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Abstract

It has recently been shown that the classical electric and magnetic fields which satisfy the source-
free Maxwell equations can be linearly mapped into the real and imaginary parts of a transverse-vector
wave function which in consequence satisfies the time-dependent Schrödinger equation whose Hamiltonian
operator is physically appropriate to the free photon. The free-particle Klein-Gordon equation for scalar
fields modestly extends the classical wave equation via a mass term. It is physically untenable for complex-
valued wave functions, but has a sound nonnegative conserved-energy functional when it is restricted to
real-valued classical fields. Canonical Hamiltonization and a further canonical transformation maps the
real-valued classical Klein-Gordon field and its canonical conjugate into the real and imaginary parts
of a scalar wave function (within a constant factor) which in consequence satisfies the time-dependent
Schrödinger equation whose Hamiltonian operator has the natural correspondence-principle relativistic
square-root form for a free particle, with a mass that matches the Klein-Gordon field theory’s mass term.
Quantization of the real-valued classical Klein-Gordon field is thus second quantization of this natural
correspondence-principle first-quantized relativistic Schrödinger equation. Source-free electromagnetism
is treated in a parallel manner, but with the classical scalar Klein-Gordon field replaced by a transverse
vector potential that satisfies the classical wave equation. This reproduces the previous first-quantized
results that were based on Maxwell’s source-free electric and magnetic field equations.

Introduction

The classical Hamiltonian for the spinless relativistic free particle is (|cp|2 +m2c4)
1

2 , which, from the corre-
spondence principle, unequivocally implies that its first-quantized description is via state vectors |ψ(t)〉 that
satisfy the time-dependent Schrödinger equation,

ih̄d|ψ(t)〉/dt = (|cp̂|2 +m2c4)
1

2 |ψ(t)〉. (1)

In momentum representation the relativistic free-particle energy operator (|cp̂|2 + m2c4)
1

2 is transparently
diagonal, but in configuration representation it is a nonlocal integral operator. This was regarded as concern-
ing by early quantum mechanics pioneers, not for any physical reason, but because they feared it would pose
unpalatable calculational issues. Perhaps they were not mindful, in this regard, that relativistic corrections
to the hydrogen atom are expected to be of order one percent, and that Schrödinger had invented the bound
state perturbation theory. That notwithstanding, Klein, Gordon and Schrödinger decided to iterate Eq. (1)
in order to rid it of its “vexing” square root, which maneuver produces the Klein-Gordon equation [1],

(c−2d2/dt2 + |p̂/h̄|2 + µ2)|ψ(t)〉 = 0, (2)
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where µ
def
= ((mc)/h̄). In configuration representation, where p̂ = −ih̄∇, it follows that |p̂/h̄|2 = −∇2,

so that aside from its mass term, the Klein-Gordon equation matches the classical wave equation. For
every solution of Eq. (1) that has a definite momentum and positive energy, Eq. (2) has another, completely

extraneous, partner solution of the same momentum, but energy of the opposite sign. Each such pair
of energy-partner solutions fail to be mutually orthogonal because they have the same momentum, but
this nonorthogonality of solutions with two different energies contradicts a fundamental characteristic of
quantum theory that is necessary for its probability interpretation. It is thus not surprising that the Klein-
Gordon theory gives rise to unacceptable negative probabilities [1]. We have seen that this is related to
its negative-energy solutions, which are not a feature of Eq. (1). The associated negative energies as well
have the physically problematic trait of being unbounded below . Since the Klein-Gordon equation does not
directly involve a Hamiltonian operator, but only the square of such an operator, it cannot be related to the
Heisenberg picture, the Heisenberg equations of motion or the Ehrenfest theorem. Thus it does not properly
correspond to quantum mechanics at all. The straightforward and certainly physically most sensible response
to its defective nature is to unhesitatingly discard the Klein-Gordon equation in favor of Eq. (1), which is
both mandated by the correspondence principle and has none of the Klein-Gordon equation’s deficiencies.

