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The flat two-dimensional proper intrinsic spacetime(φρ′, φcφt′) underlying flat four-
dimensional proper spacetime(IE′3, ct′), which emerged at the first stage of evolu-
tion of spacetime/intrinsic spacetime within a long-range metric force field, isolated in
the first three parts of this paper, endured for no moment before transforming into a
curved two-dimensional proper intrinsic spacetime with orthogonal curvilinear intrin-
sic dimensions on the vertical intrinsic spacetime plane, in the larger spacetime/intrinsic
spacetime domain of combined positive (or our) universe and the negative universe. It
therefore possesses intrinsic Lorentzian metric tensor at every point. It projects an un-
derlying flat relativistic intrinsic spacetime(φρ, φcφt) that replaces flat proper intrin-
sic spacetime, which is made manifest outwardly in flat four-dimensionalrelativistic
spacetime(IE3, ct) that replaces flat proper spacetime, at the second (and final) stage of
evolution of spacetime/intrinsic spacetime within a long-range metric force field. The
curved ‘two-dimensional’ absolute intrinsic spacetime(φρ̂, φĉφt̂ ) with absolute intrin-
sic sub-Riemannian metric tensor that evolved at the first stage is brought forward to
the second stage. Apart from absolute intrinsic Riemann geometry on the curved ‘two-
dimensional’ absolute intrinsic spacetime brought forward from the firststage, intrinsic
local Lorentzian geometry that involves the derivation of intrinsic local Lorentz trans-
formation in terms of an isolated intrinsic parameter, referred to as intrinsicstatic speed,
and validation of intrinsic local Lorentz invariance between the curved two-dimensional
proper intrinsic spacetime and its projective flat two-dimensional relativistic intrinsic
spacetime are established. These are then made manifest in local Lorentz transfor-
mation in terms of static speed and local Lorentz invariance between the flatproper
spacetime at the first stage of evolution of spacetime/intrinsic spacetime and the flat
relativistic spacetime at the second stage, within the four-world picture. The conclusion
that spacetime is everywhere flat in every long-range metric force fieldis reached. Par-
ticularization to the gravitational field will be a straight forward process, while using
the results of this paper as template.

1 Introduction

The first two parts of this paper [1-2] are devoted to the devel-
opment of absolute intrinsic Riemann geometry on curved ‘2-
dimensional’ absolute intrinsic metric spacetime(φρ̂, φĉφt̂),
which is underlied by its projective flat 2-dimensional proper
intrinsic metric spacetime(φρ′, φcφt′) and the outward mani-
festation of the latter namely, the flat four-dimensional proper
metric spacetime(IE′, ct′). These evolve from an initial flat
‘four-dimensional’ absolute metric spacetime(ÎE3, ĉt̂) under-
lied by flat ‘two-dimensional’ absolute intrinsic metric space-
time (φρ̂, φĉφt̂), at the first stage of evolutions of spacetime
and its underlying intrinsic spacetime within an absolute met-
ric force-field and its underlying absolute intrinsic metric
force-field in the positive (or our) universe.

Actually of the three co-existing metric spacetimes name-
ly, the curved ‘2-dimensional’ absolute intrinsic metric space-
time (φρ̂, φĉφt̂), its projective underlying flat 2-dimensional
proper intrinsic metric spacetime(φρ′, φcφt′) and the out-
ward manifestation of the latter namely, the flat four-dimen-
sional proper metric spacetime(IE′3, ct′) in Fig. 4 or Fig. 11

of [2], shown to evolve from an initial flat ‘four-dimensional’
absolute metric spacetime(ÎE3, ĉt̂) underlied by flat ‘two-
dimensional’ absolute intrinsic metric spacetime(φρ̂, φĉφt̂)
in Fig. 6 of [2], at the first stage of evolution of spacetime/in-
trinsic spacetime in a long-range metric force-field, only the
curved ‘two-dimensional’ absolute intrinsic metric spacetime
(φρ̂, φĉφt̂) and its underlying projective flat two-dimensional
proper intrinsic metric spacetime(φρ′, φcφt′) are new in phy-
sics. The flat 4-dimensional proper metric spacetime(IE′3,
ct′) that overlies(φρ′, φcφt′) or which is the outward (or
physical) manifestation of(φρ′, φcφt′), as discussed in sub-
section 4.4 of [3], is not new in physics, being what has been
known as the space of classical mechanics, assuming the ab-
sence of (relativistic) gravitational field.

The flat proper metric spacetime(IE′3, ct′) containing the
rest massesm0 of particles and objects inIE′3 in the assumed
absence of (relativistic) gravitational field, thereby making
(IE′3, ct′) to remain flat, has also been known in physics to
support the special theory of relativity (SR) involving themo-
tion of the rest massesm0 of material particles relative to ob-
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servers. The special theory of relativity/intrinsic special the-
ory of relativity (SR/φSR) have actually been developed on
the flat(IE′3, ct′) and its underlying flat(φρ′, φcφt′) within
the four-world picture in the context of the present theory in
[3-6].

As known in physics until now, the introduction of a rela-
tivistic gravitational field into the flat four-dimensionalproper
metric spacetime(IE′3, ct′), will transform it into a curved
four-dimensional relativistic metric spacetime(IE3, ct) (usu-
ally denoted by(x0, x1, x2, x3)) in the context of the general
theory of relativity (GR). It must be recalled however that al-
though curvature of the relativistic spacetime in a metric force
field is a well thought-out prescription [7, see p. 111-149],it
nevertheless remains an unproven fundamental postulate of
the general theory of relativity.

The special theory of relativity (SR) cannot alter the ex-
tended flat 4-dimensional proper metric spacetime(IE′3, ct′)
on which it operates in the assumed absence of gravity. The
intrinsic special theory of relativity (φSR) can likewise not al-
ter the extended flat two-dimensional proper intrinsic metric
spacetime(φρ′, φcφt′) on which it operates in the assumed
absence of gravity. These, as explained under summary and
conclusion in [6], is due to the fact that the spacetime/intrinsic
spacetime coordinates (or spacetime/intrinsic spacetime
geometry) associated with SR/φSR are affine spacetime/in-
trinsic affine spacetime coordinates (or affine spacetime/in-
trinsic affine spacetime geometry) with no metric quality.

It is by introducing the source of a long-range relative
metric force-field (where relative metric force field shall be
defined), at a point on flat three-dimensional proper metric
spaceIE′3 and consequently the source of a long-range rela-
tive intrinsic metric force-field at the same point in the strai-
ght line proper intrinsic spaceφρ′ in Fig. 4 or Fig. 11 of [2],
that the extended flat proper metric spacetime(IE′, ct′) and its
underlying flat proper intrinsic metric spacetime(φρ′, φcφt′)
can be made to evolve into a different four-dimensional rel-
ativistic spacetime underlied by two-dimensional relativistic
intrinsic spacetime in all neighbourhood of the source of the
long-range metric force field. The geometry associated with
this at the second stage of evolution of spacetime/intrinsic
spacetime in a metric force-field shall be developed in the
rest of this paper.

2 New geometrical background in the four-world pic-
ture for the theory of relativity associated with the pre-
sence of a long-range metric force field in spacetime

2.1 The global curved proper intrinsic metric spacetime
and underlying flat relativistic intrinsic metric spa-
cetime/flat relativistic metric spacetime in a metric
force field

Let us introduce non-uniform proper intrinsic static speeds
φ V ′

s along the straight line proper intrinsic metric spaceφρ′

and along the straight line proper intrinsic metric time dimen-

sionφcφt′ in Fig. 11 of [2], such thatφV ′

s has its maximum
magnitude at a point S in(φρ′, φcφt′) and decreases con-
tinuously until it vanishes at a point O in(φρ′, φcφt′) that
is far removed from point S. These will be made manifest
in non-uniform proper static speedsV ′

s at every point in the
proper Euclidean 3-spaceIE′3 and at every point along the
proper time dimensionct′, such thatV ′

s has its maximum
magnitude at the corresponding point S in(IE′3, ct′) and de-
creases in magnitude continuously until it vanishes at point O
in (IE′3, ct′) that is far removed from point S in that figure.

The foregoing are quite apart from the projective non-
uniform absolute intrinsic static speedsφV̂s along the straight
line proper intrinsic spaceφρ′ and straight line proper in-
trinsic metric time dimensionφcφt′ and the non-uniform ab-
solute static speedŝVs in IE′3 andct′ in Fig. 11 of [2]. As
discussed under the introduction above, the presence of non-
uniform absolute intrinsic static speedφV̂s along the proper
intrinsic spaceφρ′ and proper intrinsic time dimensionφcφt′

cannot produce curvature ofφρ′ andφcφt′ or produce any
other effect on them. The presence of absolute static speeds
V̂s in the proper metric spaceIE′3 and proper metric time di-
mensionct′ can likewise produce no effect onIE′3 andct′ in
Fig. 11 of [2].

Now let us recall the evolution of Fig. 11 of [2] from Fig. 6
of that paper. The introduction of non-uniform absolute in-
trinsic static speedsφV̂s along the initial straight line absolute
intrinsic metric spaceφρ̂ and along the initial straight line ab-
solute intrinsic time ‘dimension’φĉφt̂ in Fig. 6 of [2], will
cause the straight line absolute intrinsic metric spaceφρ̂ to
evolve into curved absolute intrinsic metric spaceφρ̂, where
φρ̂ will have maximum curvature at the point S whereφV̂s is
maximum and zero curvature at a point O that is far removed
from point S, whereφV̂s vanishes. On the other hand, the
straight line absolute intrinsic time ‘dimension’φĉφt̂ along
the vertical in Fig. 6 of [2] will reman not curved from its
vertical position, thereby yielding the half-geometry of Fig. 1
of [2], which is valid with respect to 3-observers in the proper
Euclidean 3-spaceIE′3 of that figure.

The initial straight line absolute intrinsic time ‘dimen-
sion’ φĉφt in Fig. 6 of [2] remains not curved from the verti-
cal, while the initial straight line absolute intrinsic spaceφρ̂
in that figure becomes curved absolute intrinsic spaceφρ̂ in
Fig. 1 of [2], because the absolute timet̂ and the absolute
intrinsic timeφt̂ remain absolute (or invariant), that is, do
not evolve into the proper timet′ and proper intrinsic time
φt′ respectively, with respect to 3-observers in the proper
Euclidean 3-spaceIE′3 in that figure in the context of absolute
physics/absolute intrinsic physics.

Since there is a perfect symmetry of state between the
positive (or our) universe and the positive time-universe,the
half-geometry of Fig. 2 of [2] will evolve with respect to 3-
observers in the proper Euclidean 3-spaceIE0′3 within the
symm-
etry-partner region of spacetime in the positive time-universe,

2A. J. Adekugbe. Evolutionary sequence of spacetime/intrinsic spacetime and associated sequence of geometries in a metric force field IV.



Article 8 (pre-print) THE FUNDAMENTAL THEORY (MONOGRAPH) Volume 1

simultaneously with the half-geometry of Fig. 1 of [2] in our
universe. The union of Figs. 1 and 2 of [2] then gives the
full geometry of Fig. 3 of [2], which is equivalent to the full
geometry of Fig. 4 of Fig. 11 of [2], containing the space-
time/intrinsic spacetime dimensions of our universe solely.
This and the foregoing paragraph are mere repetitions of what
have been discussed in the process of development of the
geometry of Fig. 4 of [2] in that paper, repeated here to serve
as a reminder.

