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A curved ‘two-dimensional’ absolute intrinsic metric spacetifg, ¢é¢t) on the ver-
tical intrinsic spacetime plane, its underlying projective flat two-dimensipraper
intrinsic metric spacetimé®p’, pcpt’) and the outward manifestation of the latter
namely, the flat four-dimensional proper metric spacetifi€, ct’), are isolated. The
absolute intrinsic Riemann geometry on curved ‘three-dimensional’latesmtrinsic
metric spacepM?, developed in the first two parts of this paper, is adapted to the
curved ‘two-dimensional’ absolute intrinsic metric spacetifpg, ¢péot ) with respect
to observers in the underlying proper physical Euclidean 3-spteThe pair of ab-
solute intrinsic tensor equations derived @h/® is shown to be valid oi¢p, pégt ).
They are solved to obtain the absolute intrinsic metric tensor and absolutsimRicci
tensor on(¢p, pé¢t ) with respect to observers ", in terms of an absolute intrinsic
geometrical parameter isolated in this third part, referred to as absoluteiatstatic
speed, which the source of a long-range absolute intrinsic metric fe@ldesitablishes
in extended absolute intrinsic metric spacetime from its location. This thircoptris
paper is the conclusion of the development of absolute intrinsic Riemameggy on
curved ‘two-dimensional’ absolute intrinsic metric spacetime at the firgesté evo-
lution of spacetimgntrinsic spacetime in a long-range metric force field, started in the
first and second parts. Particularization to the gravitational field will beégstror-
ward, requiring essentially the relation of the absolute intrinsic static speathpter
to the absolute intrinsic parameters of absolute intrinsic gravitational field.
1 Inclusion of curved absolute intrinsic metric time ‘di- RO plat A x2et
mension’ :
. . . . Aep
Let us start by reproducing the ‘one-dimensional’ absdhite :
trinsic metric spacep that is curved from the horizontal posi- " 3-observers
tion towards the absolute tinfabsolute intrinsic time ‘dimen- : il
sions’ along the vertical and projects one-dimensiongbero AL Z/, A "
intrinsic metric spacey’ along the horizontal, with respect doP L T TIOF E
to 3-observers in the proper physical Euclidean 3-sgaée I AR W P LR P PR > 0P’
overlying ¢p’, derived and illustrated in Fig. 6 of part two of
this paper [1] as Fig. 1 here.

The proper physical Euclidean 3-spdcé containing the Fig. 1: A curved ‘one-dimensional’ absolute intrinsic metric space
3-observers is the outward (or physical) manifestatiorhef ¢/ Curving towards the absolute tifasolute intrinsic time ‘di-
isotropic one-dimensional proper intrinsic space (or prodnensm_ns along_the_ve_rtlcal, p_rOJects a/stralghtllne one-dlmen_smnal
nospace)p’ underlying it within the region of the universal>°tOPIC Proper intrinsic rr,getnc spagg ur?derneath.the physical
3-space where the curved absolute intrinsic metric sﬁﬁcepmper Eucllt_:iea}n -S_Spaﬁ _glong the ho”-zomal’ with respect to

- . . . . 3-observers ir2’? in the positive (or our) universe.
exists. Earlier discussion of the fact th&at® is the outward

manifestation ofp’ can be found in sub-section 4.3 of [2].

One crucial feature of Fig. 1 is that the absolute intrisolute metric force field in initially flat absolute spacetim
sic time ‘dimension’ ¢i° = ¢é¢t, is not curved along with (E3,é£), (as shall be illustrated later as Fig. 6 of this pa-
the absolute intrinsic spagg with respect to 3-observers inper), which causes curved absolute intrinsic metric sggice
E’3. This, as shall be explained with further development in evolve within the absolute metric force field (as in Fig. 1)
this paper, is due to the fact that the presence of a longeradges not give rise to simultaneous curvature of the absolute
absolute intrinsic metric force field in an initially flat ‘tw intrinsic time ‘dimensioniégt from its vertical position with
dimensional’ absolute intrinsic metric spacetifiug, pépt) respect to 3-observers in the proper physical Euclidean 3-
(that is, ¢/ is a straight line along the horizontal and¢t is spaceE’. This is the geometrical interpretation of the fact
a straight line along the vertical), underlying a long-raafp- that absolute time and absolute intrinsic time are invaaad
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hence do not transform to proper time and proper intrinsic ~op” N
time respectively in the context of absolute phy&bsolute / T ep?
intrinsic physics. :

The feature of the geometry of Fig. 1 discussed in the
foregoing paragraph makes the absolute intrinsic line efém
take the Gaussian form of Eq. (89) of [1] on the curved ab-
solute intrinsic metric spacgs with respect to 3-observers in
the underlying physical proper Euclidean 3-spd¢é, which
shall be re-produced here as follows

1-3-observers

1E’3(X'], X2, X,3)

AOQ AN

X'=ct

(dp3)? = (dpa®)? — iy (dop)?, ) = > Xt

where
) Fig. 2: A curved ‘one-dimensional’ absolute intrinsic metric space

¢p°, curving towards the absolute tifadsolute intrinsic time

g1 = sec® gpibp = (1 — o),
&) p is the absolute intrinsic angle of inclination of the curvegimension’ along the horizontal, projects a straight line one-

Lo A . P ... . dimensional isotropic proper intrinsic metric s " underneath
absolutel Intrinsic spac¢ip to ts projective propsr ntrinsic the proper physicaFl) Et?cligean 3-spaed’s annga{ﬁgvertical, with
spacegy’ along the horizontal at point P along; ¢kp is respect to 3-observers fi°’3 in the positive time-universe.
the absolute intrinsic curvature parameter at point P albeg
curved¢p andgkp = sin ¢t p, as derived in in sub-section
1.1 of part two of this paper [1]. the curved absolute intrinsic metric spag@with respect to

As developed in sub-section 1.3 of [3], the proper phy3-observers ir2’? in Fig. 1) as follows
ical time dimensionct’ and its underlying proper intrinsic

time dimensionpcét’ of our (or positive) universe are actu- (dp3°)* = (dpi')* — pgoo(dep”)?, ()
ally the proper physical Euclidean 3-spac&? and the one-

dimensional where R )

proper intrinsic spacep®’ of the positive time-universe. And ddoo = sec® ¢hpo = (1 — pkpo) ", (4)

the proper physical Euclidean 3-spa€ and the proper in- gq/}po is the absolute intrinsic angle of inclination of the cur-

n ; . Lo
trinsic spacepp’ of our universe are the proper physical t'mved absolute intrinsic spacg” to its projectionép along

. . o7 ) . RO . 3
dimensionct”” and its underlying proper intrinsic time d_| %he vertical at point?® along ¢p%; ¢kpo is the absolute in-

mensiongcot?’ of the positive time-universe. There exisf. . . 0

I‘Il’ISIC curvature parameter at poiRf’ along the curved,

perfect symmetry of state and perfect symmetry of natu% dokpo = sin ¢

ayr . . - 0.

laws between the positive (or our) universe and the positive . . " P . : .
Fig. 2 in the positive time-universe is half-geometry, just

time-universe and indeed among the four symmetrical uni- Fig. 1 in our universe is half-geometry. These half-geo-

verses isolated in [2-5], as demonstrated in section 2 of ﬁ%ﬁetries co-exist and must be united into the full geometry

andPse;:tmtn 2 of [S]t' f stat the f . _depicted in Fig. 3. The absolute time ‘dimensiéh’and ab-
ertect symmetry ot state among the Tour Universes Il ie intrinsic time ‘dimensionyépt along the vertical in

plies that corresponding to the half-geometry of Fig. 1 th 3. 1 do not exist in Fig. 3, having been replaced /3

evolve§ at th_e T'rSt stage of evolut|o_n of spa_cem_nensm and¢p”’ respectively and the absolute time ‘dimensiét?
spacetime within a long-range metric force field in our unj;

. i - ~and absolute intrinsic time ‘dimensioné4t® along the hor-
verse, there is an identical half-geometry that evolvesikim. weo 9

tan v at the first st  evolution of iniensi izontal in Fig. 2 do not exist in Fig. 3, having been replaced
aneously at the first stage of evolution of spacetintensic be,g andey’ respectively.

spacetime within the symmetry-partner long-range metri The projection of the elementary absolute intrinsic coor-

force field in each of the other three universes. The 'de(ﬂhate intervatig;» about point P alongy into the horizontal

E?glgwh?fﬁ gigﬁ dlr\]/vz?herggzglcvtetct)lr;?)-t;jsn;\r/\?é?:}ndfr?;rrlt)pand the projection of the corresponding elementary coordi-
o o . nate intervaldgp® about pointP° along the curvedp? into
Euclidean 3-spac&°”® of the positive time-universe, coex- op P 9 bp

ists with the half-geometry of Fig. 1 in our universe, Whichhe vertical in Fig. 3 are given respectively as follows

is valid with respect to 3-observers in the proper physicaélqsp/ = dppcos pip; (w.r.t.3 — observersin E®) (5a)
Euclidean 3-spac&” of the positive (or our) universe. ’

The absolute intrinsic line element is given at paittton and
the curved absolute intrinsic metric spagg” with respect
to 3-observers in the proper physical Euclidean 3-sggite  dpp” = dep° cos ¢hpo; ; (w.r.t. 3 — observers in EV®)
in Fig. 2, (like Eqg. (1) at the symmetry-partner point P on (5b)
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The ‘non-metric’ componenti¢p = d¢psin ¢ip, pro-
jected intopégt along the vertical by intervalgp about point
P of curvedep in Fig. 1 is now projected into the proper
intrinsic metric spacepp”’ along the vertical in Fig. 3 and
the ‘non-metric’ componeni$p® = d@p° sin ¢ibpo, pro-
jected intogépt® along the horizontal by intervaly° about
point P° along the curved® in Fig. 2 is now projected into
the proper intrinsic metric spacg’ along the horizontal in
Fig. 3.

Although the ‘non-metric’ componentg anddpp” ac-
tually exist as shown in Fig. 3, they cannot appear in the in-
trinsic metric coordinate interval projection relatiobg) and
(5b). This is so because any intervalp of the ‘non-metric’ Fig. 3: Curved ‘two-dimensional’ absolute intrinsic metric space
absolute intrinsic space is equivalent to zero intervalhef t(¢p, $5°) and its projective flat two-dimensional proper intrin-
relative (i.e without hat label) proper intrinsic metricage Ssic metric spacégp’, ¢p°’) underlying flat six-dimensional proper
6p' into whichdep is projected in Fig. 3. physical spac¢E’®, E°’) with respect to 3-observers &' in our

If we temporarily take into account the projective ‘nonur_\iverse an(_j _3-0b_servers E"_/ in the positive time-universe, ob-
metric’ components in the intrinsic coordinate projectien t@ined by uniting Fig. 1 and Fig. 2.
lations that can be derived from Fig. 3, then we have the fol-
lowing

A()
7 0P

+E” 40P

|_3-observers

and and its projective straight line proper intrinsic spag®
along the vertical in Fig. 3, expressed as follows

(dop”)? = (dgp™)* + (6¢p)°

(dop') = (dpp) cos ptop; 3¢p° = dep° sin ¢nhpo;

(w.r.t. 3 — observers in E”®) (6a)
07 __ ~0 L2 n . A ALl . or
dgp® = dpp’ cos® pihpo; S = dppsin ¢piop; (dpp™)? = (dbp°)? — (66p)2,
; (w.r.t. 3 — observers in E°%) (6b) \yhich upon using system (6b) gives,
Now there is equality of square of intrinsic coordinate in- one 0N2 . 2 % N2 2
terval dgp? along the curved absolute intrinsic spaggand (dop™)" = (dop™)"sec” gibpo — (dgp)”sin” ¢iop

the sum of squares of the intrinsic coordinate interv@lp’ Tpig simplifies further as follows by virtue of Eq. (5a):
and 6¢p° along the straight line proper intrinsic spagg’
projected along the horizontal ks anddgp? respectively — (dgp™)? = (dpp®)? sec? dphpo — (dop')? tan? ¢ipp;
in Fig. 3, expressed as follows
(w.r.t. 3 — observers in E”) (7b)

