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A curved ‘two-dimensional’ absolute intrinsic metric spacetime(φρ̂, φĉφt̂) on the ver-
tical intrinsic spacetime plane, its underlying projective flat two-dimensional proper
intrinsic metric spacetime(φρ′, φcφt′) and the outward manifestation of the latter
namely, the flat four-dimensional proper metric spacetime(IE′3, ct′), are isolated. The
absolute intrinsic Riemann geometry on curved ‘three-dimensional’ absolute intrinsic
metric spaceφIM̂3, developed in the first two parts of this paper, is adapted to the
curved ‘two-dimensional’ absolute intrinsic metric spacetime(φρ̂, φĉφt̂) with respect
to observers in the underlying proper physical Euclidean 3-spaceIE′3. The pair of ab-
solute intrinsic tensor equations derived onφIM̂3 is shown to be valid on(φρ̂, φĉφt̂).
They are solved to obtain the absolute intrinsic metric tensor and absolute intrinsic Ricci
tensor on(φρ̂, φĉφt̂) with respect to observers inIE′3, in terms of an absolute intrinsic
geometrical parameter isolated in this third part, referred to as absolute intrinsic static
speed, which the source of a long-range absolute intrinsic metric force field establishes
in extended absolute intrinsic metric spacetime from its location. This third partof this
paper is the conclusion of the development of absolute intrinsic Riemann geometry on
curved ‘two-dimensional’ absolute intrinsic metric spacetime at the first stage of evo-
lution of spacetime/intrinsic spacetime in a long-range metric force field, started in the
first and second parts. Particularization to the gravitational field will be straight for-
ward, requiring essentially the relation of the absolute intrinsic static speed parameter
to the absolute intrinsic parameters of absolute intrinsic gravitational field.

1 Inclusion of curved absolute intrinsic metric time ‘di-
mension’

Let us start by reproducing the ‘one-dimensional’ absolutein-
trinsic metric spaceφρ̂ that is curved from the horizontal posi-
tion towards the absolute time/absolute intrinsic time ‘dimen-
sions’ along the vertical and projects one-dimensional proper
intrinsic metric spaceφρ′ along the horizontal, with respect
to 3-observers in the proper physical Euclidean 3-spaceIE′3

overlyingφρ′, derived and illustrated in Fig. 6 of part two of
this paper [1] as Fig. 1 here.

The proper physical Euclidean 3-spaceIE′3 containing the
3-observers is the outward (or physical) manifestation of the
isotropic one-dimensional proper intrinsic space (or proper
nospace)φρ′ underlying it within the region of the universal
3-space where the curved absolute intrinsic metric spaceφρ̂
exists. Earlier discussion of the fact thatIE′3 is the outward
manifestation ofφρ′ can be found in sub-section 4.3 of [2].

One crucial feature of Fig. 1 is that the absolute intrin-
sic time ‘dimension’,φx̂0 ≡ φĉφt̂, is not curved along with
the absolute intrinsic spaceφρ̂ with respect to 3-observers in
IE′3. This, as shall be explained with further development in
this paper, is due to the fact that the presence of a long-range
absolute intrinsic metric force field in an initially flat ‘two-
dimensional’ absolute intrinsic metric spacetime(φρ̂, φĉφt̂)
(that is,φρ̂ is a straight line along the horizontal andφĉφt̂ is
a straight line along the vertical), underlying a long-range ab-

Fig. 1: A curved ‘one-dimensional’ absolute intrinsic metric space
φρ̂, curving towards the absolute time/absolute intrinsic time ‘di-
mensions’ along the vertical, projects a straight line one-dimensional
isotropic proper intrinsic metric spaceφρ′ underneath the physical
proper Euclidean 3-spaceIE′3 along the horizontal, with respect to
3-observers inIE′3 in the positive (or our) universe.

solute metric force field in initially flat absolute spacetime
(ÎE3, ĉt̂), (as shall be illustrated later as Fig. 6 of this pa-
per), which causes curved absolute intrinsic metric spaceφρ̂
to evolve within the absolute metric force field (as in Fig. 1),
does not give rise to simultaneous curvature of the absolute
intrinsic time ‘dimension’φĉφt̂ from its vertical position with
respect to 3-observers in the proper physical Euclidean 3-
spaceIE′3. This is the geometrical interpretation of the fact
that absolute time and absolute intrinsic time are invariant and

A. J. Adekugbe. Evolutionary sequence of spacetime/intrinsic spacetime and associated sequence of geometries in a metric force field III.1



Volume 1 THE FUNDAMENTAL THEORY (MONOGRAPH) Article 7 (pre-print)

hence do not transform to proper time and proper intrinsic
time respectively in the context of absolute physics/absolute
intrinsic physics.

The feature of the geometry of Fig. 1 discussed in the
foregoing paragraph makes the absolute intrinsic line element
take the Gaussian form of Eq. (89) of [1] on the curved ab-
solute intrinsic metric spaceφρ̂ with respect to 3-observers in
the underlying physical proper Euclidean 3-spaceIE′3, which
shall be re-produced here as follows

(dφŝ)2 = (dφx̂0)2 − φĝ11(dφρ̂)
2, (1)

where
φĝ11 = sec2 φψ̂P = (1 − φk̂2

P )−1, (2)

φψ̂P is the absolute intrinsic angle of inclination of the curved
absolute intrinsic spaceφρ̂ to its projective proper intrinsic
spaceφρ′ along the horizontal at point P alongφρ̂; φk̂P is
the absolute intrinsic curvature parameter at point P alongthe
curvedφρ̂ andφk̂P = sinφψ̂P , as derived in in sub-section
1.1 of part two of this paper [1].

As developed in sub-section 1.3 of [3], the proper phys-
ical time dimensionct′ and its underlying proper intrinsic
time dimensionφcφt′ of our (or positive) universe are actu-
ally the proper physical Euclidean 3-spaceIE0′3 and the one-
dimensional
proper intrinsic spaceφρ0′ of the positive time-universe. And
the proper physical Euclidean 3-spaceIE′3 and the proper in-
trinsic spaceφρ′ of our universe are the proper physical time
dimensionct0′ and its underlying proper intrinsic time di-
mensionφcφt0′ of the positive time-universe. There exist
perfect symmetry of state and perfect symmetry of natural
laws between the positive (or our) universe and the positive
time-universe and indeed among the four symmetrical uni-
verses isolated in [2-5], as demonstrated in section 2 of [3]
and section 2 of [5].

Perfect symmetry of state among the four universes im-
plies that corresponding to the half-geometry of Fig. 1 that
evolves at the first stage of evolution of spacetime/intrinsic
spacetime within a long-range metric force field in our uni-
verse, there is an identical half-geometry that evolves simul-
taneously at the first stage of evolution of spacetime/intrinsic
spacetime within the symmetry-partner long-range metric
force field in each of the other three universes. The iden-
tical half-geometry in the positive time-universe, depicted in
Fig. 2, which is valid with respect to 3-observers in the proper
Euclidean 3-spaceIE0′3 of the positive time-universe, coex-
ists with the half-geometry of Fig. 1 in our universe, which
is valid with respect to 3-observers in the proper physical
Euclidean 3-spaceIE′3 of the positive (or our) universe.

The absolute intrinsic line element is given at pointP 0 on
the curved absolute intrinsic metric spaceφρ̂0 with respect
to 3-observers in the proper physical Euclidean 3-spaceIE0′3

in Fig. 2, (like Eq. (1) at the symmetry-partner point P on

Fig. 2: A curved ‘one-dimensional’ absolute intrinsic metric space
φρ̂0, curving towards the absolute time/absolute intrinsic time
‘dimension’ along the horizontal, projects a straight line one-
dimensional isotropic proper intrinsic metric spaceφρ0′ underneath
the proper physical Euclidean 3-spaceIE0′3 along the vertical, with
respect to 3-observers inIE0′3 in the positive time-universe.

the curved absolute intrinsic metric spaceφρ̂ with respect to
3-observers inIE′3 in Fig. 1) as follows

(dφŝ0)2 = (dφx̂1)2 − φĝ00(dφρ̂
0)2, (3)

where
φĝ00 = sec2 φψ̂P 0 = (1 − φk̂2

P 0)−1, (4)

φψ̂P 0 is the absolute intrinsic angle of inclination of the cur-
ved absolute intrinsic spaceφρ̂0 to its projectionφρ0′ along
the vertical at pointP 0 alongφρ̂0; φk̂P 0 is the absolute in-
trinsic curvature parameter at pointP 0 along the curvedφρ̂0

andφk̂P 0 = sinφψ̂P 0 .
Fig. 2 in the positive time-universe is half-geometry, just

as Fig. 1 in our universe is half-geometry. These half-geo-
metries co-exist and must be united into the full geometry
depicted in Fig. 3. The absolute time ‘dimension’ĉt̂ and ab-
solute intrinsic time ‘dimension’φĉφt̂ along the vertical in
Fig. 1 do not exist in Fig. 3, having been replaced byIE0′3

andφρ0′ respectively and the absolute time ‘dimension’ĉt̂0

and absolute intrinsic time ‘dimension’φĉφt̂0 along the hor-
izontal in Fig. 2 do not exist in Fig. 3, having been replaced
by IE′3 andφρ′ respectively.

The projection of the elementary absolute intrinsic coor-
dinate intervaldφρ̂ about point P alongφρ̂ into the horizontal
and the projection of the corresponding elementary coordi-
nate intervaldφρ̂0 about pointP 0 along the curvedφρ̂0 into
the vertical in Fig. 3 are given respectively as follows

dφρ′ = dφρ̂ cosφψ̂P ; (w.r.t. 3 − observers in IE′3) (5a)

and

dφρ0′ = dφρ̂0 cosφψ̂P 0 ; ; (w.r.t. 3 − observers in IE0′3)
(5b)
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The ‘non-metric’ component,δφρ̂ = dφρ̂ sinφψ̂P , pro-
jected intoφĉφt̂ along the vertical by intervaldφρ̂ about point
P of curvedφρ̂ in Fig. 1 is now projected into the proper
intrinsic metric spaceφρ0′ along the vertical in Fig. 3 and
the ‘non-metric’ componentδφρ̂0 = dφρ̂0 sinφψ̂P 0 , pro-
jected intoφĉφt̂0 along the horizontal by intervaldφρ̂0 about
pointP 0 along the curvedφρ̂0 in Fig. 2 is now projected into
the proper intrinsic metric spaceφρ′ along the horizontal in
Fig. 3.

Although the ‘non-metric’ componentsδφρ̂ andδφρ̂0 ac-
tually exist as shown in Fig. 3, they cannot appear in the in-
trinsic metric coordinate interval projection relations (5a) and
(5b). This is so because any intervalδφρ̂ of the ‘non-metric’
absolute intrinsic space is equivalent to zero interval of the
relative (i.e without hat label) proper intrinsic metric space
φρ′ into whichδφρ̂ is projected in Fig. 3.

If we temporarily take into account the projective ‘non-
metric’ components in the intrinsic coordinate projectionre-
lations that can be derived from Fig. 3, then we have the fol-
lowing

(dφρ′) = (dφρ̂) cosφψ̂P ; δφρ̂0 = dφρ̂0 sinφψ̂P 0 ;

(w.r.t. 3 − observers in IE′3) (6a)

dφρ0′ = dφρ̂0 cos2 φψ̂P 0 ; δφρ̂ = dφρ̂ sinφψ̂P ;

; (w.r.t. 3 − observers in IE0′3) (6b)

Now there is equality of square of intrinsic coordinate in-
tervaldφρ̂2 along the curved absolute intrinsic spaceφρ̂ and
the sum of squares of the intrinsic coordinate intervalsdφρ′

and δφρ̂0 along the straight line proper intrinsic spaceφρ′

projected along the horizontal bydφρ̂ anddφρ̂0 respectively
in Fig. 3, expressed as follows

(dφρ̂)2 = (dφρ′)2 + (δφρ̂0)2

This can be seen as invariance of partial intrinsic ‘line ele-
ment’ between the curvedφρ̂ and its projective straight line
φρ′ along the horizontal with respect to 3-observers inIE′3 in
Fig. 3. Hence

(dφρ′)2 = (dφρ̂)2 − (δφρ̂0)2,

which upon using system (6a) gives,

(dφρ′)2 = (dφρ′)2 sec2 φψ̂P − (dφρ̂0)2 sin2 φψ̂P 0

This simplifies further as follows by virtue of Eq. (5b):

(dφρ′)2 = (dφρ′)2 sec2 φψ̂P − (dφρ0′)2 tan2 φψ̂P 0 ;

(w.r.t. 3 − observers in IE′3) (7a)

There is likewise invariance of partial intrinsic line el-
ement between the the curved absolute intrinsic spaceφρ̂0

Fig. 3: Curved ‘two-dimensional’ absolute intrinsic metric space
(φρ̂, φρ̂0) and its projective flat two-dimensional proper intrin-
sic metric space(φρ′, φρ0′) underlying flat six-dimensional proper
physical space(IE′3, IE0′) with respect to 3-observers inIE′3 in our
universe and 3-observers inIE0′ in the positive time-universe, ob-
tained by uniting Fig. 1 and Fig. 2.

