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The flat two-dimensional proper intrinsic spacetitag’, c¢t’) underlying flat four-
dimensional proper spacetin{&’®, ct'), which emerged at the first stage of evolu-
tion of spacetimgntrinsic spacetime within a long-range metric force field, isolated in
the first three parts of this paper, endured for no moment beforsftraming into a
curved two-dimensional proper intrinsic spacetime with orthogonalilouear intrin-

sic dimensions on the vertical intrinsic spacetime plane, in the larger spagetimsic
spacetime domain of combined positive (or our) universe and thdinegeiverse. It
therefore possesses intrinsic Lorentzian metric tensor at every poprbjécts an un-
derlying flat relativistic intrinsic spacetim@p, ¢c¢t) that replaces flat proper intrin-
sic spacetime, which is made manifest outwardly in flat four-dimensicativistic
spacetimé E*, ct) that replaces flat proper spacetime, at the second (and final) stage of
evolution of spacetimitrinsic spacetime within a long-range metric force field. The
curved ‘two-dimensional’ absolute intrinsic spacetifeg, ¢é¢t ) with absolute intrin-
sic sub-Riemannian metric tensor that evolved at the first stage is lirfarglard to
the second stage. Apart from absolute intrinsic Riemann geometry onnyedctwo-
dimensional’ absolute intrinsic spacetime brought forward from thedfiagte, intrinsic
local Lorentzian geometry that involves the derivation of intrinsic locakhte trans-
formation in terms of an isolated intrinsic parameter, referred to as intstetic speed,
and validation of intrinsic local Lorentz invariance between the curveddiwensional
proper intrinsic spacetime and its projective flat two-dimensional reltitiviistrinsic
spacetime are established. These are then made manifest in locatzL esrsfor-
mation in terms of static speed and local Lorentz invariance between therdiaer
spacetime at the first stage of evolution of spacefimrnsic spacetime and the flat
relativistic spacetime at the second stage, within the four-world picturecdhclusion
that spacetime is everywhere flat in every long-range metric forceifie&ghched. Par-
ticularization to the gravitational field will be a straight forward processjensing
the results of this paper as template.

1 Introduction of [2], shown to evolve from an initial flat ‘four-dimensioha

, . apsolute metric spacetim@?, ¢) underlied by flat ‘two-
The first two parts of this paper [1-2] are devoted to the dev@f_;nensional’ absolute intrinsic metric spacetifg, ¢éef)

o'pment. of at?solute |ntr.|ns!c R.|eman.n geomeFry on ciuryed in Fig. 6 of [2], at the first stage of evolution of spacetiine
dlrr]rjer?_smna(; alk_)sglkl:te_ |ntr|n§|c r_net][;c Szpzt_:etl(nﬁe_), ¢C?t)’ trinsic spacetime in a long-range metric force-field, othlg t
inringic metic spacetimisy hoge) and the outward mant, CUIved twe-dimensional’ absolute intrinsic metrc spéme
festation of the latter namely7 the flat four-dimensionajar (9P, ¢Cﬁbt).anq Its uqderlymg projective flat two—d|mgn3|onal
metric spacetiméE’, ct'). Th,ese evolve from an initial flat™ oPor Intrinsic metric spacetmqep \det) are newin phy-

’ sics. The flat 4-dimensional proper metric spacetiifé’,

‘ _di . ) . . "3 AN _
four-dimensional’ absolute metric spacetirf¥e®, ¢t ) under ct') that overlies(¢p', écot’) or which is the outward (or

lied by flat ‘two-dimensional’ absolute intrinsic metricasge- . . : . .
: A : : . _ph I festat ! t'), as discussed b-
time (¢p, pédt), at the first stage of evolutions of spacetlmp ysical) manifestation of¢’, gegt’), as discussed in su

and its underlying intrinsic spacetime within an absolutg-m Section 4.4 of [3], is not new in physics, being what has been

ric force-field and its underlying absolute intrinsic metriknown as the space of classical mechanics, assuming the ab-
ying sence of (relativistic) gravitational field.

force-field in the positive (or our) universe.
Actually of the three co-existing metric spacetimes name- The flat proper metric spacetini&’?, ct') containing the

ly, the curved ‘2-dimensional’ absolute intrinsic met@se- rest masses, of particles and objects if’? in the assumed

time (¢p, ¢pégt), its projective underlying flat 2-dimensionabbsence of (relativistic) gravitational field, thereby rimak

proper intrinsic metric spacetim@p’, ¢cot’) and the out- (E’3, ct’) to remain flat, has also been known in physics to

ward manifestation of the latter namely, the flat four-dimesupport the special theory of relativity (SR) involving the-

sional proper metric spacetini&’?, ct') in Fig. 4 or Fig. 11 tion of the rest masses, of material particles relative to ob-
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servers. The special theory of relativittrinsic special the- sion¢cgt’ in Fig. 11 of [2], such thapV! has its maximum
ory of relativity (SR¢SR) have actually been developed omagnitude at a point S ifi¢p’, pcgt’) and decreases con-
the flat(E’3, ct’) and its underlying flat¢p’, pegt’) within  tinuously until it vanishes at a point O if¥p’, pcot’) that
the four-world picture in the context of the present theary is far removed from point S. These will be made manifest
[3-6]. in non-uniform proper static speedi§ at every point in the

As known in physics until now, the introduction of a relaproper Euclidean 3-spadg’® and at every point along the
tivistic gravitational field into the flat four-dimensiornaloper proper time dimensiort’, such thatV has its maximum
metric spacetiméE"?, ct'), will transform it into a curved magnitude at the corresponding point S 3, ct’) and de-
four-dimensional relativistic metric spacetifie?, ct) (usu- creases in magnitude continuously until it vanishes attgdin
ally denoted by(z?, z', 22, z3)) in the context of the generalin (E’3, ct’) that is far removed from point S in that figure.
theory of relativity (GR). It must be recalled however thata The foregoing are quite apart from the projective non-
though curvature of the relativistic spacetime in a metiicé uniform absolute intrinsic static speedl, along the straight
field is a well thought-out prescription [7, see p. 111-1419],line proper intrinsic spacey’ and straight line proper in-
nevertheless remains an unproven fundamental postulatériosic metric time dimensiogcgt’ and the non-uniform ab-
the general theory of relativity. solute static speeds, in E’3 andct’ in Fig. 11 of [2]. As

The special theory of relativity (SR) cannot alter the exliscussed under the introduction above, the presence ef non
tended flat 4-dimensional proper metric spacet{@&, ct’) uniform absolute intrinsic static speed’, along the proper
on which it operates in the assumed absence of gravity. Thiginsic spacepp’ and proper intrinsic time dimensiafot’
intrinsic special theory of relativitySR) can likewise not al- cannot produce curvature @i’ and ¢cét’ or produce any
ter the extended flat two-dimensional proper intrinsic metiother efect on them. The presence of absolute static speeds
spacetime¢p’, dcgpt’) on which it operates in the assumed’ in the proper metric spacg’ and proper metric time di-
absence of gravity. These, as explained under summary Brehsionct’ can likewise produce ndfect onE andct’ in
conclusion in [6], is due to the fact that the spacefimensic Fig. 11 of [2].
spacetime coordinates (or spacetlimginsic spacetime Now let us recall the evolution of Fig. 11 of [2] from Fig. 6
geometry) associated with &BR are fine spacetimé@n- of that paper. The introduction of non-uniform absolute in-
trinsic afine spacetime coordinates (dffine spacetim@n- trinsic static speedsV/, along the initial straight line absolute
trinsic dfine spacetime geometry) with no metric quality.  intrinsic metric spacep and along the initial straight line ab-

It is by introducing the source of a long-range relatiolute intrinsic time ‘dimensionécgt in Fig. 6 of [2], will
metric force-field (where relative metric force field shadl bcause the straight line absolute intrinsic metric spagéo
defined), at a point on flat three-dimensional proper metfigolve into curved absolute intrinsic metric spage where
spaceE” and consequently the source of a long-range refg Will have maximum curvature at the point S wherk; is
tive intrinsic metric force-field at the same point in theastr maximum and zero curvature at a point O that is far removed
ght line proper intrinsic spacgy’ in Fig. 4 or Fig. 11 of [2], from point S, wherezbv vanishes. On the other hand, the
that the extended flat proper metric spacet{dé ct') and its Straight line absolute intrinsic time ‘dimensionz¢t along
underlying flat proper intrinsic metric spaceumgg’7 pcpt! ) the vertical in Fig. 6 of [2] will reman not curved from its
can be made to evolve into afiirent four-dimensional rel- vertical position, thereby yielding the half-geometry af F1
ativistic spacetime underlied by two-dimensional reiatic Of [2], which is valid with respect to 3-observers in the peop
intrinsic spacetime in all neighbourhood of the source ef tiruclidean 3-spac&” of that figure.
long-range metric force field. The geometry associated with The initial straight line absolute intrinsic time ‘dimen-
this at the second stage of evolution of spacefimignsic Sion’ ¢¢ét in Fig. 6 of [2] remains not curved from the verti-
spacetime in a metric force-field shall be developed in tgal, while the initial straight line absolute intrinsic sgapp
rest of this paper. in that figure becomes curved absolute intrinsic spgeen

Fig. 1 of [2], because the absolute timend the absolute
2 New geometrical background in the four-world pic- intrinsic time ¢t remain absolute (or invariant), that is, do
ture for the theory of relativity associated with the pre- not evolve into the proper timg and proper intrinsic time
sence of a long-range metric force field in spacetime ¢t respectively, with respect to 3-observers in the proper
Euclidean 3-spacg’? in that figure in the context of absolute
physicgabsolute intrinsic physics.