N2 /\2 ~0\2
(dgp)” = (dop')” + (6¢p”) Since the point P along the curveg and the point Palong
AO - H H -
This can be seen as invariance of partial intrinsic ‘line elff1e curveds)” are symmetry-partner points, the absolute in

; N . P : -~ trinsic anglesgyp and¢i)po are equal; we can let)p =
ment’ between the curvegp and its projective straight line” "=~ © 'S . . !
¢p’ along the horizontal with respect to 3-observergif in @tpo = ¢1). By using this fact and adding Eqs. (7a) and (7b)

Fig. 3. Hence we have
(dop')? = (dep)? — (56p")? (dep™)* + (dop')* = (dep™)*(sec® ¢ — tan® o))
’ +(dgp 2 (sec? 6 — tan® 6))
which upon using system (6a) gives, 8)
(dop')? = (dpp')? sec® ¢ibp — (dp)? sin® gipo Eq. (8) expresses intrinsic local Euclidean invariangeH])

in terms of proper intrinsic coordinate intervals partiadlith
respect to 3-observers #’® and partially with respect to 3-
observers irE%’3, by virtue of relationsec? ¢i) — tan? ¢ih =
1. The full invariance of intrinsic line element (8) betwebp t
(7a) curved ‘two-dimensional’ absolute intrinsic spaeg”’, ¢p)
and its projective flat two-dimensional proper intrinsi@asp
There is likewise invariance of partial intrinsic line el{¢p”, ¢p’) with respect to 3-observers fiy® and 3-observers
ement between the the curved absolute intrinsic sggfe in E°3 has been written partially as invariance of intrinsic

This simplifies further as follows by virtue of Eq. (5b):
(dgp')? = (dgp')? sec® piop — (ddp”)? tan® ¢ po;

(w.r.t. 3 — observers in E'3)
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line element (7a) between the curved and its projective follows

straight linegp’ with respect to 3-observers '3 and par- o o 9

tially as invariance of intrinsic line element (7b) betwaba  (49%)" = (ddsm)” + (d¢sSnm)

curved¢p® and its projective straight lingp® with respect L i ! . i

to 3-observers i£?”? in Fig. 3 earlier. Z $9ij Ao dor’ — Z ORijdpT' dpr!
Now the invariance of intrinsic line element between the Wi =0 w3 =0

curved ‘two-dimensional’ absolute intrinsic metric space

(gspo_, ¢p) and its projective flat two-dimensional proper in- (8602 P (dpp®)? + sec? ¢¢}(d¢>ﬁ)2>

trinsic metric spacésp”’, ¢p’) in Fig. 3 can be expressed as R R

follows . (tan2 o (dpp?)? + tan? ¢¢(d¢,a)2) (14)

(dp3)* = (dos')? o o
The absolute intrinsic metric line element on the curved
or ) i ) ) ‘two-dimensional’ absolute intrinsic metric spaggs, ¢p°),
(dep®)? + (dpp)* = (dgp™)? + (dep") (9) which is valid partially with respect to 3-observersht? and

; - 073 in Fi
It then follows that the proper intrinsic space intervadgy” Partially with respect to 3-observers #°* in Fig. 3 that
Prop P llows from Egs. (13) and (14) is the following

anddgp’ can be replaced by the absolute intrinsic space FH
tervalsdpp® anddep respectively in Eq. (8) to have

(13)

1
(dpsm)® = > ¢gi;dpi'ded’

(dgp)? + (dpp)* = (dgp°)?(sec® ¢ip — tan® ¢i)) 20
+(dgp)? (sec® ¢y — tan® ¢1)) = $goo(dep°)* + dgu (dp)? (15)
(10) = sec® ph(dpp°)? + sec’ ¢ij(dp) (16)
Eq. (10) expresses intrinsic local Euclidean invariardeH]) = (d¢ﬁ022 + (dﬁi’f’)f a7)
on the curved ‘two-dimensional’ absolute intrinsic sp&gg, 1—¢k* 1—¢k?

¢p°) in terms of absolute intrinsic coordinate intervals parhe implied absolute intrinsic metric tensor is
tially with respect to 3-observers '3 and partially with re-

spect to 3-observers ii°'?, by virtue of relationsec? ¢ — - ;

tan® ¢¢) = 1. Let us replacéd¢p’)” + (d¢p)® by the square g, . — (Sec Y S . ) | 1—o¢k?

of absolute intrinsic Euclidean line elemént3)? at the left- 0 sec” ¢y 0 A

hand side of (10) to have 1- ¢k(218)
(dp3)? = (dpp°)?(sec?® ¢up — tan® dih) The derived circular absolute intrinsic metric line eleen

R N N (16) or (17) is the absolute intrinsic line element on thevedr
+dop)*(sec® v —tan® 1)) (11) 0 dimensional’ absolute intrinsic metric spate, ¢p)
in Fig. 3. It is dfectively the union of the partial absolute

2 012 2 intrinsic line element (1) derived with respect to 3-obsesv
(dg3)” = (dgp”)” + (dep) 12) ih the proper physical Euclidean 3-spag€ from Fig. 1 and

The absolute intrinsic Euclidean line element (11) or (1partial absolute intrinsic line element (3) derived witepect
obtains at every point along the curvgd and at the symme-to 3-observers in the proper physical Euclidean 3-sisté
try-partner point along the curvegp® partially with respect from Fig. 2, just as Fig. 3 from which (16) or (17) has been
to 3-observers ik”® and partially with respect to 3-observerslerived is union of Figs. 1 and 2.
in E% in Fig. 3, in so far as both the metric and ‘non-metric’ It must be noted, as explicitly stated by Egs. (1) and (3)
intrinsic coordinate interval projections are taken into@unt that the term,ggoo(dpp®)? = (d¢p®)?/(1 — ¢k?), of the
in deriving intrinsic coordinate interval projection rétms absolute intrinsic line element (17) has been derived byisnd
from Fig. 3, as done in systems (6a) and (6b) and Eqgs. (Fhahnce valid with respect to 3-observers in the proper phisic
and (7b). This, then, is validation of intrinsic local Eukli Euclidean 3-spac&?® of the positive time-universe, while
ean invariance on the curved ‘2-dimensional’ absolutériatr the term$g1 (d¢p°)? = (dép)?/(1—pk?), has been derived
sic space(¢p?, ¢p) with respect to 3-observers i3 and by and is hence valid with respect to 3-observers in the prope
3-observers i%3 in Fig. 3. physical Euclidean 3-spadé’3 of our (or positive) universe

Now let us as done on ‘two-dimensional’ and ‘three-din Fig. 3. Thus the componenigjoo and¢g,, of the derived
mensional’ absolute intrinsic metric spagel/2 and¢A/3 in  circular absolute intrinsic metric tensoy,; of Eq. (18) are
sub-section 1.1 of [1], separate the absolute intrinsidiuc valid with respect to 3-observersiP’3 andE” respectively.
ean line elementd¢3)? of Eq. (11) into the metric compo-  In essence, the curved ‘two-dimensional’ absolute intrin-
nent(d¢3m)? and the ‘non-metric’ componelitipsnm)? as sic metric spacépp, ¢p°) is an absolute intrinsic Riemannian

or

4A. J. Adekugbe. Evolutionary sequence of spacefimrinsic spacetime and associated sequence of geometries in a metitidtadll.
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metric manifold without curved absolute intrinsic time-‘di A ot

mension’, (i.e. of clas®M?; p = 2), which is underlied ocot » olot

by its projective flat two-dimensional proper intrinsic met ;

ric space(¢p’, pp®) and the outward manifestation of the &AL a

latter namely, the flat six-dimensional proper metric space g If & ocdot 10D
(E’3, E°3) in which the observers are located. This is so ocdots 4 1 | Lobservers

since curved absolute intrinsic time ‘dimension’ does net e oV

ist with respect to either the 3-observerdift or 3-observers 3 observers
in £°3 in Fig.3, who jointly construct the absolute intrinsic Ai

line element (16) or (17). ooP y

One important consequence of the perfect symmetry of S
state between our (or positive) universe and the positire-ti

universe is that the absolute intrinsic line element (1}temi

at point P on the ‘one-dimensional’ absolute intrinsic Ri&ig. 4: Curved ‘two-dimensional’ absolute intrinsic metric space-
mann spacep by 3-observers in the proper physical Euclidime (¢p, ¢éét ), its underlying projective flat two-dimensional
ean 3-spac&’? of our universe in the half-geometry of Fig. 1proper intrinsic metric spacetintey’, ¢cét’) and the outward man-

is perfectly identical to the absolute intrinsic line elemeifestation of the latter namely, the flat four-dimensional proper met-
(3) written at the symmetry-partner poiﬁio on (pro by 3- ric spacetime(E’37ct’), valid partially with respect to 3-observers
observers in the proper physical Euclidean 3-spaf& of in the proper physical Euclidean 3-spaB& of our universe and
the positive time-universe in the half-geometry of Fig. & Ipartially with respect to 1-observers in in the proper time dimension

th ds. th . f th bsolute intrinsi ct’ of our universe, obtained by transforming the Euclidean 3-space
other words, the componeqj,, of the absolute intrinsic and one-dimensional intrinsic space of the positive time-universe in

metric tensor in Eq. (1) is identical to the componento the upper half of Fig. 3 into time and intrinsic time dimensions of
inEqg. (3). our universe.

Having derived Fig. 3 and the absolute intrinsic line ele-
ment (16) or (17) on the curved ‘two-dimensional’ absolute )
intrinsic metric spacéep, ¢°) partially with respect to 3- 3-spaceE’”® of the positive time-universe in Fig. 3 are the
observers inE’3 and partially with respect to 3-observers ifnes that appear as 1-observers in the proper time dimension
E°73 in that figure, let us now modify both the figure and the’ of our universe in Fig. 4.
absolute intrinsic line element to the forms in which they ar  On the other hand, by letting" — ct”’, ¢p’ — dept”
valid for absolute intrinsic Riemann geometry in our unseer and ¢p — $égt° in the lower half of Fig. 3, one obtains
This shall be done in two steps. At the first step, we recognifi¢ diagram in the positive time-universe that correspdads
that the dimensions?’!, 292 andz%"3 of the proper physical that of Fig. 4 in the positive (or our) universe. However that
Euclidean 3-spac&?’® and the proper and absolute intrinsigiagram shall not be drawn here, since it has no usefulness in
spacegp”’ and@p° of the positive time-universe in Fig. 3 aredur universe.
elusive to 3-observers in the proper Euclidean 3-sggiéef The projection of thg elementary absolute intrinsic time
our universe and hence cannot appear in physics in our @iordinate intervatscdgt about point P along the curved
verse. ¢cot into the vertical and the projection of the elementary

As developed in sub-section 1.3 of [3], the proper phyabsolute intrinsic space intervépp about point P along the
ical Euclidean 3-spac&°’3 of the positive time-universe iscurvedey into the horizontal in Fig. 4 are given respectively
naturally contracted to the proper physical time dimenston as follows
of our universe with respect to all 3-observers in the proper

physical Euclidean 3-spad&* of our universe. Thus in con- peddt’ = pédet cos gihpo = pedet cos i
verting Fig. 3 to the form it will be useful in our universe, we )
must letE?"3 — ¢’ and consequently we must lep®’ — (w.r.t. 1 — observersinct’) (19a)
dcpt’ andgp® — ¢édt in the upper half of Fig. 3 to haveand
Fig. 4. , . - . 2
Since Fig. 4 contains the spacetime and intrinsic space- dp’ = dpcos ¢ip = dopcos uj;
time dimensions of our universe solely, it can be used to con- (w.r.t. 3 — observersin E’3) (19b)

struct absolute intrinsic line element, absolute intdnsiet-

ric tensor (or absolute intrinsic Riemann geometry) on the

curved (¢p, pégt ) in our universe jointly by 3-observers in - The intrinsic metric coordinate interval projection rela-
the proper physical Euclidean 3-spdc€ and 1-observers intions (19a) and (19b) derived from Fig. 4 are the modified
the proper time dimensiart’ of our universe in it. It must be forms of relations (5a) and (5b) derived from Fig. 3. Relaio
recalled from [2] that the 3-observers in the proper Euelide(19a) and (19b) can be obtained by simply lettifigp?’ —
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pept’ anddpp® — pédet in relation (5b), while retaining or

relation (5a). ) i (dot')? = (pc*(dot)* — (0¢p)?,
Again the ‘non-metric’ componentéiot projected into ) ) .