and and its projective straight line proper intrinsic spaceφρ0′

along the vertical in Fig. 3, expressed as follows

(dφρ̂0)2 = (dφρ0′)2 + (δφρ̂)2

or
(dφρ0′)2 = (dφρ̂0)2 − (δφρ̂)2,

which upon using system (6b) gives,

(dφρ0′)2 = (dφρ0′)2 sec2 φψ̂P 0 − (dφρ̂)2 sin2 φψ̂P

This simplifies further as follows by virtue of Eq. (5a):

(dφρ0′)2 = (dφρ0′)2 sec2 φψ̂P 0 − (dφρ′)2 tan2 φψ̂P ;

(w.r.t. 3 − observers in IE0′3) (7b)

Since the point P along the curvedφρ̂ and the point P0 along
the curvedφρ̂0 are symmetry-partner points, the absolute in-
trinsic anglesφψ̂P andφψ̂P 0 are equal; we can letφψ̂P =
φψ̂P 0 ≡ φψ̂. By using this fact and adding Eqs. (7a) and (7b)
we have

(dφρ0′)2 + (dφρ′)2 = (dφρ0′)2(sec2 φψ̂ − tan2 φψ̂)

+(dφρ′)2(sec2 φψ̂ − tan2 φψ̂)

(8)

Eq. (8) expresses intrinsic local Euclidean invariance (φLEI)
in terms of proper intrinsic coordinate intervals partially with
respect to 3-observers inIE′3 and partially with respect to 3-
observers inIE0′3, by virtue of relation,sec2 φψ̂−tan2 φψ̂ =
1. The full invariance of intrinsic line element (8) between the
curved ‘two-dimensional’ absolute intrinsic space(φρ̂0, φρ̂)
and its projective flat two-dimensional proper intrinsic space
(φρ0′, φρ′) with respect to 3-observers inIE′3 and 3-observers
in IE0′3 has been written partially as invariance of intrinsic
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line element (7a) between the curvedφρ̂ and its projective
straight lineφρ′ with respect to 3-observers inIE′3 and par-
tially as invariance of intrinsic line element (7b) betweenthe
curvedφρ̂0 and its projective straight lineφρ0′ with respect
to 3-observers inIE0′3 in Fig. 3 earlier.

Now the invariance of intrinsic line element between the
curved ‘two-dimensional’ absolute intrinsic metric space
(φρ̂0, φρ̂) and its projective flat two-dimensional proper in-
trinsic metric space(φρ0′, φρ′) in Fig. 3 can be expressed as
follows

(dφŝ)2 = (dφs′)2

or
(dφρ̂0)2 + (dφρ̂)2 = (dφρ0′)2 + (dφρ′)2 (9)

It then follows that the proper intrinsic space intervalsdφρ0′

anddφρ′ can be replaced by the absolute intrinsic space in-
tervalsdφρ̂0 anddφρ̂ respectively in Eq. (8) to have

(dφρ̂0)2 + (dφρ̂)2 = (dφρ̂0)2(sec2 φψ̂ − tan2 φψ̂)

+(dφρ̂)2(sec2 φψ̂ − tan2 φψ̂)

(10)

Eq. (10) expresses intrinsic local Euclidean invariance (φLEI)
on the curved ‘two-dimensional’ absolute intrinsic space(φρ̂,
φρ̂0) in terms of absolute intrinsic coordinate intervals par-
tially with respect to 3-observers inIE′3 and partially with re-
spect to 3-observers inIE0′3, by virtue of relation,sec2 φψ̂ −

tan2 φψ̂ = 1. Let us replace(dφρ̂0)2 + (dφρ̂)2 by the square
of absolute intrinsic Euclidean line element(dφŝ)2 at the left-
hand side of (10) to have

(dφŝ)2 = (dφρ̂0)2(sec2 φψ̂ − tan2 φψ̂)

+dφρ̂)2(sec2 φψ̂ − tan2 φψ̂) (11)

or
(dφŝ)2 = (dφρ̂0)2 + (dφρ̂)2 (12)

The absolute intrinsic Euclidean line element (11) or (12)
obtains at every point along the curvedφρ̂ and at the symme-
try-partner point along the curvedφρ̂0 partially with respect
to 3-observers inIE′3 and partially with respect to 3-observers
in IE0′ in Fig. 3, in so far as both the metric and ‘non-metric’
intrinsic coordinate interval projections are taken into account
in deriving intrinsic coordinate interval projection relations
from Fig. 3, as done in systems (6a) and (6b) and Eqs. (7a)
and (7b). This, then, is validation of intrinsic local Euclid-
ean invariance on the curved ‘2-dimensional’ absolute intrin-
sic space(φρ̂0, φρ̂) with respect to 3-observers inIE′3 and
3-observers inIE0′3 in Fig. 3.

Now let us as done on ‘two-dimensional’ and ‘three-di-
mensional’ absolute intrinsic metric spacesφIM̂2 andφIM̂3 in
sub-section 1.1 of [1], separate the absolute intrinsic Euclid-
ean line element(dφŝ)2 of Eq. (11) into the metric compo-
nent(dφŝm)2 and the ‘non-metric’ component(dφŝnm)2 as

follows

(dφŝ)2 = (dφŝm)2 + (dφŝnm)2

=
1
∑

i,j =0

φĝijdφx̂
idφx̂j −

1
∑

i,j =0

φR̂ijdφx̂
idφx̂j

(13)

=
(

sec2 φψ̂(dφρ̂0)2 + sec2 φψ̂(dφρ̂)2
)

−
(

tan2 φψ̂(dφρ̂0)2 + tan2 φψ̂(dφρ̂)2
)

(14)

The absolute intrinsic metric line element on the curved
‘two-dimensional’ absolute intrinsic metric space(φρ̂, φρ̂0),
which is valid partially with respect to 3-observers inIE′3 and
partially with respect to 3-observers inIE0′3 in Fig. 3 that
follows from Eqs. (13) and (14) is the following

(dφŝm)2 =
1
∑

i,j =0

φĝijdφx̂
idφx̂j

= φĝ00(dφρ̂
0)2 + φĝ11(dφρ̂)

2 (15)

= sec2 φψ̂(dφρ̂0)2 + sec2 φψ̂(dφρ̂)2 (16)

=
(dφρ̂0)2

1 − φk̂2
+

(dφρ̂)2

1 − φk̂2
(17)

The implied absolute intrinsic metric tensor is

φĝij =

(

sec2 φψ̂ 0

0 sec2 φψ̂

)

=









1

1 − φk̂2
0

0
1

1 − φk̂2









(18)
The derived circular absolute intrinsic metric line element

(16) or (17) is the absolute intrinsic line element on the curved
‘two-dimensional’ absolute intrinsic metric space(φρ̂0, φρ̂)
in Fig. 3. It is effectively the union of the partial absolute
intrinsic line element (1) derived with respect to 3-observers
in the proper physical Euclidean 3-spaceIE′3 from Fig. 1 and
partial absolute intrinsic line element (3) derived with respect
to 3-observers in the proper physical Euclidean 3-spaceIE0′3

from Fig. 2, just as Fig. 3 from which (16) or (17) has been
derived is union of Figs. 1 and 2.

It must be noted, as explicitly stated by Eqs. (1) and (3)
that the term,φĝ00(dφρ̂0)2 = (dφρ̂0)2/(1 − φk̂2), of the
absolute intrinsic line element (17) has been derived by andis
hence valid with respect to 3-observers in the proper physical
Euclidean 3-spaceIE0′3 of the positive time-universe, while
the term,φĝ11(dφρ̂0)2 = (dφρ̂)2/(1−φk̂2), has been derived
by and is hence valid with respect to 3-observers in the proper
physical Euclidean 3-spaceIE′3 of our (or positive) universe
in Fig. 3. Thus the componentsφĝ00 andφĝ11 of the derived
circular absolute intrinsic metric tensorφĝij of Eq. (18) are
valid with respect to 3-observers inIE0′3 andIE′3 respectively.

In essence, the curved ‘two-dimensional’ absolute intrin-
sic metric space(φρ̂, φρ̂0) is an absolute intrinsic Riemannian
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metric manifold without curved absolute intrinsic time ‘di-
mension’, (i.e. of classφM̂p; p = 2), which is underlied
by its projective flat two-dimensional proper intrinsic met-
ric space(φρ′, φρ0′) and the outward manifestation of the
latter namely, the flat six-dimensional proper metric space
(IE′3, IE0′3) in which the observers are located. This is so
since curved absolute intrinsic time ‘dimension’ does not ex-
ist with respect to either the 3-observers inIE′3 or 3-observers
in IE0′3 in Fig.3, who jointly construct the absolute intrinsic
line element (16) or (17).

One important consequence of the perfect symmetry of
state between our (or positive) universe and the positive time-
universe is that the absolute intrinsic line element (1) written
at point P on the ‘one-dimensional’ absolute intrinsic Rie-
mann spaceφρ̂ by 3-observers in the proper physical Euclid-
ean 3-spaceIE′3 of our universe in the half-geometry of Fig. 1,
is perfectly identical to the absolute intrinsic line element
(3) written at the symmetry-partner pointP 0 on φρ̂0 by 3-
observers in the proper physical Euclidean 3-spaceIE0′3 of
the positive time-universe in the half-geometry of Fig. 2. In
other words, the componentφĝ11 of the absolute intrinsic
metric tensor in Eq. (1) is identical to the componentφĝ00
in Eq. (3).

Having derived Fig. 3 and the absolute intrinsic line ele-
ment (16) or (17) on the curved ‘two-dimensional’ absolute
intrinsic metric space(φρ̂, φρ̂0) partially with respect to 3-
observers inIE′3 and partially with respect to 3-observers in
IE0′3 in that figure, let us now modify both the figure and the
absolute intrinsic line element to the forms in which they are
valid for absolute intrinsic Riemann geometry in our universe.
This shall be done in two steps. At the first step, we recognize
that the dimensionsx0′1, x0′2 andx0′3 of the proper physical
Euclidean 3-spaceIE0′3 and the proper and absolute intrinsic
spacesφρ0′ andφρ̂0 of the positive time-universe in Fig. 3 are
elusive to 3-observers in the proper Euclidean 3-spaceIE′3 of
our universe and hence cannot appear in physics in our uni-
verse.

As developed in sub-section 1.3 of [3], the proper phys-
ical Euclidean 3-spaceIE0′3 of the positive time-universe is
naturally contracted to the proper physical time dimensionct′

of our universe with respect to all 3-observers in the proper
physical Euclidean 3-spaceIE′3 of our universe. Thus in con-
verting Fig. 3 to the form it will be useful in our universe, we
must letIE0′3 → ct′ and consequently we must letφρ0′ →

φcφt′ andφρ̂0 → φĉφt̂ in the upper half of Fig. 3 to have
Fig. 4.

Since Fig. 4 contains the spacetime and intrinsic space-
time dimensions of our universe solely, it can be used to con-
struct absolute intrinsic line element, absolute intrinsic met-
ric tensor (or absolute intrinsic Riemann geometry) on the
curved(φρ̂, φĉφt̂) in our universe jointly by 3-observers in
the proper physical Euclidean 3-spaceIE′3 and 1-observers in
the proper time dimensionct′ of our universe in it. It must be
recalled from [2] that the 3-observers in the proper Euclidean

Fig. 4: Curved ‘two-dimensional’ absolute intrinsic metric space-
time (φρ̂, φĉφt̂ ), its underlying projective flat two-dimensional
proper intrinsic metric spacetime(φρ′, φcφt′) and the outward man-
ifestation of the latter namely, the flat four-dimensional proper met-
ric spacetime(IE′3, ct′), valid partially with respect to 3-observers
in the proper physical Euclidean 3-spaceIE′3 of our universe and
partially with respect to 1-observers in in the proper time dimension
ct′ of our universe, obtained by transforming the Euclidean 3-space
and one-dimensional intrinsic space of the positive time-universe in
the upper half of Fig. 3 into time and intrinsic time dimensions of
our universe.

3-spaceIE0′3 of the positive time-universe in Fig. 3 are the
ones that appear as 1-observers in the proper time dimension
ct′ of our universe in Fig. 4.

On the other hand, by lettingIE′3 → ct0′, φρ′ → φcφt0′

andφρ̂ → φĉφt̂0 in the lower half of Fig. 3, one obtains
the diagram in the positive time-universe that correspondsto
that of Fig. 4 in the positive (or our) universe. However that
diagram shall not be drawn here, since it has no usefulness in
our universe.

The projection of the elementary absolute intrinsic time
coordinate intervalφĉdφt̂ about point P0 along the curved
φĉφt̂ into the vertical and the projection of the elementary
absolute intrinsic space intervaldφρ̂ about point P along the
curvedφρ̂ into the horizontal in Fig. 4 are given respectively
as follows

φcdφt′ = φĉdφt̂ cosφψ̂P 0 = φĉdφt̂ cosφψ̂;

(w.r.t. 1 − observers in ct′) (19a)

and
dφρ′ = dφρ̂ cosφψ̂P = dφρ̂ cosφψ̂;

(w.r.t. 3 − observers in IE′3) (19b)

The intrinsic metric coordinate interval projection rela-
tions (19a) and (19b) derived from Fig. 4 are the modified
forms of relations (5a) and (5b) derived from Fig. 3. Relations
(19a) and (19b) can be obtained by simply lettingdφρ0′ →
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φcφt′ anddφρ̂0 → φĉdφt̂ in relation (5b), while retaining
relation (5a).