Since there is a perfect symmetry of state between the
positive (or our) universe and the positive time-univetbe,
half-geometry of Fig. 2 of [2] will evolve with respect to 3-
Let us introduce non-uniform proper intrinsic static speedbservers in the proper Euclidean 3-spdc¥®® within the
¢ V! along the straight line proper intrinsic metric spagé symm-
and along the straight line proper intrinsic metric time eim etry-partner region of spacetime in the positive time-arse,

2.1 The global curved proper intrinsic metric spacetime
and underlying flat relativistic intrinsic metric spa-
cetimgflat relativistic metric spacetime in a metric
force field
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simultaneously with the half-geometry of Fig. 1 of [2] in outhe first quadrant and curveg¢t’ lying in the second quad-
universe. The union of Figs. 1 and 2 of [2] then gives thrant in the larger spacetime domain of combined positive and
full geometry of Fig. 3 of [2], which is equivalent to the fullnegative universes, form orthogonal curvilinear intrirsiet-
geometry of Fig. 4 of Fig. 11 of [2], containing the spaceic dimensions with respect to 3-observers in the Euclidean
time/intrinsic spacetime dimensions of our universe solel§=space in our (or positive) universe. In symmetry, the prop
This and the foregoing paragraph are mere repetitions of wimdrinsic metric space-¢p™* and the proper intrinsic metric
have been discussed in the process of development of tthee dimension-¢cgt’™* will be identically curved simultane-
geometry of Fig. 4 of [2] in that paper, repeated here to seimasly relative to the horizontal and vertical respectiyslych

as a reminder. that the curvedp’ lying in the third quadrant ane ¢cot’™*

In the context of the theory of relativitintrinsic theory of lying in the fourth quadrant, form orthogonal curvilinear i
relativity associated with the presence of a long-rangegrotrinsic metric dimensions with respect to 3-observers & th
metric force-field in proper metric spacetimi#’3, ct') and Euclidean 3-space in the negative universe, within a long-
long-range proper intrinsic metric force-field in proper irrange relative metric force-field and its underlying loagrge
trinsic metric spacetimégy’, pcdt’), which establish non- relative intrinsic metric force-field.
uniform proper static speedd’ in the proper Euclidean 3- A consequence of the foregoing is that the geometry of
spaceE’ and proper time dimensiot’ and non-uniform Fig. 1 will evolve with respect to 3-observers in the relistiv
proper intrinsic static speedd’, in the proper intrinsic spacetic Euclidean 3-space&® and—E>* in the positive and neg-
¢p’ and proper intrinsic time dimensiafrgt’, on the other ative universes, as indicated, at the second stage of amwlut
hand, the proper timé& and the proper intrinsic timgt’ and of spacetimgntrinsic spacetime within a long-range metric
the three dimensionsg®, x'2, 23 of the proper Euclidean 3-force field. The non-uniform proper intrinsic static speeds
spaceE’ and the pro- per intrinsic dimensions’ of the ¢V introduced along the straight line proper intrinsic space
proper intrinsic spacep’ are all relative with respect to 3-¢p’ and straight line proper intrinsic time dimensigagt’
observers in the proper Euclidean 3-space. in Fig. 11 of [2] have maximum magnitude at poiift, S°)

The implication of the foregoing paragraph is that all the (¢p’, ¢c¢t’) and decrease in magnitude continuously until
four proper metric coordinateg?, 21, 2’2 and2’3; 2’ = they vanish at point O ifi¢p’, pcét’), which is far removed
ct’, of the flat proper metric spacetini&’?, ct’) simultane- from the point(S, S°) in that figure.
ously transform into relativistic metric coordinatel§ 2!, 2 Fig. 1 has evolved from Fig. 11 of [2] upon introducing
andz3; 20 = ct, of the relativistic metric spacetin{d=®, ct) non-uniform proper intrinsic static speeds along the ghai
with respect to 3-observers in 3-space. The proper intrlime proper intrinsic metric spae&’ and straight line proper
sic metric coordinategx’ and ¢cgt’ of the proper intrinsic intrinsic metric time dimensiocgt’ in that figure. Hence
metric spacetimégp’, pcot’) likewise transform into rela- the curved ‘two-dimensional’ absolute intrinsic metri@asp-
tivistic intrinsic metric coordinategx and¢cet of the two- time (¢p, ¢pégt) in our universe in Fig. 11 of [2] and the cor-
dimensional relativistic intrinsic spacetiniép, ¢cgt) simul- responding curved ‘two-dimensional’ absolute intrinsietm
taneously with respect to 3-observers in 3-space, in the cdn spacetimeg —¢p*, —¢épt™) in the negative universe (not
text of the theory of relativit§ntrinsic theory of relativity as- shown in Fig. 11 of [2]), have remained in Fig. 1.
sociated with the presence of a long-range proper metriefor Our main interest in this paper is in the curved proper in-
field in proper metric spacetime and long-range propemintrirrinsic metric spacegp’ and—¢p’* and curved proper intrin-
sic metric force-field in proper intrinsic metric spacetime sic metric time dimensiongcgt’ and —¢cot’*. The curved

As mentioned in section 4 of [3],fllne spacetime coor-proper intrinsic metric spacey’ in the first quadrant and
dinates andféne intrinsic spacetime coordinates that appedue curved proper intrinsic metric time dimensigngt’ in
in SR/$SR shall have over-head tilde labeliasy, %, ct, ¢# the second quadrant evolve simultaneously with respect to
andocot, while the metric spacetime coordinates and intri3-observers in the relativistic Euclidean 3-spdce in the
sic metric spacetime coordinates that appear in the thdoryist quadrant (or in the positive universe) and curved prope
relativity and theory of intrinsic relativity associatedthvthe intrinsic metric space-¢p’™* in the third quadrant and the
presence of metric force field in spacetime and intrinsicmetrved proper intrinsic metric time dimensiengcgt’™ in
ric force field in intrinsic spacetime, shall have no oveadhe the fourth quadrant evolve simultaneously with respect-to 3

tilde label, appearing ag”, 2!, 22, 23, ¢x andpcet. observers in the relativistic Euclidean 3-spacg&>* in the
The implication of the penultimate paragraph is that thikird quadrant (or in the negative universe).
introduction of non-uniform proper intrinsic static spegtl; The curved proper intrinsic metric spagg’ in the first

identically along the straight line proper intrinsic metspace quadrant projects a straight line relativistic intrinsietnic

¢p’ and the straight line proper intrinsic metric time dimerspacepp along the horizontal, which is made manifest in the
sion¢cot’ in Fig. 11 of [2], will cause bothyp’ andgcgt’ to  relativistic metric Euclidean 3-spadé®, in which 3-obser-

be identically curved simultaneously relative to the honial vers are now located, as indicated. The curved proper in-
and vertical respectively, such that the curvgd lying in trinsic metric time dimensiomcgt’ in the second quadrant
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Thus the flat four-dimensional proper metric spacetime
- 8° (E"3, ct’) underlied by flat two-dimensional proper intrinsic
s metric spacetimégpp’, gpcpt’), which evolved within a long-
range metric force field at the first stage of evolution of gpac
time/intrinsic spacetime in in our universe in Fig. 4 or Fig. 11

A
op:- op'
. 3-observers

OYpo of [2], evolve into flat four-dimensional relativistic metr
o OV OV, g B3 §pgc_etime_(Ef”gt) u!’lderlied _by flat two-di_mel_"nsional rela-
PPN I EECATCO VA = s rrry tivistic intrinsic metric spacetimépp, ¢cot) in Fig. 1 at the
B @v;,:_ ” @\v : second stage of evolution of spacetiin&rinsic spacetime
3-observers* ;£ P P = within a long-range metric force-field. The flat 4-dimengibn
OVer ol o AP Sy 0V po proper metric spacetime-E"*, —ct’*), which is underlied
_¢f7ff._;_t.--_¢6* OVeps” possy OV po by proper .intlrinsic metric spacetim(ggbp’*, —¢c¢t’*), that.
s* Vep _@vs’,p<)"-.:ﬁ0¢t'* evolved W|th|n_a Iong—rangg a memc force_ﬁelq at the first
e siot* : oot el gox stage of'evolutlon of spacghrﬁmgtrmsm spacetlme in thg neg-
s ot |V ative universe (not shown in Fig. 4 or Fig. 11 of [2]), likewis

evolve into flat four-dimensional relativistic metric spéime

Fig. 1: The extended curved two-dimensional proper intrinsﬁc__Eg*_’_Ct*)_u'f]der“e‘_:J by flat two-dimensional relativistic
metric spacetimes with orthogonal curvilinear intrinsic dimed0trinsic metric spacetime—gp*, —gcet™) in Fig. 1, at the
sions namely,(¢p’, pcdt’) and (—gp'™, —peht’™), with intrinsic  Second stage of evolution of spacetimginsic spacetime
Lorentzian metric tensor at every point, underlied by their prwvithin a long-range metric force-field.

jective flat two-dimensional relativistic intrinsic metric spacetimes There are some other features of Fig. 1 that are important
(¢p, pept) and(—¢p*, —pcpt™) that are made manifest outwardifor remark. First the absolute intrinsic metric spageand

in fIa§ four-dimensional relativistic metric sfpacetin“(eSSB ct) and the proper intrinsic metric spacg’ are shown to be identi-
(—E™", —ct”), with respect to 3-observers in the relativistic Euclidsa|y curved relative to the relativistic intrinsic metspace

ean 3-spacef® and—E>* in the positive and negative universes¢p along the horizontal. Indeed the curveg’ should fall
which evolve at the second stage of spacetiméfsic spacetimes along the curvedsj in Fig. 1. This means that the point P

within symmetry-partner long-range metric force fields in the two

universes, shown along with the curved ‘two-dimensional’ absoltﬁ!eong the curved) ,ir? Fig. 11 of [2] is the same as point P
intrinsic metric spacetimegsp, ¢édi) and (—gp*, —gégi) with  along the curvedsy’ in Fig. 1. Consequently the absolute

absolute intrinsic sub-Riemannian metric tensors in the two uffitrinsic angleg:, p of inclination of the curvedsp to the
verses that are brought forward from the first stage. horizontal at point P alongp in Fig. 11 of [2] and the rela-
tive intrinsic anglegy,; p of inclination of the curvedy’ to
the horizontal at point P along the curved’ in Fig. 1 are
likewise projects straight line relativistic intrinsic tnie time equal in magnitude. Consequently the absolute intrinsic st
dimensionpcet along the vertical, which is made manifest ific speedgbf/&p at point P along the curveglj in Fig. 11 of
the relativistic metric time dimensian, in which 1-observers [2] and the proper intrinsic static speed’! ., (which is a
in time dimension are now located in our universe. relative intrinsic static speed), at point P é.|CXb],Qf in Fig. 1
The curved proper intrinsic metric spaeepp’™ in the are equal in magnitude. That is,
third quadrant likewise projects relativistic intrinsicetric R
space—¢p* along the horizontal, which is made manifest in sin [¢p1)s p| = sin |ptps p| (1a)
the relativistic metric Euclidean 3-spaeeF®* in which 3-
observers are now located in the negative universe, as indi¢ A
cated, and the curved proper intrinsic metric time dimamsio |¢>VS,P| _ |¢‘/S/,P
—agcot’™ in the fourth quadrant projects relativistic intrinsic oé oc
metric time dimension-¢gcet* along the vertical, which is
made manifest in the relativistic metric time dimensiest*, For relations (1a) and (1b) to hold, it must be that the
in which 1-observersin time dimension are now located irsource of absolute intrinsic metric force field located a& th
the negative universe. point S along the curved absolute intrinsic metric spage
However 1-observers are not indicated to exist in the tinreFig. 11 of [2], which establishes non-uniform absolute in
dimensionsct and —ct* in Fig. 1, because the geometry ofrinsic static speedsV, between points S and O along the
Fig. 1 is valid with respect to 3-observers in the Euclideauirved absolute intrinsic spagg in that figure, is ‘projected’
3-spacesz® and—E3* solely, as indicated. It is in the com-as a source of proper intrinsic metric field field of identical
plementary diagram to Fig. 1, to be developed shortly, whiatagnitude into the corresponding point S along the projec-
is valid with respect to 1-observers in the time dimensiotige straight line proper intrinsic spage’ in Fig. 11 of [2].
that 1-observers int and—ct* will be indicated. The ‘projective’ source of proper intrinsic metric forceldie

| (10)

4A. J. Adekugbe. Evolutionary sequence of spacefintrinsic spacetime and associated sequence of geometries in a metifiéttdV.