In the context of the theory of relativity/intrinsic theory of
relativity associated with the presence of a long-range proper
metric force-field in proper metric spacetime(IE′3, ct′) and
long-range proper intrinsic metric force-field in proper in-
trinsic metric spacetime(φρ′, φcφt′), which establish non-
uniform proper static speedsV ′

s in the proper Euclidean 3-
spaceIE′3 and proper time dimensionct′ and non-uniform
proper intrinsic static speedsφV ′

s in the proper intrinsic space
φρ′ and proper intrinsic time dimensionφcφt′, on the other
hand, the proper timet′ and the proper intrinsic timeφt′ and
the three dimensionsx′1, x′2, x′3 of the proper Euclidean 3-
spaceIE′3 and the pro- per intrinsic dimensionsφx′ of the
proper intrinsic spaceφρ′ are all relative with respect to 3-
observers in the proper Euclidean 3-space.

The implication of the foregoing paragraph is that all the
four proper metric coordinatesx′0, x′1, x′2 andx′3; x′0 =
ct′, of the flat proper metric spacetime(IE′3, ct′) simultane-
ously transform into relativistic metric coordinatesx0, x1, x2

andx3; x0 = ct, of the relativistic metric spacetime(IE3, ct)
with respect to 3-observers in 3-space. The proper intrin-
sic metric coordinatesφx′ andφcφt′ of the proper intrinsic
metric spacetime(φρ′, φcφt′) likewise transform into rela-
tivistic intrinsic metric coordinatesφx andφcφt of the two-
dimensional relativistic intrinsic spacetime(φρ, φcφt) simul-
taneously with respect to 3-observers in 3-space, in the con-
text of the theory of relativity/intrinsic theory of relativity as-
sociated with the presence of a long-range proper metric force
field in proper metric spacetime and long-range proper intrin-
sic metric force-field in proper intrinsic metric spacetime.

As mentioned in section 4 of [3], affine spacetime coor-
dinates and affine intrinsic spacetime coordinates that appear
in SR/φSR shall have over-head tilde label asx̃, ỹ, z̃, ct̃, φx̃
andφcφt̃, while the metric spacetime coordinates and intrin-
sic metric spacetime coordinates that appear in the theory of
relativity and theory of intrinsic relativity associated with the
presence of metric force field in spacetime and intrinsic met-
ric force field in intrinsic spacetime, shall have no over-head
tilde label, appearing asx0, x1, x2, x3, φx andφcφt.

The implication of the penultimate paragraph is that the
introduction of non-uniform proper intrinsic static speedsφV ′

s

identically along the straight line proper intrinsic metric space
φρ′ and the straight line proper intrinsic metric time dimen-
sionφcφt′ in Fig. 11 of [2], will cause bothφρ′ andφcφt′ to
be identically curved simultaneously relative to the horizonal
and vertical respectively, such that the curvedφρ′ lying in

the first quadrant and curvedφcφt′ lying in the second quad-
rant in the larger spacetime domain of combined positive and
negative universes, form orthogonal curvilinear intrinsic met-
ric dimensions with respect to 3-observers in the Euclidean
3-space in our (or positive) universe. In symmetry, the proper
intrinsic metric space−φρ′∗ and the proper intrinsic metric
time dimension−φcφt′∗ will be identically curved simultane-
ously relative to the horizontal and vertical respectively, such
that the curvedφρ′∗ lying in the third quadrant and−φcφt′∗

lying in the fourth quadrant, form orthogonal curvilinear in-
trinsic metric dimensions with respect to 3-observers in the
Euclidean 3-space in the negative universe, within a long-
range relative metric force-field and its underlying long-range
relative intrinsic metric force-field.

A consequence of the foregoing is that the geometry of
Fig. 1 will evolve with respect to 3-observers in the relativis-
tic Euclidean 3-spacesIE3 and−IE3∗ in the positive and neg-
ative universes, as indicated, at the second stage of evolution
of spacetime/intrinsic spacetime within a long-range metric
force field. The non-uniform proper intrinsic static speeds
φV ′

s introduced along the straight line proper intrinsic space
φρ′ and straight line proper intrinsic time dimensionφcφt′

in Fig. 11 of [2] have maximum magnitude at point(S, S0)
in (φρ′, φcφt′) and decrease in magnitude continuously until
they vanish at point O in(φρ′, φcφt′), which is far removed
from the point(S, S0) in that figure.

Fig. 1 has evolved from Fig. 11 of [2] upon introducing
non-uniform proper intrinsic static speeds along the straight
line proper intrinsic metric spaceφρ′ and straight line proper
intrinsic metric time dimensionφcφt′ in that figure. Hence
the curved ‘two-dimensional’ absolute intrinsic metric space-
time (φρ̂, φĉφt̂) in our universe in Fig. 11 of [2] and the cor-
responding curved ‘two-dimensional’ absolute intrinsic met-
ric spacetime(−φρ̂∗,−φĉφt̂∗) in the negative universe (not
shown in Fig. 11 of [2]), have remained in Fig. 1.

Our main interest in this paper is in the curved proper in-
trinsic metric spacesφρ′ and−φρ′∗ and curved proper intrin-
sic metric time dimensionsφcφt′ and−φcφt′∗. The curved
proper intrinsic metric spaceφρ′ in the first quadrant and
the curved proper intrinsic metric time dimensionφcφt′ in
the second quadrant evolve simultaneously with respect to
3-observers in the relativistic Euclidean 3-spaceIE3 in the
first quadrant (or in the positive universe) and curved proper
intrinsic metric space−φρ′∗ in the third quadrant and the
curved proper intrinsic metric time dimension−φcφt′∗ in
the fourth quadrant evolve simultaneously with respect to 3-
observers in the relativistic Euclidean 3-space−IE3∗ in the
third quadrant (or in the negative universe).

The curved proper intrinsic metric spaceφρ′ in the first
quadrant projects a straight line relativistic intrinsic metric
spaceφρ along the horizontal, which is made manifest in the
relativistic metric Euclidean 3-spaceIE3, in which 3-obser-
vers are now located, as indicated. The curved proper in-
trinsic metric time dimensionφcφt′ in the second quadrant
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Fig. 1: The extended curved two-dimensional proper intrinsic
metric spacetimes with orthogonal curvilinear intrinsic dimen-
sions namely,(φρ′, φcφt′) and (−φρ′∗,−φcφt′∗), with intrinsic
Lorentzian metric tensor at every point, underlied by their pro-
jective flat two-dimensional relativistic intrinsic metric spacetimes
(φρ, φcφt) and(−φρ∗,−φcφt∗) that are made manifest outwardly
in flat four-dimensional relativistic metric spacetimes(IE3, ct) and
(−IE3∗,−ct∗), with respect to 3-observers in the relativistic Euclid-
ean 3-spacesIE3 and−IE3∗ in the positive and negative universes,
which evolve at the second stage of spacetimes/intrinsic spacetimes
within symmetry-partner long-range metric force fields in the two
universes, shown along with the curved ‘two-dimensional’ absolute
intrinsic metric spacetimes(φρ̂, φĉφt̂ ) and(−φρ̂∗,−φĉφt̂∗) with
absolute intrinsic sub-Riemannian metric tensors in the two uni-
verses that are brought forward from the first stage.

likewise projects straight line relativistic intrinsic metric time
dimensionφcφt along the vertical, which is made manifest in
the relativistic metric time dimensionct, in which 1-observers
in time dimension are now located in our universe.

The curved proper intrinsic metric space−φρ′∗ in the
third quadrant likewise projects relativistic intrinsic metric
space−φρ∗ along the horizontal, which is made manifest in
the relativistic metric Euclidean 3-space−IE3∗ in which 3-
observers∗ are now located in the negative universe, as indi-
cated, and the curved proper intrinsic metric time dimension
−φcφt′∗ in the fourth quadrant projects relativistic intrinsic
metric time dimension−φcφt∗ along the vertical, which is
made manifest in the relativistic metric time dimension−ct∗,
in which 1-observers∗ in time dimension are now located in
the negative universe.

However 1-observers are not indicated to exist in the time
dimensionsct and−ct∗ in Fig. 1, because the geometry of
Fig. 1 is valid with respect to 3-observers in the Euclidean
3-spacesIE3 and−IE3∗ solely, as indicated. It is in the com-
plementary diagram to Fig. 1, to be developed shortly, which
is valid with respect to 1-observers in the time dimensions
that 1-observers inct and−ct∗ will be indicated.

Thus the flat four-dimensional proper metric spacetime
(IE′3, ct′) underlied by flat two-dimensional proper intrinsic
metric spacetime(φρ′, φcφt′), which evolved within a long-
range metric force field at the first stage of evolution of space-
time/intrinsic spacetime in in our universe in Fig. 4 or Fig. 11
of [2], evolve into flat four-dimensional relativistic metric
spacetime(IE3, ct) underlied by flat two-dimensional rela-
tivistic intrinsic metric spacetime(φρ, φcφt) in Fig. 1 at the
second stage of evolution of spacetime/intrinsic spacetime
within a long-range metric force-field. The flat 4-dimensional
proper metric spacetime(−IE′3∗,−ct′∗), which is underlied
by proper intrinsic metric spacetime(−φρ′∗,−φcφt′∗), that
evolved within a long-range a metric force field at the first
stage of evolution of spacetime/intrinsic spacetime in the neg-
ative universe (not shown in Fig. 4 or Fig. 11 of [2]), likewise
evolve into flat four-dimensional relativistic metric spacetime
(−IE3∗,−ct∗) underlied by flat two-dimensional relativistic
intrinsic metric spacetime(−φρ∗,−φcφt∗) in Fig. 1, at the
second stage of evolution of spacetime/intrinsic spacetime
within a long-range metric force-field.