Again the ‘non-metric’ componentφĉδφt̂ projected into
φρ′ along the horizontal by intervalφĉdφt̂ about pointP 0

along the curvedφĉφt̂ and the ‘non-metric’ componentδφρ̂
projected intoφcφt′ along the vertical by intervaldφρ̂ at the
symmetry-partner point P along the curvedφρ̂ in Fig. 4 have
not been taken into consideration in the intrinsic metric co-
ordinate interval projection relations (19a) and (19b), since
our interest is in deriving the absolute intrinsic metric line el-
ement and the implied absolute intrinsic metric tensor or to
construct absolute intrinsic Riemann geometry on the curved
‘two-dimensional’ absolute intrinsic metric spacetime(φρ̂,
φĉφt̂) in Fig. 4, partially with respect to 3-observers inIE′3

and partially with respect to 1-observers inct′ in that figure.
The projective ‘non-metric’ absolute intrinsic coordinate in-
tervalsδφρ̂ andφĉδφt̂ cannot appear in an absolute intrinsic
metric line element.

However let us temporarily take into account the projec-
tive ‘non-metric’ components in the intrinsic coordinate pro-
jection relations that can be derived from Fig. 4 to have as
follows

φcdφt′ = φĉdφt̂ cosφψ̂P 0 ; δφρ̂ = dφρ̂ sinφψ̂P ;

(w.r.t. 1 − observers in ct′) (20a)

dφρ′ = dφρ̂ cosφψ̂P φĉδφt̂ = φĉdφt̂ sinφψ̂P 0 ;

(w.r.t. 3 − observers in IE′3) (20b)

There is invariance of partial intrinsic line element be-
tween the curved absolute intrinsic spaceφρ̂ and its projec-
tive straight line proper intrinsic spaceφρ′ along the horizon-
tal with respect to 3-observers inIE′3 in Fig. 4, expressed as
follows

(dφρ̂)2 = (dφρ′)2 + φĉ2(δφt̂)2

or
(dφρ′)2 = (dφρ̂)2 − φĉ2(δφt̂)2,

which upon using system (20b) gives

(dφρ′)2 = (dφρ′)2 sec2 φψ̂P − φĉ2(dφt̂)2 sinφψ̂P 0

This simplifies further as follows by virtue of Eq. (19a)

(dφρ′)2 = (dφρ′)2 sec2 φψ̂P − φc2(dφt′)2 tanφψ̂P 0 ;

(w.r.t. 3 − observers in IE′3) (21a)

There is likewise invariance of partial intrinsic line ele-
ment between the curved absolute intrinsic time ‘dimension’
φĉφt̂ and its projective straight line proper intrinsic time di-
mensionφcφt′ along the vertical with respect to 1-observers
in ct′ in Fig. 4, expressed as follows

φĉ2(dφt̂)2 = φc2(dφt′)2 + (δφρ̂)2

or
φc2(dφt′)2 = (φĉ2(dφt̂)2 − (δφρ̂)2,

which upon using system (20a) gives

φc2(dφt′)2 = (φc2(dφt′)2 sec2 φψ̂P 0 − (dφρ̂)2 sin2 φψ̂P

This simplifies further as follows by virtue of Eq. (19b)

φc2(dφt′)2 = (φc2(dφt′)2 sec2 φψ̂P 0 − (dφρ̂)2 tan2 φψ̂P ;

(w.r.t. 1 − observers in ct′) (21b)

Now the point P along the curvedφρ̂ and the point P0

along the curvedφĉφt̂ in Fig. 4 are symmetry-partner points.
Consequently the absolute intrinsic anglesφψ̂P andφψ̂P 0 are
equal. Thus we shall let,φψ̂P = φψ̂P 0 ≡ φψ̂. By using this
fact and adding Eqs. (21a) and (21b) we have

φc2(dφt′)2 + (dφρ′)2 = φc2(dφt′)2(sec2 φψ̂ − tan2 φψ̂)

+(dφρ′)2(sec2 φψ̂ − tan2 φψ̂)

(22)

Eq. (22) expresses intrinsic local Euclidean invariance (φLEI)
in terms of proper intrinsic coordinate intervals partially with
respect to 3-observers inIE′3 and partially with respect to 1-
observers inct′ in Fig. 4, by virtue of the relation,sec2 φψ̂ −

tanφψ̂2 = 1. The full invariance of intrinsic Euclidean line
element (22) has been written partially as Eq. (21a) with re-
spect to 3-observers inIE′3 from the lower half of Fig. 4 and
partially as Eq. (21b) with respect to 1-observers inct′ from
the upper half of Fig. 4 above.

The invariance of intrinsic line element between the cur-
ved absolute intrinsic spacetime(φρ̂, φĉφt̂) and its projec-
tive flat proper intrinsic spacetime(φρ′, φcφt′) in Fig. 4 is
expressed formally as follows

(dφŝ)2 = (dφs′)2

or

φĉ2(dφt̂)2 − (dφρ̂)2 = φc2(dφt′)2 − (dφρ′)2 (23)

It follows from Eq. (23) that the proper intrinsic space interval
dφρ′ and the proper intrinsic time dimension intervalφcdφt′

can be replaced by the absolute intrinsic time ‘dimension’ in-
tervalφĉdφt̂ respectively in Eq. (22) to have

φĉ2(dφt̂)2 + (dφρ̂)2 = φĉ2(dφt̂)2(sec2 φψ̂ − tan2 φψ̂)

+(dφρ̂)2(sec2 φψ̂ − tan2 φψ̂)

(24)

Eq. (24) expresses intrinsic local Euclidean invariance
(φLEI) in terms of absolute intrinsic coordinate intervals par-
tially with respect to 3-observers inIE′3 and partially with
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respect to 1-observers inct′ in Fig. 4. Let us replace the left-
hand side of Eq. (24) by the square of absolute intrinsic line
element to be denoted by(dφŝ∗)2 to have

(dφŝ∗)2 = φĉ2(dφt̂)2(sec2 φψ̂ − tan2 φψ̂)

+(dφρ̂)2(sec2 φψ̂ − tan2 φψ̂) (25)

or
(dφŝ∗)2 = φĉ2(dφt̂)2 + (dφρ̂)2 (26)

The reason for introducing the dummy star label on the in-
trinsic line element in Eq. (25) or (26) shall be given shortly
in this paper.

The absolute intrinsic Euclidean line element (25) or (26)
obtains at every point along the curvedφρ̂ and the symmetry-
partner point along the curvedφĉφt̂ with respect to 3-obser-
vers inIE′3 and 1-observers inct′ in Fig. 4, in so far as both
the metric and ‘non-metric’ intrinsic coordinate intervalpro-
jections have been taken into account in deriving intrinsic
coordinate projection relations from Fig. 4, as done in sys-
tems (20a) and (20b) and in Eqs. (21a) and (21b). This, then,
is validation of intrinsic local Euclidean invariance (φLEI)
on the curved ‘two-dimensional’ absolute intrinsic spacetime
(φρ̂, φĉφt̂) partially with respect to 3-observers inIE′3 and
partially with respect to 1-observers inct′ in Fig. 4.

As done with(dφŝ)2 in Eq. (11) earlier, let us separate the
absolute intrinsic Euclidean line element(dφŝ∗)2 in Eq. (25)
into the metric and ‘non-metric’ components(dφŝ∗m)2 and
(dφŝ∗nm)2 as follows

(dφŝ∗)2 = (dφŝ∗m)2 + (dφŝ∗nm)2

=
1
∑

i,j =0

φĝ∗ijdφx̂
idφx̂j −

1
∑

i,j =0

φR̂∗

ijdφx̂
idφx̂j

(27)

=
(

sec2 φψ̂(dφρ̂0)2 + sec2 φψ̂(dφρ̂)2
)

−
(

tan2 φψ̂(dφρ̂0)2 + tan2 φψ̂(dφρ̂)2
)

(28)

The absolute intrinsic line element on the curved ‘two-
dimensional’ absolute intrinsic spacetime(φρ̂, φĉφt̂), which
is valid partially with respect to 3-observers inIE′3 and par-
tially with respect to 1-observers inct′ in Fig. 4 that follows
from Eqs. (27) and (28), is the following

(dφŝ∗m)2 =

1
∑

i,j =0

φĝ∗ijdφx̂
idφx̂j

= φĝ∗00φĉ
2(dφt̂)2 + φĝ∗11(dφρ̂)

2 (29)

= sec2 φψ̂φĉ2(dφt̂)2 + sec2 φψ̂(dφρ̂)2(30)

=
φĉ2(dφt̂)2

1 − φk̂2
+

(dφρ̂)2

1 − φk̂2
(31)

where the relation,φk̂ = sinφψ̂, derived in sub-section 1.1
of [1] and presented as Eq. (13) of that paper has been used.

The absolute intrinsic metric tensor implied by the ab-
solute intrinsic line element (30) or (31) is the following

φĝ∗ij =

(

sec2 φψ̂ 0

0 sec2 φψ̂

)

(32)

or

φĝ∗ij =









1

1 − φk̂2
0

0
1

1 − φk̂2









(33)

Again, the componentφĝ∗00φĉ
2(dφt̂)2 = φĉ2dφt̂2/(1 −

φk̂2) in the absolute intrinsic line element (29), (30) or (31)
has been derived by and is hence valid with respect to 1-
observers in the proper time dimensionct′, while the compo-
nentφĝ∗11(dφρ̂)

2 = sec2 φψ̂(dφρ̂)2 = (dφρ̂)2/(1− φk̂2) has
been derived by and is hence valid with respect to 3-observers
in the proper physical Euclidean 3-spaceIE′3 in Fig. 4.

Now the absolute intrinsic line element (16) or (17) on
the curved ‘two-dimensional’ absolute intrinsic metric space
(φρ̂ ,
φρ̂0) in Fig. 3, obtained by uniting Fig. 1, (which is valid
with respect to 3-observers inIE′3) and Fig. 2, (which is valid
with respect to 3-observers inIE0′3), possesses the circular
structure like the absolute intrinsic line element on curved
‘two-dimensional’ and ‘three-dimensional’ absolute intrinsic
metric spacesφIM̂2 or φIM̂3 encountered in part two of this
paper [1]; compare the absolute intrinsic line element (16)or
(17) on the curved(φρ̂, φρ̂0) in Fig. 3 above with the absolute
intrinsic line elements (2d) and (3) onφIM̂2 andφIM̂3 in [1].

The absolute intrinsic line element (30) or (31) on the
curved ‘two-dimensional’ absolute intrinsic metric spacetime
(φρ̂, φĉφt̂) in Fig. 4, which is valid partially with respect to
3-observers inIE′3 and partially with respect to 1-observers
in ct′ in that figure, likewise possesses the circular structure
like the absolute intrinsic line element (2d) on curved ‘two-
dimensional’ absolute intrinsic metric spaceφIM̂2 in [1].

It follows from the foregoing two paragraphs that the pair
of absolute intrinsic tensor equations derived for curved ‘two-
dimensional’ and ‘three-dimensional’ absolute intrinsicmet-
ric spacesφIM̂2 andφIM̂3 in [1] and presented as Eqs. (32)
and (44) of that paper, are equally valid for the curved ‘two-
dimensional’ absolute intrinsic metric spacetime(φρ̂, φĉφt̂)
in Fig. 4 above. Let us then write those absolute intrinsic ten-
sor equations in terms of starred absolute intrinsic metricten-
sor and starred absolute intrinsic Ricci tensor on the curved
‘two-dimensional’ absolute intrinsic spacetime(φρ̂, φĉφt̂) in
Fig. 4 as follows

φĝ∗ij − φR̂∗

ij = δij (φLEI) (34)

And for the second absolute intrinsic tensor equation, let
us start with the intermediate equation (42) of [1] in the
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process of derivation of that equation in that paper,

φR̂∗

ij −
TrφR̂i∗

i

n
φĝ∗ij = 0 (35)

wheren is the dimensionality of the absolute intrinsic Rie-
mann space and of the matrixφR̂i∗

i . For the(φρ̂, φĉφt̂) in
Fig. 4 being considered here,n = 2, thereby simplifying (35)
as follows

φR̂∗

ij −
1

2
φR̂∗φĝ∗ij = 0 (36)

where the absolute intrinsic Riemann scalarφR̂∗ is the trace
of the2 × 2 diagonal matrixφR̂i∗

i .
Interestingly Eq. (36) in absolute intrinsic Riemann geo-

metry on curved ‘two-dimensional’ absolute intrinsic metric
spacetimes(φρ̂, φĉφt̂) in Fig. 4, takes on its form in the con-
text of conventional Riemann geometry,

Rµν −
1

2
Rgµν = 0 (37)

However while the factor1
2

in the term− 1

2
φR̂∗φĝ∗ij in (36)

restricts absolute intrinsic Riemann spaces to curved ‘two-
dimensional’ absolute intrinsic metric spaces of the type(φρ̂,
φρ̂0) in Fig. 3, which must be replaced by the curved ‘two-
dimensional’ absolute intrinsic Riemannian metric spacetme
(φρ̂, φĉφt̂) in Fig. 4, the factor1

2
in the term− 1

2
Rgµν in

(37) in conventional Riemann geometry is not known to re-
strict the dimensionality of a conventional Riemann space or
conventional Riemann spacetime to 2. A conventional Rie-
mann spaceMp can be of any dimension p and a conven-
tional Riemannian spacetimeMp+q can be of any dimension
p + q; for instancep = 3, q = 1 in the case of curved
four-dimensional spacetime of the general theory of relativ-
ity. Eq. (37) is known to apply to all conventional Riemann
spaces and conventional Riemannian spacetimes without re-
striction on their dimensionality.