Article 8 (pre-print) THE FUNDAMENTAL THEORY (MONOGRAPH) wlume 1

thereby establishes non-uniform proper intrinsic stgieesls Hence

¢V! of identical magnitudes asV/, along the straight line Ve =V., (3b)
¢p’ in Fig. 11 of [2] and consequently along the curvid (
in Fig. 1. where Egs. (3a) and (3b) have been written at an arbitrary pai

The point B along the curved proper intrinsic metric tim@f symmetry-partner points along the curved and¢cet’.
dimensiongcét’ in the second quadrant is the symmetry2roper metric force fields are relative metric force fieldd an
partner to point P along the curved proper intrinsic metiR§OPer static speeds are relative static speeds, as stwdirbe
spacepp’ in the first quadrant in Fig. 1. Consequently the reified towards the end of this paper.
ative intrinsic angle, po of inclination of the curvedcet’ The invariance of proper intrinsic static speed and proper
to the vertical at poinP? along the curvedcgt’ and the rela- static speed, (3a) and (3b), in the context of the theory of
tive intrinsic anglep,, of inclination of the curvea)’ to the relativity and theory of intrinsic relativity associatedtthe
horizontal at point P along the curveg’ are equal in mag- presence of a proper metric force field in proper metric space
nitude. It then follows that the proper intrinsic static sge time and proper intrinsic metric force field in proper intrin

¢V! n, and¢V}, are equal in magnitude. That s, sic metric spacetime, which involve proper static speeds an
’ proper intrinsic static speeds respectively, establisimed
sin ¢, po = sin ¢as p (2a) spacetime and intrinsic spacetime by the source of longeran
proper metric force field, at the second stage of evolution
or of spacetim@ntrinsic spacetime within the metric force field
OVipo  OVip (2) shall be given formal proof elsewhere with further develop-

bc  ¢c ment. The corresponding invariance of absolute intrinisie s
_ o _ _ tic speed and absolute static speed expressed by Egs. (79a)
Finally, the proper intrinsic static speed’; ,» at point P ang (79p) of [2] in the context of absolute intrinsic metfiet
along the curved proper intrinsic metric spageis shownto gy of physics and absolute metric theory physics involving
be invariantly projected as proper intrinsic static Spe€d .  apsolute intrinsic static speeds and absolute static speed
into the relativistic intrinsic metric spacgp along the hori- spectively, established in absolute spacetime and alesiohut
zontal and this is made manifest in proper static s)Eed  {rinsic spacetime by the source of a long-range absolute met
in the relativistic Euclidean 3-spadg® in Fig. 1. The proper ric force-field at the first stage of evolution of spacetiime
intrinsic static speedV; ,, at point P’ along the curved rinsic spacetime within the metric force field, shall likewi
proper intrinsic metric time dimensiopcgt’ is likewise be given formal proofs elsewhere with further development.
shown to be invariantly projected as proper intrinsic stati The perfect symmetry of state among the four universes
speedyV, p, into the relativistic intrinsic metric time dimen-namely, the positive (or our) universe, the negative usiver
sion ¢egt, which is made manifest in proper static speafle positive time-universe and the negative time-univesse
Vi po in the relativistic metric time dimensiot along the Jated in [3-6], implies that as the geometry of Fig. 1 evolves
vertical in Fig. 1. with respect to 3-observers in the relativistic Euclidean 3
On the other hand, one expects that the proper intrinsjgacesE® and —E>* in our universe and the negative uni-
static speed;bVS’P along the curved proper intrinsic metric/erse, at the second stage of evolution of spacéiftnimsic
spacegp’ should be projected as relativistic intrinsic statispacetime within symmetry-partner long-range metricdorc
speedpV; p (without prime label) into the relativistic intrin-fields in our universe and the negative universe, the gegmetr
sic metric spaceyp along the horizontal and that the propesf Fig. 2 evolves simultaneously with respect to 3-observer
intrinsic static speest’Po along the curved proper intrinsicin the relativistic Euclidean 3-spacg&®? and—E°%3* in the
metric time dimensiomcot’ should be projected as relativispositive time-universe and the negative time-univers¢het
tic intrinsic static speedV; po into the relativistic intrinsic second stage of evolution of spacetjinkinsic spacetime

metric time dimensiomwcét in Fig. 1. within the symmetry-partner long-range metric force fields
The fact that the proper intrinsic static spedl§ ,, along in the positive time-universe and the negative time-ursiger
the curvedpp’ andoV! ., along the curvedcot’ are invari- Fig. 2 in the positive time-universe and the negative time-

antly projected as proper intrinsic static spegtls ., into ¢p universe co-exists with Fig. 1 in the positive (or our) umse
along the horizontal an@V; . into et along the verti- and the negative universe. It should serve as a complenyentar
cal respectively in Fig. 1, is a graphical representatiothef diagram to Fig. 1 towards formulating the theory of relagivi
invariance of intrinsic static speed in the context of the iassociated with the presence of symmetry-partner proper (o
trinsic theory of relativity associated with the presente o relative) metric force fields in proper spacetimes in our uni
long-range proper intrinsic metric force field in intringiet-  verse and the negative universe. However Fig. 2 in its ptesen

ric space. This invariance is stated as follows form cannot serve as a complementary diagram to Fig. 1. This
is so because the spacetjinginsic spacetime dimensions of
PVs = oV! (3a) the positive and negative time-universes in Fig. 2 are &usi
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’
, -gCpt'*

@VS’,PO%

A A e
- *® 13 1-observers *
-¢;§9%;~;_~¢p0,* d:  3-observers* GC?F»; L -aegt
- /- @p ok go* —ct*
S JIVERERR A

. ) . o . . Fig. 3: The spacetinfimtrinsic spacetime diagram obtained by trans-
Fig. 2: The symmetrical global spacetifiminsic spacetime dia forming the spacetimdstrinsic spacetimes of the positive time-

gram in the positive time-universe and the negative time-universe

. . o . . universe and the negative time-universe in Fig. 2 to the space-
which evolve simultaneously with Fig. 1 in our universe and the nelgrhesxintrinsic spacetimes of the positive and negative universes; the
ative universe at the second stage of evolution of spacefimrissic P p 9 '

spacetimes within symmetry-partner long-range metric force field mplementary diagram to Fig. 1, which is valid with respect to 1-

: o . N ; ... observers in the relativistic metric time dimensions in our universe
in the positive time-universe and negative time-universe, with rée- . )

. L . . and the negative universe.
spect to 3-observers in the relativistic Euclidean 3-spaces in those

universes.

time dimensions:t and —ct*, as indicated. It contains the

to observers in our universe and the negative universe or c#fpCcetimgntrinsic spacetime dimensions of our universe and
not appear in physics in our universe and the negative Uif€ Negative universe solely. It is hence a valid complemen-
verse. tary diagram to Fig. 1 for the purpose of formulating the the-

In order for Fig. 2 to be able to serve as a complementéﬂy of relativity/intrinsic theory of relativity assoqated Wl_th
diagram to Fig. 1, the spacetifirerinsic spacetime dimen-the presence of symmetry-partner proper metric force fields

sions of the positive and negative time-universes in it rhest " PrOPEr metric spacetimes and symmetry-partner proper in

transformed into those of our universe and the negative UAPSIC metric force fields in proper intrinsic metric space
verse, as developed in [5-6]. This means that the followif{§'€S in our universe and the negative universe.
transformations of spacetirfietrinsic spacetime dimensions 1€ curved absolute intrinsic metric spagg and the

must be performed on Fig. 2, thereby obtaining Fig. 3. curved absolute intrinsic metric time ‘dimensiaftét in the
first quadrant (or in the positive universe) in Fig. 1, are the

E03 ot —E93* _y _et*e o0 5 EB- curved absolute intrinsic time ‘dimensiomést’ and the
) ) i . . . ~ .
o0 _ B curved absolute intrinsic spacep’ respectively of the
’ ‘two-dimensional’ absolute intrinsic Riemann geometry at

o’ —  pept; —pp™ — —pegt*; pept® — ¢p; the first stage of evolution of spacetifimgrinsic spacetime
— et — —pp*; in the positive time-universe, which become transformeal in
60" s dedt’s —dp* — —dedt™; dedt® — byl ¢p and ¢éot respectively in Fig. 3. They co-exist with the

— bedtO — gl curved proper i_ntri_nsic mfetric time dimensigngt’ and cur-
A T . ved proper intrinsic metric spacg’ at the second stage of
¢’ —  pept; —pp™t — —pigt*; pegt® — ¢p; evolutions of spacetime and intrinsic spacetime, as shawn i
—pept?* — —pp* Fig. 3. Similarly for the curved-pé¢t* and—¢pp* in the third
(4) quadrantin Fig. 3.
Fig. 3 obtained by performing the transformations of sys- The geometry of Fig. 1 and its complementary geometry
tem (4) on Fig. 2, is valid with respect to 1-observers in tlod Fig. 3 in our universe and negative universe in the con-

6A. J. Adekugbe. Evolutionary sequence of spacefimrinsic spacetime and associated sequence of geometries in a metifiéttdV.



Article 8 (pre-print)

THE FUNDAMENTAL THEORY (MONOGRAPH)

¥lume 1

/

rant in Fig. 1. Consequently the curvédgt’ possesses non-

8° proper intrinsic metric spacegy’ along the horizontal. Conse-
acgt’ ’- aeat. - guently the curvegp possesses non-uniform negative proper
Vipo— ‘?’Cm' (or relative) intrinsic static speedspV; along its length and
. 0;,; 01\7 ,TQ')'\A/ ~OVs,po invariantly projects same intgp’ along the horizontal in the
5 (0} R . . .
s*°, P ’T‘ P first quadrant in Fig. 4.
".:(zip'* OV po AL, Sop Likewise the proper intrinsic metric time dimensipagt’
/ 3-gbservers is curved at varying positive relative intrinsic angles, rel-
-OVsp P*@ Q\?flsp OVs,p ative to its projective straight line relativistic intriksmet-
, WA - W E? ric time dimensionpcgt along the vertical in the first quad-
-@p'* -@Vs,p e 710 QS’P ~
CEEE P R RN T

_A»‘;A;.;'.@CQI*
. ‘, * v

uniform positive proper intrinsic static speed¥; that has
maximum magnitude at poin§® and vanishes at point O
along its length. It invariantly projects non-uniform ptbse
proper intrinsic static speeds/; into the relativistic intrin-
sic metric time dimensiocgt along the vertical in the first
quadrant in Fig. 1.