There are some other features of Fig. 1 that are important
for remark. First the absolute intrinsic metric spaceφρ̂ and
the proper intrinsic metric spaceφρ′ are shown to be identi-
cally curved relative to the relativistic intrinsic metricspace
φρ along the horizontal. Indeed the curvedφρ′ should fall
along the curvedφρ̂ in Fig. 1. This means that the point P
along the curvedφρ̂ in Fig. 11 of [2] is the same as point P
along the curvedφρ′ in Fig. 1. Consequently the absolute
intrinsic angleφψ̂s,P of inclination of the curvedφρ̂ to the
horizontal at point P alongφρ̂ in Fig. 11 of [2] and the rela-
tive intrinsic angleφψs,P of inclination of the curvedφρ′ to
the horizontal at point P along the curvedφρ′ in Fig. 1 are
equal in magnitude. Consequently the absolute intrinsic sta-
tic speedφV̂s,P at point P along the curvedφρ̂ in Fig. 11 of
[2] and the proper intrinsic static speedφV ′

s,P , (which is a
relative intrinsic static speed), at point P alongφρ′ in Fig. 1
are equal in magnitude. That is,

sin |φψ̂s,P | = sin |φψs,P | (1a)

or

|
φV̂s,P

φĉ
| = |

φV ′

s,P

φc
| (1b)

For relations (1a) and (1b) to hold, it must be that the
source of absolute intrinsic metric force field located at the
point S along the curved absolute intrinsic metric spaceφρ̂
in Fig. 11 of [2], which establishes non-uniform absolute in-
trinsic static speedsφV̂s between points S and O along the
curved absolute intrinsic spaceφρ̂ in that figure, is ‘projected’
as a source of proper intrinsic metric field field of identical
magnitude into the corresponding point S along the projec-
tive straight line proper intrinsic spaceφρ′ in Fig. 11 of [2].
The ‘projective’ source of proper intrinsic metric force field
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thereby establishes non-uniform proper intrinsic static speeds
φV ′

s of identical magnitudes asφV̂s along the straight line
φρ′ in Fig. 11 of [2] and consequently along the curvedφρ′

in Fig. 1.
The point P0 along the curved proper intrinsic metric time

dimensionφcφt′ in the second quadrant is the symmetry-
partner to point P along the curved proper intrinsic metric
spaceφρ′ in the first quadrant in Fig. 1. Consequently the rel-
ative intrinsic angleφψs,P 0 of inclination of the curvedφcφt′

to the vertical at pointP 0 along the curvedφcφt′ and the rela-
tive intrinsic angleφψp of inclination of the curvedφρ′ to the
horizontal at point P along the curvedφρ′ are equal in mag-
nitude. It then follows that the proper intrinsic static speed
φV ′

s,P 0 andφV ′

P are equal in magnitude. That is,

sinφψs,P 0 = sinφψs,P (2a)

or
φV ′

s,P 0

φc
=
φV ′

s,P

φc
(2b)

Finally, the proper intrinsic static speedφV ′

s,P at point P
along the curved proper intrinsic metric spaceφρ′ is shown to
be invariantly projected as proper intrinsic static speedφV ′

s,P

into the relativistic intrinsic metric spaceφρ along the hori-
zontal and this is made manifest in proper static speedV ′

s,P

in the relativistic Euclidean 3-spaceIE3 in Fig. 1. The proper
intrinsic static speedφV ′

s,P 0 at pointP 0 along the curved
proper intrinsic metric time dimensionφcφt′ is likewise
shown to be invariantly projected as proper intrinsic static
speedφV ′

s,P 0 into the relativistic intrinsic metric time dimen-
sion φcφt, which is made manifest in proper static speed
V ′

s,P 0 in the relativistic metric time dimensionct along the
vertical in Fig. 1.

On the other hand, one expects that the proper intrinsic
static speedφV ′

s,P along the curved proper intrinsic metric
spaceφρ′ should be projected as relativistic intrinsic static
speedφVs,P (without prime label) into the relativistic intrin-
sic metric spaceφρ along the horizontal and that the proper
intrinsic static speedφV ′

s,P 0 along the curved proper intrinsic
metric time dimensionφcφt′ should be projected as relativis-
tic intrinsic static speedφVs,P 0 into the relativistic intrinsic
metric time dimensionφcφt in Fig. 1.

The fact that the proper intrinsic static speedsφV ′

s,P along
the curvedφρ′ andφV ′

s,P 0 along the curvedφcφt′ are invari-
antly projected as proper intrinsic static speedsφV ′

s,P intoφρ
along the horizontal andφV ′

s,P 0 into φcφt along the verti-
cal respectively in Fig. 1, is a graphical representation ofthe
invariance of intrinsic static speed in the context of the in-
trinsic theory of relativity associated with the presence of a
long-range proper intrinsic metric force field in intrinsicmet-
ric space. This invariance is stated as follows

φVs = φV ′

s (3a)

Hence

Vs = V ′

s , (3b)

where Eqs. (3a) and (3b) have been written at an arbitrary pair
of symmetry-partner points along the curvedφρ′ andφcφt′.
Proper metric force fields are relative metric force fields and
proper static speeds are relative static speeds, as shall beclar-
ified towards the end of this paper.

The invariance of proper intrinsic static speed and proper
static speed, (3a) and (3b), in the context of the theory of
relativity and theory of intrinsic relativity associated with the
presence of a proper metric force field in proper metric space-
time and proper intrinsic metric force field in proper intrin-
sic metric spacetime, which involve proper static speeds and
proper intrinsic static speeds respectively, establishedin
spacetime and intrinsic spacetime by the source of long-range
proper metric force field, at the second stage of evolution
of spacetime/intrinsic spacetime within the metric force field
shall be given formal proof elsewhere with further develop-
ment. The corresponding invariance of absolute intrinsic sta-
tic speed and absolute static speed expressed by Eqs. (79a)
and (79b) of [2] in the context of absolute intrinsic metric the-
ory of physics and absolute metric theory physics involving
absolute intrinsic static speeds and absolute static speeds re-
spectively, established in absolute spacetime and absolute in-
trinsic spacetime by the source of a long-range absolute met-
ric force-field at the first stage of evolution of spacetime/int-
rinsic spacetime within the metric force field, shall likewise
be given formal proofs elsewhere with further development.

The perfect symmetry of state among the four universes
namely, the positive (or our) universe, the negative universe,
the positive time-universe and the negative time-universe, iso-
lated in [3-6], implies that as the geometry of Fig. 1 evolves
with respect to 3-observers in the relativistic Euclidean 3-
spacesIE3 and−IE3∗ in our universe and the negative uni-
verse, at the second stage of evolution of spacetime/intrinsic
spacetime within symmetry-partner long-range metric force
fields in our universe and the negative universe, the geometry
of Fig. 2 evolves simultaneously with respect to 3-observers
in the relativistic Euclidean 3-spacesIE03 and−IE03∗ in the
positive time-universe and the negative time-universe, atthe
second stage of evolution of spacetime/intrinsic spacetime
within the symmetry-partner long-range metric force fields
in the positive time-universe and the negative time-universe.

Fig. 2 in the positive time-universe and the negative time-
universe co-exists with Fig. 1 in the positive (or our) universe
and the negative universe. It should serve as a complementary
diagram to Fig. 1 towards formulating the theory of relativity
associated with the presence of symmetry-partner proper (or
relative) metric force fields in proper spacetimes in our uni-
verse and the negative universe. However Fig. 2 in its present
form cannot serve as a complementary diagram to Fig. 1. This
is so because the spacetime/intrinsic spacetime dimensions of
the positive and negative time-universes in Fig. 2 are elusive
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Fig. 2: The symmetrical global spacetime/intrinsic spacetime dia-
gram in the positive time-universe and the negative time-universe,
which evolve simultaneously with Fig. 1 in our universe and the neg-
ative universe at the second stage of evolution of spacetimes/intrinsic
spacetimes within symmetry-partner long-range metric force fields
in the positive time-universe and negative time-universe, with re-
spect to 3-observers in the relativistic Euclidean 3-spaces in those
universes.

to observers in our universe and the negative universe or can-
not appear in physics in our universe and the negative uni-
verse.

In order for Fig. 2 to be able to serve as a complementary
diagram to Fig. 1, the spacetime/intrinsic spacetime dimen-
sions of the positive and negative time-universes in it mustbe
transformed into those of our universe and the negative uni-
verse, as developed in [5-6]. This means that the following
transformations of spacetime/intrinsic spacetime dimensions
must be performed on Fig. 2, thereby obtaining Fig. 3.

IE03 → ct; −IE03∗ → −ct∗; ct0 → IE3;

−ct0∗ → −IE3∗;

φρ0 → φcφt; −φρ0∗ → −φcφt∗; φcφt0 → φρ;

−φcφt0∗ → −φρ∗;

φρ0′ → φcφt′; −φρ0′∗ → −φcφt′∗; φcφt0′ → φρ′;

−φcφt0′∗ → −φρ′∗;

φρ̂0 → φĉφt̂; −φρ̂0∗ → −φĉφt̂∗; φĉφt̂0 → φρ̂;

−φĉφt̂0∗ → −φρ̂∗



























































(4)
Fig. 3 obtained by performing the transformations of sys-

tem (4) on Fig. 2, is valid with respect to 1-observers in the

Fig. 3: The spacetime/intrinsic spacetime diagram obtained by trans-
forming the spacetimes/intrinsic spacetimes of the positive time-
universe and the negative time-universe in Fig. 2 to the space-
times/intrinsic spacetimes of the positive and negative universes; the
complementary diagram to Fig. 1, which is valid with respect to 1-
observers in the relativistic metric time dimensions in our universe
and the negative universe.

time dimensionsct and−ct∗, as indicated. It contains the
spacetime/intrinsic spacetime dimensions of our universe and
the negative universe solely. It is hence a valid complemen-
tary diagram to Fig. 1 for the purpose of formulating the the-
ory of relativity/intrinsic theory of relativity associated with
the presence of symmetry-partner proper metric force fields
in proper metric spacetimes and symmetry-partner proper in-
trinsic metric force fields in proper intrinsic metric space-
times in our universe and the negative universe.

The curved absolute intrinsic metric spaceφρ̂ and the
curved absolute intrinsic metric time ‘dimension’φĉφt̂ in the
first quadrant (or in the positive universe) in Fig. 1, are the
curved absolute intrinsic time ‘dimension’φĉφt̂0 and the
curved absolute intrinsic spaceφρ̂0 respectively of the
‘two-dimensional’ absolute intrinsic Riemann geometry at
the first stage of evolution of spacetime/intrinsic spacetime
in the positive time-universe, which become transformed into
φρ̂ andφĉφt̂ respectively in Fig. 3. They co-exist with the
curved proper intrinsic metric time dimensionφcφt′ and cur-
ved proper intrinsic metric spaceφρ′ at the second stage of
evolutions of spacetime and intrinsic spacetime, as shown in
Fig. 3. Similarly for the curved−φĉφt̂∗ and−φρ̂∗ in the third
quadrant in Fig. 3.

The geometry of Fig. 1 and its complementary geometry
of Fig. 3 in our universe and negative universe in the con-
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ψ
s,P

Ø 0

^

Fig. 4: The inverse to the global spacetime/intrinsic spacetime dia-
gram of Fig. 1 that is valid with respect to 3-observers in the proper
physical Euclidean 3-spaces in our universe and the negative uni-
verse.

text of the theory of relativity/intrinsic theory of relativity as-
sociated with non-uniform proper static speeds/non-uniform
proper intrinsic static speeds established in spacetime/intrin-
sic spacetime by a proper metric force field/proper intrinsic
metric force field, correspond to the geometry of Fig. 8a and
its complementary geometry of Fig. 8b in [3], of the theory
of relativity/intrinsic theory of relativity associated with uni-
form kinematical speeds/uniform intrinsic kinematical speeds
namely, the special theory of relativity/intrinsic special theory
of relativity (SR/φSR). Just as Fig. 8a of SR/φSR in [3] has
Fig. 9a of that paper as its inverse, Fig. 4 is the inverse to
Fig. 1 in the present context.

From the point of view of the theory of relativity/intrinsic
theory of relativity associated with non-uniform proper sta-
tic speeds/non-uniform intrinsic static speeds, the proper in-
trinsic metric spaceφρ′ is curved at non-uniform positive in-
trinsic anglesφψs relative to its projective straight line rela-
tivistic intrinsic metric spaceφρ along the horizontal, thereby
possessing maximum curvature at point S whereφV ′

s is max-
imum and zero curvature at point O whereφV ′

s vanishes in
the first quadrant in Fig. 1. The curvedφρ′ possesses vary-
ing positive proper intrinsic static speedsφV ′

s and invariantly
projects same into its projective relativistic intrinsic metric
spaceφρ along the horizontal in the first quadrant in that fig-
ure.