As derived in [1], Eq. (36) admits of further simplification
as follows

φR̂∗

ij − φk̂2φĝ∗ij = 0 (38)

whereφk̂ is the equal absolute intrinsic curvature parameter
of an arbitrary point along the curvedφρ̂ and its symmetry-
partner point along the curvedφρ̂0 in Fig. 3, which become an
arbitrary point along the curvedφρ̂ and its symmetry-partner
point along the curvedφĉφt̂ in Fig. 4.

The perfect symmetry of state between our (or positive)
universe and the positive time-universe makes absolute in-
trinsic curvature parametersφk̂P andφk̂P 0 at every pair of
symmetry-partner points along the curvedφρ̂ andφĉφt̂ re-
spectively in Fig. 4 to be identical; that is,φk̂P = φk̂P 0 ≡

φk̂. It is the square of the identical absolute intrinsic curva-
ture parametersφk̂2 that appears as the diagonal entries of
the2× 2 diagonal matrixφR̂i∗

i in Eq. (35), forn = 2. Hence
TrφR̂i∗

i = φR̂∗ = 2φk̂2 and 1

2
φR̂∗ = φk̂2, which makes

Eq. (38) the same as Eq. (36).

Fig. 5: A pair of co-existing ‘two-dimensional’ absolute intrinsic
metric spacetimes and their underlying flat two-dimensional proper
intrinsic metric spacetime and the outward manifestation of the latter
namely, the flat four-dimensional proper metric spacetime; the lower
half of this figure is valid with respect to 3-observers in the proper
physical Euclidean 3-space and the upper half is valid with respect
to 1-observers in the proper time dimension.

It is the pair of absolute intrinsic tensor equations (34) and
(38), written as Eqs. (32) and (44) in [1], (and not (34) and
(36) above), that shall be found directly applicable in absolute
intrinsic Riemann geometry on curved ‘two-dimensional’ ab-
solute intrinsic metric spacetime(φρ̂, φĉφt̂), partially with
respect to 3-observers inIE′3 and partially with respect to 1-
observers inct′ in Fig. 4. For instance, the (algebraic) so-
lution to Eqs. (34) and (38) are the starred absolute intrinsic
metric tensor (33) and the following starred absolute intrinsic
Ricci tensor,

φR̂∗

ij =









φk̂2

1 − φk̂2
0

0
φk̂2

1 − φk̂2









(39)

Now let us consider the superposition of a pair of ‘2-
dimensional’ absolute intrinsic metric spacetimes (a pairof
‘2-dimensional’ absolute intrinsic Riemannian metric space-
times)(φρ̂, φĉφt̂) and(φρ̂′, φĉφt̂′), such that(φρ̂, φĉφt̂) lies
over (or is curved relative to)(φρ̂′, φĉφt̂′), as illustrated in
Fig. 5.

The pair of absolute intrinsic tensor equations (34) and
(38) must be written in terms of resultant starred absolute in-
trinsic metric tensor and resultant starred absolute intrinsic
Ricci tensor as follows

φĝ
∗

ij − φR̂
∗

ij = δij (40)

φR̂
∗

ij − (φk̂)2φĝ
∗

ij = 0 (41)

where the resultant absolute intrinsic curvature parameter φk̂
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for the purpose of writing the resultant absolute intrinsicline
element and resultant absolute intrinsic metric tensor at an
arbitrary point of the upper curved absolute intrinsic spaceφρ̂
relative toφρ′ along the horizontal or at the symmetry-partner
point of the upper curved absolute intrinsic time ‘dimension’
φĉφt̂ relative toφcφt′ along the vertical, is given in terms
of the individual absolute intrinsic curvature parametersφk̂′

at pointP′ of the lower curved absolute intrinsic spaceφρ̂′

andφk̂ at point P of the upper curved absolute intrinsic space
φρ̂ prior to their superposition as follows, as derived in sub-
section 1.6 of part one of this paper [1]:

(φk̂)2 = (φk̂′)2 + φk̂2 (42)

The resultant starred absolute intrinsic tensorsφĝ
∗

ij and

φR̂
∗

ij that satisfy equations (40) and (41) are the following

φĝ
∗

ij =









1

1 − (φk̂)2
0

0
1

1 − (φk̂)2









=









1

1 − (φk̂′)2 − φk̂2
0

0
1

1 − (φk̂)′2 − φk̂2









(43)

and

φR̂
∗

ij =











(φk̂)2

1 − (φk̂)2
0

0
(φk̂)2

1 − (φk̂)2











=









(φk̂′)2 + φk̂2

1 − (φk̂′)2 − φk̂2
0

0
(φk̂′)2 + φk̂2

1 − (φk̂′)2 − φk̂2









(44)

The resultant absolute intrinsic line element on the curved
‘two-dimensional’ absolute intrinsic spacetime with curved
absolute intrinsic ‘dimensions’φρ̂ andφĉφt̂ in Fig. 5 is then
given partially with respect to 3-observers inIE′3 and partially
with respect to 1-observers inct′ (or with respect to (3+1)-
observers in(IE′3, ct′)) as follows

(dφŝ ∗)2 = φĝ
∗

00φĉ
2(dφt̂)2 + φĝ

∗

11(dφρ̂)
2

=
φĉ2(dφt̂)2

1 − (φk̂′)2 − φk̂2
+

(dφρ̂)2

1 − (φk̂′)2 − φk̂2

(45)

On the other hand, the projection of the elementary co-
ordinate intervaldφρ̂ about point P of the upper curved ab-
solute intrinsic spaceφρ̂ into proper intrinsic spaceφρ′ along
the horizontal and of intervalφĉdφt̂ about point P0 of the
upper curved absolute intrinsic time ‘dimension’φĉφt̂ into
the proper intrinsic time dimensionφcφt′ along the vertical,
are given in terms of the resultant absolute intrinsic angle,
φψ̂res= φψ̂+ φψ̂′, as follows, as derived in sub-sub-section
1.6.2 of part one of this paper [1]:

dφρ′ = dφρ̂ cosφψ̂res
= dφρ̂ cosφψ̂′ cosφψ̂

= dφρ̂(1 − φk̂′2)1/2(1 − φk̂2)1/2; (46)

(w. r. t. 3-observers inIE′3)

φcdφt′ = φĉdφt̂ cosφψ̂res
= φĉdφt̂ cosφψ̂′ cosφψ̂

= φĉdφt̂(1 − φk̂′2)1/2(1 − φk̂2)1/2; (47)

(w. r. t. 1-observers inct′). Extension of relations (42)
through Eq. (47) to a situation of the superposition of three
and larger number of curved ‘two-dimensional’ absolute in-
trinsic metric spacetimes is easy and straight forward.

It is at the first step of the modification of Fig. 3 to the
form in which it is valid for absolute intrinsic Riemann geom-
etry in our universe, when Fig. 3 is converted to Fig. 4, that
the absolute intrinsic tensor equations (34) and (38) must be
solved to obtain the starred absolute intrinsic metric tensor
(33) and starred absolute intrinsic Ricci tensor (39). The
starred absolute intrinsic metric tensor (33), the starredab-
solute intrinsic Ricci tensor (39) and Fig. 4 they are associ-
ated with, all of which are valid partially with respect to 3-
observers in the proper physical Euclidean 3-spaceIE′3 and
partially with respect to 1-observers in the proper time di-
mensionct′ in Fig. 4, shall now be modified to the forms in
which they are valid with respect to 3-observers in the proper
Euclidean 3-spaceIE′3 solely, at the second (and final) step
of converting Fig. 3 and the associated absolute intrinsic line
element (16) or (17), the implied absolute intrinsic metricten-
sor (18) and the absolute intrinsic Ricci tensor (39) to the
forms in which they are valid with respect to 3-observers in
the physical proper Euclidean 3-spaceIE′3 solely.

The modified form of Fig. 4 to be derived is the valid
diagram and the associated modified absolute intrinsic line
element, absolute intrinsic metric tensor and absolute intrin-
sic Ricci tensor are the valid forms in the context of absolute
intrinsic Riemann geometry in our universe.

1.1 The form of spacetime/intrinsic spacetime diagram
of absolute intrinsic Riemann geometry that is valid
with respect to 3-observers in the proper physical
Euclidean 3-space solely

Now the starred absolute intrinsic line element (30) or (31)
and the implied starred absolute intrinsic metric tensor (32) or
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(33), although have been derived on the curved ‘two-dimen-
sional’ absolute intrinsic spacetime (or ‘two-dimensional’ ab-
solute nospace-notime)(φρ̂, φĉφt̂) in Fig. 4, do not possess
the hyperbolic structure of the metric tensors on Riemannian
metric spacetime manifolds of the typeMp+q; p = 3, q = 1.
Rather they have the circular/elliptical structure of the metric
tensors of Riemannian metric spaces without time dimension,
of the classMp. The fact that the proper time dimensionct′,
the proper intrinsic time dimensionφcφt′ and the curved ab-
solute intrinsic time ‘dimension’φĉφt̂ appear in Fig. 4 (to
replaceIE0′3, φρ0′ andφρ̂0 respectively in Fig. 3), has not
shown up in the structure of the absolute intrinsic line ele-
ment (30) or (31) and the implied absolute intrinsic metric
tensor (32) or (33) on the curved ‘two-dimensional’ absolute
intrinsic metric spacetime(φρ̂, φĉφt̂) in that figure.

The circular structure of the absolute intrinsic line ele-
ment (30) or (31) and of the absolute intrinsic metric tensor
(32) or (33) arise because they have been derived partially
from the upper half of Fig. 4 by or with respect to 1-observers
in the proper time dimensionct′ along the vertical and par-
tially from the lower half of that figure by or with respect
to 3-observers in the proper Euclidean 3-spaceIE′3 along the
horizontal. The existence of the curved absolute intrinsictime
‘dimension’φĉφt̂ does not appear in physics formulated by
3-observers inIE′3, just as the curved absolute intrinsic space
φρ̂ does not appear in physics formulated by 1-observers in
ct′ in Fig. 4. Consequently the absolute intrinsic line element
(30) or (31) obtained by uniting the partial absolute intrinsic
line element derived on the curvedφĉφt̂ by 1-observers inct′

and the partial absolute intrinsic line element derived on the
curvedφρ̂ by 3-observers inIE′3 in Fig. 4 has not assumed the
hyperbolic structure expected on a curved ‘two-dimensional’
absolute intrinsic spacetime.

The purpose of this sub-section is to derive the form of
Fig. 4 that is valid with respect to 3-observers in the proper
physical Euclidean 3-spaceIE′3 solely in that figure and to de-
rive the corresponding modified forms of the starred absolute
intrinsic metric tensor (32) or (33) and the starred absolute in-
trinsic Ricci tensor (39) from the modified diagram. It is the
modified diagram and the associated modified absolute intrin-
sic line element and modified absolute intrinsic metric tensor
and modified absolute intrinsic Ricci tensor that are valid for
absolute intrinsic Riemann geometry in our universe, as shall
be justified.

Now let us present the reference geometry to the geom-
etry of Fig. 4 as Fig. 6. Fig. 6 will exist in the absence
of absolute intrinsic Riemann geometry, thereby making the
curved absolute intrinsic metric spaceφρ̂ and curved absolute
intrinsic metric time ‘dimension’φĉφt̂ in Fig. 4 to become the
extended straight line absolute intrinsic metric spaceφρ̂ along
the horizontal and the extended straight line absolute intrinsic
metric time ‘dimension’φĉφt̂ along the vertical respectively
in Fig. 6.

The reference geometry to absolute intrinsic Riemannian

Fig. 6: Flat ‘four-dimensional’ absolute metric spacetime underlied
by flat ‘two-dimensional’ absolute intrinsic metric spacetime, which
exists in the absence of a long-range metric force field (or in the
absence of absolute intrinsic Riemannian spacetime geometry).

spacetime geometry of Fig. 6 will persist in the absence of a
long-range metric force field. However let us introduce the
source of a long-range absolute metric force field at a point
S on the flat absolute spaceÎE3. Then its underlying source
of long-range absolute intrinsic metric force field in the un-
derlying straight line absolute intrinsic spaceφρ̂ will appear
automatically directly underneath the source of absolute met-
ric force field introduced at point S inÎE3. When we particu-
larize to gravitational field, as shall be done fully elsewhere,
this means that the absolute rest massM̂0 of a gravitational
field source is introduced at point S inÎE3 and the absolute
intrinsic rest massφM̂0 of the gravitational field source au-
tomatically appears inφρ̂ underneathM̂0 in ÎE3. As shall be
explained to some extent in the last section of this paper and
completely elsewhere with further development, this action
will cause Fig. 6 to evolve into Fig. 4.