In the inverse diagram of Fig. 4, on the other hand, the
relativistic intrinsic metric time dimensioficet is curved at
non-uniform negative relative intrinsic anglespy, relative

go* -ct'™

to straight line proper intrinsic metric time dimensigngt’
along the vertical in the first quadrant in that figure. Con-

Fig. 4: The inverse to the global spacetjin&insic spacetime dia- sequently the curvedcot possesses non-uniform negative
gram of Fig. 1 that is valid with respect to 3-observers in the properq y ot p 9

A ; S . ;
physical Euclidean 3-spaces in our universe and the negative L%plper |ntr|n§|c static sp_eeds(;SVS alqng 't,s length ar?d _'n'
verse. variantly projects same into the straight line proper irgig

time dimensionpcgt’ along the vertical in the first quadrant
in Fig. 4. The discussions in this and the foregoing two para-
text of the theory of relativitintrinsic theory of relativity as- graphs obtain in the third quadrant between Fig. 1 and Fig. 4
sociated with non-uniform proper static spgads-uniform gs well.
proper intrinsic static speeds established in spacgtitne- From the point of view of the absolute intrinsic metric the-
sic spacetime by a proper metric force fj@iwper intrinsic ory on the curved ‘two-dimensional’ absolute intrinsic niet
metric force field, correspond to the geometry of Fig. 8a asgacetimé ¢, pé¢t ), involving non-uniform absolute intrin-
its complementary geometry of Fig. 8b in [3], of the theorsic static speedsV, along the curvedsp and pépé, which
of relativity/intrinsic theory of relativity associated with uniwas developed in the preceding two parts of this paper [1-
form kinematical speedisniform intrinsic kinematical speeds?], at the first stage of evolution of spacetjinérinsic space-
namely, the special theory of relativitytrinsic special theory time within a long-range metric force field, on the other hand
of relativity (SR¢SR). Just as Fig. 8a of $FSR in [3] has there is only one diagram namely, the curved absolute in-
Fig. 9a of that paper as its inverse, Fig. 4 is the inversetifhsic spacetimé¢p, ¢péot ) relative to its projective proper
Fig. 1 in the present context. intrinsic spacetime¢p’, ¢cpt’), as in Fig. 4 or Fig. 11 of
From the point of view of the theory of relativjiptrinsic [2]. Inverse diagrams and associated inverse coordirate-tr
theory of relativity associated with non-uniform propea-stformations exist in relativity only. Consequently the cealv
tic speedsmon-uniform intrinsic static speeds, the proper irfgp, pépt ) in the first quadrant and the corresponding curved
trinsic metric spacey’ is curved at non-uniform positive in-(—¢p*, —¢éet*) in the third quadrant in Fig. 1 are retained
trinsic anglespy, relative to its projective straight line reladin the inverse diagram of Fig. 4.
tivistic intrinsic metric spacép along the horizontal, thereby =~ Now the clockwise sense of inclination gt¢t relative
possessing maximum curvature at point S whigré is max- to ¢cot’ along the vertical by varying negative intrinsic an-
imum and zero curvature at point O whef®; vanishes in gles—g¢, and the clockwise sense of inclinationggf in the
the first quadrant in Fig. 1. The curvegh’ possesses vary-fourth quadrant relative tgp’ along the horizontal by varying
ing positive proper intrinsic static speedl; and invariantly negative intrinsic angles ¢, in Fig. 4, is valid with respect
projects same into its projective relativistic intrinsieetric to 3-observers itf’3 as indicated, with respect to whom anti-
spacepp along the horizontal in the first quadrant in that figzslockwise rotation is positive (that is, by positive insia an-
ure. gle), hence with respect to whom clockwise rotation is neg-
In the inverse diagram of Fig. 4, on the other hand, tlagive. The inclination of-¢c¢t* relative to—¢cgt’* along
relativistic intrinsic metric spacep is curved at non-uniform the vertical and inclination of-¢p* relative to—¢p’* along
negative relative intrinsic anglespiy; relative to straight line the horizontal is likewise valid with respect to 3-obsester

A. J. Adekugbe. Evolutionary sequence of spacefimEnsic spacetime and associated sequence of geometries in a megifidtatdV.7
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At in the context of the intrinsic theory of relativitheory of
SO . peot aeot | -0Vs po s° relati_vity assc_)ciat_ed with the presence of a Iong—rang_eemo
q Mpo . bcet s metr!c force flleld in ;papet}me and Ipng—range proper istcin

) @VSr oo po | P OV 0 N2 metric force field in intrinsic spacetime.
> ‘ . gp op
RARON 0} ?b‘vssepxers @\A/S’Px;.;i" 2.2 Deriving intrinsic local lorentz transformation and
s local lorentz transformation in terms of intrinsic sta-
s OV v -0V, p tic speed and static speed

Let us consider an elementary intervabp’ of the curved
proper intrinsic metric spacgy’ about point P along the cur-
(Z;Vsp1 ~observerss] .- ved¢p’ in the fir_st qua_drant_in Fig. 1. The int_er\_/@dﬁ;_;’ pos-
ol o N -O% po ™ sesses proper |n'Fr|n_S|c_stat|c spegd, p and_ is mcllne_d_to
-gp *;_T--_Q,g* % @VS o the horizontal at intrinsic angley, p. It projects relativis-
g%’ oV, P4 \1,\1,') - goptt tic intrinsic metric space intervalgp along the horizontal
T VY0V, P° L on that also possesses proper intrinsic static spé€d- with re-
oot V-GCW’* 'S spect to 3-observers in the relativistic Euclidean 3-spate
et in Fig. 1. The corresponding elementary intergali¢t’ of
the curved proper intrinsic metric time dimensigryt’ about
Fig. 5: The inverse to the spacetifimérinsic spacetime diagram ofthe symmetry-partner poit® along the curvedcet’ in the
Fig. 3 that is valid with respect to 1-observers in the proper physic@lcond quadrant in Fig. 1, possesses intrinsic static speed
time dimensions in our universe and the negative universe. ¢V5/,po and is inclined at intrinsic anglé, po to the ver-
tical. It projects intervabbedgt of relativistic intrinsic metric
in — E'* in the third quadrant in Fig. 4, as indicated. time dimension along the vertical that also possessegsidri

There is likewise an inverse to Fig. 3 shown as Fig. S{atic SpeedV; ., with respect to 3-observers i,
The anti-clockwise sense of inclination ot¢t relative to ~ The elementary intervatd¢p™ of the curved proper in-
pcet’ by varying negative intrinsic anglesg), in Fig. 5 is trinsic metric space-¢p"™ about the symmetry-partner point
valid relative to 1-observers irt’, with respect to whom anti- > along the curved-¢p™ in the third quadrant in Fig. 1,
clockwise rotation is negative. Likewise the anti-clockevi POSSesses proper intrinsic static speé , and is inclined
sense of inclination ofp relative togy’ by varying negative atintrinsic anglepy p to the horizontal. It projects relativis-
intrinsic angles— ¢, is valid relative to 1-observers int’. tiC intrinsic space intervat-d¢p* along the horizontal that
The diagram of Fig. 5 is valid with respect to 1-observers #s0 possesses proper intrinsic static spged,, with respect
the time dimensionat and—ct*, as indicated. to 3-observers* in the relativistic Euclidean 3-spacB>* in

Figs. 8a and 8b and their inverses Figs. 9a and 9b in [3p. 1. The corresponding elementary intervabcdgt™ of
involve inclined extended straight line orthogonal prinied the curved proper intrinsic metric time dimensiemcot’
trinsic afine spacetime coordinateés’ and¢cot’ relative to  about the symmetry-partner poiR?* along —gcet’™ in the
their projective extended orthogonal unprimed straighe |if0urth quadrant in Fig. 1, possesses intrinsic static speed
intrinsic affine coordinategi andgcet (in Figs. 8a and 8b of ¢V po and is inclined at intrinsic angley; po to the verti-
[3]) and the inverses (in Figs. 9a and 9b of [3]). They |nvo|\xcﬁl it projects interval-¢cdgt™ of relativistic intrinsic metric
constant positive intrinsic dynamical spegd (in Figs. 8a time dimension along the vertical that also possessesgntri
and 8b) and constant negative intrinsic dynamical spegd static speedV, ,,, with respect to 3-observers* inE**.
(in Figs. 9a and 9b), in the context of the intrinsic special The elementary intervals of curved proper intrinsic met-
theory of relativityspecial theory of relativity {SR/'SR), as ric spaces and curved proper intrinsic metric time dimarsio
developed in [3]. dop', —dop"™, pedgt’ and —pedgt’™ shall be considered to

On the other hand, Figs. 1 and 3 and their inverses Fighetindefinitely short so that they are straight short line- seg
and 5 in this paper, involve extended inclined orthogonal ciments within which proper intrinsic static speed has a con-
vilinear proper intrinsic metric spacetime dimensigpéand stant value. And since the point8 &nd P* along the curved
¢cot’, which are curved relative to their projective extendetk¢t’ and curved—g¢cegt™* and points P and P* along the
straight line orthogonal relativistic intrinsic metricaggetime curved¢p’ and curved—¢p’™ are symmetry-partner points,
dimensionspp andcét (in Figs. 1 and 3) and their inversesghe intrinsic anglepy; po of inclinations of intervalspedgt’
(in Figs. 4 and 5). They involve non-uniform positive propeand—q¢cd¢t’* to the vertical and the intrinsic angle) p of
intrinsic static spee@V! along the curvedyp’ andécet’ (in  inclinations of intervalsi¢p’ and —d¢p™ to the horizontal
Figs. 1 and 3) and non-uniform negative proper intrinsitictaare equal. That ispis po = ¢, p.
speed—¢V, along the curvedp and¢cgt (in Figs. 4 and 5), By making use of the information in the foregoing para-

8A. J. Adekugbe. Evolutionary sequence of spacefimrinsic spacetime and associated sequence of geometries in a metifiéttdV.
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negative universe in the fourth quadrant projects componen
—gedgt’ sin ¢ p along the horizontal in the first quadrant,
which is made manifest outwardly ircdt’ sin i, p along

the horizontal in Fig. 6. Dummy star label has been removed
from the projective componentpcdpt’™ sin ¢, p of the in-
clined —¢cdot’™ because the projective component is now an
intrinsic dimension in the positive universe.

Derivation of partial intrinsic local Lorentz transforma-
tion from Fig. 6 follows the same procedure used to derive
partial intrinsic Lorentz transformation from Fig. 8a of |8
the context of intrinsic special theory of relativity$R). The
procedure is applied hereunder.

Now d¢p being the projective component along the hor-
izontal of the inclinedd¢p’, thendpp = d¢p’ cospips p.
Hence we can write,

dip = dpsec pi, p (%)

Fig. 6: The local spacetinietrinsic spacetime diagram drawnThis is all the intrinsic metric coordinate interval tramsha-

at symmetry-partner points in spacetifieinsic spacetimes in tion that should have been possible along the horizontal in
the positive (or our) universe and the negative universe, from tine first quadrant with respect to 3-observers in the refativ
global diagram of Fig. 1, for deriving partial intrinsic local Lorentzic Euclidean 3-spac&? in Fig. 6, except that the inclined
transforma_tion in terms o_f intrin_sic static speed _with respect to groper intrinsic metric time dimension intervakycdgt™* in
observers in the relativistic Euclidean 3-spaces in our universe gRd fourth quadrant also projects intervapedet’ sin ¢ij, p

the negative universe.

graph and drawing the inclined elementary intervéds’,
ocdot’, —dop'™* and —pcdpt’™ relative to their projections
dop, pcdpt, —dop* and—ocdpt* respectively from a com-

mon point we have Fig. 6.

along the horizontal, which must be added to the right-hand
side of(x) to have

dop' = dgpsec s p — dedgt' singypsp (+%)

But the inclined intervalpcdgt’ is related to its projec-
tion ¢cdgt along the vertical in the same Fig. 6 @sd¢gt =

Fig. 6 has been drawn at the symmetry-partner pointsfedet’ cos ¢ p, hencepedpt’ = ¢edpt sec pips p. By us-
P°, P* and P* along the respective curved proper intrinsigng this in(xx) we have

metric dimensiongyp’, ¢cot’, —¢p'* and—gpceot’™ in Fig. 1.
Hence the appearance of intrinsic angle of inclinatign p,
(wheregi)s p = ¢1)5 po), in Fig. 6. The inclined elementary
intervals of proper intrinsic metric spacetimep’, ¢cddt’,

d¢pl — d¢p sec ¢ws,P — gf)cdgf)t tan ¢1/}S7P;