In the inverse diagram of Fig. 4, on the other hand, the
relativistic intrinsic metric spaceφρ is curved at non-uniform
negative relative intrinsic angles−φψs relative to straight line

proper intrinsic metric spaceφρ′ along the horizontal. Conse-
quently the curvedφρ possesses non-uniform negative proper
(or relative) intrinsic static speeds−φV ′

s along its length and
invariantly projects same intoφρ′ along the horizontal in the
first quadrant in Fig. 4.

Likewise the proper intrinsic metric time dimensionφcφt′

is curved at varying positive relative intrinsic anglesφψs rel-
ative to its projective straight line relativistic intrinsic met-
ric time dimensionφcφt along the vertical in the first quad-
rant in Fig. 1. Consequently the curvedφcφt′ possesses non-
uniform positive proper intrinsic static speedsφV ′

s that has
maximum magnitude at pointS0 and vanishes at point O
along its length. It invariantly projects non-uniform positive
proper intrinsic static speedsφV ′

s into the relativistic intrin-
sic metric time dimensionφcφt along the vertical in the first
quadrant in Fig. 1.

In the inverse diagram of Fig. 4, on the other hand, the
relativistic intrinsic metric time dimensionφcφt is curved at
non-uniform negative relative intrinsic angles−φψs relative
to straight line proper intrinsic metric time dimensionφcφt′

along the vertical in the first quadrant in that figure. Con-
sequently the curvedφcφt possesses non-uniform negative
proper intrinsic static speeds−φV ′

s along its length and in-
variantly projects same into the straight line proper intrinsic
time dimensionφcφt′ along the vertical in the first quadrant
in Fig. 4. The discussions in this and the foregoing two para-
graphs obtain in the third quadrant between Fig. 1 and Fig. 4
as well.

From the point of view of the absolute intrinsic metric the-
ory on the curved ‘two-dimensional’ absolute intrinsic metric
spacetime(φρ̂, φĉφt̂), involving non-uniform absolute intrin-
sic static speedsφV̂s along the curvedφρ̂ andφĉφt̂, which
was developed in the preceding two parts of this paper [1-
2], at the first stage of evolution of spacetime/intrinsic space-
time within a long-range metric force field, on the other hand,
there is only one diagram namely, the curved absolute in-
trinsic spacetime(φρ̂, φĉφt̂) relative to its projective proper
intrinsic spacetime(φρ′, φcφt′), as in Fig. 4 or Fig. 11 of
[2]. Inverse diagrams and associated inverse coordinate trans-
formations exist in relativity only. Consequently the curved
(φρ̂, φĉφt̂) in the first quadrant and the corresponding curved
(−φρ̂∗,−φĉφt̂∗) in the third quadrant in Fig. 1 are retained
in the inverse diagram of Fig. 4.

Now the clockwise sense of inclination ofφcφt relative
to φcφt′ along the vertical by varying negative intrinsic an-
gles−φψs and the clockwise sense of inclination ofφρ in the
fourth quadrant relative toφρ′ along the horizontal by varying
negative intrinsic angles−φψs in Fig. 4, is valid with respect
to 3-observers inIE′3 as indicated, with respect to whom anti-
clockwise rotation is positive (that is, by positive intrinsic an-
gle), hence with respect to whom clockwise rotation is neg-
ative. The inclination of−φcφt∗ relative to−φcφt′∗ along
the vertical and inclination of−φρ∗ relative to−φρ′∗ along
the horizontal is likewise valid with respect to 3-observers∗
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Fig. 5: The inverse to the spacetime/intrinsic spacetime diagram of
Fig. 3 that is valid with respect to 1-observers in the proper physical
time dimensions in our universe and the negative universe.

in −IE′∗ in the third quadrant in Fig. 4, as indicated.
There is likewise an inverse to Fig. 3 shown as Fig. 5.

The anti-clockwise sense of inclination ofφcφt relative to
φcφt′ by varying negative intrinsic angles−φψs in Fig. 5 is
valid relative to 1-observers inct′, with respect to whom anti-
clockwise rotation is negative. Likewise the anti-clockwise
sense of inclination ofφρ relative toφρ′ by varying negative
intrinsic angles−φψs is valid relative to 1-observers inct′.
The diagram of Fig. 5 is valid with respect to 1-observers in
the time dimensionsct and−ct∗, as indicated.

Figs. 8a and 8b and their inverses Figs. 9a and 9b in [3]
involve inclined extended straight line orthogonal primedin-
trinsic affine spacetime coordinatesφx̃′ andφcφt̃′ relative to
their projective extended orthogonal unprimed straight line
intrinsic affine coordinatesφx̃ andφcφt̃ (in Figs. 8a and 8b of
[3]) and the inverses (in Figs. 9a and 9b of [3]). They involve
constant positive intrinsic dynamical speedφv (in Figs. 8a
and 8b) and constant negative intrinsic dynamical speed−φv
(in Figs. 9a and 9b), in the context of the intrinsic special
theory of relativity/special theory of relativity (φSR/SR), as
developed in [3].

On the other hand, Figs. 1 and 3 and their inverses Figs. 4
and 5 in this paper, involve extended inclined orthogonal cur-
vilinear proper intrinsic metric spacetime dimensionsφρ′ and
φcφt′, which are curved relative to their projective extended
straight line orthogonal relativistic intrinsic metric spacetime
dimensionsφρ andφcφt (in Figs. 1 and 3) and their inverses
(in Figs. 4 and 5). They involve non-uniform positive proper
intrinsic static speedφV ′

s along the curvedφρ′ andφcφt′ (in
Figs. 1 and 3) and non-uniform negative proper intrinsic static
speed−φV ′

s along the curvedφρ andφcφt (in Figs. 4 and 5),

in the context of the intrinsic theory of relativity/theory of
relativity associated with the presence of a long-range proper
metric force field in spacetime and long-range proper intrinsic
metric force field in intrinsic spacetime.

2.2 Deriving intrinsic local lorentz transformation and
local lorentz transformation in terms of intrinsic sta-
tic speed and static speed

Let us consider an elementary intervaldφρ′ of the curved
proper intrinsic metric spaceφρ′ about point P along the cur-
vedφρ′ in the first quadrant in Fig. 1. The intervaldφρ′ pos-
sesses proper intrinsic static speedφV ′

s,P and is inclined to
the horizontal at intrinsic angleφψs,P . It projects relativis-
tic intrinsic metric space intervaldφρ along the horizontal
that also possesses proper intrinsic static speedφV ′

s,P with re-
spect to 3-observers in the relativistic Euclidean 3-spaceIE3

in Fig. 1. The corresponding elementary intervalφcdφt′ of
the curved proper intrinsic metric time dimensionφcφt′ about
the symmetry-partner pointP 0 along the curvedφcφt′ in the
second quadrant in Fig. 1, possesses intrinsic static speed
φV ′

s,P 0 and is inclined at intrinsic angleφψs,P 0 to the ver-
tical. It projects intervalφcdφt of relativistic intrinsic metric
time dimension along the vertical that also possesses intrinsic
static speedφV ′

s,P 0 with respect to 3-observers inIE3.
The elementary interval−dφρ′∗ of the curved proper in-

trinsic metric space−φρ′∗ about the symmetry-partner point
P ∗ along the curved−φρ′∗ in the third quadrant in Fig. 1,
possesses proper intrinsic static speedφV ′

s,P and is inclined
at intrinsic angleφψs,P to the horizontal. It projects relativis-
tic intrinsic space interval−dφρ∗ along the horizontal that
also possesses proper intrinsic static speedφV ′

s,P with respect
to 3-observers* in the relativistic Euclidean 3-space−IE3∗ in
Fig. 1. The corresponding elementary interval−φcdφt′∗ of
the curved proper intrinsic metric time dimension−φcφt′∗

about the symmetry-partner pointP 0∗ along−φcφt′∗ in the
fourth quadrant in Fig. 1, possesses intrinsic static speed
φV ′

s,P 0 and is inclined at intrinsic angleφψs,P 0 to the verti-
cal.It projects interval−φcdφt∗ of relativistic intrinsic metric
time dimension along the vertical that also possesses intrinsic
static speedφV ′

s,P 0 with respect to 3-observers* in−IE3∗.
The elementary intervals of curved proper intrinsic met-

ric spaces and curved proper intrinsic metric time dimensions
dφρ′, −dφρ′∗, φcdφt′ and−φcdφt′∗ shall be considered to
be indefinitely short so that they are straight short line seg-
ments within which proper intrinsic static speed has a con-
stant value. And since the points P0 and P0∗ along the curved
φcφt′ and curved−φcφt′∗ and points P and P* along the
curvedφρ′ and curved−φρ′∗ are symmetry-partner points,
the intrinsic angleφψs,P 0 of inclinations of intervalsφcdφt′

and−φcdφt′∗ to the vertical and the intrinsic angleφψs,P of
inclinations of intervalsdφρ′ and−dφρ′∗ to the horizontal
are equal. That is,φψs,P 0 = φψs,P .

By making use of the information in the foregoing para-
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Fig. 6: The local spacetime/intrinsic spacetime diagram drawn
at symmetry-partner points in spacetimes/intrinsic spacetimes in
the positive (or our) universe and the negative universe, from the
global diagram of Fig. 1, for deriving partial intrinsic local Lorentz
transformation in terms of intrinsic static speed with respect to 3-
observers in the relativistic Euclidean 3-spaces in our universe and
the negative universe.

graph and drawing the inclined elementary intervalsdφρ′,
φcdφt′, −dφρ′∗ and−φcdφt′∗ relative to their projections
dφρ, φcdφt, −dφρ∗ and−φcdφt∗ respectively from a com-
mon point we have Fig. 6.

Fig. 6 has been drawn at the symmetry-partner points P,
P0, P* and P0∗ along the respective curved proper intrinsic
metric dimensionsφρ′, φcφt′, −φρ′∗ and−φcφt′∗ in Fig. 1.
Hence the appearance of intrinsic angle of inclinationφψs,P ,
(whereφψs,P = φψs,P 0), in Fig. 6. The inclined elementary
intervals of proper intrinsic metric spacetimedφρ′, φcdφt′,
−dφρ′∗ and−φcdφt′∗ possess equal proper intrinsic static
speedφV ′

s,P and their projective relativistic componentsdφρ,
φcdφt, −dφρ∗ and−φcdφt∗ likewise possess equal proper
intrinsic static speedφVs,P as shown. It must be noted that
the line segmentsAB′, AC ′, A∗B′∗, andA∗C ′∗ are mere
connecting lines and not intrinsic metric coordinates. The
line segmentsAB, AC, A∗B∗ andA∗C∗ are likewise mere
connecting lines.

The componentdφρ of interval of the relativistic intrinsic
metric space projected along the horizontal is made manifest
outwardly in an elementary volumedIE3 of the relativistic
Euclidean 3-space in Fig. 6. Likewise the componentφcdφt
of the relativistic intrinsic metric time dimension projected
along the vertical is made manifest outwardly in an elemen-
tary intervalcdt of relativistic metric time dimension along
the vertical. In addition, the inclined negative elementary
proper intrinsic metric time dimension−φcdφt′∗ from the

negative universe in the fourth quadrant projects component
−φcdφt′ sinφψs,P along the horizontal in the first quadrant,
which is made manifest outwardly in−cdt′ sinψs,P along
the horizontal in Fig. 6. Dummy star label has been removed
from the projective component−φcdφt′∗ sinφψs,P of the in-
clined−φcdφt′∗ because the projective component is now an
intrinsic dimension in the positive universe.