Now the absolute time ‘dimension’ĉt̂ and the absolute in-
trinsic time ‘dimension’φĉφt̂ remain unchanged, that is, do
not transform into proper time dimensionct′ (usually denoted
by cτ ) and proper intrinsic time dimensionφcφt′ respectively
in absolute physics/absolute intrinsic physics, such as associ-
ated with the presence of absolute metric force field in ab-
solute spacetime and absolute intrinsic metric force field in
absolute intrinsic spacetime, which causes Fig. 6 to transform
into Fig. 4 discussed above. Graphically, this means thatĉt̂
andφĉφt̂ along the vertical in Fig. 6 must remain along the
vertical with respect to 3-observers in the proper Euclidean
3-spaceIE′3, as happens in Fig. 1, which is valid with re-
spect to 3-observers inIE′3 solely, in the context of absolute
physics/absolute intrinsic physics. The absolute time ‘dimen-
sion’ ĉt̂ and the absolute intrinsic time ‘dimension’φĉφt̂must
likewise remain along the vertical in the modified form of
Fig. 4 being sought, which is valid with respect to 3-observers
in the Euclidean 3-spaceIE′3 solely, in the context of absolute
physics/absolute intrinsic physics.

Thus for the purpose of deriving absolute intrinsic line
element and its implied absolute intrinsic metric tensor on
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the curved ‘two-dimensional’ absolute intrinsic metric space-
time (φρ̂, φĉφt̂) and for formulating the non-detectable ab-
solute metric theories of physics as 3-geometry theories inthe
proper Euclidean 3-space - absolute time parameter(IE′3; t̂)
and absolute intrinsic metric theories of physics as intrinsic
1-geometry theories in the underlying proper intrinsic space
- absolute intrinsic time parameter(φρ′;φt̂), the preceding
paragraph makes it mandatory for us to modify Fig. 4 in such
a way that the absolute time ‘dimension’ĉt̂ and the absolute
intrinsic time ‘dimension’φĉφt̂ remain along the vertical in
the modified diagram. The resulting diagram will then con-
tain flat(IE′3; ĉt̂) underlied by flat(φρ′;φĉφt̂). It will hence
be a 3-geometry/intrinsic 1-geometry diagram, which is valid
with respect to 3-observers in the proper physical Euclid-
ean 3-spaceIE′3 solely, (unlike the 4-geometry/intrinsic 2-
geometry diagram of Fig. 4 that is valid partially with respect
to 3-observers in the proper Euclidean 3-space and partially
with respect to 1-observers in the proper time dimension).
The required modified form of Fig. 4, which is valid for ab-
solute intrinsic Riemann geometry in our universe is derived
hereunder.

Now the anti-clockwise sense of rotation by positive ab-
solute intrinsic angleφψ̂P of the absolute intrinsic coordinate
intervaldφρ̂ relative to its projective proper intrinsic coordi-
nate intervaldφρ′ along the horizontal is valid with respect to
3-observers in the proper physical Euclidean 3-space 3-space
IE′3 in Fig. 4, since anti-clockwise rotation is positive with
respect to these observers. Likewise the clockwise rotation
by positive absolute intrinsic angleφψ̂P 0 of the absolute in-
trinsic time coordinate intervalφĉdφt̂ relative to its projective
proper intrinsic coordinate intervalφcdφt′ along the vertical
is valid with respect to 1-observers in the time dimensionct′

in Fig. 4, since clockwise rotation is positive with respectto
these observers, (as explained in detail in section 4 of [3]). On
the other hand, the clockwise rotation by positive absolutein-
trinsic angleφψ̂P 0 of the absolute intrinsic time coordinate
intervalφĉdφt̂ relative toφcdφt′ along the vertical is invalid
with respect to 3-observers in 3-spaceIE′3. Consequently the
upper half of Fig. 4 is valid with respect to 1-observers inct′

and the lower half is valid with respect to 3-observers inIE′3.
In order to make Fig. 4 valid with respect to observers

in the physical 3-spaceIE′3 solely, we must change the posi-
tive sign of the absolute intrinsic angleφψ̂P 0 of inclination
of φĉdφt̂ to φcdφt′ without changing its clockwise sense.
However we can do this only if we also interchange the in-
tervalφĉdφt̂ along the curvedφĉφt̂ and its projectionφcdφt′

into φcφt′ along the vertical. Doing this about every point
along the curvedφĉφt̂ implies interchanging the curvedφĉφt̂
and the straight line proper intrinsic time dimensionφcφt′.
By implementing these in Fig. 4 we have Fig. 7, which is
now valid with respect to 3-observers in the physical proper
Euclidean 3-spaceIE′3 solely.

It must be observed that since the absolute intrinsic time
‘dimension’φĉφt̂ is a straight line along the vertical, its out-

ward manifestation is the straight line absolute time ‘dimen-
sion’ ĉt̂ along the vertical in Fig. 7. Thus the proper time
dimensionct′ does not appear with respect to 3-observers in
the proper physical 3-spaceIE′3 in the absolute intrinsic Ri-
mennian spacetime geometry of Fig. 7. Fig. 7 contains the
curved absolute intrinsic metric spaceφρ̂ and straight line
absolute intrinsic metric time ‘dimension’φĉφt̂ on which to
construct absolute intrinsic Riemann geometry with respect
to 3-observers in the proper physical Euclidean 3-spaceIE′3,
as shall be done below.

Fig. 7 also contains the flat proper Euclidean 3-space - ab-
solute time ‘dimension’(IE′3, ĉt̂) (the Galileo space of
absolute physics), in which to formulate non-observable ab-
solute physics, such as absolute gravity, absolute motion,ab-
solute electromagnetism, etc, (as 3-geometry classical theo-
ries) and its underlying proper intrinsic space - absolute in-
trinsic time ‘dimension’(φρ′, φĉφt̂) (the intrinsic Galileo
space of absolute intrinsic physics), in which to formulateab-
solute intrinsic physics, such as absolute intrinsic gravity, ab-
solute intrinsic motion, absolute intrinsic electromagnetism,
etc, (as intrinsic 1-geometry classical theories) by 3-observers
in the proper physical Euclidean spaceIE′3, as shall be devel-
oped elsewhere with further development.

The intrinsic metric coordinate interval projection rela-
tions derivable from Fig. 7, from which absolute intrinsic
metric line element can be derived on(φρ̂, φĉφt̂) with respect
to 3-observers inIE′3 solely in that figure are the following

φĉdφt̂ = φcdφt′ cos(−φψ̂P 0) dφρ′ = dφρ̂ cosφψ̂P

or
φcdφt′ = φĉdφt̂ secφψ̂ (48a)

dφρ′ = dφρ̂ cosφψ̂ (48b)

Equation (48a) derived by 3-observers inIE′3 in Fig. 7 re-
places Eq. (19a) derived by 1-observers in the proper time
dimensionct′ in Fig. 4. Equations (48a) and (48b) are intrin-
sic ‘time dilation’ and intrinsic ‘length contraction’ formulae
with respect to 3-observers in the proper physical 3-spaceIE′3

in the absolute intrinsic Riemannian spacetime geometry of
Fig. 7.

The projective intrinsic metric coordinate intervalsdφρ′

andφcdφt′ in Fig. 7 have been put into consideration in rela-
tions (48a) and (48b), while the ‘non-metric’ intrinsic coordi-
nate intervalsδφρ̂ andφcδφt′ have been disregarded. Indeed
the absolute intrinsic line element on the curved absolute in-
trinsic spacetime(φρ̂, φĉφt̂), which is valid with respect to 3-
observers in the physical proper Euclidean 3-spaceIE′3 solely
in Fig. 4, must be synthesized from the intrinsic metric coor-
dinate interval projection relations (48a) and (48b) derived
from Fig. 7. However the appropriate structure (or signature)
of that absolute intrinsic line element to adopt is yet unknown
and cannot be determined from Eqs. (48a) and (48b).

In order to determine the structure (or signature) of the
absolute intrinsic line element and consequently the absolute
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Fig. 7: The form of Fig. 4 that is valid with respect to 3-observers in
the proper physical Euclidean 3-space solely; the correct diagram for
absolute intrinsic Riemannian spacetime geometry in our universe.

intrinsic metric tensor on curved ‘two-dimensional’ absolute
intrinsic spacetime(φρ̂, φĉφt̂) that is valid with respect to
3-observer inIE′3 solely in Fig. 4, we must first determine
which of intrinsic local Euclidean invariance (φLEI) and in-
trinsic local Lorentz invariance (φLLI) on (φρ̂, φĉφt̂) is valid
with respect to 3-observers inIE′3 solely in Fig. 7. Thus let
us take into account the projective ‘non-metric’ components
in the intrinsic coordinate projection relations that can be de-
rived from Fig. 7 to have as follows

φĉdφt̂ = φcdφt′ cos(−φψ̂P 0); δφρ̂ = dφρ̂ sinφψ̂P

or

φcdφt′ = φĉdφt̂ secφψ̂P 0 ; δφρ̂ = dφρ̂ sinφψ̂P (49a)

and

dφρ′ = dφρ̂ cosφψ̂P ; φcδφt′ = φcdφt′ sin(−φψ̂P 0)

or

dφρ′ = dφρ̂ cosφψ̂P ; φcδφt′ = −φcdφt′ sinφψ̂P 0 (49b)

or

dφρ′ = dφρ̂ cosφψ̂P ; φcδφt′ = −φĉdφt̂ tanφψ̂P 0 (49c)

where Eq. (48b) has been used in the second equation be-
tween systems (49a) and (49b).

The intrinsic coordinate projection relations of systems
(49a) and (49b) derived from Fig. 7 are valid with respect
to 3-observers in the proper physical Euclidean 3-spaceIE′3

solely in that figure. They correspond to systems (20a) and
(20b) derived from Fig. 4, which are valid with respect to 1-
observers inct′ and 3-observers inIE′3 respectively.

Now the only absolute intrinsic space coordinate interval
dφρ̂ about point O along the absolute intrinsic spaceφρ̂ when

φρ̂ was a straight line along the horizontal in Fig. 6, becomes
replaced by componentsdφρ′ andφcδφt′ projected along the
horizontal in Fig. 7, upon evolution of the geometry of Fig. 7
from Fig. 6. There is invariance of the squares of intrinsic
coordinate intervals along the horizontal between Fig. 6 and
Fig. 7, expressed as follows:

(dφρ′)2 + φc2(δφt′)2 = (dφρ̂)2

or

(dφρ′)2 = (dφρ̂)2 − φc2(δφt′)2

= (dφρ′)2 sec2 φψ̂P − φc2(dφt′)2 sin2 φψ̂P 0

(50)

where systems (49a) and (49b) have been used. In effect,
this equation expresses invariance of partial intrinsic line ele-
ment between the curved ‘one-dimensional’ absolute intrinsic
spaceφρ̂ and its projective straight line proper intrinsic space
φρ′ in Fig. 7.

The following relation likewise obtains between the in-
trinsic coordinates intervalφcdφt′ along the curved proper
intrinsic time dimensionφcφt′ and the absolute intrinsic co-
ordinate intervalsφĉdφt̂ andδφρ̂ projected into the straight
line absolute intrinsic time ‘dimension’φĉφt̂ along the verti-
cal in the upper half of Fig. 7

φc2(dφt′)2 = φĉ2(dφt̂)2 + (δφρ̂)2

= φc2(dφt′)2 cos2 φψ̂P 0 + (dφρ̂)2 sin2 φψ̂P

= φc2(dφt′)2 cos2 φψ̂P 0 + (dφρ′)2 tan2 φψ̂P

(51)

where, again, systems (49a) and (49b) have been used and
Eq. (48b) has been used between the last two lines of equa-
tions. Again, Eq. (51) expresses invariance of intrinsic line
element between the curved one-dimensional proper intrinsic
time dimensionφcφt′ and the straight line absolute intrinsic
time ‘dimension’φĉφt̂ along the vertical in Fig. 7. Both re-
lations (50) and (51) have been derived by 3-observers in the
proper Euclidean 3-spaceIE′3 in Fig. 7 solely, with respect to
whom Fig. 7 is valid.

Now the addition of Eqs. (50) and (51) does not lead to
intrinsic local Euclidean invariance (φLEI), as can be easily
verified. It may be recalled that the addition of the corre-
sponding Eqs. (21a) and (21b) derived from Fig. 4, leads to
intrinsic local Euclidean invariance expressed by Eq. (22).