¢p' along the horizontal by intervapédg about pointp?  Which upon using system (20a) gives

along the curvedégt and the ‘non-metric’ componemthp 9 N2 /.2 N2 o2 0 N2 2,

projected intapegt’ along the vertical by intervalgp at the 9 (dgt)” = (Ge™(dot')" sec” pppo — (d@p)”sin” ppp

symmetry-partner point P along the curvgdin Fig. 4 have g impjifies further as follows by virtue of Eq. (19b)

not been taken into consideration in the intrinsic metrie co

ordipate intgryal prqjgction relations (19{;1) gnd (19bbycei b2 (ddt')? = (dc2(dot')? sec? ¢pvhpo — (dp)® tan? ¢pibp;

our interest is in deriving the absolute intrinsic metriwliel-

ement and the implied absolute intrinsic metric tensor or to (w.r.t. 1 — observersin ct')  (21b)
construct absolute intrinsic Riemann geometry on the clirve . . .
‘two-dimensional’ absolute intrinsic metric spacetirigp, Now the point P along the curvegy and the point P

pégt) in Fig. 4, partially with respect to 3-observers fif? along the curvedcgt in Fig. 4 are symmetry-partner points.
and partially with respect to 1-observersti in that figure. Consequently the absolute intrinsic anglels> and¢: po are
The projective ‘non-metric’ absolute intrinsic coordiean- €dual. Thus we shall lety)p = ¢vpo = ¢¢). By using this
tervalségp and ¢ését cannot appear in an absolute intrinsitact and adding Egs. (21a) and (21b) we have

metric line element.

However let us temporarily take into account the proje@—cz(dwl)2 +(dep')? = pc?(dgt')* (sec® did’ — tan” ‘W)
tive ‘non-metric’ components in the intrinsic coordinat@p +(dgp")? (sec? gap — tan? ¢n))
jection relations that can be derived from Fig. 4 to have as (22)
follows

, o . . . Eq. (22) expresses intrinsic local Euclidean invariarddH])
pedgt’ = ¢edpt cos pyppo; dpp = dppsin ipp; in terms of proper intrinsic coordinate intervals partiadlith
respect to 3-observers #’® and partially with respect to 1-
observers iret’ in Fig. 4, by virtue of the relatiorsec? gbvfz —

dop’ = dppcos dpibp ¢edpt = peddt sin ¢ po; tan ¢)2 = 1. The full invariance of intrinsic Euclidean line

s element (22) has been written partially as Eqg. (21a) with re-
(w.r.t. 3 — observers in E™)  (200) spect to 3-observers iR’ from the lower half of Fig. 4 and
There is invariance of partial intrinsic line element bdartially as Eq. (21b) with respect to 1-observerstnfrom
tween the curved absolute intrinsic spageand its projec- the upper half of Fig. 4 above.
tive straight line proper intrinsic spage’ along the horizon- The invariance of intrinsic line elemgnt between the cur-
tal with respect to 3-observers #'3 in Fig. 4, expressed asved absolute intrinsic spacetiniep, pc¢t) and its projec-

(w.r.t. 1 — observers in ct’) (20a)

follows tive flat proper intrinsic spacetimgby’, ¢cgt’) in Fig. 4 is
(dpp)? = (dop')* + ¢pé* (6t )? expressed formally as follows
or . (d3)? = (d¢s')?
(dop')? = (dpp)* — ¢ (6¢1)?,
which upon using system (20b) gives or
(dpp')? = (dop')? sec? ¢ihp — ¢ (dot )2 sin ¢ po ¢ (dot)? — (dpp)? = oc*(dot')” — (dgp')?  (23)

It follows from Eq. (23) that the proper intrinsic space med
d¢p’ and the proper intrinsic time dimension intervali¢t’
(depp')? = (dop')? sec® pihp — ¢c? (dpt')? tan ¢t po; can be replaced by the absolute intrinsic time ‘dimension’ i
terval pédgt respectively in Eq. (22) to have

This simplifies further as follows by virtue of Eq. (19a)

(w.r.t. 3 — observers in E’®) (21a) . R ) .
¢ (dt)? + (dpp)? = $&*(dt)?(sec” ¢y — tan® o))

There is likewise invariance of partial intrinsic line ele- o o % -
ment between the curved absolute intrinsic time ‘dimerision +(dgp)”(sec” ¢y — tan” ¢ih)
oépt and its projective straight line proper intrinsic time di- (24)
mensiongcot’ along the vertical with respect to 1-observers
in ¢t’ in Fig. 4, expressed as follows Eq. (24) expresses intrinsic local Euclidean invariance
(¢LEI) in terms of absolute intrinsic coordinate intervals-pa
62 (dot)? = 2 (dot')? + (6¢p)* tially with respect to 3-observers I8’ and partially with
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respect to 1-observers i in Fig. 4. Let us replace the left-  The absolute intrinsic metric tensor implied by the ab-
hand side of Eq. (24) by the square of absolute intrinsic liselute intrinsic line element (30) or (31) is the following
element to be denoted ly¢ps*)? to have

. . ) " 2¢9p 0
(dps*)? = ¢é*(dot)*(sec? ¢rp — tan? i) Pgi; = < secoqbw sec? g > (32)
+(dpp)* (sec® g — tan® ¢3h)  (25)
or
or R 1
(dg3*)? = p&*(dot)? + (dop)® (26) oir = | 1- ok? (33)

The reason for introducing the dummy star label on the in- & 0 1 _
trinsic line element in Eq. (25) or (26) shall be given shortl 1 — pk?
in this paper.

The absolute intrinsic Euclidean line element (25) or (26) Adain, the componentgg,oc(det)? = ¢e?dgt? /(1 —
obtains at every point along the curvég and the symmetry- ¢k>) in the absolute intrinsic line element (29), (30) or (31)
partner point along the curvettéi with respect to 3-obser-has been derived by and is hence valid with respect to 1-
vers inE’3 and 1-observers int’ in Fig. 4, in so far as both Observers in the proper time dimensiaf, while the compo-
the metric and ‘non-metric’ intrinsic coordinate interyab- NeNtodt; (dep)? = sec? pyp(dep)® = (dep)? /(1 — ¢k?) has
jections have been taken into account in deriving intrindi@en derived by and is hence valid with respect to 3-observer
coordinate projection relations from Fig. 4, as done in syi§-the proper physical Euclidean 3-spat€ in Fig. 4.
tems (20a) and (20b) and in Egs. (21a) and (21b). This, then,Now the absolute intrinsic line element (16) or (17) on
is validation of intrinsic local Euclidean invariancel(El) the curved ‘two-dimensional’ absolute intrinsic metri@aep
on the curved ‘two-dimensional’ absolute intrinsic spanet (¢7
(¢p, pcpt) partially with respect to 3-observers #i3 and ¢¢°) in Fig. 3, obtained by uniting Fig. 1, (which is valid
partially with respect to 1-observersdtf in Fig. 4. with respect to 3-observers i/3) and Fig. 2, (which is valid

As done with(d¢$3)? in Eq. (11) earlier, let us separate thwith respect to 3-observers %), possesses the circular
absolute intrinsic Euclidean line elemdiitys*)? in Eq. (25) structure like the absolute intrinsic line element on cdrve
into the metric and ‘non-metric’ componentgssiy,)? and ‘two-dimensional’ and ‘three-dimensional’ absolute insic

(dosfm)? as follows metric spaces M2 or ¢]V[3 encountered in part two of this
paper [1]; compare the absolute intrinsic line element (i6)
(dp3*)* = (dodm)® + (dp3hm)” (17) on the curvedqp, ¢4°) in Fig. 3 above with the absolute
1 S ~intrinsic line elements (2d) and (3) @/2 and¢M? in [1].
= Z ¢G;; Ao’ dpr’ — Z ¢R;;doi"dor’ The absolute intrinsic line element (30) or (31) on the
i,j=0 i,j=0

curved ‘two-dimensional’ absolute intrinsic metric sp@oe
(27)  (¢p, ¢épt) in Fig. 4, which is valid partially with respect to
_ (se(:2 o (dpP)? + sec? ¢¢3(d¢ﬁ)2) _3-ob/sgrvers i_nE’3 aqd pqrtially with respect to 1-observers
in ct’ in that figure, likewise possesses the circular structure
_ (tan2 o (dep?)? + tan? ¢q&(d¢ﬁ)2> (28) like the absolute intrinsic line element (2d) on curved %wo
dimensional’ absolute intrinsic metric spag#/? in [1].
The absolute intrinsic line element on the EJUI'VE'd ‘two- |t follows from the foregoing two paragraphs that the pair
dimensional’ absolute intrinsic spacetir, ¢cét ), which  of absolute intrinsic tensor equations derived for curia:
is valid partially with respect to 3-observers Ef* and par- dimensional’ and ‘three-dimensional’ absolute intrinsiet-
tially with respect to 1-observers i’ in Fig. 4 that follows ric SpacesﬁMQ and ¢M3 in [1] and presented as Egs. (32)

from Egs. (27) and (28), is the following and (44) of that paper, are equally valid for the curved ‘two-
1 dimensional’ absolute intrinsic metric spacetiriag, pépt)
(dpsim)? = Z ¢g;fjd¢i;id¢j:j in Fig. 4 above. Let us then write those absolute intringie te
=0 sor equations in terms of starred absolute intrinsic médrie
it b (ddF)? + it (ddp)? (29) sor and starred absolute intrinsic Ricci tensor on the curve

. ) . ‘two-dimensional’ absolute intrinsic spacetiri, ¢é¢t ) in
sec” ¢poe? (doi)? + sec? oy (dpp)*(30)  Fig. 4 as follows
_ 9 (del)® | (dgp) R
= g T (31) 635 — ORY; = 8i; (SLEI) (34)

where the relationgbI% = sin gm[J, derived in sub-section 1.1  And for the second absolute intrinsic tensor equation, let
of [1] and presented as Eq. (13) of that paper has been used. start with the intermediate equation (42) of [1] in the
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’

process of derivation of that equation in that paper, ocot’ A ct
N TrgbRZ:* R :
PR} — ———¢gi; =0 (35)
wheren is the dimensionality of the absolute intrinsic Rie- ;acdm'I;: 3

mann space and of the matr 3* For the(¢p, pégt ) in

Fig. 4 being considered hene,= 2, thereby simplifying (35)
as follows

% 1 % | Ak
d)Rij - §¢R ¢gij =0 (36)

where the absolute intrinsic Riemann scajdt* is the trace
of the2 x 2 diagonal matrixpR2*.

Interestingly Eq. (36) in absolute intrinsic Riemann geo-
metry on curved ‘two-dimensional’ absolute intrinsic nietr
spacetimes$op, péot ) in Fig. 4, takes on its form in the con-

text of conventional Riemann geometry, Fig. 5: A pair of co-existing ‘two-dimensional’ absolute intrinsic
1 metric spacetimes and their underlying flat two-dimensional proper
R,, — 5ng =0 (37) intrinsic metric spacetime and the outward manifestation of the latter

namely, the flat four-dimensional proper metric spacetime; the lower
in (36) half of this figure is valid with respect to 3-observers in the proper
ysical Euclidean 3-space and the upper half is valid with respect
0 1-observers in the proper time dimension.