Derivation of partial intrinsic local Lorentz transforma-
tion from Fig. 6 follows the same procedure used to derive
partial intrinsic Lorentz transformation from Fig. 8a of [3] in
the context of intrinsic special theory of relativity (φSR). The
procedure is applied hereunder.

Now dφρ being the projective component along the hor-
izontal of the inclineddφρ′, then dφρ = dφρ′ cosφψs,P .
Hence we can write,

dφρ′ = dφρ secφψs,P (∗)

This is all the intrinsic metric coordinate interval transforma-
tion that should have been possible along the horizontal in
the first quadrant with respect to 3-observers in the relativis-
tic Euclidean 3-spaceIE3 in Fig. 6, except that the inclined
proper intrinsic metric time dimension interval−φcdφt′∗ in
the fourth quadrant also projects interval−φcdφt′ sinφψs,P

along the horizontal, which must be added to the right-hand
side of(∗) to have

dφρ′ = dφρ secφψs,P − φcdφt′ sinφψs,P (∗∗)

But the inclined intervalφcdφt′ is related to its projec-
tion φcdφt along the vertical in the same Fig. 6 asφcdφt =
φcdφt′ cosφψs,P , henceφcdφt′ = φcdφt secφψs,P . By us-
ing this in(∗∗) we have

dφρ′ = dφρ secφψs,P − φcdφt tanφψs,P ;

(with respect to 3 − observers in IE3)

}

(5)
Eq. (5) is the partial intrinsic Lorentz transformation of ele-
mentary intrinsic metric coordinate intervals that can be de-
rived along the horizontal in the first quadrant with respectto
3-observers inIE3 in Fig. 6.

The complementary diagram to Fig. 6 that can be drawn
at the symmetry-partner pointsP, P 0, P ∗ andP 0∗ along the
curved proper intrinsic metric spacetimesφρ′, φcφt′, −φρ′∗

and−φcφt′∗ in Fig. 3; Fig. 3 being the complementary di-
agram to Fig. 1, is depicted in Fig. 7. The local geometry
of Fig. 7 derived from the global geometry of Fig. 3 is valid
with respect to 1-observers in the relativistic time dimensions
ct and−ct∗, as is the case with Fig. 3.

Nowφcdφt being the projective component along the ver-
tical of the inclinedφdφt′ in the first quadrant in Fig. 7, then
φcdφt = φcdφt′ cosφψs,P . Hence we can write,

φcdφt′ = φcdφt secφψs,P (∗ ∗ ∗)
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Fig. 7: The complementary diagram to Fig. 6 drawn at symmetry-
partner points in spacetimes/intrinsic spacetimes in the positive and
negative universes, from the global diagram of Fig. 3, for deriv-
ing partial intrinsic local Lorentz transformation with respect to 1-
observers in the relativistic time dimensions in our universe and the
negative universe.

This is all the intrinsic metric coordinate interval transforma-
tion that should have been possible along the vertical in the
first quadrant with respect to 1-observers in the relativistic
time dimensionct in Fig. 7, except that the inclined proper
intrinsic metric space interval−dφρ′∗ in the second quadrant
also projects component−dφρ′ sinφψs,P along the vertical,
which must be added to the right-hand side of(∗ ∗ ∗) to have

φcdφt′ = φcdφt secφψs,P − dφρ′ sinφψs,P (∗ ∗ ∗∗)

But the inclined intervaldφρ′ is related to its projection
dφρ asdφρ = dφρ′ cosφψs,P , along the horizontal in the
same Fig. 7. Hencedφρ′ = dφρ secφψs,P . By using this in
(∗ ∗ ∗∗) we have

φcdφt′ = φcdφt secφψs,P − dφρ tanφψs,P ;

(with respect to 1 − observers in ct)

}

(6)
Eq. (6) is the partial intrinsic Lorentz transformation of ele-
mentary intrinsic metric coordinate intervals that can be de-
rived along the vertical in the first quadrant with respect to
1-observers inct in Fig. 7.

By collecting Eqs. (5) and (6) we obtain the full intrinsic
local Lorentz transformation of elementary intrinsic metric
coordinate intervals from the local geometry of Fig. 6 and its

Fig. 8: The inverse to the local diagram of Fig. 6, derived from the
global diagram of Fig. 4, for deriving inverse partial intrinsic lo-
cal Lorentz transformation with respect to 3-observers in the proper
physical Euclidean 3-spaces in our universe and the negative uni-
verse.

complementary geometry of Fig. 7 as follows

φcdφt′ = φcdφt secφψs,P − dφρ tanφψs,P ;

(w.r.t 1 − observers in ct)

dφρ′ = dφρ secφψs,P − φcdφt tanφψs,P ;

(w.r.t 3 − observers in IE3)



















(7)

There is an inverse to system (7), which must be derived
from the inverses to Figs. 6 and 7. The inverse to Fig. 6 that
can be derived from the global geometry of Fig. 4 is shown
as Fig. 8. Fig. 8 derived from the global geometry of Fig. 4
is valid with respect to 3-observers in the proper Euclidean
3-spacesIE′3 and−IE′∗, just as Fig. 4 is valid with respect to
3-observers in the proper Euclidean 3-spacesIE′3 and−IE′∗.
Consequently the partial intrinsic Lorentz transformation of
elementary intrinsic metric coordinate intervals derivedfrom
Fig. 8 is valid with respect to 3-observers inIE′3 and−IE′∗.

Now φcdφt′ being the projective component along the
vertical of the inclinedφdφt in the first quadrant in Fig. 8,
thenφcdφt′ = φcdφt cos(−φψs,P ) = φcdφt cosφψs,P , we
can write,

φcdφt = φcdφt′ secφψs,P (∗ ∗ ∗ ∗ ∗)

This is all the intrinsic metric coordinate interval transforma-
tion that should have been possible along the vertical in the
first quadrant with respect to 3-observers in the proper Euclid-
ean 3-spaceIE′3 along the horizontal, except that the inclined
relativistic intrinsic metric space interval−dφρ∗ in the sec-
ond quadrant also projects component−dφρ sin(−φψs,P ) =
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Fig. 9: The inverse to the local diagram of Fig. 7, derived from the
global diagram of Fig. 5, for deriving inverse partial intrinsic lo-
cal Lorentz transformation with respect to 1-observers in the proper
physical time dimensions in our universe and the negative universe.

dφρ sinφψs,P along the vertical, which must be added to the
right-hand side of(∗ ∗ ∗ ∗ ∗) to have

φcdφt = φcdφt′ secφψs,P + dφρ sinφψs,P (∗ ∗ ∗ ∗ ∗∗)

But the inclined intervaldφρ in the fourth quadrant is re-
lated to its projectiondφρ′ as asdφρ′ = dφρ cosφψs,P along
the horizontal in Fig. 8. Hencedφρ = dφρ′ secφψs,P . By
using this in(∗ ∗ ∗ ∗ ∗∗) we have

φcdφt = φcdφt′ secφψs,P + dφρ′ tanφψs,P ;

(with respect to 3 − observers in IE′3)

}

(8)
Eq. (8) is the partial inverse intrinsic Lorentz transformation
of elementary intrinsic metric coordinate intervals that can be
derived along the vertical in the first quadrant with respectto
3-observers inIE′3 along the horizontal in Fig. 8.

Finally the inverse to Fig. 7, which can be derived from
the global geometry of Fig. 5 is depicted as Fig. 9. Fig. 9
is valid with respect to 1-observers in the proper metric time
dimensionsct′ and−ct′∗ along the vertical, as is the case with
Fig. 5. The partial inverse intrinsic Lorentz transformation of
elementary intrinsic metric coordinate intervals that canbe
derived along the horizontal in the first quadrant in Fig. 9, by
following the procedure used to derive Eq. (8) from Fig. 8 is
the following

dφρ = dφρ′ secφψs,P + φcdφt′ tanφψs,P ;

(with respect to 1 − observers in ct′)

}

(9)

By collecting Eqs. (8) and (9) we have

φcdφt = φcdφt′ secφψs,P + dφρ′ tanφψs,P ;

(w.r.t 3 − observers in IE′3)

dφρ = dφρ′ secφψs,P + φcdφt′ tanφψs,P ;

(w.r.t 1 − observers in ct′)



















(10)
System (10) derived from Figs. 8 and 9 is the inverse to sys-
tem (7) derived from Figs. 6 and 7.

Let us consider an intrinsic event that involves interval
φcdφt′ of proper intrinsic metric time dimension but zero in-
terval of proper intrinsic space (dφρ′ = 0). This reduces
system (10) as follows

φcdφt = φcdφt′ secφψs,P ; dφρ = φcdφt′ tanφψs,P (11)

Then by dividing the second into the first equation of system
(11) we have

dφρ

φcdφt
= sinφψs,P (12)

But, dφρ/dφt = φV ′

s,P , is the proper intrinsic static speed
of the ‘primed intrinsic frame’(dφρ′, φcdφt′) relative to the
‘unprimed intrinsic frame’(dφρ, φcdφt). Hence

sinφψs,P = φV ′

s,P /φc ≡ βs,P (φV ′

s,P ) (13a)

secφψs,P = (1 −
φV ′2

s,P

φc2
)−1/2 ≡ γs,P (φV ′

s,P ) (13b)

By using Eqs. (13a) and (13b) in systems (7) and (10) we
have respectively as follows

dφt′ = γs,P (φV ′

s,P )(dφt−
φV ′

s,P

φc2
dφρ);

(w.r.t. 1 − observers in ct)

dφρ′ = γs,P (φV ′

s,P )(dφρ− φV ′

s,P dφt);

(w.r.t. 3 − observers in IE3)



























(14)

and

dφt = γs,P (φV ′

s,P )(dφt′ +
φV ′

s,P

φc2
dφρ′);

(w.r.t. 3 − observers in IE′3)

dφρ = γs,P (φV ′

s,P )(dφρ′ + φV ′

s,P dφt
′);

(w.r.t. 1 − observers in ct′)



























(15)

Either system (7) or its inverse (10) or the explicit form
in terms of proper intrinsic static speed (14) or (15) leads to
intrinsic local Lorentz invariance

φc2dφt2 − dφρ2 = φc2dφt′2 − dφρ′2 (16)

The intrinsic local Lorentz transformation of elementary
proper intrinsic metric coordinate intervalsdφρ′ andφcdφt′
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into elementary relativistic intrinsic metric coordinateinter-
valsdφρ andφcdφt of system (7) or (14) and its inverse sys-
tem (10) or (15), written at symmetry-partner pointsP and
P 0 along the curved proper intrinsic metric spaceφρ′ and
curved proper intrinsic metric time dimensionφcφt′ respec-
tively in Figs. 1 and 3 and along the curved relativistic in-
trinsic metric spaceφρ and curved relativistic intrinsic met-
ric time dimensionφcφt respectively in Figs. 4 and 5, can
equally be written at another symmetry-partner pointsQ and
Q0 along those curved intrinsic metric spaces and curved in-
trinsic metric time dimensions, in terms of intrinsic angle
φψs,Q and proper intrinsic static speedφVs,Q at the new sym-
metry-partner points, and this is true at every symmetry-part-
ner points along these curved intrinsic spaces and intrinsic
time dimensions.

It follows from the foregoing paragraph that the intrinsic
local Lorentz invariance (16) obtains at every point on the
global curved two-dimensional proper intrinsic metric space-
time (φρ′, φcφt′) in Figs. 1 and 3. This guarantees that the
projective two-dimensional relativistic intrinsic metric space-
time (φρ, φcφt) is everywhere flat and consequently the out-
ward manifestation of(φρ, φcφt) namely, the global four-
dimensional relativistic spacetime(IE3, ct) is everywhere flat,
as illustrated in Figs. 1 and 3.