On the other hand, let us subtract Eq. (50) from Eq. (51)
to have as follows

φc2(dφt′)2 − (dφρ′)2 = φc2(dφt′)2 cos2 φψ̂

+(dφρ′)2 tan2 φψ̂

−(dφρ′)2 sec2 φψ̂

+φc2(dφt′)2 sin2 φψ̂ (52)
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where the fact thatφψ̂P = φψ̂P 0 ≡ φψ̂ has been used.
Eq. (52) is given as follows by associating like terms at the
right-hand side

φc2(dφt′)2 − (dφρ′)2 = φc2(dφt′)2(cos2 φψ̂ + sin2 φψ̂)

−(dφρ′)2(sec2 φψ̂ − tan2 φψ̂)

(53)

Eq. (53) expresses intrinsic local lorentz invariance (φLLI)
in terms of proper intrinsic coordinate intervals by virtueof
relationscos2 φψ̂+sin2 φψ̂ = 1 andsec2 φψ̂− tan2 φψ̂ = 1.

Now the invariance of intrinsic line element between the
absolute intrinsic spacetime(φρ̂, φĉφt̂) and the proper intrin-
sic spacetime(φρ′, φcφt′) in Fig. 7 allows us to write the fol-
lowing

(dφŝ)2 = (dφs′)2

or

φĉ2(dφt̂)2 − (dφρ̂)2 = φc2(dφt′)2 − (dφρ′)2 (54)

wheredφŝ pertains to the ‘two-dimensional’ absolute intrin-
sic spacetime(φρ̂, φĉφt̂) bounded by curvedφρ̂ and straight
line φĉφt̂, while dφs′ pertains to(φρ′, φcφt′) in Fig. 7.

It follows from Eq. (54) that the proper intrinsic coordi-
nate intervalsdφρ′ andφcdφt′ can be replaced by the ab-
solute intrinsic coordinate intervalsdφρ̂ andφĉdφt̂ respec-
tively in Eq. (53) to have

φĉ2(dφt̂)2 − (dφρ̂)2 = φĉ2(dφt̂)2(cos2 φψ̂ + sin2 φψ̂)

−(dφρ̂)2(sec2 φψ̂ − tan2 φψ̂)

(55)

Again Eq. (55) expresses intrinsic local Lorentz invariance in
terms of absolute intrinsic coordinate intervals. Let us replace
φĉ2(dφt̂)2 − (dφρ̂)2 by (dφŝ)2 at the left-hand side of (55)
to have

(dφŝ)2 = φĉ2(dφt̂)2(cos2 φψ̂ + sin2 φψ̂)

−(dφρ̂)2(sec2 φψ̂ − tan2 φψ̂) (56)

or
(dφŝ)2 = φĉ2(dφt̂)2 − (dφρ̂)2 (57)

The absolute intrinsic Lorentzian line element (56) or (57)
obtains at every point along the curvedφρ̂ and the symmetry-
partner point along the straight line absolute intrinsic time
‘dimension’φĉφt̂with respect to 3-observers inIE′3 in Fig. 7,
in so far as both the metric and ‘non-metric’ intrinsic coordi-
nate interval projections are taken into account in deriving
intrinsic coordinate projection relations from Fig. 7, as done
in systems (49a-c) and in Eqs. (50) and (51).

In brief, it is intrinsic local Lorentz invariance (φLLI)
(and not intrinsic local Euclidean invariance (φLEI)) that ob-
tains on the ‘two-dimensional’ absolute intrinsic spacetime

bounded by curvedφρ̂ and straight lineφĉφt̂, with respect to
3-observers in in the physical proper Euclidean 3-spaceIE′3

in Fig. 7, in so far as both the metric and ‘non-metric’ intrin-
sic coordinate interval projections are taken into accountin
deriving intrinsic coordinate projection relations from Fig. 7.

Now let us separate(dφŝ)2 in Eq. (56) into the metric and
‘non-metric’ components as follows

(dφŝ)2 = (dφŝm)2 + (dφŝnm)2

=
1
∑

i,j =0

φĝijdφx̂
idφx̂j −

1
∑

i,j =0

φR̂ijdφx̂
idφx̂j

(58)

=
(

cos2 φψ̂φĉ2(dφt̂)2 − sec2 φψ̂(φρ̂)2
)

−
(

− sin2 φψ̂φĉ2(dφt̂)2 − tan2 φψ̂(dφρ̂)2
)

(59)

The absolute intrinsic line element without star label on
the curved ‘two-dimensional’ absolute intrinsic metric space-
time (φρ̂, φĉφt̂) that is valid with respect to 3-observers in
IE′3 solely in Fig. 4, (which is the same as the absolute intrin-
sic line element on(φρ̂, φĉφt̂) in Fig. 7), which follows from
Eqs. (58) and (59) is the following

(dφŝm)2 =

1
∑

i,j =0

φĝijdφx̂
idφx̂j

= φĝ00φĉ
2(dφt̂)2 + φĝ11(dφρ̂)

2 (60)

= cos2 φψ̂φĉ2(dφt̂)2 − sec2 φψ̂(dφρ̂)2(61)

or

(dφŝm)2 = (1 − φk̂2)φĉ2(dφt̂)2 −
(dφρ̂)2

1 − φk̂2
(62)

The derived hyperbolic absolute intrinsic line element of
Eq. (61) or (62) on the ‘two-dimensional’ absolute intrin-
sic spacetime(φρ̂, φĉφt̂) in Fig. 7, which is valid with re-
spect to 3-observers in the proper physical Euclidean 3-space
IE′3 solely, implies the following hyperbolic absolute intrinsic
metric tensor with respect to 3-observers inIE′3 solely

φĝij =

(

cos2 φψ̂ 0

0 − sec2 φψ̂

)

(63)

or

φĝij =





1 − φk̂2 0

0 −
1

1 − φk̂2



 (64)

The absolute intrinsic line element (61) or (62) and the
absolute intrinsic metric tensor (63) or (64), on the curved
absolute intrinsic space - straight line absolute intrinsic time
‘dimension’(φρ̂, φĉφt̂) in Fig. 7, which are valid with respect
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to 3-observers in the proper physical Euclidean 3-spaceIE′3

solely in that figure, are now hyperbolic as known for space-
time metrics. It can also be said that Eqs. (61) - (64) are valid
on the curved ‘two-dimensional’ absolute intrinsic spacetime
(φρ̂, φĉφt̂) in Fig. 4, with respect to 3-observers in the proper
physical Euclidean 3-spaceIE′3 solely in that figure.

Eq. (61) or (62) and Eq. (63) or (64) give the final forms of
the absolute intrinsic line element and absolute intrinsicmet-
ric tensor in the context of ‘two-dimensional’ absolute intrin-
sic Riemannian spacetime geometry (or absolute Riemannian
nospace-notime geometry) in our universe. The absolute in-
trinsic curvature parameterφk̂ that appears in them shall be
related to the absolute intrinsic parameters of the metric force
field that gives rise to absolute intrinsic Riemannian space-
time geometry within a region of the universal spacetime else-
where with further development.

The absolute intrinsic metric tensor (without star label)
φĝij , (on a manifold of the typeIMp+q, which isφIM̂1+1 in
the present case), is the modified form of the starred absolute
intrinsic metric tensorφĝ∗ij of Eq. (32) or (33), (on a mani-

fold of the typeIMp, which isφIM̂2 in the present case). The
components ofφĝ∗ij andφĝij are related by comparing Eqs.
(33) and (64) as follows

φĝ00 =
1

φĝ∗00
; φĝ11 = −φĝ∗11; φĝij = φĝ∗ij = 0; i 6= j

(65a)
The following relations also follow among the components
of φĝ∗ij in Eq. (33) and among the components ofφĝij in
Eq. (64)

φĝ∗11 = φĝ∗00; φĝ11 = −
1

φĝ00
(65b)

The validity of systems (65a) and (65b) in all situations is
guaranteed by the fact that there is perfect symmetry of state
between the positive time-universe and our universe and in-
deed among the four universes isolated in [2-5], as mentioned
earlier. This fact guarantees that the curvature of the absolute
intrinsic spaceφρ̂ relative to the proper intrinsic spaceφρ′ at
every point alongφρ̂ is identical to the curvature of the ab-
solute intrinsic time ‘dimension’φĉφt̂ relative to the proper
intrinsic time dimensionφcφt′ at the symmetry-partner point
alongφĉφt̂ in Fig. 4. Hence the absolute intrinsic curvature
parameterφk̂P at point P on curvedφρ̂ is identical to the
absolute intrinsic curvature parameterφk̂P 0 at the symmetry-
partner pointP 0 of the curvedφĉφt̂. That is,φψ̂P = φψ̂P 0 ≡

φψ̂. Henceφk̂P = φk̂P 0 ≡ φk̂ in Fig. 4, as mentioned ear-
lier, and this is true in all situations and implies that systems
(65a) and (65b) are true in all situations.

In obtaining the final absolute intrinsic metric tensor with-
out star labelφĝij of Eq. (63) or (64) tensorially, one must
solve the pair of starred absolute intrinsic tensor equations
(34) and (38) simultaneously to obtain the starred absolute
intrinsic metric tensorφĝ∗ij of Eq. (33) and the starred ab-

solute intrinsic Ricci tensorφR̂∗

ij of Eq. (39). One must then
apply relations (65a) and (65b) to obtain the absolute intrinsic
metric tensor without star labelφĝij from the starred absolute
intrinsic metric tensorφĝ∗ij so obtained.

In order to obtain the absolute intrinsic Ricci tensor with-
out star labelφR̂ij , which is compatible with the absolute
intrinsic metric tensor without star labelφĝij obtained from
the programme in the foregoing paragraph, we shall make use
of the validity of intrinsic local Lorentz invariance (φLLI) on
(φρ̂, φcφt′) with respect to 3-observers in the proper physical
Euclidean 3-spaceIE′3 in Fig. 7 in so far as both the met-
ric and ‘non-metric’ intrinsic coordinate interval projections
are taken into account in deriving intrinsic coordinate projec-
tion relations from Fig. 7 demonstrated earlier. This implies
that Eq. (34) must now be written in terms of absolute in-
trinsic tensors without star labelφĝij andφR̂ij and with the
Euclidean metric tensorδij in that equation replaced by the
Lorentzian metric tensorηij . In other words, the following
equation, written as Eq. (58) earlier, must be satisfied

φĝij − φR̂ij = ηij (φLLI) (66)

With φĝij given by Eq. (63) or (64), the absolute intrinsic
Ricci tensor without star labelφR̂ij that satisfies Eq. (66) is
the following

φR̂ij =

(

− sin2 φψ̂ 0

0 − tan2 φψ̂

)

(67)

=





−φk̂2 0

0 −
φk̂2

1 − φk̂2



 (68)

Now let us consider a situation where a pair of ‘two-
dimensional’ absolute intrinsic metric spacetimes co-exist.
One will naturally be curved relative to the other as illustrated
in Fig. 5. The lower half of Fig. 5 is valid with respect to 3-
observers inIE′3, while the upper half is valid with respect to
1-observers inct′. In order to make Fig. 5 valid with respect
to 3-observers inIE′3 solely, it must be modified as Fig. 8 .

The resultant intrinsic metric coordinate interval projec-
tion relations, or the resultant intrinsic length contraction and
resultant intrinsic time dilation formulae, which are valid with
respect to 3-observers inIE′3 solely in Fig. 8 are the following

dφρ′ = dφρ̂ cosφψ̂res= dφρ̂ cosφψ̂′ cosφψ̂

= dφρ̂(1 − φk̂′2)1/2(1 − φk̂2)1/2 (69)

and

φcdφt′ = φĉdφt̂ secφψ̂res= φĉdφt̂ secφψ̂′ secφψ̂

= φĉdφt̂(1 − φk̂′2)−1/2(1 − φk̂2)−1/2 (70)

The resultant absolute intrinsic metric tensor without star
label φĝij and the resultant absolute intrinsic Ricci tensor
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Fig. 8: Deriving resultant intrinsic coordinate projection relations
with respect to 3-observers in the underlying proper physical Euclid-
ean 3-space solely, when two curved absolute intrinsic metric space-
times (or absolute intrinsic Riemannian metric spacetimes) co-exist.

without star labelφR̂ij , which are valid with respect to 3-
observers inIE′3 in Fig. 8, are given by writing Eqs. (63) and

(64) in terms of the resultant absolute intrinsic angleφψ̂ and

resultant absolute intrinsic curvature parameterφk̂ as follows

φĝij =







1 − sin2 φψ̂ 0

0 −
1

1 − sin2 φψ̂






(71)

wheresin2 φψ̂ = sin2 φψ̂′ + sin2 φψ̂, as follows from the
derived relation (90) of [1]. Eq. (71) corresponds to the fol-
lowing in terms of resultant absolute intrinsic curvature para-
meter

φĝij =







1 − (φk̂)2 0

0 −
1

1 − (φk̂)2






(72)

where(φk̂)2 = (φk̂)2 + φk̂2, as derived in [1] and presented
as Eq. (91) of that paper.