(with respect to 3 — observers in E3)

®)

—dgp”™ alnd —¢cdgt’™ possess equal proper intrinsic statigg, (5) is the partial intrinsic Lorentz transformation ¢é-e
speed)V; ;» and their projective relativistic componemksp, mentary intrinsic metric coordinate intervals that can be d

pedgt, —dpp* and —¢cdgt™ likewise possess equal propefived along the horizontal in the first quadrant with respect
intrinsic static spee@V, p as shown. It must be noted thag_gpservers idz3 in Fig. 6.

the line segmentsiB’, AC’, A*B’*, and A*C'* are mere

The complementary diagram to Fig. 6 that can be drawn

connecting lines and not intrinsic metric coordinates. TRBghe symmetry-partner poinis P°, P* and P** along the
line segmentsAB, AC, A*B* and A*C* are likewise mere rved proper intrinsic metric spacetimes’, ¢cot!, —op'

connecting lines.

and —¢cot’™ in Fig. 3; Fig. 3 being the complementary di-

The componend¢p of interval of the relativistic intrinsic agram to Fig. 1, is depicted in Fig. 7. The local geometry
metric space projected along the hori;ontal is made manifesFig. 7 derived from the global geometry of Fig. 3 is valid
outwardly in an elementary voluméE? of the relativistic with respect to 1-observers in the relativistic time dimens

Euclidean 3-space in Fig. 6. Likewise the compongniot
of the relativistic intrinsic metric time dimension profed

ct and—ct*, as is the case with Fig. 3.
Now ¢cdgt being the projective component along the ver-

along the vertical is made manifest outwardly in an elemetical of the inclinedgdgt’ in the first quadrant in Fig. 7, then
tary intervalcdt of relativistic metric time dimension alonggcdgt = peddt’ cos ¢ips p. Hence we can write,

the vertical.

In addition, the inclined negative elemeyntar
proper intrinsic metric time dimensior ¢gcdgt’™* from the

pedpt’ = pedgt sec pips p (% * %)

A. J. Adekugbe. Evolutionary sequence of spacefimEnsic spacetime and associated sequence of geometries in a meeifidtatdV.9



Volume 1 THE FUNDAMENTAL THEORY (MONOGRAPH) Article 8 (preint)

T@Vs P f QVS',P T OVs P f '@Vsp
godpt]cdt  pedat’ @Cdﬁﬁé’,?,[@t_ﬂ_,:,.%cd;zﬁt
. C c’ . C
-dge'singV, ’ ; -dgesin-QV, ! :
@VS/,P ¢ P ! , '@VS’P ( s P) | ,
gt TN foodgpx ;\
I |
B* N
-dgex. BT - gy dge'y © Y
] > >P @ ' ! > S,P -O\V 13
OVs,p B* (‘ VA \VS,P d_]E3 -OVip B / A S,p d_]E L}
BT o L AL = ) A ,
qE A ) Bder ovip dE* A ) B doe-0Vip
Q\VS,P . Q\VS,P ., Lo 0\VS,P\/ I '@\Vs,p ~ o
\NI—: ,,,,,,,,,,,,,,,,,,, B?J...d¢p' N\I’* ——————————————————— Bt,p...qu ,
/ "\ """"""""" \@Vs, P ’ D N \_{QVSP
’ ‘ dgpr’*sing | in(
- - Yo p o o dgr*sin-oV, ;)
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A . . FFig. 8: The inverse to the local diagram of Fig. 6, derived from the
Fig. 7: The complementary diagram to Fig. 6 drawn at symmet lobal diagram of Fig. 4, for deriving inverse partial intrinsic lo-

partngr pom_t S In spacetimfstrinsic spa(_:etlmes n th_e positive aNal Lorentz transformation with respect to 3-observers in the proper
negative universes, from the global diagram of Fig. 3, for derivs

ing partial intrinsic local Lorentz transformation with respect to ﬁhysmal Euclidean 3-spaces in our universe and the negative uni-
. S ) ; ) . erse.
observers in the relativistic time dimensions in our universe and the
negative universe.
complementary geometry of Fig. 7 as follows

pedgt’ = ¢cddt sec pips p — dpp tan ¢ys p;

This is all the intrinsic metric coordinate interval tramisha- .
(w.r.t 1 — observers in ct)

tion that should have been possible along the vertical in the @)
first quadrant with respect to 1-observers in the relatwist dgp’ = dopsecpys p — Ppcddt tan s p;
time dimensionct in Fig. 7, except that the inclined proper (w.r.t 3 — observers in E?)

intrinsic metric space intervatd¢p’* in the second quadrant
also projects componentdgp’ sin ¢1p, p along the vertical,
which must be added to the right-hand sidé-o% x) to have

There is an inverse to system (7), which must be derived
from the inverses to Figs. 6 and 7. The inverse to Fig. 6 that
can be derived from the global geometry of Fig. 4 is shown
, . as Fig. 8. Fig. 8 derived from the global geometry of Fig. 4

pedgt’ = peddtsec pys,p — ddp'singsp (% *%) 5 yaiid with respect to 3-observers in the proper Euclidean

3-space’® and—E"*, just as Fig. 4 is valid with respect to

But the inclined intervatigy’ is related to its projection 3-observers in the proper Euclidean 3-spaEésand —E'*.
dop asdop = dop' cos ¢nps p, along the horizontal in the Consequently the partial intrinsic Lorentz transformatad
same Fig. 7. Hencégp' = dgpsec ¢ib, p. By using this in elementary intrinsic metric coordinate intervals derifren
(% * %x) we have Fig. 8 is valid with respect to 3-observershit* and—E'*.

Now ¢cdgt’ being the projective component along the
vertical of the inclinedpd¢t in the first quadrant in Fig. 8,

o _ .
¢Cd¢t = ¢Cd¢t sec (b'(/}s,P d¢p tan QSws,Pa then¢cd¢t’ _ ¢Cd¢t COS(—(ﬁw&p) — ¢Cd¢t oS ¢ws7p, we
(with respect to 1 — observers in ct) can write,
(6)
Eq. (6) is the partial intrinsic Lorentz transformation dé-e peddt = pedgt’ sec s, p (k%)

mentary intrinsic metric coordinate intervals that can be drhjs is all the intrinsic metric coordinate interval tramsha-
rived along the vertical in the first quadrant with respect {n that should have been possible along the vertical in the
1-observersint in Fig. 7. first quadrant with respect to 3-observers in the properigucl
By collecting Egs. (5) and (6) we obtain the full intrinsi@an 3-spacé’® along the horizontal, except that the inclined
local Lorentz transformation of elementary intrinsic nietrrelativistic intrinsic metric space intervaldgp* in the sec-
coordinate intervals from the local geometry of Fig. 6 asd ibnd quadrant also projects componefakpp sin(—¢ys p) =

10A. J. Adekugbe. Evolutionary sequence of spacetittrnsic spacetime and associated sequence of geometries in a megitidtddV.
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\-st',p T-QVs',p By collecting Egs. (8) and (9) we have
@cdgt cdt'[i ngQ)t peddt = pedt’ sec dpi)s p + dop tan s p;
‘ (w.r.t 3 — observers in E'3)
oY, Bt T OVep dop = dep' sec s p + pedpt’ tan ¢, p;
gedpt*sin¢-0 v, ) L : - idgp (w.r.t 1 — observers in ct’)
! 1% QWSP A / e . . . . (10)
-®Vs,P<_-_C!?ff’B N - 7'37‘: - Bid > System (10) derived from Figs. 8 and 9 is the inverse to sys-
- dIE"* f, AR oV \ dgr'-gvi,  tem (7) derived from Figs. 6 and 7.
| ! P S,p ! . . . . . .
Coge -0V, | -ocdptsincoVY, ;) Le/t us conS|qur an |ntr|ns_|c gvent_that |_nvolves mter_val
st . R . ’ ocdot’ of proper intrinsic metric time dimension but zero in-
P -dep A terval of proper intrinsic spacel¢p’ = 0). This reduces
-OVs,p | S system (10) as follows
ko 40*
-gcdpt'* .],,,Cf?',t,'f",,f' -godpt” pedt = gedgt’ sec ¢y p; dpp = peddt’ tan ¢ys p (11)
. -0V . . , .
Vs ‘l' \ P Then by dividing the second into the first equation of system
(11) we have
Fig. 9: The inverse to the local diagram of Fig. 7, derived from the dop )
global diagram of Fig. 5, for deriving inverse partial intrinsic lo- dedot = sin ¢ps p (12)

cal Lorentz transformation with respect to 1-observers in the proper

physical time dimensions in our universe and the negative univerBit, dpp/d¢t = ¢V p, is the proper intrinsic static speed
of the ‘primed intrinsic frame{de¢p’, pcdgt’) relative to the
‘unprimed intrinsic frame{(d¢p, ¢cdgt). Hence

dopsin ¢1p, p along the vertical, which must be added to the

right-hand side ofx * * * x) to have sin ¢ps, p = ¢V, p/dc = B p(HV p) (13a)

_ / : 2
pedpt = peddt’ sec pihs p + dppsin s p - (s * s * sok) sec e p = (1 — (;/CQ - 12 _ o P(¢‘/Z7P) (130)

By using Egs. (13a) and (13b) in systems (7) and (10) we
have respectively as follows

But the inclined intervatl¢p in the fourth quadrant is re-
lated to its projectior¢p’ as asipp’ = dgp cos p1)s p along
the horizontal in Fig. 8. Hencépp = d¢p’ sec pips p. By
using this in(x x  * *x) we have

dot’

d¢p)

Vs, P((b P)(d(bt d) 2

pedgt = pedgt’ sec ¢, p + dop’ tan i) p; (w.r.t. 1 — observers in ct)
(with respect to 3 — observers in E’3) (14)
®) dép’ = s,p(dV] p)(dop — OV, pdot);
: 3
Eq. (8) is the partial inverse intrinsic Lorentz transfotina (w.r.t. 3 — observers in E*)
of elementary intrinsic metric coordinate intervals that be
derived along the vertical in the first quadrant with respect
3-observers irE"® along the horizontal in Fig. 8. , L Ve
Finally the inverse to Fig. 7, which can be derived from 9%t = 7s,P OV p)(dot %
the global geometry of Fig. 5 is depicted as Fig. 9. Fig. 9 (w.r.t. 3 — observers in E’3) (15)

is valid with respect to 1-observers in the proper metrietim
dimensions#’ and—ct"* along the vertical, as is the case with %7 = Vs, P(OVS p)(dop’ + oV, pdot’);
Fig. 5. The partial inverse intrinsic Lorentz transforroatof (w.r.t. 1 — observers in ct’)
elementary intrinsic metric coordinate intervals that t@n
derived along the horizontal in the first quadrant in Fig.\@, b
following the procedure used to derive Eq. (8) from Fig. 8 Is

Either system (7) or its inverse (10) or the explicit form
in terms of proper intrinsic static speed (14) or (15) leads t
[Rtrinsic local Lorentz invariance

the following
pdpt® — dop? = pcidet’”? — dpp” (16)
dop = dop'secdihs p + pedet’ tan ¢ijs p; ) The intrinsic local Lorentz transformation of elementary
(with respect to 1 — observers in ct’) proper intrinsic metric coordinate intervalgp’ and ¢cdgt’

A. J. Adekugbe. Evolutionary sequence of spacefimtrénsic spacetime and associated sequence of geometries in a metitidtaddV.11
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into elementary relativistic intrinsic metric coordinatger- the vertical is made manifest outwardly in the global rela-
valsdgp andgcdgt of system (7) or (14) and its inverse systivistic metric time dimensiomt with respect to 3-observers
tem (10) or (15), written at symmetry-partner poitsand in IE® in Fig. 1.