Some physicists have been unaccountably reluctant to simply heed these imperatives, and have cast about
for a loophole which enables the Klein-Gordon equation to survive. Since the Klein-Gordon equation abjectly
fails the tests of quantum mechanics, the fact that it resembles the classical wave equation has led to the
notion that it too represents a classical field theory. To obtain any manner of quantum physics from the
Klein-Gordon equation, then, would presumably involve quantizing the classical-field physics it represents.
The idea of the Klein-Gordon equation as a classical field equation seems physically incongruous at first glance
because that equation is associated with a particle which can perfectly well exist in a vacuum, whereas the
only familiar classical field theory which does not describe collective motions of an underlying medium is the
electromagnetic field. In fact, by way of shedding light on this issue of dynamical classical field theories which
do not describe motions of some medium, it has recently been shown that the classical electric and magnetic
fields which satisfy the source-free Maxwell equations can be linearly mapped into the real and imaginary
parts of a transverse-vector wave function that, as a consequence, satisfies the time-dependent Schrödinger
equation whose Hamiltonian operator is |cp̂|, which is, of course, physically appropriate to a massless free
particle, i.e., the free photon [2]. Thus we have this electromagnetic example of classical field equations
which in fact are equivalent to a physically appropriately related first-quantized Schrödinger equation—this
equivalence has until recently unfortunately been effectively hidden by the unfamiliar and rather unusual
linear mapping between the two equation systems. If classical Klein-Gordon field theory should likewise

turn out to be physically appropriate quantum mechanics that is merely disguised by an unfamiliar linear
mapping, then it would in fact be entirely acceptable on that basis. A caveat regarding this speculation is
of course that the correspondence principle pinpoints the time-dependent Schrödinger equation of Eq. (1)
as the physically correct description of the quantum mechanics for this case of a spinless relativistic free

particle.
An extremely important consideration regarding classical Klein-Gordon field theory is that the quantum-

mechanical Eq. (2) does not define a classical Klein-Gordon field. On physical measurement grounds, a
spinless classical field must be strictly real-valued in configuration representation. Therefore a classical

Klein-Gordon field is a real-valued function φ(r, t) which satisfies the equation,

(c−2∂2/∂t2 −∇2 + µ2)φ(r, t) = 0. (3)

The fact that φ(r, t) is real will enable us to define a conserved energy for this field that is nonnegative,
which effectively eliminates the unphysical properties that flow from the quantum-mechanical Klein-Gordon
equation’s extraneous negative energies.

Since our goal for this classical Klein-Gordon field φ is its quantization, we must cast it into canonical

Hamiltonian form, which involves a field π that is canonically conjugate to φ, and also a corresponding
conserved Hamiltonian from which Hamilton’s equations yield Eq. (3). The first step in this direction is
to find an action functional S[φ] that is stationary for those φ which satisfy Eq. (3). This can in fact be
obtained in terms of a local action density , usually termed a Lagrangian density, Lφ such that [3],

S[φ] =
∫
Lφ d

3r dt. (4a)

For the classical Klein-Gordon field, Lφ is conventionally taken to be [3],

Lφ = 1

2
(φ̇2/c2 − |∇φ|2 − µ2φ2), (4b)
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which yields for the functional derivative of S[φ] with respect to φ,

δS[φ]/δφ = −φ̈/c2 + ∇2φ− µ2φ. (4c)

Setting this first-order variation of S[φ] with respect to φ to zero indeed produces the classical Klein-Gordon
equation of Eq. (3).

With this Lagrangian density Lφ in hand, we readily obtain a field π that is canonically conjugate to
φ [3],

π = ∂Lφ/∂φ̇ = φ̇/c2, (5a)

which implies that,
φ̇ = c2π. (5b)

The Hamiltonian density which corresponds to φ and π is [3],

Hφ,π = φ̇π − Lφ

∣∣∣
φ̇=c2π

. (5c)

After combining this with Eq. (4b), the result in terms of φ and π is,

Hφ,π = 1

2
(|∇φ|2 + µ2φ2 + c2π2), (5d)

which we note is indeed nonnegative for our real-valued classical φ and π fields. This nonnegative energy
density is a crucial feature of the classical Klein-Gordon field theory with its strictly real-valued fields, as
we have emphasized above. From the Hamiltonian density of Eq. (5d) and integration by parts we obtain
the Hamiltonian functional,

H[φ, π] =
∫
Hφ,π d

3r = 1

2

∫ [
φ(−∇2 + µ2)φ+ c2π2

]
d3r. (6a)

We now apply the standard prescriptions for Hamilton’s equations of motion to this Hamiltonian functional
to obtain,

φ̇ = δH[φ, π]/δπ = c2π, (6b)

and,
π̇ = −δH[φ, π]/δφ = (∇2 − µ2)φ, (6c)

which together clearly imply the classical Klein-Gordon equation of Eq. (3). Note that the canonically
conjugate field π satisfies the Klein-Gordon equation as well.