And by writing equations (67) and (68) in terms of the

resultant absolute intrinsic angleφψ̂ and resultant absolute

intrinsic curvature parameterφk̂ we have as follows

φR̂ij =







− sin2 φψ̂ 0

0 −
sin2 φψ̂

1 − sin2 φψ̂






(73)

or

φR̂ij =









−φk̂
2

0

0 −
φk̂

2

1 − φk̂
2









=







−(φk̂′)2 − φk̂2 0

0 −
(φk̂′)2 − φk̂2

1 − (φk̂′)2 − φk̂2







(74)

Thus the resultant absolute intrinsic line element on the
upper curved ‘two-dimensional’ absolute intrinsic metric
spacetime(φρ̂, φĉφt̂) in Fig. 5, which is valid with respect
to 3-observers inIE′3 solely in that figure, derived via Fig. 8
is the following

(dφŝ)2 = φĝ00φĉ
2dφt̂2 − φĝ11dφρ̂

2

= (1 − sin2 φψ̂′ − sin2 φψ̂)φĉ2dφt̂2 −

−
dφρ̂2

1 − sin2 φψ̂′ − sin2 φψ̂
(75)

or

(dφŝ)2 = (1 − φk̂′2 − φk̂2)φĉ2dφt̂2 −

−
dφρ̂2

1 − φk̂′2 − φk̂2
(76)

The extension of relations (69) through (76) to the situation
where three and a larger number of curved ‘two-dimensional’
absolute intrinsic metric spacetimes (or absolute intrinsic Rie-
mannian metric spacetimes) co-exist is straight forward.

2 Isolating non-uniform absolute intrinsic static speeds
along the curved absolute intrinsic space and curved
absolute intrinsic time ‘dimension’

Figs. 9a and 9b are valid with respect to 1-observers in the
proper time dimensionct′ of our universe and 1-observers in
the proper time dimensionct0′ of the positive time-universe
respectively, as indicated. The elementary intervalφĉdφt̂ of
the curved absolute intrinsic time ‘dimension’φĉφt̂ at point
P 0 alongφĉφt̂ spans intervalφcdφt′ of φcφt′ along the verti-
cal and intervaldφρ̂ of φρ̂ along the horizontal in Fig. 9a. The
trigonometric sine ratio of the absolute intrinsic angleφψ̂P 0

of inclination of the curvedφĉφt̂ to φcφt′ along the vertical
at pointP 0 alongφĉφt̂ is given as

sinφψ̂P 0 =
dφρ̂

φĉdφt̂
=
φV̂s,P 0

φĉ
(77)

where,dφρ̂/dφt̂ = φV̂s,P 0 , shall be referred to as absolute
intrinsic static speed of the curved absolute intrinsic time ‘di-
mension’φĉφt̂ at pointP 0 alongφĉφt̂, with respect to all
1-observers in the proper time dimensionct′ of our universe
along the vertical in Fig. 9a.

The trigonometric sine ratio of the absolute intrinsic an-
gleφψ̂P of inclination of the curvedφĉφt̂0 relative toφcφt0′

along the horizontal at point P alongφĉφt̂0 in Fig. 9b is like-
wise given as

sinφψ̂P =
dφρ̂0

φĉdφt̂0
=
φV̂s,P

φĉ
(78)
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Fig. 9: Deriving absolute intrinsic static speeds along curved ab-
solute intrinsic metric time ‘dimensions’ with respect to 1-observers
in the proper metric time dimensions in our universe and positive
time-universe.

where, again,dφρ̂0/dφt̂0 = φV̂s,P , is the absolute intrinsic
static speed of the curved absolute intrinsic time ‘dimension’
φĉφt̂0 at point P alongφx̂φt̂0, with respect to 1-observers in
the proper time dimensionct0′ of the positive time-universe
along the horizontal in Fig. 9b.

Although the pointP 0 of the curved absolute intrinsic
time ‘dimension’ φĉφt̂ possesses absolute intrinsic static
speedφV̂s,P 0 relative to 1-observers inct′ in Fig. 9a and the
point P of the curvedφĉφt̂0 possesses absolute intrinsic sta-
tic speedφV̂s,P relative to 1-observers inct0′ in Fig. 9b, the
pointsP 0 of φĉφt̂ and P ofφĉφt̂0 are not in absolute intrin-
sic motion (or absolute intrinsic flow), hence the reference
to φV̂s,P 0 andφV̂s,P as static (and not dynamical) absolute
intrinsic speeds.

The pair of pointsP 0 along the curvedφĉφt̂ in Fig. 9a and
P along the curvedφĉφt̂0 in Fig. 9b are symmetry-partner
points. Another pair of symmetry-partner pointsQ0 along
the curvedφĉφt̂ in Fig. 9a andQ along the curvedφĉφt̂0 in
Fig. 9b likewise possesses absolute intrinsic speedsφV̂s,Q0

relative to 1-observers inct′ in Fig. 9a andφV̂s,Q relative to
1-observers inct0′ in Fig. 9b respectively. The absolute in-
trinsic static speedsφV̂s,P 0 andφV̂s,Q0 along the curvedφĉφt̂
are illustrated in Fig. 10a and the corresponding absolute in-
trinsic static speedsφV̂s,P andφV̂s,Q along the curvedφĉφt̂0

are illustrated in Fig. 10b.
The half-geometry of Fig. 10a with respect to 1-observers

in the proper time dimensionct′ of our universe and the half-
geometry of Fig. 10b with respect to 1-observers in the proper
time dimensionct0′ of the positive time-universe co-exist and
must be united into a single full diagram. In doing this and
making the resulting full diagram to contain the spacetime
and intrinsic spacetime dimensions of our (or positive) uni-
verse solely, we must, as derived in [3], letct0 → IE′3; φcφt0′

→ φρ′ andφĉφt̂0 → φρ̂ in Fig. 10b and unite the lower half
of the resulting diagram with the upper half of Fig. 10a to
have Fig. 11.

We have again recovered the 4-geometry/intrinsic 2-geo-
metry diagram of Fig. 4, in which the ‘one-dimensional’ ab-

Fig. 10: Non-uniform absolute intrinsic static speeds along curved
absolute intrinsic metric time ‘dimensions’ with respect to 1-
observers in the proper time dimensions of our universe and positive
time-universe, which are established by the sources of symmetry-
partner absolute intrinsic metric force fields located at symmetry-
partner positions S and S0 on the curved absolute intrinsic time di-
mensions.

solute intrinsic metric spaceφρ̂ is curved relative to its pro-
jective straight line proper intrinsic metric spaceφρ′ along the
horizontal and the absolute intrinsics metric time ‘dimension’
φĉφt̂ is curved relative to its projective straight line proper
intrinsic metric time dimensionφcφt′ along the vertical. The
new addition to Fig. 4 in Fig. 11 are the non-uniform absolute
intrinsic static speeds at every point along the curved absolute
intrinsic metric spaceφρ̂ and along the curved absolute in-
trinsic metric time ‘dimension’φĉφt̂, where absolute intrinsic
static speeds at only two pointsP andQ alongφρ̂ and at the
symmetry-partner pointsP 0 andQ0 alongφĉφt̂ are shown
in Fig. 11. The lower half of Fig. 11 is valid with respect to
3-observers inIE′3, while the upper half is valid with respect
to 1-observers inct′.

As illustrated in Fig. 11, the absolute intrinsic static
speedsφV̂s,Q andφV̂s,P along the curved absolute intrinsic
metric spaceφρ̂ are projected invariantly as absolute intrinsic
static speedsφV̂s,Q andφV̂s,P into the straight line proper in-
trinsic metric spaceφρ′ along the horizontal with respect to
3-observers inIE′3. The absolute intrinsic static speedφV̂s,Q0

andφV̂s,P 0 along the curved absolute intrinsic time ‘dimen-
sion’ φĉφt̂ are likewise projected invariantly as absolute in-
trinsic static speedsφV̂s,Q0 andφV̂s,P 0 into the proper in-
trinsic metric time dimensionφcφt′ along the vertical with
respect to all 1-observers inct′.

The projective absolute intrinsic static speedsφV̂s,Q and
φV̂s,P alongφρ′ are then made manifest in absolute static
speedsV̂s,Q and V̂s,P in the proper Euclidean 3-spaceIE′3,
just as the projective absolute intrinsic static speedsφV̂s,Q0

andφV̂s,P 0 alongφcφt′ are made manifest in absolute static
speedŝVs,Q0 andV̂s,P 0 along the proper time dimensionct′,
as shown in Fig. 11.

One would expect the absolute intrinsic static speeds
φV̂s,Q andφV̂s,P along the curvedφρ̂ to project proper in-
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Fig. 11: Non-uniform absolute intrinsic static speeds along curved
absolute intrinsic metric spaceφρ̂ and curved absolute intrinsic met-
ric time ‘dimension’φĉφt̂, established by the sources of a long-
range absolute intrinsic metric force field at positions S onφρ̂ and S0

onφĉφt̂, are invariantly projected as non-uniform absolute intrinsic
static speeds along the projective straight line isotropic proper intrin-
sic metric spaceφρ′ along the horizontal and the projective straight
line proper intrinsic metric time dimensionφcφt′ along the vertical,
which are made manifest in non-uniform absolute static speeds in
the proper Euclidean 3-spaceIE′3 and along the proper metric time
dimensionct′ in our universe.

trinsic static speedsφV ′

s,Q andφV ′

s,P into the proper intrinsic
spaceφρ′ along the horizontal, even as the curved absolute
intrinsic spaceφρ̂ is projected along the horizontal as proper
intrinsic spaceφρ′, which should then be made manifest in
proper static speedsV ′

s,Q andV ′

s,P in the proper Euclidean
3-spaceIE′3 with respect to 3-observers inIE′3. One would
likewise expect the absolute intrinsic static speedsφV̂s,Q0

andφV̂s,P 0 along the curvedφĉφt̂ to project proper intrin-
sic static speedsφV ′

s,Q0 andφV ′

s,P 0 into the proper intrinsic
time dimensionφcφt′ along the vertical, even as the curved
absolute intrinsic time ‘dimension’φĉφt̂ is projected along
the vertical as proper intrinsic time dimensionφcφt′, which
should then be made manifest in proper static speedsV ′

s,Q0

andV ′

s,P 0 along the proper time dimensionct′ with respect to
1-observers inct′.

The proper intrinsic static speedsφV ′

s,Q , φV
′

s,P , φV
′

s,Q0

andφV ′

s,P 0 that are expected to be projected alongφρ′ and
φcφt′ in Fig. 11, as discussed in the foregoing paragraph, be-
ing without hat label, are relative intrinsic static speeds, just
as the proper intrinsic spaceφρ′ and proper intrinsic time di-
mensionφcφt′ are relative intrinsic space and relative intrin-
sic dimension. The proper static speedsV ′

s,Q , V
′

s,P , V
′

s,Q0

andV ′

s,P 0 expected to appear inIE′3 andct′ in Fig. 11, being
without hat label, are relative static speeds, just as the proper
Euclidean 3-spaceIE′3 and the proper time dimensionct′ are
relative space and relative dimension.

The concept of relative intrinsic static speed and rela-
tive static speed, (which should convey no meaning at this
point, since we have grown accustomed to relative kinemat-
ical speeds only), shall be adequately appropriated into the

present theory with further development.
The fact that absolute intrinsic static speeds along the

curved absolute intrinsic spaceφρ̂ and curved absolute in-
trinsic time ‘dimension’φĉφt̂ are projected invariantly into
proper intrinsic spaceφρ′ and proper intrinsic time dimension
φcφt′ as absolute intrinsic static speedsφV̂s,Q, φV̂s,P , φV̂s,Q0

andφV̂s,P 0 in Fig. 11, instead of proper intrinsic static speeds
φV ′

s,Q , φV
′

s,P , φV
′

s,Q0 andφV ′

s,P 0 , is a graphical illustration
of the invariance of intrinsic static speeds in the context of
absolute intrinsic Riemann geometry (or in the context of the
absolute intrinsic metric phenomena that give rise to absolute
intrinsic Riemann geometry). This invariance is stated as fol-
lows

φV ′

s = φV̂s (79a)

Hence
V ′

s = V̂s (79b)

where (79a) has been written at an arbitrary point along the
curvedφρ̂ and its symmetry-partner point along the curved
φĉφt̂ and (79b) has been written at the corresponding point in
IE′3 and its symmetry-partner point alongct′.