Graphically, let us consider the local geometry of Fig. 6 to
be drawn at every symmetry-partner points along the global
curved proper intrinsic metric spaceφρ′ and global curved
proper intrinsic metric time dimensionφcφt′, starting from
point O in Fig. 1. Then the elementary proper intrinsic metric
spacetime intervalsdφρ′ andφcdφt′ in Fig. 6 will be inclined
to the horizontal and the vertical respectively at varying in-
trinsic anglesφψs, starting fromφψs = 0 at point O in Fig. 1
and increasing continuously away from that point. Thus by
stringing together the inclineddφρ′ in Fig. 6 at consecutive
points, starting from point O in Fig. 1, one obtains the con-
tinuous curved global proper intrinsic spaceφρ′ in Fig. 1.
Likewise, by stringing together the inclinedφcdφt′ in Fig. 6
at consecutive points, starting from point O in Fig. 1, one
obtains the continuous curved global proper intrinsic metric
time dimensionφcφt′ in that figure.

By stringing together the projective elementary relativis-
tic intrinsic metric space intervaldφρ along the horizontal in
Fig. 6 at consecutive points, starting from point O in Fig. 1,
one obtains the continuous straight line global relativistic in-
trinsic metric spaceφρ along the horizontal in Fig. 1. And by
stringing together the projective elementary relativistic intrin-
sic metric time dimensionφcdφt along the vertical in Fig. 6
at consecutive points, starting from point O in Fig. 1, one ob-
tains the continuous straight line global relativistic intrinsic
metric time dimensionφcφt in Fig. 1. The straight line global
relativistic intrinsic metric spaceφρ thus obtained along the
horizontal is then made manifest outwardly in the global rela-
tivistic Euclidean 3-spaceIE3 and the straight line global rel-
ativistic intrinsic metric time dimensionφcφt obtained along

the vertical is made manifest outwardly in the global rela-
tivistic metric time dimensionct with respect to 3-observers
in IE3 in Fig. 1.

It is important to note that in stringing together the projec-
tive intervals of relativistic intrinsic metric spacedφρ along
the horizontal in Fig. 6 at consecutive points from point O in
Fig. 1, described in the foregoing paragraph, the component
−φcdφt′ sinφψs,P = −φcdφt tanφψs,P , projected into the
horizontal by the inclined−φcφt′∗ in the fourth quadrant in
Fig. 6, must be disregarded. This is so because it cannot be
observed (or measured) as relativistic intrinsic space interval
by ‘intrinsic 1-observers’ inφρ.

The curved proper intrinsic metric spaceφρ′ and curved
proper intrinsic metric time dimensionφcφt′ in Figs. 1 and 3
are relative intrinsic metric space and relative intrinsicmet-
ric time dimension. Consequently the componentdφρ =
dφρ′ cosφψs,P projected along the horizontal and the com-
ponent−dφρ′ sinφψs,P projected along the vertical by an
elementary intrinsic coordinate intervalsdφρ′ at point P along
the curvedφρ′ and −dφρ′∗ at point P∗ along the curved
−φρ′∗, as illustrated in Figs. 6 and 7, being relative intrin-
sic coordinate intervals, are metric intrinsic coordinateinter-
vals with respect to 3-observers in the relative 3-spaceIE3 and
1-observers in the relative time dimensionct respectively in
Figs. 1 and 3. Likewise, the projective componentφcdφt =
φcdφt′ cosφψs,P along the vertical and the projective com-
ponent−φcdφt′ sinφψs,P along the horizontal of the ele-
mentary intrinsic coordinate intervalφcdφt′ at the sym-
metry-partner point P0 along the curvedφcφt′ in Figs. 1 and
3, as illustrated in Figs. 6 and 7, being relative intrinsic coor-
dinate intervals, are metric intrinsic coordinate intervals with
respect to 3-observers inIE3 and 1-observers inct respec-
tively.

It follows from the foregoing paragraph that there are no
projective ‘non-metric’ intrinsic coordinate intervals to be
discarded in coordinate projection (or transformation) rela-
tions derivable from Figs. 6 and 7, which should thereby yield
intrinsic Riemannian metric line element and intrinsic Rie-
mannian metric tensor on the curved proper intrinsic met-
ric spacetime(φρ′, φcφt′) with respect to 3-observers inIE3.
Rather the geometries of Figs. 6 and 7 give rise to the intrin-
sic local Lorentz transformation of system (7) or (14) with
respect to 3-observers inIE3 and 1-observers inct, as indi-
cated, which implies that the curved proper intrinsic space-
time (φρ′, φcφt′) in Figs. 1 and 3 possesses intrinsic local
Lorentzian metric tensor at every point of it with respect to3-
observers inIE3 and 1-observers inct conjointly. The curved
relativistic intrinsic spacetime(φρ, φcφt) in Figs. 4 and 5
likewise possesses intrinsic local Lorentzian metric tensor at
every point of it with respect to 3-observers inIE′3 and 1-
observers inc′t conjointly for the same reason.

On the other hand, the componentδφρ̂ projected into the
proper intrinsic time dimensionφcφt′ along the vertical by an
elementary absolute intrinsic coordinate intervaldφρ̂ along
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the curved absolute intrinsic spaceφρ̂ in Fig. 4 of [2], being
an absolute intrinsic coordinate interval, is a ‘non-metric’ in-
trinsic coordinate interval with respect to 1-observers inthe
relative time dimensionct′ and the componentφĉδφt̂ pro-
jected intoφρ′ along the horizontal by the corresponding ele-
mentary intrinsic coordinate intervalφĉdφt̂ along the curved
absolute intrinsic time ‘dimension’φĉφt̂, being an absolute
intrinsic coordinate interval, is a ‘non-metric’ intrinsic co-
ordinate interval with respect to 3-observers in the relative
3-spaceIE′3 in that figure. The fact that the projective ‘non-
metric’ intrinsic coordinate intervals must be discarded,while
using the projective intrinsic metric coordinate intervalsdφρ′

along the horizontal andφcdφt′ along the vertical solely in
Fig. 4 of [2] in constructing intrinsic metric line element and
intrinsic metric tensor on the curved(φρ̂, φĉφt̂) with respect
to 3-observers iniE′3 and 1-observers inct′ conjointly in in
that figure, leads to the absolute intrinsic sub-Riemannian
metric tensorφĝ∗ij of Eq. (33) of [2] on the curved absolute
intrinsic metric spacetime(φρ̂, φĉφt̂) with respect to these
observers, as fully derived in [2].

Now let us collect the partial intrinsic Lorentz transfor-
mations of elementary intrinsic spacetime intervals that are
valid with respect to 3-observers in the Euclidean 3-spacesin
systems (14) and (15) to have

dφρ′ = γs,P (φV ′

s,P )(dφρ− φV ′

s,P dφt)

dφt = γs,P (φV ′

s,P )(dφt′ +
φV ′

s,P

φc2
dφρ′)











(17)

Now from the point of view of what can be observed
and measured as intrinsic space interval with intrinsic labo-
ratory rod and as intrinsic time interval by intrinsic labora-
tory clock by ‘intrinsic 1-observers’ in intrinsic spaceφρ, the
terms−γs,P (φV ′

s,P )φV ′

s,P dφt andγs,P (φV ′

s,P )(φV ′

s,P /φc
2)

×dφρ′ must be set to zero in system (17), thereby reducing
system (17) as follows from the point of what can be mea-
sured with intrinsic laboratory rod and clock by ‘intrinsic1-
observers’ in intrinsic space

dφρ = γs,P (φV ′

s,P )−1dφρ′ = dφρ′(1 −
φV ′2

s,P

φc2
)

1

2 (18)

and

dφt = γs,P (φV ′

s,P )dφt′ = dφt′(1 −
φV ′2

s,P

φc2
)−

1

2 (19)

Eqs. (18) and (19) give intrinsic metric space contraction
and intrinsic metric time dilation formulae explicitly in terms
of intrinsic static speed. These are intrinsic length contrac-
tion and intrinsic time dilation formulae in the context of the
intrinsic theory of relativity associated with the presence of a
long-range intrinsic metric force field in intrinsic spacetime.

Now the intrinsic theory of relativity in intrinsic space-
time associated with the presence of a long-range intrinsic

metric force field in intrinsic metric spacetime, will be made
manifest in the theory of relativity in metric spacetime due
to the presence of a long-range metric force field in space-
time. Consequently the intrinsic local Lorentz transforma-
tion (φLLT) of system (7) and its inverse of system (10) in
two-dimensional intrinsic metric spacetime(φρ, φcφt), will
be made manifest outwardly in local Lorentz transformation
(LLT) and its inverse in four-dimensional metric spacetime
respectively as follows

cdt′ = cdt secψs,P − dx1 tanψs,P ;

(w.r.t. 1 − observers in ct)

dx′1 = dx1 secψs,P − cdt tanψs,P ;

dx′2 = dx2; dx′3 = dx3;

(w.r.t. 3 − observers in IE3)































(20)

and

cdt = cdt′ secψs,P + dx′1 tanψs,P ;

(w.r.t. 3 − observers in IE′3)

dx1 = dx′1 secψs,P + cdt′ tanψs,P ;

dx2 = dx′2; dx3 = dx′3;

(w.r.t. 1 − observers in ct′)































(21)

The explicit forms ofφLLT (14) and its converse (15) in
two-dimensional intrinsic metric spacetime are likewise made
manifest in LLT and its inverse in four-dimensional spacetime
respectively as follows:

dt′ = γs,P (V ′

s,P )(dt−
V ′

s,P

c2
dx1);

(w.r.t. 1 − observers inct)

dx′1 = γs,P (V ′

s,P )(dx1 − V ′

s,P dt);

dx′2 = dx2; dx′3 = dx3;

(w.r.t. 3 − observers in IE3)



































(22)

and

dt = γs,P (V ′

s,P )(dt′ +
V ′

s,P

c2
dx′1);

(w.r.t. 3 − observers in IE′3)

dx1 = γs,P (V ′

s,P )(dx′1 + V ′

s,P dt
′);

dx2 = dx′2; dx3 = dx′3;

(w.r.t. 1 − observers in ct′)



































(23)

where

γs,P (V ′

s,P ) = secψs,P = (1 −
V ′2

s,P

c2
)−1/2 (24)

The dimensionx1 of the relativistic Euclidean 3-spaceIE3

is considered to be orientated along the isotropic relativistic
intrinsic metric spaceφρ, while the dimensionsx2 andx3 of
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IE3 are orientated along other directions inIE3. It follows that
the dimensionx′1 of the proper Euclidean 3-spaceIE′3 was
orientated along the isotropic proper intrinsic metric space
φρ′, while the dimensionsx′2 andx′3 of IE′3 were orientated
along other directions inIE′3. Now the intrinsic static speed
φV ′

s,P lies along the isotropic intrinsic spacesφρ′ underlying
IE′3 and alongφρ underlyingIE3. Consequently the static
velocity ~V ′

s,P lies alongx′1 in IE′3 and alongx1 in IE3. It
has no component along dimensionx′2 or x′3 in IE′3 and no
component along dimensionx2 or x3 in IE3. These make
systems (20) through (23) to take their forms, in which the
intervalsdx′2 anddx′3 transform into intervalsdx2 anddx3

trivially asdx′2 = dx2 anddx′3 = dx3.
Either the LLT (20) or its inverse (21) or the explicit form

(22) or (23) leads to local Lorentz invariance (LLI)

c2dt2 − (dx1)2 − (dx2)2 − (dx3)3 =

c2dt′2− (dx′1)2− (dx′2)2− (dx′3)2 (25)

This is the outward manifestation in the 4-dimensional space-
time of the intrinsic local Lorentz invariance (φLLI) (16). The
local Lorentz invariance (25) is valid at every point on the
four-dimensional spacetime, implying flatness everywherein
a long-range metric force field of the relativistic spacetime
(IE3, ct), as deduced fromφLLI (16) earlier and as illustrated
in Figs. 1 and 3.