However while the factod in the term—1¢R*¢g7;
restricts absolute intrinsic Riemann spaces to curved-‘t
dimensional’ absolute intrinsic metric spaces of the tif&
#p°) in Fig. 3, which must be replaced by the curved ‘two-

dimensional’ absolute intrinsic Riemannian metric spaeet It is the pair of absolute intrinsic tensor equations (34) an
(¢p, pegt) in Fig. 4, the factors in the term—1Rg,, in (38), written as Egs. (32) and (44) in [1], (and not (34) and
(37) in conventional Riemann geometry is not known to ré36) above), that shall be found directly applicable in diso
strict the dimensionality of a conventional Riemann spaceintrinsic Riemann geometry on curved ‘two-dimensionaF ab
conventional Riemann spacetime to 2. A conventional Rislute intrinsic metric spacetimgp, pépt ), partially with
mann spacé/? can be of any dimension p and a convemespect to 3-observers #’® and partially with respect to 1-
tional Riemannian spacetimi@? ™4 can be of any dimensionobservers irct’ in Fig. 4. For instance, the (algebraic) so-
p + ¢; for instancep = 3, ¢ = 1 in the case of curvedlution to Egs. (34) and (38) are the starred absolute intrins
four-dimensional spacetime of the general theory of nelatimetric tensor (33) and the following starred absolute msidg

ity. Eqg. (37) is known to apply to all conventional RiemanRicci tensor,

spaces and conventional Riemannian spacetimes without re-

striction on their dimensionality. ¢k2A2 0
As derived in [1], Eq. (36) admits of further simplification ¢R;*j = 1 — ok ro (39)
as follows ok ~
ORy; — ok*¢gy; =0 (38) 1- ¢k

whereok is the equal absolute intrinsic curvature parameter 'NOW et us consider the superposition of a pair of "2-
of an arbitrary point along the curvegp and its symmetry- dlmgnsmn_al absolute |nt_r|ns_|c _met_nc spac_etlmes (a pé&ir
partner point along the curveig® in Fig. 3, which become an ‘2-dimensional’ absolute intrinsic Riemannian metric apa

N N N; N ~ PR .
arbitrary point along the curveg}s and its symmetry-partnert'mes)(‘b,p’ ¢egt) and(¢p', pégt ) Suf:hAthaw’?’ ¢eot) lies
point along the curveaéds in Fig. 4 over (or is curved relative tojpp’, pédt’), as illustrated in

The perfect symmetry of state between our (or positiv@g' >- . L .
universe and the positive time-universe makes absolute jn- The pair of gbso!ute intrinsic tensor equations (34) af‘d
trinsic curvature parameterﬁ%p and ¢/%po at every pair of (38) must be written in terms of resultant starred absohxe i
symmetry-partner points along the curveg and ¢é¢i re- trinsic metric tensor and resultant starred absolutenisiti
spectively in Fig. 4 to be identical; that igkp = dkpo = Ricci tensor as follows

¢k. Itis the square of the identical absolute intrinsic curva- dor. — (bﬁ‘ — 5. (40)
ture parametergk? that appears as the diagonal entries of e T

the2 x 2 diagonal matrixpR2* in Eq. (35), forn = 2. Hence OR,;; — (ok)*¢7,; =0 (41)
TroRY* = ¢R* = 20k and LoR* = ¢k?, which makes R
Eg. (38) the same as Eq. (36). where the resultant absolute intrinsic curvature paramgte
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for the purpose of writing the resultant absolute intririgie On the other hand, the projection of the elementary co-
element and resultant absolute intrinsic metric tensomat @dinate intervaligp about point P of the upper curved ab-
arbitrary point of the upper curved absolute intrinsic €aa¢ solute intrinsic spacep into proper intrinsic spacgp’ along
relative togp’ along the horizontal or at the symmetry-partneéne horizontal and of intervabédgt about point B of the
point of the upper curved absolute intrinsic time ‘dimensioupper curved absolute intrinsic time ‘dimensiapt¢t into
oédt relative togept’ along the vertical, is given in termsthe proper intrinsic time dimensiopcét’ along the vertical,

of the individual absolute intrinsic curvature parametgks are given in terms of the resultant absolute intrinsic angle
at pointP’ of the lower curved absolute intrinsic spagf  ¢vres= ¢ + ¢, as follows, as derived in sub-sub-section
andok at point P of the upper curved absolute intrinsic spates.2 of part one of this paper [1]:

¢p prior to their superposition as follows, as derived in sub-

section 1.6 of part one of this paper [1]: dop’ = dopcos dn/fres R
= d¢pcos ¢y’ cos ¢p
(6k)2 = (oh')2 + ok (42) = dgp(l— ok (1= gk*)/?; (46)

(w. r. t. 3-observers inE’?)

gedpt’ = edet cos pires
dédt cos ngz/A/ cos ¢1[)

The resultant starred absolute intrinsic tens@j‘% and

gbﬁij that satisfy equations (40) and (41) are the following

1 = gedoi(1— ok™)'/2(1 - ¢k*)'/%; (47)
_— 0
ko 1 — (¢k)? (w. r. t. 1-observers int’). Extension of relations (42)
¢9i; = 0 1 through Eq. (47) to a situation of the superposition of three
1— ((b@)g and larger number of curved ‘two-dimensional’ absolute in-

trinsic metric spacetimes is easy and straight forward.
It is at the first step of the modification of Fig. 3 to the

= 1—(¢k')? — k> 1 form in which it is valid for absolute intrinsic Riemann geom
PV etry in our universe, when Fig. 3 is converted to Fig. 4, that
1— (¢k)”? — ok the absolute intrinsic tensor equations (34) and (38) meist b

(43) solved to obtain the starred absolute intrinsic metric dens
(33) and starred absolute intrinsic Ricci tensor (39). The
and starred absolute intrinsic metric tensor (33), the staaied
~ solute intrinsic Ricci tensor (39) and Fig. 4 they are associ
(¢k)f 0 ated with, all of which are valid partially with respect to 3-
= 1 — (ok)? observers in the proper physical Euclidean 3-sp&teand
4 (ok)? partially with respect to 1-observers in the proper time di-
W mensionct’ in Fig. 4, shall now be modified to the forms in
. ) which they are valid with respect to 3-observers in the prope
(¢k')? + ok Euclidean 3-spac&’® solely, at the second (and final) step
B 1— (¢]§;/)2 _ ¢];2 of converting Fig. 3 and the associated absolute intrifse |
(k') + k> element (16) or (17), the implied absolute intrinsic meteit-
1_ (¢;;/)2 _ ¢fc2 sor (18) and the absolute intrinsic Ricci tensor (39) to the
(44) forms in which they are valid with respect to 3-observers in
the physical proper Euclidean 3-spdg€ solely.

The resultant absolute intrinsic line element on the curved ' N€ modified form of Fig. 4 to be derived is the valid
‘two-dimensional’ absolute intrinsic spacetime with ceav diagram and the associated modified absolute intrinsic line
absolute intrinsic ‘dimensionsp and¢é¢i in Fig. 5 is then element, absolute intrinsic metric tensor and absolutéint
given partially with respect to 3-observersit? ana partially sic Ricci tensor are the valid forms in the context of absolut
with respect to 1-observers i’ (or with respect to (31)- 'NtriNsic Riemann geometry in our universe.

0

observers i E, ct')) as follows 1.1 The form of spacetimgintrinsic spacetime diagram

~ o At oy 9 of absolute intrinsic Riemann geometry that is valid

(dgs™)” = dGoopc”(det)” + dgy, (ddp) with respect to 3-observers in the proper physical
B2 (dept)? (dpp)? Euclidean 3-space solely

1— (pk')? — ¢k® 1 — (¢k')* — ok Now the starred absolute intrinsic line element (30) or (31)
(45) and the implied starred absolute intrinsic metric tensay (3
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(33), although have been derived on the curved ‘two-dimen- an et
sional’ absolute intrinsic spacetime (or ‘two-dimensibah- :
solute nospace-notiméyp, pégt ) in Fig. 4, do not possess
the hyperbolic structure of the metric tensors on Riemannia

metric spacetime manifolds of the typé?+¢; p = 3,¢ = 1. odet I+

Rather they have the circufatliptical structure of the metric

tensors of Riemannian metric spaces without time dimension E@. 228

of the classM?. The fact that the proper time dimensian, :

the proper intrinsic time dimensiatr¢t’ and the curved ab- O <_i,>ﬂﬁ
solute intrinsic time ‘dimensionié¢t appear in Fig. 4 (to dob