Let us re-write Eqs. (77) and (78), while lettingφψ̂P 0 =
φψ̂P ≡ φψ̂ andφV̂s,P 0 = φV̂s,P =≡ φV̂s in those equations
as the following singular equation, which is valid along both
φρ̂ andφĉφt̂:

sinφψ̂ = φV̂s/φĉ (80a)

But the relation for the identical absolute intrinsic curvature
parameters,φk̂P 0 = φk̂P ≡ φk̂, at any given point P along
the curved absolute intrinsic spaceφρ̂with respect to 3-obser-
vers inIE′3 and at the symmetry-partner pointP 0 along the
curved absolute intrinsic metric time ‘dimension’φĉφt̂ with
respect to 1-observers inct′, has been related to the absolute
intrinsic angle,φψ̂P 0 = φψ̂P ≡ φψ̂, in sub-section 1.1 of [1]
as

sinφψ̂ = φk̂ (80b)

The absolute intrinsic curvature parameter at an arbitrary
point along the curvedφρ̂ and at the symmetry-partner point
along the curvedφĉφt̂ is therefore related to the absolute in-
trinsic static speed at the same point from Eqs. (80a) and
(80b) as

φk̂ = φV̂s/φĉ (80c)

The absolute intrinsic metric tensor and absolute intrinsic
Ricci tensor without star label, given in terms of absolute in-
trinsic curvature parameter as Eqs. (64) and (68) in the case
of one absolute intrinsic Riemann space, that is, in the case
of a singular curved absolute intrinsic metric spacetime, can
then be written in terms of absolute intrinsic static speed re-
spectively as follows

φĝij =





1 − φV̂ 2
s /φĉ

2 0

0 −
1

1 − φV̂ 2
s /φĉ

2



 (81)
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and

φR̂ij =







−φV̂ 2
s /φĉ

2 0

0 −
φV̂ 2

s /φĉ
2

1 − φV̂ 2
s /φĉ

2






(82)

The absolute intrinsic line element (62) likewise becomes the
following in terms of absolute intrinsic static speed,

dφŝ2 = (1 − φV̂ 2
s /φĉ

2)φĉ2dφt̂2 −
dφρ̂2

1 − φV̂ 2
s /φĉ

2
(83)

The resultant absolute intrinsic metric tensor, resultant
absolute intrinsic Ricci tensor and resultant absolute intrin-
sic line element (72), (74) and (76) in a situation where two
absolute intrinsic Riemannian metric spacetimes co-existbe-
come the following in terms of absolute intrinsic static speed:

φĝij =













1 −
φV̂ ′2

s

φĉ2
−
φV̂ 2

s

φĉ2
0

0 −
1

1 −
φV̂ ′2

s

φĉ2
−
φV̂ 2

s

φĉ2













,

(84)

φR̂ij =



















−
φV̂ ′2

s

φĉ2
+
φV̂ 2

s

φĉ2
0

0 −

φV̂ ′2
s

φĉ2
+
φV̂ 2

s

φĉ2

1 −
φV̂ ′2

s

φĉ2
−
φV̂ 2

s

φĉ2



















(85)
and

(dφŝ)2 =

(

1 −
φV̂ ′2

s

φĉ2
−
φV̂ 2

s

φĉ2

)

φĉ2dφt̂2

−
dφρ̂2

1 −
φV̂ ′2

s

φĉ2
−
φV̂ 2

s

φĉ2

(86)

Extension of Eqs. (84) - (86) to situations where three or a
larger number of absolute intrinsic Riemannian metric space-
times (or curved ‘two-dimensional’ absolute intrinsic metric
spacetimes) co-exist (or are superposed) is straight forward.

The absolute intrinsic curvature parameterφk̂ is a geo-
metrical parameter, as follows from its derivation in sub-sec-
tion 1.1 of part two of this paper [1]. The non-uniform ab-
solute intrinsic static speedsφV̂s along the curved absolute
intrinsic spaceφρ̂ and curved absolute intrinsic time ‘dimen-
sion’ φĉφt̂ in Fig. 11, which are related to the non-uniform
absolute intrinsic curvature parametersφk̂ of the curvedφρ̂
and curvedφĉφt̂ by Eq. (80c), is likewise an absolute intrin-
sic geometrical parameter. This is so because the definition,
φV̂s = dφρ̂/dφt̂, follows from the geometry of Figs. 9a and
9b, without relation to the absolute intrinsic parameters of the

absolute intrinsic metric force field that establishes absolute
intrinsic Riemann geometry. The absolute intrinsic geomet-
rical parameterφV̂s (or φk̂) that appears in the absolute in-
trinsic metric tensor, absolute intrinsic Ricci tensor andab-
solute intrinsic line element in absolute intrinsic Riemann
geometry, shall be related to the absolute intrinsic parameters
of the absolute intrinsic metric force field that gives rise to
curved ‘two-dimensional’ absolute intrinsic metric spacetime
(φρ̂, φĉφt̂) elsewhere with further development.

The explanation of the evolution of the curved absolute
intrinsic spaceφρ̂ and curved absolute intrinsic time ‘dimen-
sion’ φĉφt̂ in Fig. 11 or Fig. 4 from the reference geometry
of Fig. 6, which follows from the validity of Eqs. (77) and
(78), re-written as Eq. (80a), at every point along the curved
φρ̂ andφĉφt̂ in Fig. 11, is that non-uniform absolute intrin-
sic static speeds are identically established along the straight
line absolute intrinsic spaceφρ̂ and straight line absolute in-
trinsic time ‘dimension’φĉφt̂ from a point (S, S0) on the
flat ‘four-dimensional’ absolute spacetime(ÎE3, ĉt̂) in Fig. 6.
Then the geometry of Fig. 11 evolves as a consequence, since
(80a) must be satisfied at every point alongφρ̂ andφĉφt̂. The
mechanism by which this is achieved requires explanation to
be given elsewhere.

The geometry of Fig. 11 will evolve from Fig. 6, for in-
stance, if the source of a long-range absolute metric force
field (such as the source of an absolute gravitational field)
located at a point S in the absolute spaceÎE3 of our universe
in Fig. 6, establishes non-uniform absolute static speedsV̂s

along every radial direction from its centre in all its finite
neighbourhood inÎE3 and the source of absolute intrinsic met-
ric force field in the absolute intrinsic spaceφρ̂ underlying the
source of absolute metric force field inÎE3, establishes non-
uniform absolute intrinsic static speedsφV̂s along the straight
line absolute intrinsic spaceφρ̂ in all its finite neighbourhood
in Fig. 6. This will give rise to the curvedφρ̂ and its projective
straight line proper intrinsic spaceφρ′ along the horizontal in
our universe as in Fig. 11.

The identical symmetry-partner source of long-range ab-
solute metric force field in flat absolute spaceÎE03 and iden-
tical source of long-range absolute intrinsic metric forcefield
in straight line absolute intrinsic spaceφρ̂0 in the geometry
in the positive universe that corresponds to that of Fig. 6 in
our universe, will give rise to curved absolute intrinsic met-
ric spaceφρ̂0 that projects straight line proper intrinsic metric
spaceφρ0′ along the vertical (as in Fig. 2) in the positive time-
universe. This then corresponds to curved absolute intrinsic
time ‘dimension’φĉφt̂ and its projective proper intrinsic time
dimensionφcφt′ of our universe along the vertical in Fig. 4
or Fig. 11.

Non-uniform absolute intrinsic static speedsφV̂s estab-
lished along the straight line absolute intrinsic time ‘dimen-
sion’ φĉφt̂ from a point on the flat absolute spacetime(ÎE3,
ĉt̂) in Fig. 6, being absolute intrinsic parameters, can cause
curvature of the absolute intrinsic spaceφρ̂ and absolute in-
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trinsic time ‘dimension’φĉφt̂ from that point, thereby trans-
forming Fig. 6 to Fig. 11. On the other hand, the non-uniform
absolute intrinsic static speedsφV̂s projected along the strai-
ght line proper intrinsic spaceφρ′ and straight line proper
intrinsic time dimensionφcφt′ in Fig. 11, cannot cause cur-
vature ofφρ′ andφcφt′. This is so because absolute intrin-
sic static speedφV̂s can produce no effect whatever on the
relative proper intrinsic spaceφρ′ and relative proper intrin-
sic time dimensionφcφt′. The non-uniform absolute static
speedsV̂s in the relative proper Euclidean 3-spaceIE′3 in
Fig. 11, can likewise produce no detectable effect inIE′3 with
respect to 3-observers inIE′3.

The geometry of Fig. 11 will endure for as long as no
other parameters/intrinsic parameters are introduced into it.
This means that evolution of spacetime/intrinsic spacetime
within a long-range metric force field will terminate at the
first stage, where first stage is evolution from the reference
geometry of Fig. 6 to the geometry of Fig. 4 or Fig. 11. How-
ever there is an inevitable second stage of evolution of space-
time/intrinsic spacetime in a long-range metric force field,
in which the flat four-dimensional proper metric spacetime
(IE′3, ct′) and its underlying flat two-dimensional proper in-
trinsic metric spacetime(φρ′, φcφt′) in Fig. 4 or Fig. 11 evol-
ve into flat four-dimensional relativistic metric spacetime
(IE3, ct) and its underlying flat two-dimensional relativistic
intrinsic metric spacetime(φρ, φcφt). The four-dimensional
relativistic spacetime is proposed to be curved in a gravita-
tional field in the general theory of relativity (GR), but this
fundamental assumption of GR shall be invalidated in the
context of the present evolving theory in the fourth part of
this paper.

Although the 3-geometry/intrinsic 1-geometry diagram of
Fig. 7, which is valid with respect to 3-observers inIE′3 solely,
is the valid diagram for absolute intrinsic Riemann geometry
in our universe, the 4-geometry/intrinsic 2-geometry diagram
of Fig. 4 of Fig. 11, which is valid partially with respect to
3-observers inIE′3 and partially with respect to 1-observers
in ct′, is the geometry that evolves naturally from the refer-
ence geometry of Fig. 6. Fig. 7 is a manipulation of Fig. 4 or
Fig. 11, done in order to obtain an equivalent diagram that
is valid with respect to 3-observers in the proper physical
Euclidean 3-spaceIE′3 solely.

Fig. 4 or Fig. 11 at the first stage of evolution of space-
time/intrinsic spacetime within a long-range metric force field
has important theoretical significance in physics, although it
is not an observed geometry, since it endures for no moment
before transforming into the enduring geometry at the second
stage of evolution of spacetime/intrinsic spacetime in a long-
range metric force field, to be be discussed further shortly and
developed fully in the fourth part of this paper. For instance,
the flat four-dimensional proper metric spacetime(IE′3, ct′)
and its underlying flat two-dimensional proper intrinsic met-
ric spacetime(φρ′, φcφt′) in that figure are the spacetime
of classical (or Newtonian) mechanics and intrinsic classical

mechanics in the assumed absence of (relative) gravity in our
universe. It must be noted that only absolute static speeds
(or absolute metric force field) and its underlying absolutein-
trinsic static speeds (or absolute intrinsic metric force field)
are present in those figures. The concept of relative grav-
ity shall be properly defined elsewhere with further develop-
ment. It, in brief, means the presence of proper static speeds
(or proper metric force field) and its underlying proper in-
trinsic static speeds (or proper intrinsic metric force field), as
shall be found.

It is also on the flat four-dimensional proper metric space-
time(IE′3, ct′) and its underlying flat two-dimensional proper
intrinsic metric spacetime(φρ′, φcφt′) that the special the-
ory of relativity (SR) and intrinsic special theory of relativ-
ity (φSR) operate in our universe in the assumed absence of
(relative) gravity, as developed in [2-5]. As noted at the end
of [3], SR/φSR involve affine spacetime coordinates/affine
intrinsic spacetime coordinates of particle’s frame and ob-
server’s frame (or involve affine spacetime/intrinsic space-
time geometry). Consequently SR/φSR cannot alter the flat
four-dimensional proper metric spacetime(IE′3, ct′) and its
underlying flat two-dimensional proper intrinsic metric
spacetime(φρ′, φcφt′) on which they operate in the assumed
absence of (relative) gravity.

It must be recalled that the curved ‘two-dimensional’ ab-
solute intrinsic spacetime(φρ̂, φĉφt) in Fig. 4 or Fig. 11,
(which is being incorporated into physics newly in this third
part of this paper and the second part [1]), did not appear in
[2-5]. Only the flat four-dimensional proper metric spacetime
(IE′3, ct′) known in physics and the new flat two-dimensional
proper intrinsic metric spacetime(φρ′, φcφt′) underlying
(IE′3, ct′), which was first introduced asansatz in [2] and iso-
lated formally in [5], are known in SR/φSR in [2-5].

In brief, the flat four-dimensional proper metric space-
time(IE′3, ct′) and its underlying flat two-dimensional proper
intrinsic metric spacetime(φρ′, φcφt′) in Fig. 4 or Fig. 11,
are the reference metric spacetime/intrinsic metric spacetime
for the 4-geometry/intrinsic 2-geometry theories of relativ-
ity/intrinsic relativity. One such theories of relativity/intrinsic
relativity is the special theory of relativity/intrinsic special
theory of relativity (SR/φSR)− the theories of relative mo-
tion/relative intrinsic motions of material particles and objects
− which operate on extended(IE′3, ct′) and its underlying ex-
tended(φρ′, φcφt′) in the absence of (relative) gravity and
leave them unchanged, as mentioned above.

There are also the theory of relativity and theory of in-
trinsic relativity, which are associated with the presenceof
a long-range relative metric force field on four-dimensional
metric spacetime and its underlying long-range relative in-
trinsic metric force field on two-dimensional intrinsic metric
spacetime. These will convert the extended flat four-dimen-
sional proper metric spacetime(IE′3, ct′) and its underlying
flat two-dimensional proper intrinsic metric spacetime
(φρ′, φcφt′) into extended flat four-dimensional relativistic
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metric spacetime(IE3, ct) and its underlying extended flat
two-dimensional relativistic intrinsic metric spacetime(φρ,
φcφt) within the long-range relative metric force field at the
second stage of evolution of spacetime/intrinsic spacetime in
a long-range metric force field, as shall be developed in the
fourth part of this paper.
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