints on SO(7) which reduce the 21 generators
of SO(7) to 14 generators of G2 [14]. The 7 dimensions removed are a S7 where SO(7) → G2 × S7. The
further coset SO(7)/SO(6) is equivalent to the coset G2/SU(3), where G2 can be seen as decomposed into
SU(3)× S6. The 7 and 14 dimensional representations define the ”dynamics” in a cubic polynomial which
defines a density ρ2 ∼ χ3

7 + . . .. The cubic nature of the density with respect to these characters results
in a Z3 center symmetry, a discrete group applicable to the AdS7.

The framed group GL(7, C) contains a unique orbit of 3 forms ω(3). The isotropy group of ω(3) is isomorphic
to G2 with 7 coefficients contained in SO(7, C). ω(3) is given by a contact transformation, which is invariant
by a cubic determinant or Jacobian. The elements of ω(3) are then equivalent to the hypermatrix Gabcd which
gives an elliptic curve Gabcdψaψbψc = 0 [15]. The cubic nature of the density with respect to these characters
results in a Z3 center symmetry, a discrete group applicable to the AdS. The discrete group describes a
Ising-Potts model of spins, which physically correspond to the (2, 2, 2) and the hyperdeterminant. These
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spins physically have the {|0〉, |1〉} states in the AdS7/Z3 ∼ S6 discrete model, and so correspond to
the entanglement system governed by the hyperdeterminant. Consequently, this illustrates the potential
duality between entanglements of states on a black hole horizon and with state entanglements with the AdS

spacetime.

The discrete realization of AdSn, which connects to a discrete or ”quantum” time, constructs light cones and
Heisenberg groups. The Heisenberg group realized is the conformal group SL(2, R), which is the reduced
AdS2 × Sn in the near horizon environment. We then have the reductions to AdS2 ∼ CFT 1 with the
elementary Heisenberg group realization on a hyperbolic space. This is the simple D0-brane for the separable
state. Additional correspondences exist with the Dp-branes [16]. The 3-form ω(3) and the cubic polynomial
or elliptic curve suggest connections with the Freudenthal determinant and the Jordan eigenvalue problem.

Discrete or continuous?

The nilpotent orbits on moduli spaces for black hole types and its parallel with a discrete structure on AdSn

preserves Noetherian charges or qubits. The decay of a black hole is simply a change in the entanglement
of quantum information in a black hole to that of the embedding spacetime, or universe. The Discrete
structures are based on continuous groups and manifolds. There is a relationship between elements which
transform as eα and those which transform as 2n, where nature fundamentally employs ln(x) = ln(2)log2(x)
so that the discrete binary aspect of the universe is equivalent to the continuous structure of the universe.
The SL(2, R)2 contains the braid group B3 such that the braid group B3 is the universal central extension
of SL(2, R) [15]. The complexification SL(2, C) has pairs of elements given by braid groups as its central
extension. While quantum mechanics describes discrete structures, as eigenvectors in Hilbert space, there
are still representations of the waves or fields which have a continuous space description.

Goyal’s construction involves a binary group system of Stern-Gerlach apparatuses in a discrete model[5]. The
discrete elements, Q-bits, Noether charges, measurements as discrete group elements are aspects of nature
which are observables. The continuous structures are less measurable, as an infinitesimal on a space is not
something detected. In lines with Stenger’s ”Atoms and Void” metaphysics discrete aspects of physics are
real, while continuous elements are not [16]. In fact quantum physics demands groups or algebras employed
have complex representations. However, complex variables are not observables. Penrose assumes a dualist
or Platonic view of this matter, which extends this into a triality with the inclusion of mind [17]. Penrose’s
M3 metaphysics is in start contrast to Stenger’s. This is a form of Platonism, similar to mathematician’s
idea of the objective reality of mathematical structures.

The question of whether nature is discrete or continuous is probably not demonstrable, and not provable —
scientific evidence can support theories but never provide a mathematical proof. The model here indicates
a curious relationship between continuity and discreteness in nature. However, there is nothing here which
can be demonstrated about the reality of discrete or continuous aspects of reality. This means there should
be considerable work available for philosophers long in the future.
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Appendix A

The boundary space ∂AdSn+1 is a Minkowski spacetime, or a spacetime En that is simply connected that
with the AdS is such that AdSn+1 ∪En is the conformal completion of AdSn+1 which exhibits a conformal
completion under the discrete action of a Klienian group. For the Lorentzian group SO(2, n) there exists
the discrete group SO(2, n, Z) which is a Mobius group. For a discrete subgroup Γ subset SO(2, n, Z) that
obeys certain regular properties for accumulation points in the discrete set AdSn+1/Γ is a conformal action
of Γ on the sphere Sn. This is then a map which constructs an AdS/CFT correspondence.