replaceE%"3, ¢p°" and ¢p° respectively in Fig. 3), has not
shown up in the structure of the absolute intrinsic line elBig. 6: Flat ‘four-dimensional’ absolute metric spacetime underlied
ment (30) or (31) and the implied absolute intrinsic metrhy flat ‘two-dimensional’ absolute intrinsic metric spacetime, which
tensor (32) or (33) on the curved ‘two-dimensional’ absmolugxists in the absence of a long-range metric force field (or in the
intrinsic metric spacetim@sy, ¢é¢£) in that figure. absence of absolute intrinsic Riemannian spacetime geometry).
The circular structure of the absolute intrinsic line ele-
ment (30) or (31) and of the absolute intrinsic metric tensor ] ] ) o
(32) or (33) arise because they have been derived partiéWCEt'me geometry of F!g. 6 will persist in the_ absence of a
from the upper half of Fig. 4 by or with respect to 1-observel@19-range metric force field. However let us introduce the
in the proper time dimensior’ along the vertical and par-SOUrce of a long-range absolute met_rlc force f|gld at a point
tially from the lower half of that figure by or with respect On the flat absolute sPa@o"_ Then its underlying source
to 3-observers in the proper Euclidean 3-spatealong the of Ior?g—rang_e abgolute mtrlnsp m.etr.|c force f|e.Id in the un
horizontal. The existence of the curved absolute intritisie  d€rlying straight line absolute intrinsic spagg will appear
‘dimension’ pé¢i does not appear in physics formulated b@\_,utomatlgally_dlrectly underne_ath thgfsource of absolu_&e m
3-observers irfE’3, just as the curved absolute intrinsic spad#f force field introduced at point S . When we particu-
¢ does not appear in physics formulated by 1-observer§‘?ﬁ'ze to gravitational field, as shall be done fuIIy.eIs_evd;e
¢t in Fig. 4. Consequently the absolute intrinsic line elemelfiS means that the absolute rest magsof a gravitational
(30) or (31) obtained by uniting the partial absolute irgiin fi€ld source is introduced at point S _E‘g and the absolute
line element derived on the curvedgt by 1-observers i’ INUrINSIC rest mass 1, of the gravitational field source au-
and the partial absolute intrinsic line element derivedran tiomatically appears i) underneatt/, '”_Ej' As shall be
curvede; by 3-observers itf?’? in Fig. 4 has not assumed th&Xxplained to some exten_t in the last section of this paper _and
hyperbolic structure expected on a curved ‘two-dimengionSOMPletely elsewhere with further development, this actio
absolute intrinsic spacetime. will cause Fig. 6 to evolve into Fig. 4. A
The purpose of this sub-section is to derive the form of Now the absolute time ‘dimensioft and the absolute in-
Fig. 4 that is valid with respect to 3-observers in the propéinsic time ‘dimension'séét remain unchanged, that is, do
physical Euclidean 3-spad&? solely in that figure and to de-not transform into proper time dimensieti (usually denoted
rive the corresponding modified forms of the starred absolly ¢7) and proper intrinsic time dimensiaf¢t’ respectively
intrinsic metric tensor (32) or (33) and the starred absdlut in absolute physigabsolute intrinsic physics, such as associ-
trinsic Ricci tensor (39) from the modified diagram. It is thated with the presence of absolute metric force field in ab-
modified diagram and the associated modified absolute intgglute spacetime and absolute intrinsic metric force field i
sic line element and modified absolute intrinsic metric eensabsolute intrinsic spacetime, which causes Fig. 6 to toansf
and modified absolute intrinsic Ricci tensor that are vadid finto Fig. 4 discussed above. Graphically, this means ¢hat
absolute intrinsic Riemann geometry in our universe, af stnd¢cgt along the vertical in Fig. 6 must remain along the
be justified. vertical with respect to 3-observers in the proper Eucldea
Now let us present the reference geometry to the geodnspaceE’, as happens in Fig. 1, which is valid with re-
etry of Fig. 4 as Fig. 6. Fig. 6 will exist in the absencgpect to 3-observers iB" solely, in the context of absolute
of absolute intrinsic Riemann geometry, thereby making tRBysicgabsolute intrinsic physics. The absolute time ‘dimen-
curved absolute intrinsic metric spaggand curved absolutesion’ ¢t and the absolute intrinsic time ‘dimensiagt¢t must
intrinsic metric time ‘dimensiondégt in Fig. 4 to become the likewise remain along the vertical in the modified form of
extended straight line absolute intrinsic metric spagalong Fig. 4 being sought, which is valid with respect to 3-obsesve
the horizontal and the extended straight line absolutesitr in the Euclidean 3-spade’® solely, in the context of absolute
metric time ‘dimension’péét along the vertical respectivelyphysicgabsolute intrinsic physics.
in Fig. 6. Thus for the purpose of deriving absolute intrinsic line
The reference geometry to absolute intrinsic Riemannialement and its implied absolute intrinsic metric tensor on
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the curved ‘two-dimensional’ absolute intrinsic metri@sp- ward manifestation is the straight line absolute time ‘dime
time (¢p, déot ) and for formulating the non-detectable atsion’ ¢t along the vertical in Fig. 7. Thus the proper time
solute metric theories of physics as 3-geometry theori#sein dimensionct’ does not appear with respect to 3-observers in
proper Euclidean 3-space - absolute time paran{giét,z) the proper physical 3-spadé in the absolute intrinsic Ri-
and absolute intrinsic metric theories of physics as istcin mennian spacetime geometry of Fig. 7. Fig. 7 contains the
1-geometry theories in the underlying proper intrinsiccgpacurved absolute intrinsic metric spagg and straight line
- absolute intrinsic time parametépp’; ¢t ), the preceding absolute intrinsic metric time ‘dimensiogégt on which to
paragraph makes it mandatory for us to modify Fig. 4 in suchnstruct absolute intrinsic Riemann geometry with respec
a way that the absolute time ‘dimensiait’and the absolute to 3-observers in the proper physical Euclidean 3-sg&ée
intrinsic time ‘dimension’¢é¢t remain along the vertical in as shall be done below.
the modified diagram. The resulting diagram will then con- Fig. 7 also contains the flat proper Euclidean 3-space - ab-
tain flat(E’3; ¢f) underlied by flat(¢p’; pépt). It will hence solute time ‘dimension’(E”3,¢ét) (the Galileo space of
be a 3-geometyintrinsic 1-geometry diagram, which is validabsolute physics), in which to formulate non-observable ab
with respect to 3-observers in the proper physical Eucligelute physics, such as absolute gravity, absolute maion,
ean 3-spacet’® solely, (unlike the 4-geometfiptrinsic 2- solute electromagnetism, etc, (as 3-geometry classieakth
geometry diagram of Fig. 4 that is valid partially with resperies) and its underlying proper intrinsic space - absolate i
to 3-observers in the proper Euclidean 3-space and pgrtiatinsic time ‘dimension’ (¢p’, ¢é¢t) (the intrinsic Galileo
with respect to 1-observers in the proper time dimensiospace of absolute intrinsic physics), in which to formuktte
The required modified form of Fig. 4, which is valid for absolute intrinsic physics, such as absolute intrinsic dyaab-
solute intrinsic Riemann geometry in our universe is defiveolute intrinsic motion, absolute intrinsic electromatigra,
hereunder. etc, (as intrinsic 1-geometry classical theories) by 3eolers
Now the anti-clockwise sense of rotation by positive ain the proper physical Euclidean spaE€, as shall be devel-
solute intrinsic angleéxy » of the absolute intrinsic coordinateoped elsewhere with further development.
interval d¢p relative to its projective proper intrinsic coordi-  The intrinsic metric coordinate interval projection rela-
nate intervali¢p’ along the horizontal is valid with respect tdions derivable from Fig. 7, from which absolute intrinsic
3-observers in the proper physical Euclidean 3-space Gespaetric line element can be derived @pp, ¢épt ) with respect
E’ in Fig. 4, since anti-clockwise rotation is positive wittio 3-observers i3 solely in that figure are the following
respect to these observers. Likewise the clockwise rotatio . , - , . -
by positive absolute intrinsic ang&) o of the absolute in- ~ ¢¢dot = pedot cos(—¢ypo) dop’ = ddpcos ¢ip
trinsic time coordinate intervalédet relative to its projective of

proper intrinsic coordinate intervakd¢t’ along the vertical pedgpt’ = pédet sec ¢1/3 (48a)
is valid with respect to 1-observers in the time dimensitn , . .
in Fig. 4, since clockwise rotation is positive with resptact dop” = dop cos ¢y (48b)

these observers, (as explained in detail in section 4 af 3}) Equation (48a) derived by 3-observersi#® in Fig. 7 re-
the other hand, the clockwise rotation by positive absdhite places Eq. (19a) derived by 1-observers in the proper time
trinsic anglegy po of the absolute intrinsic time coordinatalimensionct’ in Fig. 4. Equations (48a) and (48b) are intrin-
interval pédot relative togedgt’ along the vertical is invalid sic ‘time dilation’ and intrinsic ‘length contraction’ farulae
with respect to 3-observers in 3-spaE€. Consequently the with respect to 3-observers in the proper physical 3-sjte
upper half of Fig. 4 is valid with respect to 1-observerstin in the absolute intrinsic Riemannian spacetime geometry of
and the lower half is valid with respect to 3-observer&id. Fig. 7.

In order to make Fig. 4 valid with respect to observers The projective intrinsic metric coordinate intervalgp’
in the physical 3-spac&” solely, we must change the posiandgcdgt’ in Fig. 7 have been put into consideration in rela-
tive sign of the absolute intrinsic ang&eﬁpo of inclination tions (48a) and (48b), while the ‘non-metric’ intrinsic e¢db
of ¢pédpt to pedpt’ without changing its clockwise sensenate interval®¢p andécdpt’ have been disregarded. Indeed
However we can do this only if we also interchange the ithe absolute intrinsic line element on the curved absohite i
terval pédot along the curve@ést and its projectionpeddt’ — trinsic spacetimépp, ¢pépt ), which is valid with respect to 3-
into ¢cet’ along the vertical. Doing this about every poinbbservers in the physical proper Euclidean 3-sga@esolely
along the curvedégt implies interchanging the curveff¢?  in Fig. 4, must be synthesized from the intrinsic metric eoor
and the straight line proper intrinsic time dimensigmpt’. dinate interval projection relations (48a) and (48b) detiv
By implementing these in Fig. 4 we have Fig. 7, which isom Fig. 7. However the appropriate structure (or sigregtur
now valid with respect to 3-observers in the physical propeithat absolute intrinsic line element to adopt is yet unino
Euclidean 3-spacg” solely. and cannot be determined from Egs. (48a) and (48b).

It must be observed that since the absolute intrinsic time In order to determine the structure (or signature) of the
‘dimension’ pc¢t is a straight line along the vertical, its outabsolute intrinsic line element and consequently the aitsol
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& ¢p was a straight line along the horizontal in Fig. 6, becomes
7 ocot’ replaced by componendgp’ andgcdpt’ projected along the
: horizontal in Fig. 7, upon evolution of the geometry of Fig. 7
from Fig. 6. There is invariance of the squares of intrinsic
coordinate intervals along the horizontal between Fig. & an
Fig. 7, expressed as follows:

(dop')® + ¢ (6¢t")? = (dgp)?

(dgp)? — pc?(s¢t")?

(dgp')? sec® ¢pibp — pe*(dgt')? sin® dihpo

Fig. 7: The form of Fig. 4 that is valid with respect to 3-observers in (50)

the proper physical Euclidean 3-space solely; the correct diagmram fo

absolute intrinsic Riemannian spacetime geometry in our univers¢here systems (49a) and (49b) have been used.ffécte
this equation expresses invariance of partial intrinsie kle-

o _ _ _ ment between the curved ‘one-dimensional’ absolute isitin

intrinsic metric tensor on curved ‘two-dimensional’ ahgel spaces; and its projective straight line proper intrinsic space

intrinsic spacetime¢p, ¢éot) that is valid with respect to ép’ inFig. 7.

3-observer inE"* solely in Fig. 4, we must first determine  The following relation likewise obtains between the in-

which of intrinsic local Euclidean invariancel(El) and in-  trinsic coordinates intervapedgt’ along the curved proper

trinsic local Lorentz invariance L) on (¢p, ¢é¢t) is valid intrinsic time dimensionct’ and the absolute intrinsic co-

with respect to 3-observers i solely in Fig. 7. Thus let ordinate intervalsséds? andd¢p projected into the straight

us take into account the projective ‘non-metric’ compogsenine absolute intrinsic time ‘dimensiomié¢t along the verti-
in the intrinsic coordinate projection relations that cade- cal in the upper half of Fig. 7

rived from Fig. 7 to have as follows

=
<
b\
e
Il

) . ) o (dot')? = ¢ (det)? + (5¢p)
peddt = geddt’ cos(—dhpo); S¢p = depsin dibp SRV o8 S + (ddp) sin? pip

or = ¢ (dpt')? cos® pihpo + (dgp')? tan® ¢ip

pedpt’ = pédot sec pihpo; 5¢p = dppsingpp  (49a) 1)
where, again, systems (49a) and (49b) have been used and
and Eq. (48b) has been used between the last two lines of equa-
, . - , . - tions. Again, Eg. (51) expresses invariance of intringie li
dgp’ = dppcos ¢ipp; $eddt’ = deddt’ sin(—¢ipo) element between the curved one-dimensional proper iftrins
or time dimensionpcot’ Aand the straight line absolute intrinsic
time ‘dimension’¢c¢¢t along the vertical in Fig. 7. Both re-
dpp’ = depcos pp; dedpt’ = —pedpt’ sindihpo (49p)  lations (50) and (51) have been derived by 3-observers in the
proper Euclidean 3-spadé'’ in Fig. 7 solely, with respect to
or whom Fig. 7 is valid.
A . Now the addition of Egs. (50) and (51) does not lead to
dop’ = dopcos pip; pcddt’ = —pédgt tan dbpo  (49¢)  intrinsic local Euclidean invariancelEl), as can be easily
verified. It may be recalled that the addition of the corre-
where Eq. (48b) has been used in the second equation §gmding Egs. (21a) and (21b) derived from Fig. 4, leads to
tween systems (49a) and (49b). intrinsic local Euclidean invariance expressed by Eq..(22)

The intrinsic coordinate projection relations of systems Qn the other hand, let us subtract Eq. (50) from Eq. (51)
(49a) and (49b) derived from Fig. 7 are valid with respeg have as follows

to 3-observers in the proper physical Euclidean 3-sgaée

solely in that figure. They correspond to systems (20a) and ¢c?(dpt')? — (dgp')? = ¢ (dot’)? cos? ¢i)
(20b) derl\/_ed/from Fig. 4, WhICh a/rse valid W_lth respect to 1- +(dop')? tan? (w
observers int’ and 3-observers iit’> respectively. N o o
Now the only absolute intrinsic space coordinate interval —(dop’)" sec” ¢ A
d¢p about point O along the absolute intrinsic spagavhen +pc? (dot')? sin? i (52)