Finally the intrinsic length contraction formula (18) and
intrinsic time dilation (19) in intrinsic two-dimensionalmet-
ric spacetime are made manifest in length contraction and
time dilation formulae in four-dimensional metric spacetime
as follows

dx1 = γs,P (V ′

s,p)
−1dx′1 = (1 −

V ′2

s,P

c2
)1/2dx′1;

dx′2 = dx2; dx′3 = dx3 (26)

and

dt = γs,P (V ′

s,p)dt
′ = (1 −

V ′2

s,P

c2
)−1/2dt′ (27)

As a summary of this section, we have derived the global
curved intrinsic metric spacetime/flat spacetime geometries
of Figs. 1-5 and the associated local intrinsic spacetime/spa-
cetime geometries of Figs.6 − 9 within the four-world pic-
ture. We have derived the intrinsic local Lorentz transforma-
tion (φLLT) and its inverse of systems (7) and (10) or systems
(14) and (15); we have validated intrinsic local Lorentz invari-
ance (φLLI) and have derived the intrinsic length contraction
and intrinsic time dilation formulae (18) and (19), at a point
in spacetime with the aid of Figs.6 − 9, as must be done at
every point in spacetime in a long-range metric force field,
in the context of the intrinsic theory of relativity associated
with the presence of an intrinsic metric force field in intrinsic
spacetime.

The theory of relativity in spacetime due to the presence
of a long-range metric force field in spacetime, being mere
outward manifestation of the intrinsic theory of relativity in
intrinsic spacetime due to the presence of intrinsic metric
force field in intrinsic spacetime, the results of the theory
of relativity in spacetime have been written directly from the
corresponding results of intrinsic theory of relativity inintrin-
sic spacetime summarized above. These are the local Lorentz
transformation (LLT) and its inverse of system (20) and (21)
or system (22) and (23); local Lorentz invariance (25) and the
length contraction and time dilation formulae (26) and (27),
all of which have been written at a point in spacetime and as
must be done at every point spacetime in a long-range metric
force field.

The central purpose of this paper is to develop a new
geometrical background for the theory of relativity associ-
ated with the presence of a long-range metric force field in
spacetime within the four-world picture, in which the four-
dimensional spacetime is underlied by a hidden two-dimen-
sional intrinsic spacetime in each universe, developed in [3-
6]. We deem the results derived in this section and summa-
rized in the foregoing two paragraphs as adequate for this pur-
pose. It must be recalled from the derivation of the concept of
static intrinsic speed and static speed in part three of thispa-
per [2], that the intrinsic static speed and static speed, which
appear in the intrinsic theory of relativity and theory of rel-
ativity associated with the presence of a long-range metric
force field in spacetime in this paper are pure geometrical pa-
rameters.

2.3 Clarifications of the concepts of relative static speed,
relativity associated with static speed and relative
metric force fields

It is appropriate to shine some light on the new concepts in the
topic of this sub-section that are introduced in this paper.Let
us start with the familiar concept (or parameter) in physics
namely, the kinematical (or dynamical) velocity~v (or speed
v). It is an observable and measurable property of a parti-
cle or object in motion. The kinematical velocity is a relative
parameter because its magnitude varies with the observer or
frame of reference relative to which the particle is in motion.
The relativity of kinematical velocity is the origin of the rela-
tivity of motion of material particles and objects described by
the special theory of relativity.

On the other hand, the proper static speedV ′

s is a property
of space, established in space by the source of a long-range
relative metric force field, irrespective of whether a particle
or object is present in space or not. A particle or object of
any mass located at a point P in space where the proper static
speed isV ′

s,P , will acquireV ′

s,P but will not move relative to
any observer at this speed. If it also possesses kinematicalve-
locity ~v relative to an observer while moving through point P,
then it will be observed to move at the velocity~v only relative
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to the observer, despite the static speedV ′

s,P it has acquired.

The static speed established at a point in space cannot be
observed or measured. It does not give rise to flow of space
and consequently it does not give rise to translation in space
of a material particle or object that acquired it, as said above.
Further more, the static speed at a point in space is the same
with respect to all observers of frames of reference. It is hence
an absolute parameter from the point of view of the special
theory of relativity. How then come the concepts of relative
static speed and relativity associated with static speed?

In order to answer the question ending the foregoing para-
graph, let us revisit the length contraction and time dilation
formulae (26) and (27). Although the proper static speedV ′

s

at a point in space cannot be observed or measured and al-
though its squareV ′2

s cannot be observed or measured, the
quantities(1− V ′2

s /c2)1/2dx′1 and(1− V ′2

s /c2)−1/2dt′ can
be observed and measured. This follows from the fact to
be formally derived upon making connection to gravity else-
where thatV ′2

s is related to the classical potentialΦ′ of the
metric force field that establishesV ′

s in space as,Φ′ = − 1

2
V ′2

s

(for an attractive metric force field). The quantityV ′2

s , like the
potentialΦ′ at a point in space, cannot be observed or mea-
sured (as is the case with gravitational potential in particular).

As shall also be shown formally elsewhere with further
development, the speedc in the factor,(1 − V ′2

s /c2)1/2dx′1

and(1 − V ′2

s /c2)−1/2dt′, is a static speed like theV ′

s it di-
vides (and not the dynamical speed of light). In other words,
these factors shall appear as(1 − V ′2

s /c2s)
1/2dx′1 and(1 −

V ′2

s /c2s)
−1/2dt′ with further development, wherecs is the

maximum over all static speeds that can be established in
space or that can be acquired in space by material particles
and objects, with a magnitude of3 × 103m/s; (the speed
of light being the maximum over all kinematical speeds of
material particles and objects with equal magnitude of3 ×
103m/s).

Now the quantities(1 − V ′2

s /c2s)
1

2 dx′1 = cs(c
2

s − V ′2

s )
1

2

×dx′1 and(1−V ′2

s /c2)−
1

2 dt′ = (1/cs)(c
2

s −V ′2

s )−
1

2 dt′ can
be measured, since the differencec2s − V ′2

s , being equivalent
to difference of potentials, can be measured. It then follows
that the length contraction and time dilation formulae (26)
and (27) can be observed and measured. Thus by allowing an
event that involves proper time intervaldt′ and proper space
intervalsdx′1, dx′2 anddx′3 to occur at different positions in
space within a long-range metric force field, the observed (or
relativistic) time intervaldt and the observed (or relativistic)
dimension of 3-spacedx1 of the same event will vary with po-
sition in space, while the observed dimensionsdx2 anddx2

of the event will be the same at all positions within the metric
force field, according to systems (26) and (27). The variation
with the magnitude of the proper static speedV ′

s and con-
sequently with position in space within a long-range metric
force field of the observed (or relativistic) time intervaldt
and the observed (or relativistic) interval of spacedx1 of an

event is the concept of relativity associated with the presence
of a long-range metric force field in spacetime.

In brief, the relativity associated with proper static speed
in a long-range metric force field is relativity with position
in space within the field (and not relativity with observer or
frame of reference). Relativity of proper static speed likewise
refers to variation of magnitude of proper static speed with
position in space within a long-range metric force field. In
other words, it refers to the fact that the proper static speeds
V ′

s,P andV ′

s,Q at two positions P and Q of different distances
x′1P andx′1Q respectively from the origin of the long-range rel-
ative metric force field have different magnitudes. It does
not refer to variation of the magnitude of a static speed with
observers or frames of reference. As mentioned earlier, the
proper static speed at a point in space is the same with re-
spect to all observers or frames of reference.

In the light of the foregoing, a relative (or relativistic)
metric force field is the one that establishes non-zero proper
static speeds in space. That is, one that establishes proper
static speeds of different magnitudes (no matter how small
in magnitudes in a strict sense) at different positions in the
proper Euclidean 3-spaceIE′3, which transforms invariantly
as proper static speeds in the relativistic Euclidean 3-space
IE3 within the metric force field. The possibility of the rel-
ativity of other physical parameters, such as mass, electric
and magnetic fields, energy, fluxes, temperature, entropy, po-
tentials, etc, in the sense of the variations of their observed
(or relativistic) magnitudes with proper static speed and con-
sequently with position in space within a long-range met-
ric force field, on the flat four-dimensional relativistic metric
spacetime(IE3, ct) (in Fig. 1) now isolated, shall be investi-
gated upon applying the results of this paper to the gravita-
tional field elsewhere.

Expectedly, it will be possible to derive the transforma-
tions of physical parameters and physical constants, classical
and special-relativistic non-gravitational laws, as wellas clas-
sical gravitational laws on flat spacetime within a long-range
metric force field with the aid of the local Lorentz transforma-
tion and its inverse in terms of proper static speed of systems
(22) and (23), in the context of the theory of relativity as-
sociated with the presence of a long-range metric force field
in spacetime. This will be similar (or analogous) to Lorentz
transformations of parameters and natural laws on flat space-
time in the context of the special theory of relativity.

3 Absolute intrinsic Riemann geometry on curved ‘two-
dimensional’ absolute intrinsic spacetime at the sec-
ond stage of evolution of spacetime/intrinsic spacetime
in a metric force field

The ‘2-dimensional’ absolute intrinsic metric spacetime(φρ̂,
φĉφt̂) is curved relative to its projective flat proper intrin-
sic metric spacetime(φρ′, φcφt′) in Fig. 4 or Fig. 11 of the
third part of this paper [2], at the first stage of evolution of
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spacetime/inrinsic spacetime within a long-range metric force
field. Consequently the absolute intrinsic Riemann geometry
has been formulated on the curved(φρ̂, φĉφt̂) with respect to
3-observers in the proper Euclidean 3-spaceIE′3 that overlies
the isotropic proper intrinsic spaceφρ′ in [2].

On the other hand, the ‘2-dimensional’ absolute intrinsic
metric spacetime(φρ̂, φĉφt̂) is curved relative to the flat 2-
dimensional relativistic intrinsic metric spacetime(φρ, φcφt)
in Fig. 1, at the second stage of evolution of spacetime/intrin-
sic spacetime in a long-range metric force field. It then fol-
lows that absolute intrinsic Riemann geometry must be for-
mulated on the curved(φρ̂, φĉφt̂) with respect to 3-observers
in the relativistic Euclidean 3-spaceIE3 that overliesφρ in
Fig. 1 at the second stage of evolution of spacetime/intrinsic
spacetime.