P along the curved proper intrinsic metric spage and Itis important to note that in stringing together the prejec
curved proper intrinsic metric time dimensigigt’ respec- tive intervals of relativistic intrinsic metric spack)p along
tively in Figs. 1 and 3 and along the curved relativistic irthe horizontal in Fig. 6 at consecutive points from point O in
trinsic metric spac@p and curved relativistic intrinsic met-Fig. 1, described in the foregoing paragraph, the component
ric time dimensionpcgt respectively in Figs. 4 and 5, can-¢cdgt’ sin ¢ips p = —pedgt tan ¢ips p, projected into the
equally be written at another symmetry-partner poptand horizontal by the inclined-¢c¢t’™* in the fourth quadrant in

Q" along those curved intrinsic metric spaces and curved Fig. 6, must be disregarded. This is so because it cannot be
trinsic metric time dimensions, in terms of intrinsic anglebserved (or measured) as relativistic intrinsic spacaat
P, and proper intrinsic static speed’; ¢ at the new sym- by ‘intrinsic 1-observers’ inpp.

metry-partner points, and this is true at every symmetng-pa  The curved proper intrinsic metric spagg’ and curved

ner points along these curved intrinsic spaces and intringroper intrinsic metric time dimensiafr¢t’ in Figs. 1 and 3
time dimensions. are relative intrinsic metric space and relative intrinsiet-

It follows from the foregoing paragraph that the intrinsidc time dimension. Consequently the componépnp =
local Lorentz invariance (16) obtains at every point on thip’ cos ¢ p projected along the horizontal and the com-
global curved two-dimensional proper intrinsic metricapa ponent—dgp’ sin ¢1p, p projected along the vertical by an
time (¢p’, pcdt’) in Figs. 1 and 3. This guarantees that thelementary intrinsic coordinate intervalgp’ at point P along
projective two-dimensional relativistic intrinsic metspace- the curved¢p’ and —dgp™* at point P along the curved
time (¢p, pcot) is everywhere flat and consequently the out-¢p’*, as illustrated in Figs. 6 and 7, being relative intrin-
ward manifestation of ¢p, pcdt) namely, the global four- sic coordinate intervals, are metric intrinsic coordinater-
dimensional relativistic spacetili&?, ct) is everywhere flat, vals with respect to 3-observers in the relative 3-spgéatand
as illustrated in Figs. 1 and 3. 1-observers in the relative time dimensianrespectively in

Graphically, let us consider the local geometry of Fig. 6 feigs. 1 and 3. Likewise, the projective componeénti¢pt =
be drawn at every symmetry-partner points along the glolgati¢t’ cos ¢1)s p along the vertical and the projective com-
curved proper intrinsic metric spaegp’ and global curved ponent—g¢cdét’ sin ¢ip; p along the horizontal of the ele-
proper intrinsic metric time dimensiopct’, starting from mentary intrinsic coordinate intervabcdgt’ at the sym-
point O in Fig. 1. Then the elementary proper intrinsic neetrinetry-partner point Palong the curvedcst’ in Figs. 1 and
spacetime intervalépp’ andgcdgt’ in Fig. 6 will be inclined 3, as illustrated in Figs. 6 and 7, being relative intringior
to the horizontal and the vertical respectively at varying idinate intervals, are metric intrinsic coordinate intéswaith
trinsic anglesyy,, starting fromge), = 0 at point O in Fig. 1 respect to 3-observers iB* and 1-observers int respec-
and increasing continuously away from that point. Thus liyely.
stringing together the inclinedpp’ in Fig. 6 at consecutive It follows from the foregoing paragraph that there are no
points, starting from point O in Fig. 1, one obtains the coprojective ‘non-metric’ intrinsic coordinate intervals be
tinuous curved global proper intrinsic spagg’ in Fig. 1. discarded in coordinate projection (or transformatioria-re
Likewise, by stringing together the inclinegd¢t’ in Fig. 6 tions derivable from Figs. 6 and 7, which should therebydyiel
at consecutive points, starting from point O in Fig. 1, orietrinsic Riemannian metric line element and intrinsic -Rie
obtains the continuous curved global proper intrinsic metmannian metric tensor on the curved proper intrinsic met-
time dimensionpcgt’ in that figure. ric spacetimeop’, pcot’) with respect to 3-observers 3.

By stringing together the projective elementary relativiRather the geometries of Figs. 6 and 7 give rise to the intrin-
tic intrinsic metric space intervalpp along the horizontal in sic local Lorentz transformation of system (7) or (14) with
Fig. 6 at consecutive points, starting from point O in Fig. tespect to 3-observers if? and 1-observers int, as indi-
one obtains the continuous straight line global relaiivist- cated, which implies that the curved proper intrinsic space
trinsic metric spacep along the horizontal in Fig. 1. And bytime (¢p’, ¢pcgt’) in Figs. 1 and 3 possesses intrinsic local
stringing together the projective elementary relaticigiirin- Lorentzian metric tensor at every point of it with respecs{o
sic metric time dimensiowcdgt along the vertical in Fig. 6 observers in3 and 1-observers iet conjointly. The curved
at consecutive points, starting from point O in Fig. 1, one otelativistic intrinsic spacetiméaop, ¢cgt) in Figs. 4 and 5
tains the continuous straight line global relativisticrimsic  likewise possesses intrinsic local Lorentzian metric deras
metric time dimensiowcet in Fig. 1. The straight line global every point of it with respect to 3-observers Fi® and 1-
relativistic intrinsic metric spacep thus obtained along theobservers i/t conjointly for the same reason.
horizontal is then made manifest outwardly in the globa+el  On the other hand, the compone@uip projected into the
tivistic Euclidean 3-spac&? and the straight line global rel-proper intrinsic time dimensioficgt’ along the vertical by an
ativistic intrinsic metric time dimensiofacgt obtained along elementary absolute intrinsic coordinate interdal> along
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the curved absolute intrinsic spa¢g in Fig. 4 of [2], being metric force field in intrinsic metric spacetime, will be nead
an absolute intrinsic coordinate interval, is a ‘non-neéin- manifest in the theory of relativity in metric spacetime due
trinsic coordinate interval with respect to 1-observershim to the presence of a long-range metric force field in space-
relative time dimensiort’ and the componenpédpt pro- time. Consequently the intrinsic local Lorentz transforma
jected intogp’ along the horizontal by the corresponding eldion (¢LLT) of system (7) and its inverse of system (10) in
mentary intrinsic coordinate intervakdet along the curved two-dimensional intrinsic metric spacetiniep, ¢cet), will
absolute intrinsic time ‘dimensionbéét, being an absolute be made manifest outwardly in local Lorentz transformation
intrinsic coordinate interval, is a ‘non-metric’ intriksco- (LLT) and its inverse in four-dimensional metric spacetime
ordinate interval with respect to 3-observers in the redatirespectively as follows

3-spaceE’ in that figure. The fact that the projective ‘non-

metric’ intrinsic coordinate intervals must be discardetile cdt! = cdtsecipsp — da' tan i p;

using the projective intrinsic metric coordinate intesuébp’ (w.r.t. 1 — observers in ct)

al_ong the hqrizontal angbcdgbt’ .alo.ng the. vgrtical solely in Al = dalseci, p — cdbtan by p: (20)
Fig. 4 of [2] in constructing intrinsic metric line elemenid ’ ’

intrinsic metric tensor on the curvee, péot ) with respect da'? = da?; dz"® = dz’;

to 3-observers i&’® and 1-observers int’ conjointly in in (w.r.t. 3 — observers in E?)

that figure, leads to the absolute intrinsic sub- Rlemannlan
metric tensorsg;; of Eq. (33) of [2] on the curved absolute?d

intrinsic metric spacetimégp, pé¢t) with respect to these cdt = cdt'sectps p + da't tan i p;
observers, as fully derived in [2]. (w.r.t. 3 — observers in E'3)
Now let us collect the partial intrinsic Lorentz transfor-
mations of elementary intrinsic spacetime intervals that a de' = da'tsecips p + cdt’ tan s p; (21)
valid with respect to 3-observers in the Euclidean 3-spaces dz? = dx'?; da® = da'3;
systems (14) and (15) to have (w.r.t. 1 — observers in ct’)
dép’ = 7s,p(dV] p)(dop — OV pdot) The explicit forms of¢LLT (14) and its converse (15) in
Vi p (17) two-dimensional intrinsic metric spacetime are likewiszd®
dpt = . p(oV, p)(dot' + o2 dgp) manifestin LLT and its inverse in four-dimensional spaceti
respectively as follows:
Now from the point of view of what can be observed
and measured as intrinsic space interval with intrinsiolab At = yep(V!p)(dt— Vs de1),
ratory rod and as intrinsic time interval by intrinsic laber ’
tory clock by ‘intrinsic 1-observers’ in intrinsic spa¢e the (w.r.t. 1 — observers inct)
terms—. p (V! p)@V! pdot andy, p(6V! p)(@V. p/oc?) di" = e p(V! p)(da' — V! pdt); (22)
xd¢p’ must be set to zero in system (17), thereby reducing P T
. dx’® = dz*; dx'° = dx”;
system (17) as follows from the point of what can be mea- R
sured with intrinsic laboratory rod and clock by ‘intrinsie (w.r.t. 3 — observers in E*)
observers’ in intrinsic space and
V2 /
dpp = 7s,p(OV, p) " dop’ = dop'(1 — ZSQP)E (18) dt = yep(Vlp)(dt + V;Pda?’l);
(w.r.t. 3 — observers in E’3)
and d 1 _ / d /1 / d (23)
SV T = Vs,P(Vs,P)( "+ V§ P t');
dot = s, p(oV] p)dot’ = dpt' (1 — 5*21’)*% (19) de? = da'?; do® = da'3;
ge (w.r.t. 1 — observers in ct’)
Egs. (18) and (19) give intrinsic metric space contraction
and intrinsic metric time dilation formulae explicitly ietms Where
of intrinsic static speed. These are intrinsic length caotr 2
tion and intrinsic time dilation formulae in the context bt vo.p(VLp) =sectpsp = (1 - —=2)7V2  (24)
intrinsic theory of relativity associated with the preseiné a ¢
long-range intrinsic metric force field in intrinsic spaoest. The dimension:! of the relativistic Euclidean 3-spade®

Now the intrinsic theory of relativity in intrinsic space-is considered to be orientated along the isotropic rekttwi
time associated with the presence of a long-range intringitrinsic metric spacep, while the dimensions? andz?> of
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E? are orientated along other directionshf. It follows that The theory of relativity in spacetime due to the presence
the dimension:’' of the proper Euclidean 3-spad&® was of a long-range metric force field in spacetime, being mere
orientated along the isotropic proper intrinsic metric aoutward manifestation of the intrinsic theory of relatyih