12A. J. Adekugbe. Evolutionary sequence of spacétitrasic spacetime and associated sequence of geometries in a metitidtddl|.
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where the fact tha.b’([}p = ¢1/3Po = qsz[z has been used.bounded by curvedp and straight linesé¢t, with respect to
Eqg. (52) is given as follows by associating like terms at ti®observers in in the physical proper Euclidean 3-space

right-hand side in Fig. 7, in so far as both the metric and ‘non-metric’ intrin
R . sic coordinate interval projections are taken into accaunnt

o (dot')? — (dpp')® = ¢c(dt’)?(cos® ¢y + sin® ¢1))  deriving intrinsic coordinate projection relations frorig F7.
—(dpp’)*(sec? $1p — tan? ¢1/3) Now let us separat@i®s)? in Eq. (56) into the metric and

(53) non-metric’ components as follows

N2 ~ 2 a 2
Eq. (53) expresses intrinsic local lorentz invarianggLl() (d¢3)” = (d¢3m)” + (dp3nm)

in terms of proper intrinsic coordinate intervals by virtoie LI iy ad ! . i g ad
relationscos? ¢tp +sin? ¢1p = 1 andsec? ¢ptp — tan? prp = 1. Z ¢gi;dr'do’ — Z PRi;doT dps

Now the invariance of intrinsic line element between the L3 =0 6y =0
absolute intrinsic spacetinie, pé¢t ) and the proper intrin- (58)
sic spacetimégp’, pcgt’) in Fig. 7 allows us to write the fol- = (COSQ o (dept)? — sec? ¢1/}(¢,5)2)
lowing
(dp3)? = (dgs')? — (-~ sin? giigc (doh)? — tan? pui(dep)?)
or (59)

dc2(dot)? — (dpp)? = pc*(dot')? — (dop')?  (54) The absolute intrinsic line element without star label on
the curved ‘two-dimensional’ absolute intrinsic metriasp-
wheredgs pertains to the ‘two-dimensional’ absolute intrintjme (¢p, pépt) that is valid with respect to 3-observers in
sic spacetiméop, et ) bounded by curveg and straight £73 solely in Fig. 4, (which is the same as the absolute intrin-

line gpépt, while dos’ pertains ta(¢p’, pe¢t’) in Fig. 7. sic line element ori¢, pégt ) in Fig. 7), which follows from
It follows from Eq. (54) that the proper intrinsic coordifgs. (58) and (59) is the following

nate intervalsd¢p’ and ¢cdgt’ can be replaced by the ab-
solute intrinsic coordinate interval&sp and ¢pédgt respec-

tively in Eq. (53) to have (dpsm)® = > ¢gijdpi‘dpi’
1,7=0

98 (dgt)” — (dpp)* = 9&(dgt)*(cos” dy + sin® ¢y = $h00d (dt)® + dini (dpp)®  (60)

—(dp)?(sec® gujp — tan® ¢) = cos” ¢ihopé? (doi)* — sec” i) (dep)*(61)

(55)
or

Again Eq. (55) expresses intrinsic local Lorentz invar@airc o
terms of absolute intrinsic coordinate intervals. Let ydaee (dopsm)? = (1 — pk?)pé? (dot )? — M (62)
o2 (dot)? — (dpp)? by (dg3)? at the left-hand side of (55) 1 — pk?

h . . S
to have The derived hyperbolic absolute intrinsic line element of

(dp3)? = ¢e2(det)?(cos® ¢ + sin? ¢oh) E_q. (61) or (62) on t[le.‘twc.)—dimens?ona}l’ ab;olut.e intrin-
N 5 sic spacetime¢p, ¢péot ) in Fig. 7, which is valid with re-
—(dpp)”(sec” gip —tan® ¢))  (56) spect to 3-observers in the proper physical Euclidean 8espa

or E’3 solely, implies the following hyperbolic absolute intrias

. . - . metric tensor with respect to 3-observerdifi solel
(d$3)* = ¢&*(dgt)* — (dop)? (57) P y
The absolute intrinsic Lorentzian line element (56) or (57) e = cos? qbz/? 0 (63)
obtains at every point along the curvggd and the symmetry- 9i = 0 — sec? ¢t

partner point along the straight line absolute intrinsiodi

‘dimension’ ¢é¢f with respect to 3-observers ii/3 in Fig. 7, ©F -

in so far as both the metric and ‘non-metric’ intrinsic cderd 1 - ¢k 01 (64)

nate interval projections are taken into account in degvin 95 0 — -

intrinsic coordinate projection relations from Fig. 7, amd 1— ¢k?

in systems (49a-c) and in Egs. (50) and (51). The absolute intrinsic line element (61) or (62) and the
In brief, it is intrinsic local Lorentz invariancep(Ll) absolute intrinsic metric tensor (63) or (64), on the curved

(and not intrinsic local Euclidean invariancgLEl)) that ob- absolute intrinsic space - straight line absolute intdrighe

tains on the ‘two-dimensional’ absolute intrinsic spateti ‘dimension’(¢p, #é¢t ) in Fig. 7, which are valid with respect

A. J. Adekugbe. Evolutionary sequence of spacefimi@nsic spacetime and associated sequence of geometries in a meeifiétdll.13
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to 3-observers in the proper physical Euclidean 3-sgéaée solute intrinsic Ricci tensoﬁf%;‘j of Eg. (39). One must then
solely in that figure, are now hyperbolic as known for spacapply relations (65a) and (65b) to obtain the absoluterisiti
time metrics. It can also be said that Egs. (61) - (64) arelvathetric tensor without star labgl;; from the starred absolute
on the curved ‘two-dimensional’ absolute intrinsic spanet intrinsic metric tensowg;; so obtained.
(¢p, pést ) in Fig. 4, with respect to 3-observers in the proper In order to obtain the absolute intrinsic Ricci tensor with-
physical Euclidean 3-spadé’® solely in that figure. out star IabequRij, which is compatible with the absolute
Eq. (61) or (62) and Eq. (63) or (64) give the final forms ahtrinsic metric tensor without star labef;; obtained from
the absolute intrinsic line element and absolute intrinsét- the programme in the foregoing paragraph, we shall make use
ric tensor in the context of ‘two-dimensional’ absoluteiimt  of the validity of intrinsic local Lorentz invariancel( LI) on
sic Riemannian spacetime geometry (or absolute Riemann(ian, ¢cot’) with respect to 3-observers in the proper physical
nospace-notime geometry) in our universe. The absolute Euclidean 3-spacé” in Fig. 7 in so far as both the met-
trinsic curvature parameteﬁrl% that appears in them shall beic and ‘non-metric’ intrinsic coordinate interval profens
related to the absolute intrinsic parameters of the matricef  are taken into account in deriving intrinsic coordinatej@co
field that gives rise to absolute intrinsic Riemannian spad®n relations from Fig. 7 demonstrated earlier. This irapli
time geometry within a region of the universal spacetime-elshat Eqg. (34) must now be written in terms of absolute in-
where with further development. trinsic tensors without star label;; andgbf%ij and with the
The absolute intrinsic metric tensor (without star labefuclidean metric tensaf;; in that equation replaced by the
$di;, (on a manifold of the typd/?+9, which is¢pM/'+! in Lorentzian metric tenso;;. In other words, the following
the present case), is the modified form of the starred alesokguation, written as Eq. (58) earlier, must be satisfied
intrinsic metric tensoryg;; of Eq. (32) or (33), (on a mani-

fold of the type?, which is¢12 in the present case). The ¢9i; — oRij =i (LLI) (66)

components opg;; and¢g;; are related by comparing EqsW|th ®gi; given by Eq. (63) or (64), the absolute intrinsic

(33) and (64) as fO”OWS Ricci tensor without star Iab@jR” that satisfies Eq. (66) is

. 1 . e » o the following
®goo = 53 P911 = —PG11; PGis = ¢G;; = 0; i £ j
900 22,7

(65a) ORy; = < —sin® ¢y o ) (67)

The following relations also follow among the components 0 — tan® ¢y

of ¢g;; in Eq. (33) and among the componentsqgf;; in — k2 0

Eq. (64) ) = 0 k2 (68)

®g11 = $Jo0; PG11 = — (65b) 1 — pk?

$goo
Now let us consider a situation where a pair of ‘two-
The validity of systems (65a) and (65b) in all situations fmensional’ absolute intrinsic metric spacetimes csexi
guaranteed by the fact that there is perfect symmetry of stgjne will naturally be curved relative to the other as illagéd
between the positive time-universe and our universe and iiﬁ‘Fig. 5. The lower half of Fig. 5 is valid with respect to 3-
deed among the four universes isolated in [2-5], as merdionghservers i3, while the upper half is valid with respect to
earlier. This fact guarantees that the curvature of thelateso 1 _gpservers irt’. In order to make Fig. 5 valid with respect
intrinsic spacep relative to the proper intrinsic spage’ at to 3-observers i’ solely, it must be modified as Fig. 8 .
every point alongpy is identical to the curvature of the ab-  The resultant intrinsic metric coordinate interval prejec
solute intrinsic time ‘dimensiony¢g relative to the proper tion relations, or the resultant intrinsic length contiaend
intrinsic time dimensiomc¢t’ at the symmetry-partner pointresultant intrinsic time dilation formulae, which are dalith

along¢é¢t in Fig. 4. Hence the absolute intrinsic curvaturgsspect to 3-observers fi/® solely in Fig. 8 are the following
parameterpkp at point P on curvedp is identical to the

absolute intrinsic curvature parameztskrpo at the symmetry- dop’ = dopcos ¢z/§res: de¢p cos ¢1[/ oS (;51/3
partner pom\‘PO of the curved;bcqbt Thatis,ptp = ¢thpo = — dop(l — ¢];/2)1/2(1 _ ¢];2)1/2 (69)
(w Hence¢kp = gbkpo = qSk in Fig. 4, as mentioned ear-
lier, and this is true in all situations and implies that sys$ and
(65a) and (65b) are true in all situations. . . .

In obtaining the final absolute intrinsic metric tensor with  ¢cddt’ = pédot sec pires= péddt sec ¢y’ sec i
out star labebyg;; of Eq. (63) or (64) tensorially, one must = gedt(l — k)2 (1 — ¢k ~1/2  (70)
solve the pair of starred absolute intrinsic tensor equatio
(34) and (38) simultaneously to obtain the starred absolute The resultant absolute intrinsic metric tensor without sta
intrinsic metric tensowsg;; of Eq. (33) and the starred abiabel gbﬁij and the resultant absolute intrinsic Ricci tensor
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— (k') — ¢k 0
= 0 G
1 (§k")2 — o2

(74)

Thus the resultant absolute intrinsic line element on the
upper curved ‘two-dimensional’ absolute intrinsic metric
spacetimg(¢p, pégpt) in Fig. 5, which is valid with respect
to 3-observers itE’? solely in that figure, derived via Fig. 8
is the following

(d¢§)2 = ¢§00¢62d¢£2 - ¢§11d¢ﬁ2
= (1 —sin® ¢’ — sin® pi))pe2di? —
— dqu,é i = (75)
Fig. 8: Deriving resultant intrinsic coordinate projection relations 1 — sin? o)’ — sin? ¢)
with respect to 3-observers in the underlying proper physical Euclig}-
ean 3-space solely, when two curved absolute intrinsic metric space- . R ) 3
times (or absolute intrinsic Riemannian metric spacetimes) co-exist. (dg5)?> = (1 — ¢k'? — ok*)pe*dept? —
N I/ (76)
without star labekyR;;, which are valid with respect to 3- 1 — k"2 — pk?

observers inE" in Fig. 8, are given by writing Egs. (63) andrhe extension of relations (69) through (76) to the situatio
(64) in terms of the resultant absolute intrinsic angleand where three and a larger number of curved ‘two-dimensional’

resultant absolute intrinsic curvature paramesens follows 2absolute intrinsic metric spacetimes (or absolute initziRse-
mannian metric spacetimes) co-exist is straight forward.