The quotient space AdS/Γ is a Kleinian structure. The group SO(2, n) is a map from the unit ball Bn+1,
with boundary ∂Bn+1 = Sn, into Rn+1. The discrete group Γ acts as a conformal on the sphere Sn by
the action of the Möbius transformation on Sn. The discrete set of maps on Sn has accumulation points
on the limit sphere Sn

∞ are determined by the limit set gi ∈ G, for i → ∞. This is denoted by
Λ(G), G = O(2, n). The discontinuous set is then the complement of this or Ω(G) = Sn − Λ(G).
The manifold Ω(G)/G is an orbifold. This means that the Mobius transformation on the limit sphere S2

∞ is
equivalent to the conformal transformation of Nn+1 which is equivalent to the isometries of AdSn+1. The
Ω(Γ)∩En/Γ is then a Lorentzian manifold ∂AdSn+1, and a set of discrete points in En pertaining to spatial
hyperbolids of equivalent data. In this way the data on any spatial surface of AdSn+1 is contained in its
conformal completion. This is equivalent to the discrete action of Γ on Sn.

The discrete structure here is isomorphic to the discrete set for the Taub-NUT spacetime. This Taub-
NUT spacetime is similar to the Schwarzschild spacetime, but where time serves the role radius does. The
spacetime has a timelike region I that connects to a region which is spacelike II, which in turn is connected
to a timelike region III with closed timelike curves. The manifold for TN is S3 × R, with S3 reduce to S1

modeled as a cylinder. The spacetime is a sort of time version of a black hole, where the time coordinate
defines the horizon. The manifold (M, g) has a discrete structure to it. An Euler angle in space wraps a
geodesic around the tube in region I, and defines intervals s2 = t2 − x2 that are equivalent. These discrete
points define a discrete subgroup d = SL(2, Z) ⊂ SL(2, C). Each of these points defines a neighborhood
such that the action of the discrete group on that neighborhood determines d(U)∩U = . This is a Hausdorff
condition. Now the region I of M and II of M(I, g) and M(II, g) are cases where the t > −x and then
(I + II, g) is Hausdorff. Similarly (I, g) and (III, g) is the case where t > x and again (I + III, g) is
Hausdorff. However, this can’t hold for (I + II + III, g), which is then not Hausdorff.

Appendix B

For a 3 Q-bit system we focus on invariants. The determinant is replaced by a hyperdeterminant that
transforms as a (2, 2, 2), and there are elements σi, σj and σk, co-invariants, that transform as (3, 1, 1)
(1, 3, 1) and (1, 1, 3) of the GSLOCC . These four construct entanglement measures Sijk, Sij , Sik and Sjk.
SABC is a tri-partite entanglement entropy with

SABC = SA(BC) − SAB − SAC

The bipartite elements are pair entanglements and the tripartite involves a triplet which is entanglement. So
B = Bob is maximally entangled with A = Alice and C = Carl in the tripartite state. Where if I trace
out A B or C there is a complete mixed state, classical information due to tracing, and no correlation, while
with the three bipartite entanglements Bob’s entanglement is with A and C, and a tracing out of his quantum
state entanglement continues to have the A− C entanglement. The tripartite entanglement corresponds to
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a large black hole, while the set of bipartite entangled states a small black hole. The tripartite state is also
called the GHZ state for Greenberger, Horne, Zeilinger formulation of a three particle entanglement.

The N-partite entanglement is different from the standard bipartite entanglement. These correspond to three
separable state, bipartite states plus one separated, nonseparable bipartite states and a tripartite GHZ state.
These states in black hole logic correspond to small black holes 1/2 supersymmetric, small black holes with
two BPS charges and 1/4 supersymmetric, two black holes with 3 charges and 1/4 supersymmetric and, the
GHZ state is 4 charges and 1/8 supersymmetric.

Appendix C

The set of nilpotent orbits is a classification of SO(8, C). With extremal black holes the condition is given
by these nilpotent orbits on the moduli space. A nilpotent orbit is where there is a group G with algebra g,
then for a ∈ G and b ∈ g then the adjoint action of a and b is

b → b′ = aba−1

A nilpotent orbit is given by bn = bb...b (n times) and this is stationary as it is clear than b′n = bn, and are
a fixed point in the moduli space. This Lie group homomorphism SL(2, C)2 ∼ SO(4, C) converts ψABCD

to a (4, 4) of SO(4, C)2 [10], so then under SL(2, C)2, ψABCD transforms as

ψABCD → ψ′ABCD = UA ⊗ UB ⊗ UC ⊗ UDψABCD

= [UA ⊗ UB(x)]ψABCD[UC ⊗ UDψABCD]T = MABψ(AB)(CD)N
T
CD

and is a convenient transformation MψNT = ψ′ for U ∈ SL(2, C) and M, N ∈ SO(4, C). The
correspondence with SO(4, C) gives this according to nilpotent orbits on SO(4, C)2 on (4,4). The Kostant
Sekiguchi correspondence [11] for the SO(8, C) maps nilpotent orbits of SO(4, C)2 on the (4, 4) to the
orbits of SO(4, 4) on the adjoint 28 for the black hole.
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