In order to show that absolute intrinsic Riemann geometry
on curved absolute intrinsic spacetime(φρ̂, φĉφt̂) takes the
same form with respect to 3-observers in the proper Euclid-
ean 3-spaceIE′3 solely in Fig. 4 or Fig. 11 of [2] and with re-
spect to 3-observers in the relativistic Euclidean 3-spaceIE3

solely in Fig. 1 of this paper, let us revisit the derivation of
the absolute intrinsic metric tensor without star label from
Eq. (48a-b) through Eq. (64) in [2] with the aid of Fig. 7 of
that paper. Let us re-write Eq. (53) of [2] as follows

(dφs′)2 = φc2(dφt′)2(cos2 φψ̂s,P + sin2 φψ̂s,P )

−(dφρ′)2(sec2 φψ̂s,P − tan2 φψ̂s,P ) (28)

This is the intrinsic line element on the two-dimensional pro-
per intrinsic spacetime(φρ′, φcφt′) in Fig. 7 of [2], which is
valid with respect to 3-observers in the proper Euclidean 3-
spaceIE′3 in that figure. Actually Eq. (28) simplifies as the
intrinsic Lorentzian line element as noted in [2].

Then by applying the invariance of intrinsic line element
on (φρ̂, φĉφt̂) and (φρ′, φcφt′) in Fig. 7 of [2], expressed
by Eq. (54) of that paper, which shall be reproduced here as
follows,

φĉ2(dφt̂)2 − (dφρ̂)2 = φc2(dφt′)2 − (dφρ′)2, (29)

the(dφρ′)2 andφc2(dφt′)2 in (28) were replaced by(dφρ̂)2

andφĉ2(dφt̂)2 respectively, yielding Eq. (56) of [2], which
shall be reproduced here as follows

(dφŝ)2 = φĉ2(dφt̂)2(cos2 φψ̂s,P + sin2 φψ̂s,P ) −

−(dφρ̂)2(sec2 φψ̂s,P − tan2 φψ̂s,P ) (30)

The absolute intrinsic metric tensor without star label of (63)
or (64) of [2] and absolute intrinsic Ricci tensor without star
label of (67) or (68) of [2] were then derived with respect
to 3-observers in the proper Euclidean 3-spaceIE′3 solely in
Fig. 4 or Fig. 11 of [2] from Eq. (30) above (or Eq. (56) of
[2]) between Eqs. (58) and (68) of [2].

Now the intrinsic local Lorentz invariance (16) establish-
ed in the context of the intrinsic theory of relativity associ-
ated with the presence of a long-range intrinsic metric force

field in intrinsic spacetime earlier in this paper, allows usto
replaceφc2(dφt′)2 and(dφρ′)2 byφc2(dφt)2 and(dφρ)2 re-
spectively in Eq. (28) to have

(dφs)2 = φc2(dφt)2(cos2 φψ̂s,P + sin2 φψ̂s,P ) −

−(dφρ)2(sec2 φψ̂s,P − tan2 φψ̂s,P ) (31)

While the primed intrinsic line elementdφs′ in (28) on proper
intrinsic spacetime(φρ′, φcφt′) is valid with respect to 3-
observers in the proper Euclidean 3-spaceIE′3 solely in Fig. 4
or Fig. 11 of [2], the unprimed intrinsic line element (31) on
the relativistic intrinsic spacetime(φcφt, φρ) is valid with re-
spect to 3-observers in the relativistic Euclidean 3-spaceIE3

solely in Fig. 1 of this paper.
Now by combining the intrinsic local Lorentz invariance

(29) and (16) we have

φc2(dφt)2 − (dφρ)2 = φc2(dφt′)2 − (dφρ′)2

= φĉ2(dφρ̂)2 − (dφρ̂)2 (32)

Eq. (32) allows us to replace(dφρ)2 andφc2(dφt)2 by(dφρ̂)2

andφĉ2(dφt̂)2 respectively in Eq. (31) to have Eq. (30) again.
It then follows that the absolute intrinsic metric tensor of
Eq. (63) or (64) and absolute intrinsic Ricci tensor of Eq. (67)
or (68) of [2], derived from Eq. (30) with respect to 3-obser-
vers in the proper Euclidean 3-spaceIE′3 solely in Fig. 4 or
Fig. 11 of [2], are equally valid with respect to 3-observersin
the relativistic Euclidean 3-spaceIE3 solely in Fig. 1 of this
paper.

The starred absolute intrinsic line elementdφŝ∗, starred
absolute intrinsic metric tensorφĝ∗ij and starred absolute in-

trinsic Ricci tensorφR̂∗

ij on curved ‘two-dimensional’ ab-
solute intrinsic spacetime(φρ̂, φĉφt̂) in Fig. 4 or Fig. 11 of
[2], given by Eqs. (31), (33) and (39) respectively of [2],
which are valid partially with respect to 3-observers in the
proper Euclidean 3-spaceIE′3 and partially with respect to 1-
observers in the proper time dimensionct′ in Fig. 4 or Fig. 11
of [2], as explained in that paper, are equally valid on the
curved(φρ̂, φĉφt̂) in Fig. 1 of this paper partially with respect
to 3-observers in the relativistic Euclidean 3-spaceIE3 and
partially with respect to 1-observers in the relativistic time
dimensionct in that figure.

Thus the formulation of absolute intrinsic Riemann geom-
etry on curved absolute intrinsic spacetime(φρ̂, φĉφt̂) with
respect to 3-observers in the relativistic Euclidean 3-space
IE3 (in Fig. 1 of this paper) at the second stage of evolution
of spacetime/intrinsic spacetime within a long-range metric
force field, follows the same procedure used to formulate ab-
solute intrinsic Riemann geometry on the curved(φρ̂, φĉφt̂)
with respect to 3-observers in the proper Euclidean 3-space
IE′3 in Fig. 4 or Fig. 11 of [2] at the first stage of evolution
of spacetime/intrinsic spacetime within a long-range metric
force field.
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This means that just as done at the first stage of evolution
of spacetime/intrinsic spacetime, one must write the pair of
absolute intrinsic tensor equations involving starred absolute
intrinsic tensorsφĝ∗ij andφR̂∗

ij derived on curved(φρ̂, φĉφt̂)
in [1-2] and presented as Eqs. (34) and (38) of [2]. One must
then solve those equations algebraically to obtainφĝ∗ij and

φR̂∗

ij in terms of absolute intrinsic curvature parameterφk̂ of
Eqs. (64) and (68) or in terms of absolute intrinsic static speed
as Eqs. (81) and (82) of [2]. The starred absolute intrinsic ten-
sors so derived are valid partially with respect to 3-observers
in the relativistic Euclidean 3-spaceIE3 and partially with re-
spect to 1-observers in the relativistic time dimensionct in
Fig. 1 of this paper.

Then in order to obtain the absolute intrinsic metric ten-
sorφĝij without star label, which is valid with respect to 3-
observers in the relativistic Euclidean 3-spaceIE3 solely, one
must use the relations among the components of the starred
absolute intrinsic metric tensorφĝ∗ij and the components of
the absolute intrinsic metric tensor without star labelφĝij in
systems (65a) and (65b) of [2]. Onceφĝij has bee obtained,
then one must apply the tensorial statement of intrinsic local
Lorentz invariance (66) of [2] to derive the absolute intrin-
sic Ricci tensor without star labelφR̂ij , which is valid with
respect to 3-observers inIE3 solely.

The superposition procedure developed in absolute intrin-
sic Riemann geometry at the first stage of evolution of space-
time/intrinsic spacetime in [2], when two or a larger num-
ber of curved absolute intrinsic metric spacetimes co-exist, is
equally applicable at the second stage of evolution of space-
time/intrinsic spacetime. Clarifications of the concepts of
absolute intrinsic static speed, absolute intrinsic metric ten-
sor and absolute intrinsic metric theory of physics associated
with them introduced in [2] and this section, shall be done
upon making connection to gravity elsewhere.

4 Summary, conclusion and direction for further inves-
tigation

The summary of the four parts of this paper essentially is
that spacetime and its underlying intrinsic spacetime follow
two stages of evolution in the sequence of absolute space-
time/absolute intrinsic space→ proper spacetime/proper in-
trinsic spacetime→ relativistic spacetime/relativisic intrin-
sic spacetime in every long-range metric force field, and that
three theories of a metric force field are associated with each
of the two stages.

The three theories of a metric force field encompassed
by the geometry of Fig. 4 of [2] at the first stage of evolu-
tion of spacetime/intrinsic spacetime within the metric force
field, to be developed elsewhere are: (i) an absolute intrin-
sic metric theory on the curved ‘two-dimensional’ absolute
intrinsic metric spacetime(φρ̂, φĉφt̂) with absolute intrinsic
metric tensor, (ii) a three dimensional classical metric theory
in the Galileo space(IE′3 ; t′) and (iii) an one-dimensional

classical intrinsic metric theory on the intrinsic Galileospace
(φρ′ ; φt′), the classical metric theory in(IE′3 ; t′) being mere
outward manifestation of the intrinsic classical metric theory
in (φρ′ ; φt′).

The three theories of a metric force field at the second
stage of evolution of spacetime/intrinsic spacetime in a long-
range metric force field encompassed by the geometries of
Figs. 1 and 3 and their inverses Figs. 4 and 5 of this fourth
part of this paper are: (i) the absolute intrinsic metric theory
on curved ‘two-dimensional’ absolute intrinsic metric space-
time (φρ̂, φĉφt̂) with absolute intrinsic metric tensor brought
forward from the first stage, (ii) a flat four-dimensional rela-
tivistic metric theory on flat 4-dimensional relativistic space-
time (IE3, ct) and (iii) a flat two-dimensional relativistic in-
trinsic metric theory on flat two-dimensional relativisticin-
trinsic metric spacetime(φρ, φcφt) underlying(IE3, ct), the
metric theory on(IE3, ct) being mere outward manifestation
of the intrinsic metric theory on(φρ, φcφt).

The spacetime/intrinsic spacetime geometry and the as-
sociated three theories of a metric force field that evolved at
the first stage of evolution of spactime/intrinsic spacetime in a
long-range metric force field, endured for no moment before
transforming into the enduring spacetime/intrinsic spacetime
geometries and associated metric theory/intrinsic metric the-
ories at the second (and final) stage. Thus the theories at the
second stage, having replaced the theories at the first stage,
are present in every long-range metric force field in the uni-
verse at present.

A crucial conclusion is that the four-dimensional (rela-
tivistic) spacetime and its underlying two-dimensional (rela-
tivistic) intrinsic spacetime are everywhere flat in every long-
range metric force field; the only curved spacetime with Rie-
mannian metric tensor, so to speak, being the ‘2-dimensional’
absolute intrinsic metric spacetime(φρ̂, φĉφt̂) with absolute
intrinsic sub-Riemannian metric tensor, isolated in the first
three parts of this paper.

For further work in the short-run, it will be necessary
to particularize the spacetime/intrinsic spacetime geometries
and associated metric theories/intrinsic metric theories at the
two stages of evolution of spacetime/intrinsic spacetime in
a long-range metric force field isolated in the four parts of
this paper to the gravitational field; investigate two stages
of evolution of physical parameters/intrinsic parameters that
possibly accompany the two stages of evolution of space-
time/intrinsic spacetime in a gravitational field and investi-
gate possible variations of physical parameters/intrinsic pa-
rameters with position on flat spacetime in a gravitational
field, in the context of the theory of relativity/intrinsic the-
ory of relativity associated with the presence of gravitational
field in spacetime, developed for an arbitrary long-range met-
ric force field in terms of the isolated geometrical parameters
namely, static speed and intrinsic static speed in section 2of
this fourth part of this paper.
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