¢p', while the dimensions’? andz’ of E’3 were orientated intrinsic spacetime due to the presence of intrinsic metric
along other directions if&’. Now the intrinsic static speedforce field in intrinsic spacetime, the results of the theory
V! p lies along the isotropic intrinsic spaceg’ underlying of relativity in spacetime have been written directly frone t

E and alonggp underlying E3. Consequently the staticcorresponding results of intrinsic theory of relativityjirin-
velocity 17‘3/‘13 lies alongz’ in E” and alongz! in E3. It sic spacetime summarized above. These are the local Lorentz
has no Component a|0ng dimenslﬁ/ﬁ or LEIS in ‘E/3 and no transformation (LLT) and its inverse of System (20) and (21)
component along dimensiar? or 22 in E3. These make OF system (22) and (23); local Lorentz invariance (25) ared th

systems (20) through (23) to take their forms, in which th@ngth contraction and time dilation formulae (26) and (27)
intervalsdz’2 anddz’® transform into intervalgz? anddz3 all of which have been written at a point in spacetime and as

trivially as dz’? = da? anddz’® = da3. must be done at every point spacetime in a long-range metric
Either the LLT (20) or its inverse (21) or the explicit fornforce field. _ _
(22) or (23) leads to local Lorentz invariance (LLI) The central purpose of this paper is to develop a new
geometrical background for the theory of relativity associ
Adt? — (dz')? — (do?)? — (d2®)® = ated with the presence of a long-range metric force field in

spacetime within the four-world picture, in which the four-
Adt’? — (da')? — (da'®)? — (dz"*)? (25) dimensional spacetime is underlied by a hidden two-dimen-

. , . . ) sional intrinsic spacetime in each universe, develope®in [
This is the outward manifestation in the 4-dimensional 8PaG). We deem the results derived in this section and summa-

time of the intrinsic local Lorentz invariancel(LI) (16). The rized in the foregoing two paragraphs as adequate for this pu
local Lorentz invariance (25) is valid at every point on thﬁ

four-di onal . imolving f - ose. It must be recalled from the derivation of the concépt o
our-dimensional spacetime, Implying flatness everywimiereg ;. inyrinsic speed and static speed in part three ofptis
a long-range metric force field of the relativistic spaceti

: : Mher [2], that the intrinsic static speed and static speedtiwh
3
(E”, ct), as deduced fromLLI (16) earlier and as illustrated appear in the intrinsic theory of relativity and theory ofre

in Figs. 1 and 3. ativity associated with the presence of a long-range metric

_ Finally the intrinsic length contraction formula (18) ang, ¢ field in spacetime in this paper are pure geometrical pa
intrinsic time dilation (19) in intrinsic two-dimensionedet- |, oters.

ric spacetime are made manifest in length contraction and

time dilation formulae in four-dimensional metric spaoegti S . )
2.3 Clarifications of the concepts of relative static speed,

as follows o . . : .
relativity associated with static speed and relative
Vv!2 metric force fields
dat = e p(Vip) Tt = (1— =57)2da'; , | , _ _
- ) " 5 € Itis appropriate to shine some light on the new conceptsan th
dr” = dz”; dz”” = dx (26) topic of this sub-section that are introduced in this papet.
us start with the familiar concept (or parameter) in physics
and e namely, the kinematical (or dynamical) velocify(or speed

dt =~y p(V],)dt' = (1 - Lf)fl/‘z)dt/ (27) v)- Itis an observable and measurable property of a parti-
’ c cle or object in motion. The kinematical velocity is a relati
As a summary of this section, we have derived the glohzdrameter because its magnitude varies with the observer or
curved intrinsic metric spacetinftat spacetime geometriedrame of reference relative to which the particle is in motio
of Figs. 1-5 and the associated local intrinsic spacgtipse The relativity of kinematical velocity is the origin of thela-
cetime geometries of Figs.— 9 within the four-world pic- tivity of motion of material particles and objects descdlixy
ture. We have derived the intrinsic local Lorentz transfarmthe special theory of relativity.
tion (pLLT) and its inverse of systems (7) and (10) or systems On the other hand, the proper static sp&gds a property
(14) and (15); we have validated intrinsic local Lorentziriv of space, established in space by the source of a long-range
ance ¢LLI) and have derived the intrinsic length contractiorelative metric force field, irrespective of whether a paeti
and intrinsic time dilation formulae (18) and (19), at a poirr object is present in space or not. A particle or object of
in spacetime with the aid of Figé.— 9, as must be done atany mass located at a point P in space where the proper static
every point in spacetime in a long-range metric force fielspeed is/; , will acquire V{ , but will not move relative to
in the context of the intrinsic theory of relativity assdeid any observer at this speed. If it also possesses kinemuagical
with the presence of an intrinsic metric force field in ingiim locity ¢ relative to an observer while moving through point P,
spacetime. then it will be observed to move at the velocitpnly relative
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to the observer, despite the static spéfgg_, it has acquired. event is the concept of relativity associated with the prese

The static speed established at a point in space canno®b long-range metric force field in spacetime.
observed or measured. It does not give rise to flow of space In brief, the relativity associated with proper static spee
and consequently it does not give rise to translation inespa@ a long-range metric force field is relativity with positio
of a material particle or object that acquired it, as saidvaboin space within the field (and not relativity with observer or
Further more, the static speed at a point in space is the séfage of reference). Relativity of proper static speedilse
with respect to all observers of frames of reference. Itigke refers to variation of magnitude of proper static speed with
an absolute parameter from the point of view of the speci¥sition in space within a long-range metric force field. In
theory of relativity. How then come the concepts of relativher words, it refers to the fact that the proper static dpee
static speed and relativity associated with static speed? V p andV; , at two positions P and Q of fierent distances

In order to answer the question ending the foregoing pafé: andz respectively from the origin of the long-range rel-
graph, let us revisit the length contraction and time difati tive metric force field have flerent magnitudes. It does
formulae (26) and (27). Although the proper static spgéd Not refer to variation of the magnitude of a static speed with
at a point in space cannot be observed or measured and®@fervers or frames of reference. As mentioned earlier, the
though its squaré’/2 cannot be observed or measured, tH$OPer static speed at a point in space is the same with re-
quantities(1 — V/2/¢2)'/2dz't and(1 — V/2/¢?)~1/2dt’ can SPectto all observers or frames of reference.
be observed and measured. This follows from the fact to In the light of the foregoing, a relative (or relativistic)
be formally derived upon making connection to gravity elsgietric force field is the one that establishes non-zero prope
where thatl’/? is related to the classical potenti@i of the Static speeds in space. That is, one that establishes proper
metric force field that establish&¥ in space asp’ = —%VS’Q static speeds of fferent magnitudes (no matter how small
(for an attractive metric force field). The quantity?, like the in magnitudes in a strict sense) atfdrent positions in the
potential®’ at a point in space, cannot be observed or me¥oper Euclidean 3-spadg’®, which transforms invariantly
sured (as is the case with gravitational potential in paldi. &S proper static speeds in the relativistic Euclidean gepa

As shall also be shown formally elsewhere with furthe’?é yvithin the metric'force field. The possibility of the rel- .
development, the speedn the factor,(1 — V/2/c2)1/2dx"! ativity of other_physmal parameters, such as mass, atectri
and(1 — V2/c2)~1/24¢', is a static speed like the! it di- and_magnetlc_ fields, energy, fluxes, temperature, entrapy, p
vides (and not the dynamical speed of light). In other word§ntials, €tc, in the sense of the variations of their olery
these factors shall appear @s— V’2/c2)1/2dz"" and (1 — (or reIauwstu;) magm.tudgs with prop_er_stanc speed amal-c
V2 /¢2)=1/24¢' with further development, where, is the sequently with position in space within a long-range met-

maximum over all static speeds that can be establishecfi%force field, on the flat four-dimensional relativistic trie

i 3 A . ) .
space or that can be acquired in space by material partiagece“de ct) _(m Fig. 1) now |sola_ted, shall be mvestl_-
and objects, with a magnitude 8fx 103 m/s; (the speed gated upon applying the results of this paper to the gravita-

of light being the maximum over all kinematical speeds Pnal field elsewhere.

material particles and objects with equal magnitude of Expectedly, it will be possible to derive the transforma-
103 m/s). tions of physical parameters and physical constants,ickdss

S S N 2 1 andspecial-relativistic non-gravitational laws, as vasltlas-

l\/llow the quar:;uef{l ‘{s fes)2du - CS,(QCSJ Vf )*  sical gravitational laws on flat spacetime within a longg@n

xdz" and(1 - V=/c®)72dt" = (1/¢)(c; = ViZ)72dt’ can  atric force field with the aid of the local Lorentz transfam
be measured, since theféirencer?

5 ;
_ _ — V%, being equivalent i, anq its inverse in terms of proper static speed of system
to difference of potentials, can be measured. It then follo ) and (23), in the context of the theory of relativity as-

that the length contraction and time dilation formulae (2Q)cisted with the presence of a long-range metric force field

and (27) can be observed and measured. Thus by allowing 28,5 cetime. This will be similar (or analogous) to Lorentz

H 1 1 /
event that involves proper time intervé” and proper spaceyanstormations of parameters and natural laws on flat space
intervalsd'!, dz' anddz"* to occur at diferent positions in yime in the context of the special theory of relativity.

space within a long-range metric force field, the observed (o
relativistic) time intervalit and the observed (or relativistic)
dimension of 3-spacéx! of the same event will vary with po-
sition in space, while the observed dimensiang and dz?
of the event will be the same at all positions within the neetri
force field, according to systems (26) and (27). The vanatio
with the magnitude of the proper static spééfiand con- The ‘2-dimensional’ absolute intrinsic metric spacetifg,
sequently with position in space within a long-range metrig$t) is curved relative to its projective flat proper intrin-
force field of the observed (or relativistic) time intervéll sic metric spacetimépp’, ¢cot’) in Fig. 4 or Fig. 11 of the
and the observed (or relativistic) interval of spale¢ of an third part of this paper [2], at the first stage of evolution of

3 Absolute intrinsic Riemann geometry on curved ‘two-
dimensional’ absolute intrinsic spacetime at the sec-
ond stage of evolution of spacetim@trinsic spacetime
in a metric force field

A. J. Adekugbe. Evolutionary sequence of spacefimrénsic spacetime and associated sequence of geometries in a metitidtddV.15



Volume 1 THE FUNDAMENTAL THEORY (MONOGRAPH) Article 8 (preint)

spacetimgnrinsic spacetime within a long-range metric forcéeld in intrinsic spacetime earlier in this paper, allowstois
field. Consequently the absolute intrinsic Riemann geometeplacepc? (d¢t’)? and(dep’)? by ¢c? (dét)? and(dgp)? re-
has been formulated on the curvesh, ¢éot ) with respect to spectively in Eq. (28) to have
3-observers in the proper Euclidean 3-spat&that overlies
the isotropic proper intrinsic spage’ in [2]. (dps)? = ¢c2(dgt)*(cos® pibs,p + sin® ¢ p) —