1— sin? ¢ 0 . . o
A sin” ¢y 1 2 Isolating non-uniform absolute intrinsic static speeds
¢91’j = (71) o
0 - = along the curved absolute intrinsic space and curved
1 —sin” ¢y absolute intrinsic time ‘dimension’

wheresin? qﬂ = sin? ¢y’ + sin® ¢, as follows from the Figs. 9a and 9b are valid with respect to 1-observers in the

derived relation (90) of [1]. Eq. (71) corresponds to the foProper time dimension’ of our universe and 1-observers in
lowing in terms of resultant absolute intrinsic curvatusege the proper time dimensiort”’ of the positive time-universe

meter respectively, as indicated. The elementary intetsalpt of
N the curved absolute intrinsic time ‘dimensiap¢t at point
. 1— (¢k)? 0 PY alongeéet spans intervabedgt’ of geot’ along the verti-
?g;; = 0 b (72) caland intervall¢p of ¢ along the horizontal in Fig. 9a. The
1 — (¢k)? trigonometric sine ratio of the absolute intrinsic angigpo

) ) ) of inclination of the curvedsést to pcgt’ along the vertical
where(¢k)? = (pk)? + ¢k2, as derived in [1] and presentedht pointP° alonggégt is given as
as Eq. (91) of that paper.

And by writing equations (672 and (68) in terms of the sin ¢ghpo = C{QspA = ¢VS;PO (77)
resultant absolute intrinsic angle) and resultant absolute pedgt oc
intrinsic curvature parametert we have as follows where,d¢p/d¢t = ¢V, po, shall be referred to as absolute
R intrinsic static speed of the curved absolute intrinsicetinfi-
A —sin? ¢ 0 mension’ ¢é¢t at point PO along ¢égt, with respect to all
¢Ri; = sin? (p@ (73) 1-observers in the proper time dimensighof our universe
0 S along the vertical in Fig. 9a.
1 —sin® ¢t The trigonometric sine ratio of the absolute intrinsic an-
or gle ¢ p of inclination of the curvedési® relative togegt?’
A2 along the horizontal at point P aloggt° in Fig. 9b is like-
X — ok 0 wise given as
¢Ei‘ = gbf R ~
’ 0o - A oV
-~ singyp = ——— = - (78)
1— ¢k pedgt? oc
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Fig. 9: Deriving absolute intrinsic static speeds along curved dfig. 10: Non-uniform absolute intrinsic static speeds along curved
solute intrinsic metric time ‘dimensions’ with respect to 1-observeabsolute intrinsic metric time ‘dimensions’ with respect to 1-
in the proper metric time dimensions in our universe and positigbservers in the proper time dimensions of our universe and positive
time-universe. time-universe, which are established by the sources of symmetry-
partner absolute intrinsic metric force fields located at symmetry-

) N . i ___ partner positions S and’®n the curved absolute intrinsic time di-
where, againdgp®/d¢t® = ¢V p, is the absolute intrinsic mensions.

static speed of the curved absolute intrinsic time ‘dimemn'si
¢épt® at point P alongpi¢t?, with respect to 1-observers in
the proper time dimensiont"’ of the positive time-universe solute intrinsic metric spacgp is curved relative to its pro-
along the horizontal in Fig. 9b. jective straight line proper intrinsic metric spag€ along the
Although the pointP? of the curved absolute intrinsichorizontal and the absolute intrinsics metric time ‘diniens
time ‘dimension’ ¢¢¢i possesses absolute intrinsic statigéét is curved relative to its projective straight line proper
speed(bf/,s’po relative to 1-observers iet’ in Fig. 9a and the intrinsic metric time dimensiomcgt’ along the vertical. The
point P of the curvedépt® possesses absolute intrinsic stasew addition to Fig. 4 in Fig. 11 are the non-uniform absolute
tic speedgbffs,p relative to 1-observers it in Fig. 9b, the intrinsic static speeds at every point along the curvedlabso
points P of ¢égt and P ofpégt? are not in absolute intrin- intrinsic metric spaceys and along the curved absolute in-
sic motion (or absolute intrinsic flow), hence the referenténsic metric time ‘dimensionpé¢t, where absolute intrinsic
to ¢‘Zq7po and (ﬁf/&p as static (and not dynamical) absolutstatic speeds at only two pointsand@ along¢p and at the
intrinsic speeds. symmetry-partner point®° and Q° along ¢é¢t are shown
The pair of pointsP? along the curvedégt in Fig. 9aand in Fig. 11. The lower half of Fig. 11 is valid with respect to
P along the curvedéoi® in Fig. 9b are symmetry-partner3-observers irt’3, while the upper half is valid with respect
points. Another pair of symmetry-partner poir@S along to 1-observers iat'.
the curvedpégi in Fig. 9a andy along the curvedéet’ in As illustrated in Fig. 11, the absolute intrinsic static
Fig. 9b likewise possesses absolute intrinsic spedds,e speedsyV.  and$V, p along the curved absolute intrinsic
relative to 1-observers ic’ in Fig. 9a and;bf/s@ relative to metric spacep are projected invariantly as absolute intrinsic
1-observers it in Fig. 9b respectively. The absolute instatic speed$f/;7Q andngVS,p into the straight line proper in-
trinsic static speedﬁf/&Po andgst&@ along the curvedégt  trinsic metric spacep’ along the horizontal with respect to
are illustrated in Fig. 10a and the corresponding absohite 3-observers itE’3. The absolute intrinsic static spegtl; qo
trinsic static speedsV; » and¢V; ¢ along the curvedégi® and¢V, po along the curved absolute intrinsic time ‘dimen-
are illustrated in Fig. 10b. sion’ ¢ét are likewise projected invariantly as absolute in-
The half-geometry of Fig. 10a with respect to 1-observeasinsic static Speed$f/;7@0 and gb‘?s’po into the proper in-
in the proper time dimensioft’ of our universe and the half-trinsic metric time dimensiocet’ along the vertical with
geometry of Fig. 10b with respect to 1-observers in the propespect to all 1-observers it
time dimensiont?’ of the positive time-universe co-existand The projective absolute intrinsic static Spee‘ﬂ;%,Q and

must be united into a single full diagram. In doing this anqq‘AP along ¢’ are then made manifest in absolute static

makl'ng 'the' resultmg full @agram to contain the S.pace“rg%eeds@ o and ¥, p in the proper Euclidean 3-spade®,
and intrinsic spacetime dimensions of our (or positive) uni ’ ’

verse solely, we must, as derived in [3],det — E'3; pcgt?” just as the projective absolute intrinsic static spaﬁzﬁ@Qo
— ¢p' andéést® — épin Fig. 10b and unite the lower halfand(ﬁ‘/sipo alonggcgt’ are made manifest in absolute static

of the resulting diagram with the upper half of Fig. 10a @peeds’, o andV; po along the proper time dimensiat,
have Fig. 11. as shown in Fig. 11.

We have again recovered the 4-geompttyinsic 2-geo- ~ One would expect the absolute intrinsic static speeds
metry diagram of Fig. 4, in which the ‘one-dimensional’ absV; ¢ and ¢V, p along the curvedsj to project proper in-
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mm,/\/\ct' ] b present theory with further development.
: I-Obscr(\;cri{x'zéﬂ? The fact that absolute intrinsic static speeds along the
s, PM\ MA/s,pQI.)’?'DVs,P“ S curved absolute intrinsic spagg and curved absolute in-
o I ..é"ﬁ trinsic time ‘dimension’¢égt are projected invariantly into
,Z,\A,&QO@ fegoﬂv&d’ . 3-observers proper intrinsic spacgp’ and proper intrinsic time dimension
T T - | peopt’ as absolute intrinsic static speetis, Q> gsz P, oV, QO
E_: / Q N E? andqbVS po in Fig. 11, instead of proper intrinsic static speeds
“‘7’“"50 Vo, d)V’P, @V o andeV! 1o, is a graphical illustration
o 3

%-' ---------- —>VSQ 9\{5-'3----- > of the invariance of intrinsic static speeds in the contdxt o
o\sQ_alkp absolute intrinsic Riemann geometry (or in the context ef th
absolute intrinsic metric phenomena that give rise to ateol

Fig. 11: Non-uniform absolute intrinsic static speeds along curvgfirinsic Riemann geometry). This invariance is statecbhs f
absolute intrinsic metric spa@ﬁ&) and curved absolute intrinsic metyqys

ric time ‘dimension’ ¢é¢t, established by the sources of a long- V! = ¢V (79a)
range absolute intrinsic metric force field at positions $pand $ s s

on ¢égt, are invariantly projected as non-uniform absolute intrinsldence

static speeds along the projective straight line isotropic proper intrin- VS’ = f/s (790)

sic metric spacep’ along the horizontal and the projective straight
line proper intrinsic metric time dimensiafcgt’ along the vertical, where (79a) has been written at an arbitrary point along the

which are made manifest in non-uniform absolute static speed§WV€d¢P and its symmetry-partner point along the curved
the proper Euclidean 3-spad&® and along the proper metric time®¢¢t and (79b) has been written at the corresponding point in
dimensionct’ in our universe. E’3 and its symmetry-partner point alongj.
Let us re-write Egs. (77) and (78), while letting)po =

SYp = andgbVS po = qﬂ@ p == ¢V, in those equations
trinsic static speedsV{ , and¢V{ , into the proper intrinsic as the following singular equation, which is valid alongtbot
spacegp’ along the honzontal even as the curved absolufg and¢épt:
intrinsic spacepp is projected along the horizontal as proper sin ¢n) = ¢VS/¢@ (80a)
intrinsic spacepp’, which should then be made manifest i
proper static speedg; , andV{ » in the proper Euclidean

3-spaceE’? with respect to 3-observers ifi’®. One would

Ii‘:lsut the relation for the identical absolute intrinsic cuora
parameterspkpo = ¢pkp = ¢k, at any given point P along
T e . - the curved absolute intrinsic spaggwith respect to 3-obser-
I|keW|§e expect the absoluteAln:mnsm §tat|c speéﬁl.s,Q.o vers in E' and at the symmetry-partner poiff along the
and ¢V, po along tt\e curvedmi(ét to project proper Intrin- o, yed absolute intrinsic metric time ‘dimensiap:éf with

sic static speedsVy o and@V p into the proper intrinsic regpact to 1-observers i, has been related to the absolute

time dlmenS|or*zz>cqbt’ along the vertical, even as the curveghtrinsic angle g po = ¢ihp = ¢, in sub-section 1.1 of [1]
absolute intrinsic time ‘dimensionpégt is projected along gg

the vertical as proper intrinsic time dimensigngt’, which sin ) = ok (80b)
should then be made manifest in proper static spéggg%

andV ,,, along the proper time dimensietl with respect to The absolute intrinsic curvature parameter at an arbitrary

i e point along the curvegp and at the symmetry-partner point
1-observers int'. along the curveacéot is therefore related to the absolute in-

The proper intrinsic static speed¥” , , ¢V! 5, V! " rinsic static speed at the same point from Egs. (30a) and
and ¢V , that are expected to be projected alang and (80Db) as

¢cot’ in Fig. 11, as discussed in the foregoing paragraph, be- ok = ¢V, /pé (80¢)
ing without hat label, are relative intrinsic static spegdst
as the proper intrinsic spage’ and proper intrinsic time di- L . s
mensiongcgt’ are relative intrinsic space and relative intrin-, The abSOIUtE |ntr|n3|c|mbet|r|c tensor and absfolut;te |Intrmn3|
sic dimension. The proper static spedds, . V7, V/ 0 icci tensor without star label, given in terms of absolute i

¥ trinsic curvature parameter as Eqs. (64) and (68) in the case

/ 13 /
andV; p expected to appear in™ andct’ in Fig. 11, being of one absolute intrinsic Riemann space, that is, in the case
W|thout hat label, are relative static speeds, just as thpgsr ; o . :
of a singular curved absolute intrinsic metric spacetinas, ¢

13
ilf;::sgasn :Czp;;frelggsgr;?ﬁ;ﬁggglme dimensiatf are then be written in terms of absolute intrinsic static spesed r
P spectively as follows

The concept of relative intrinsic static speed and rela-

tive static speed, (which should convey no meaning at this 1 — ¢V2/pé? 0
point, since we have grown accustomed to relative kinemat- ¢g,; = 0 B 1 (81)
ical speeds only), shall be adequately appropriated irgo th 1_ ¢‘752/¢52
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and absolute intrinsic metric force field that establishes aligo
N intrinsic Riemann geometry. The absolute intrinsic geemet
R —QVy /e AO rical parameteppV; (or ¢k) that appears in the absolute in-
PRij = PV /e (82) trinsic metric tensor, absolute intrinsic Ricci tensor am
1— ¢V2/¢é2 solute intrinsic line element in absolute intrinsic Rieman

geometry, shall be related to the absolute intrinsic patarse

The absolute intrinsic line element (62) likewise becones tof the absolute intrinsic metric force field that gives rise t

following in terms of absolute intrinsic static speed,

dgp?