On the other hand, the ‘2-dimensional’ absolute intrinsic _ 2 2,70 2 7
metric spacetiméap, ¢égt) is curved relative to the flat 2- (dgp)”(sec” $ou,p —tan" ¢p.p)  (31)

dimensional relativistic intrinsic metric spacetifien, océt)  while the primed intrinsic line elemerits’ in (28) on proper
in Fig. 1, at the second stage of evolution of spacefimin- i insic spacetimg¢p’, pcgt’) is valid with respect to 3-
sic spacetime in a long-range metric force field. It then fQlyservers in the proper Euclidean 3-spasolely in Fig. 4
lows that absolute intrinsic Riemann geometry must be fQfr Fig. 11 of [2], the unprimed intrinsic line element (31) on
mulated on the curve, ¢c¢t ) with respect to 3-observersine relativistic intrinsic spacetimecet, ¢p) is valid with re-

in the relativistic Euclidean 3-spadg” that overlies¢p in  gpect to 3-observers in the relativistic Euclidean 3-spate
Fig. 1 at the second stage of evolution of spacefimignsic  gg|ely in Fig. 1 of this paper.

spacetime. o Now by combining the intrinsic local Lorentz invariance
In order to show that absolute intrinsic Riemann geomey@lg) and (16) we have

on curved absolute intrinsic spacetirfyp, pépt) takes the

same form with respect to 3-observers in the proper Euclid- | 274112 — (déo)2 = o2 (dot')? — (dop' )2

ean 3-spac&’® solely in Fig. 4 or Fig. 11 of [2] and with re- de(dat)” — (ddp) - ¢A2(d¢A)2 (d‘@

spect to 3-observers in the relativistic Euclidean 3-spate = ¢ (dop)” — (dbp)

solely in Fig. 1 of this paper, let us revisit the derivatidn 9 9 9 2
the absolute intrinsic metric tensor without star Iabehfro%q' (33) a”9"2vs usto r_eplac(_elgi)p )* andgc’(dgt)” by(dop) .
. : X . nd¢c=(dgt )* respectively in Eq. (31) to have Eq. (30) again.
Eq. (48a-b) through Eq. (64) in [2] with the aid of Fig. 7 0 A ;
that paper. Let us re-write Eq. (53) of [2] as follows t then follows that the absqlutg |r.1tr|n.S|c_ metric tensor of
R R Eq. (63) or (64) and absolute intrinsic Ricci tensor of Eq)(6
(dgs')? = ¢c*(det')?(cos® ¢ips, p + sin® i) p) or (68) of [2], derived from Eq. (30) with respect to 3-obser-
—(dop')? (sec? dib, p — tan? i, og) Vvers in the proper Euclidean 3-spakE& solely in Fig. 4 or
(dp')"(sec” $ips,p — tan” $ibs,p) (28) Fig. 11 of [2], are equally valid with respect to 3-obseniers
This is the intrinsic line element on the two-dimensiona-prthe relativistic Euclidean 3-spadé® solely in Fig. 1 of this
per intrinsic spacetimépp’, pcgt’) in Fig. 7 of [2], which is paper.
valid with respect to 3-observers in the proper Euclidean 3- The starred absolute intrinsic line elemelats*, starred

spaceE’ in that figure. Actually Eq. (28) simplifies as theabsolute intrinsic metric tensetg;; and starred absolute in-

. . . . . . J
intrinsic Lorentzian line element as noted in [2]. trinsic Ricci tensorgR;; on curved ‘two-dimensional’ ab-

Then by applying the invariance of intrinsic line element Lo ; TN )
on (¢p, pégt) and (¢p', pegt’) in Fig. 7 of [2], expressed solute intrinsic spacetimepp, ¢éqt) in Fig. 4 or Fig. 11 of

by Eqg. (54) of that paper, which shall be reproduced here[2 - given by _Eqs. (.31)’ (3.3) and (39) respectively O.f 2]
follows which are v_alld partially Wlth respe<_:t to 3_—observers in the
' proper Euclidean 3-spadé’® and partially with respect to 1-
2 (dot)? — (dpp)? = o (dot')? — (dpp’)?,  (29) observers in the proper time dimensighin Fig. 4 or Fig. 11
. R of [2], as explained in that paper, are equally valid on the
the (d‘gp/)2 92d¢c2(d¢?/)2 In (28)_were replaced ngbp)? curved(¢p, pé¢t ) in Fig. 1 of this paper partially with respect
and ¢c*(d¢t )" respectively, yielding Eq. (56) of [2], Wh'Chto 3-observers in the relativistic Euclidean 3-spdceand
shall be reproduced here as follows partially with respect to 1-observers in the relativisiime
(dp3)? = &2 (dot)?(cos? ¢ups p + sin® giby p) — dimensionct in that figure.
RV 2 Thus the formulation of absolute intrinsic Riemann geom-
—(d9p)~(sec” ptbs, p — tan” ¢vs p) - (30) etry on curved absolute intrinsic spacetiig), ¢pépi ) with
The absolute intrinsic metric tensor without star labelGH)( respect to 3-observers in the relativistic Euclidean Zepa
or (64) of [2] and absolute intrinsic Ricci tensor withouarst £ (in Fig. 1 of this paper) at the second stage of evolution
label of (67) or (68) of [2] were then derived with respedaif spacetim@ntrinsic spacetime within a long-range metric
to 3-observers in the proper Euclidean 3-spatesolely in force field, follows the same procedure used to formulate ab-
Fig. 4 or Fig. 11 of [2] from Eq. (30) above (or Eq. (56) okolute intrinsic Riemann geometry on the curyeg, ¢égr)
[2]) between Egs. (58) and (68) of [2]. with respect to 3-observers in the proper Euclidean 3-space
Now the intrinsic local Lorentz invariance (16) establishE’3 in Fig. 4 or Fig. 11 of [2] at the first stage of evolution
ed in the context of the intrinsic theory of relativity asisocof spacetimfntrinsic spacetime within a long-range metric
ated with the presence of a long-range intrinsic metricdorforce field.

(32)
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This means that just as done at the first stage of evolutiassical intrinsic metric theory on the intrinsic Galilgoace
of spacetimgntrinsic spacetime, one must write the pair of¢p’ ; ¢t'), the classical metric theory (2" ; ¢') being mere
absolute intrinsic tensor equations involving starrecbalie outward manifestation of the intrinsic classical metriedhy
intrinsic tensorsg;; and¢R}; derived on curvedpp, pégt) in (¢p'; ot').
in [1-2] and presented as Egs. (34) and (38) of [2]. One must The three theories of a metric force field at the second
then solve those equations algebraically to obtajfy and  stage of evolution of spacetiriietrinsic spacetime in a long-
¢R;; in terms of absolute intrinsic curvature parameterof range metric force field encompassed by the geometries of
Eqgs. (64) and (68) or in terms of absolute intrinsic stat@esp Figs. 1 and 3 and their inverses Figs. 4 and 5 of this fourth
as Egs. (81) and (82) of [2]. The starred absolute intriresie t part of this paper are: (i) the absolute intrinsic metricotlye
sors so derived are valid partially with respect to 3-observ on curved ‘two-dimensional’ absolute intrinsic metric spa
in the relativistic Euclidean 3-spad¢® and partially with re- time (¢, péét ) with absolute intrinsic metric tensor brought
spect to 1-observers in the relativistic time dimensiorin  forward from the first stage, (ii) a flat four-dimensionalael
Fig. 1 of this paper. tivistic metric theory on flat 4-dimensional relativistipace-

Then in order to obtain the absolute intrinsic metric tetime (E3, ct) and (iii) a flat two-dimensional relativistic in-
sor ¢g,; without star label, which is valid with respect to 3trinsic metric theory on flat two-dimensional relativistie
observers in the relativistic Euclidean 3-spd&esolely, one trinsic metric spacetimépp, pcot) underlying(E?3, ct), the
must use the relations among the components of the stameatric theory onE3, ct) being mere outward manifestation
absolute intrinsic metric tensefg;; and the components ofof the intrinsic metric theory ofyp, pcgt).

the absolute intrinsic metric tensor without star lapg); in The spacetim@ntrinsic spacetime geometry and the as-
systems (65a) and (65b) of [2]. Ongg;; has bee obtained,sqociated three theories of a metric force field that evolted a
then one must apply the tensorial statement of intrinsiallogne first stage of evolution of spactifirrinsic spacetime in a
Lorentz invariance (66) of [2] to derive the absolute intringng-range metric force field, endured for no moment before
sic Ricci tensor without star labelR;;, which is valid with transforming into the enduring spacetjfinérinsic spacetime
respect to 3-observers i’ solely. geometries and associated metric thgatginsic metric the-

The superposition procedure developed in absolute intriities at the second (and final) stage. Thus the theories at the
sic Riemann geometry at the first stage of evolution of spagecond stage, having replaced the theories at the first, stage
time/intrinsic spacetime in [2], when two or a larger numare present in every long-range metric force field in the uni-
ber of curved absolute intrinsic metric spacetimes cotgiEis verse at present.
equally applicable at the second stage of evolution of space » ¢ cia| conclusion is that the four-dimensional (rela-

t|me/|ntr|n_s Ic spacetime. Clarifications qf the concepts ?l(/istic) spacetime and its underlying two-dimensionailgr
absolute |ntr|nS|c'sta.t|c.speed: absolute |ntr|n§|c m&ﬂrn-' tivistic) intrinsic spacetime are everywhere flat in evenyd-
sor and ab_solute Intrinsic metric thv_aory of_physws assmd'arange metric force field; the only curved spacetime with Rie-
with them_lntroduced_m 2] and_th|s section, shall be doqﬁannian metric tensor, so to speak, being the ‘2-dimenBiona
upon making connection to gravity elsewhere. absolute intrinsic metric spacetiniép, ¢é¢t ) with absolute

. o ] intrinsic sub-Riemannian metric tensor, isolated in thst fir
4 Summary, conclusion and direction for further inves- ihree parts of this paper.

tigation . L
g For further work in the short-run, it will be necessary

The summary of the four parts of this paper essentiallytis particularize the spacetirfietrinsic spacetime geometries
that spacetime and its underlying intrinsic spacetimeoill and associated metric theorii@srinsic metric theories at the
two stages of evolution in the sequence of absolute spawes stages of evolution of spacetifirgrinsic spacetime in
time/absolute intrinsic space- proper spacetiniproper in- a long-range metric force field isolated in the four parts of
trinsic spacetime— relativistic spacetimfelativisic intrin- this paper to the gravitational field; investigate two stage
sic spacetime in every long-range metric force field, and th evolution of physical parametéirstrinsic parameters that
three theories of a metric force field are associated with egossibly accompany the two stages of evolution of space-
of the two stages. time/intrinsic spacetime in a gravitational field and investi-
The three theories of a metric force field encompassgate possible variations of physical parametbetsnsic pa-
by the geometry of Fig. 4 of [2] at the first stage of evoluameters with position on flat spacetime in a gravitational
tion of spacetimgntrinsic spacetime within the metric forcefield, in the context of the theory of relativiiptrinsic the-
field, to be developed elsewhere are: (i) an absolute introry of relativity associated with the presence of gravitadil
sic metric theory on the curved ‘two-dimensional’ absolufeeld in spacetime, developed for an arbitrary long-range me
intrinsic metric spacetimépp, ¢éot ) with absolute intrinsic ric force field in terms of the isolated geometrical paramsete
metric tensor, (ii) a three dimensional classical metreotly namely, static speed and intrinsic static speed in sectioh 2
in the Galileo spacéE"; ') and (iii) an one-dimensionalthis fourth part of this paper.

A. J. Adekugbe. Evolutionary sequence of spacefimrénsic spacetime and associated sequence of geometries in a metitidtddV.17
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