A2 Y72 A2\ (A2 2
408 = (1= 6V2 /o) dof* — Ty

The resultant absolute intrinsic metric tensor, result

absolute intrinsic Ricci tensor and resultant absolutennt . .
tv\%8), re-written as Eq. (80a), at every point along the adirve

(83)

sic line element (72), (74) and (76) in a situation where

absolute intrinsic Riemannian metric spacetimes co-é&es
come the following in terms of absolute intrinsic staticege

eV V2 0
N ¢62 ¢82 1
$gij = 0 - _ _
_9V2 V7
et pe?
PV pV2
T T g 0
. V2 V2
QbRij - 0 3 gbéQ ¢62
A
e 62
and
N2 _ ¢‘75/2 _ ¢‘A/52 22 7172
(do5)" = | 1= g = g | ool
dep”
PV V2
ez pe?

(84)

(85)

(86)

curved ‘two-dimensional’ absolute intrinsic metric sp@aoe
(¢p, pet) elsewhere with further development.

The explanation of the evolution of the curved absolute
intrinsic spacepp and curved absolute intrinsic time ‘dimen-

aﬂpn’ oét in Fig. 11 or Fig. 4 from the reference geometry
0

Fig. 6, which follows from the validity of Egs. (77) and

t ¢p and ¢égt in Fig. 11, is that non-uniform absolute intrin-

sic static speeds are identically established along th&btr

line absolute intrinsic spacgy and straight line absolute in-
trinsic time ‘dimension’¢é¢t from a point (S, S°) on the

flat ‘four-dimensional’ absolute spacetimi&?, éf) in Fig. 6.

Then the geometry of Fig. 11 evolves as a consequence, since
(80a) must be satisfied at every point alaifgand¢gcot. The
mechanism by which this is achieved requires explanation to
be given elsewhere.

The geometry of Fig. 11 will evolve from Fig. 6, for in-
stance, if the source of a long-range absolute metric force
field (such as the source of an absolute gravitational field)
located at a point S in the absolute spadteof our universe
in Fig. 6, establishes non-uniform absolute static spééds
along every radial direction from its centre in all its finite
neighbourhood it2? and the source of absolute intrinsic met-
ric force field in the absolute intrinsic spagg underlying the
source of absolute metric force field i, establishes non-
uniform absolute intrinsic static speed, along the straight
line absolute intrinsic spaegy in all its finite neighbourhood
in Fig. 6. This will give rise to the curvegdp and its projective
straight line proper intrinsic spagg’ along the horizontal in
our universe as in Fig. 11.

The identical symmetry-partner source of long-range ab-
solute metric force field in flat absolute spak@? and iden-

Extension of Egs. (84) - (86) to situations where three ortiaal source of long-range absolute intrinsic metric fdiied
larger number of absolute intrinsic Riemannian metric spadn straight line absolute intrinsic spa¢g? in the geometry
times (or curved ‘two-dimensional’ absolute intrinsic met in the positive universe that corresponds to that of Fig. 6 in
spacetimes) co-exist (or are superposed) is straight fdrwa our universe, will give rise to curved absolute intrinsictme
The absolute intrinsic curvature parameztér is a geo- ric spacepp that projects straight line proper intrinsic metric
metrical parameter, as follows from its derivation in sais-s spacepp”’ along the vertical (as in Fig. 2) in the positive time-
tion 1.1 of part two of this paper [1]. The non-uniform abudniverse. This then corresponds to curved absolute iitrins
solute intrinsic static speedsl/, along the curved absolutetime ‘dimension’sé¢f and its projective proper intrinsic time
intrinsic spacepp and curved absolute intrinsic time ‘dimendimensiongcot’ of our universe along the vertical in Fig. 4
sion’ ¢é¢t in Fig. 11, which are related to the non-unifornor Fig. 11.
absolute intrinsic curvature parameters of the curvedsp
and curvedpépt by Eq. (80c), is likewise an absolute intrinlished along the straight line absolute intrinsic time ‘dim
sic geometrical parameter. This is so because the definitision’ ¢é¢t from a point on the flat absolute spacetil(dé?’,
oV, = dpp/det, follows from the geometry of Figs. 9a and) in Fig. 6, being absolute intrinsic parameters, can cause
9b, without relation to the absolute intrinsic parametdithe curvature of the absolute intrinsic spagg and absolute in-

Non-uniform absolute intrinsic static speed¥, estab-
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trinsic time ‘dimension'é¢t from that point, thereby trans-mechanics in the assumed absence of (relative) gravityrin ou
forming Fig. 6 to Fig. 11. On the other hand, the non-uniforomiverse. It must be noted that only absolute static speeds
absolute intrinsic static speed¥, projected along the strai-(or absolute metric force field) and its underlying absointe
ght line proper intrinsic spaceép’ and straight line proper trinsic static speeds (or absolute intrinsic metric foretd)i
intrinsic time dimensionpcgt’ in Fig. 11, cannot cause cur-are present in those figures. The concept of relative grav-
vature of¢p’ andgcdt’. This is so because absolute intrinity shall be properly defined elsewhere with further develop
sic static speedV, can produce noffect whatever on the ment. It, in brief, means the presence of proper static speed
relative proper intrinsic spacgp’ and relative proper intrin- (or proper metric force field) and its underlying proper in-
sic time dimensionycpt’. The non-uniform absolute statidrinsic static speeds (or proper intrinsic metric forcedjehs
speedsV, in the relative proper Euclidean 3-spaf¥® in shall be found.
Fig. 11, can likewise produce no detectalfieet in E'3 with Itis also on the flat four-dimensional proper metric space-
respect to 3-observers '3, time (E'3, ct') and its underlying flat two-dimensional proper
The geometry of Fig. 11 will endure for as long as niatrinsic metric spacetimégp’, dc¢t’) that the special the-
other parametefimtrinsic parameters are introduced into iory of relativity (SR) and intrinsic special theory of relat
This means that evolution of spacetifinérinsic spacetime ity (¢SR) operate in our universe in the assumed absence of
within a long-range metric force field will terminate at thérelative) gravity, as developed in [2-5]. As noted at thd en
first stage, where first stage is evolution from the referenak[3], SR/¢SR involve d@fine spacetime coordinataeiine
geometry of Fig. 6 to the geometry of Fig. 4 or Fig. 11. Howntrinsic spacetime coordinates of particle’s frame ane ob
ever there is an inevitable second stage of evolution ofespagerver’s frame (or involve fine spacetim@trinsic space-
time/intrinsic spacetime in a long-range metric force fieldime geometry). Consequently &SR cannot alter the flat
in which the flat four-dimensional proper metric spacetinfeur-dimensional proper metric spacetifi’s, ct’) and its
(E"3, ct’) and its underlying flat two-dimensional proper inunderlying flat two-dimensional proper intrinsic metric
trinsic metric spacetim@p’, pcgt’) in Fig. 4 or Fig. 11 evol- spacetimé¢p’, dcgt’) on which they operate in the assumed
ve into flat four-dimensional relativistic metric spacetimabsence of (relative) gravity.
(E3,ct) and its underlying flat two-dimensional relativistic It must be recalled that the curved ‘two-dimensional’ ab-
intrinsic metric spacetim@bp, ¢cot). The four-dimensional solute intrinsic spacetimépp, ¢oéét) in Fig. 4 or Fig. 11,
relativistic spacetime is proposed to be curved in a gravi@hich is being incorporated into physics newly in this ¢hir
tional field in the general theory of relativity (GR), butghipart of this paper and the second part [1]), did not appear in
fundamental assumption of GR shall be invalidated in tfi5]. Only the flat four-dimensional proper metric spaceti
context of the present evolving theory in the fourth part ¢£’3, ct') known in physics and the new flat two-dimensional
this paper. proper intrinsic metric spacetimépp’, pcot’) underlying
Although the 3-geometyintrinsic 1-geometry diagram of (E’3, ct), which was first introduced asatzin [2] and iso-
Fig. 7, which is valid with respect to 3-observerdift solely, lated formally in [5], are known in SRSR in [2-5].
is the valid diagram for absolute intrinsic Riemann geognetr In brief, the flat four-dimensional proper metric space-
in our universe, the 4-geomefintrinsic 2-geometry diagramtime (E”, ct’) and its underlying flat two-dimensional proper
of Fig. 4 of Fig. 11, which is valid partially with respect tdntrinsic metric spacetiméop’, pcot’) in Fig. 4 or Fig. 11,
3-observers ink’"® and partially with respect to 1-observerare the reference metric spacetiimginsic metric spacetime
in ct’, is the geometry that evolves naturally from the refefer the 4-geometrintrinsic 2-geometry theories of relativ-
ence geometry of Fig. 6. Fig. 7 is a manipulation of Fig. 4 d/intrinsic relativity. One such theories of relativiiytrinsic
Fig. 11, done in order to obtain an equivalent diagram thafativity is the special theory of relativitytrinsic special
is valid with respect to 3-observers in the proper physidhleory of relativity (SRpSR) — the theories of relative mo-
Euclidean 3-spac&’? solely. tion/relative intrinsic motions of material particles and oltgec
Fig. 4 or Fig. 11 at the first stage of evolution of space- which operate on extendéd’?, ct') and its underlying ex-
time/intrinsic spacetime within a long-range metric force fieleetnded(¢p’, dc¢t’) in the absence of (relative) gravity and
has important theoretical significance in physics, alttoiig leave them unchanged, as mentioned above.
is not an observed geometry, since it endures for no momentThere are also the theory of relativity and theory of in-
before transforming into the enduring geometry at the sgcdrinsic relativity, which are associated with the presente
stage of evolution of spacetirfigtrinsic spacetime in a long-a long-range relative metric force field on four-dimensiona
range metric force field, to be be discussed further shontlly ametric spacetime and its underlying long-range relative in
developed fully in the fourth part of this paper. For ins&@nctrinsic metric force field on two-dimensional intrinsic miet
the flat four-dimensional proper metric spacetifdg?, ct’) spacetime. These will convert the extended flat four-dimen-
and its underlying flat two-dimensional proper intrinsictmesional proper metric spacetin{&’?, ct’) and its underlying
ric spacetime(¢p’, pcgt’) in that figure are the spacetimdlat two-dimensional proper intrinsic metric spacetime
of classical (or Newtonian) mechanics and intrinsic clesi (¢p’, ¢cot’) into extended flat four-dimensional relativistic
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metric spacetimg E®, ct) and its underlying extended flat
two-dimensional relativistic intrinsic metric spacetinigp,
¢cgt) within the long-range relative metric force field at the
second stage of evolution of spacetiintinsic spacetime in

a long-range metric force field, as shall be developed in the
fourth part of this paper.
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