Before going further with this now canonically Hamiltonized classical Klein-Gordon field theory, we
wish to digress in order to demonstrate that, within a constant factor, the real and imaginary parts of the

configuration representation of the state vector |ψ(t)〉 which satisfies the Schrödinger equation of Eq. (1) are
also canonically conjugate classical fields whose equations of motion follow from the classical Hamiltonian
functional which is given by the conserved mean free-particle energy 〈ψ(t)|(|cp̂|2 +m2c4)

1

2 |ψ(t)〉.

Schrödinger’s equation from a classical Hamiltonian functional

It is apparent that the nonnegative conserved mean free-particle energy,

〈ψ(t)|(|cp̂|2 +m2c4)
1

2 |ψ(t)〉,

is a nonnegative linear functional of both the wave function ψ(r, t) and its complex conjugate ψ∗(r, t) when
it is expressed in the form,

H[ψ,ψ∗] =
∫
ψ∗(r, t)

[
(|cp̂|2 +m2c4)

1

2 ψ
]
(r, t) d3r. (7a)

In configuration representation, the Hermitian operator (|cp̂|2+m2c4)
1

2 is a real, symmetric nonlocal integral

operator whose kernel is, of course, given by,

〈r|(|cp̂|2 +m2c4)
1

2 |r′〉 = (2π)−3
∫
eik·(r−r

′)(|ch̄k|2 +m2c4)
1

2 d3k, (7b)
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an integral whose result is distribution-valued, i.e., it is singular as |r − r′| → 0, a feature which requires
careful treatment akin to that required by the delta function. From Eq. (7a) and Eq. (1) it is clear that
time-dependent Schrödinger equation for the configuration-space wave function ψ follows from the simple
functional differential equation,

ih̄ψ̇ = δH[ψ,ψ∗]/δψ∗. (7c)

The complex-valued fields ψ and ψ∗ have the dimensions of probability density amplitude. From these
we readily define two strictly real-valued fields φψ and πψ which each have the dimensions of action density
amplitude that is appropriate to their being canonically conjugate,

φψ
def
= (h̄/2)

1

2 (ψ + ψ∗), πψ
def
= −i(h̄/2)

1

2 (ψ − ψ∗). (8a)

In terms of φψ and πψ we have that,

ψ = (φψ + iπψ)/(2h̄)
1

2 , ψ∗ = (φψ − iπψ)/(2h̄)
1

2 , (8b)

which when substituted into Eq. (7a), bearing in mind that µ = ((mc)/h̄) and that in configuration repre-
sentation p̂ = −ih̄∇, yields,

H[φψ, πψ] = (c/2)
∫ [

φψ(−∇2 + µ2)
1

2 φψ + πψ(−∇2 + µ2)
1

2 πψ

]
d3r. (9a)

Since,
δH[ψ,ψ∗]/δψ∗ = (δH[φψ, πψ]/δφψ)(∂φψ/∂ψ

∗) + (δH[φψ, πψ]/δπψ)(∂πψ/∂ψ
∗),

we can readily obtain the real and imaginary parts of both the left and right hand sides of Eq. (7c) by
application of Eqs. (8a) and (8b). The results of carrying out this decomposition are the two prescriptions
for equations of motion,

φ̇ψ = δH[φψ, πψ]/δπψ, π̇ψ = −δH[φψ, πψ]/δφψ, (9b)

which are identical to the standard prescriptions for Hamilton’s equations of motion. This demonstrates that
φψ and πψ are indeed canonically conjugate fields which pertain to the Hamiltonian functional H[φψ, πψ].
It is further readily verified by applying Eqs. (8a) and (8b) that the prescriptions for Hamilton’s equations
of motion of Eq. (9b) for φψ and πψ are indeed equivalent to Eq. (7c), and therefore are equivalent as well

to the time-dependent Schrödinger equation of Eq. (1). Actual application of the prescriptions of Eq. (9b)
for Hamilton’s equations of motion to the Hamiltonian functional H[φψ, πψ] of Eq. (9a) yields,

φ̇ψ = c(−∇2 + µ2)
1

2 πψ, π̇ψ = −c(−∇2 + µ2)
1

2 φψ. (9c)

From Eq. (9c) and the first equation of Eq. (8b), we readily show that,

ih̄ψ̇ = h̄c(−∇2 + µ2)
1

2 ψ, (9d)

which, since µ = ((mc)/h̄) and p̂ = −ih̄∇ in configuration representation, is, of course, equivalent to Eq. (1).
It is therefore very clear indeed that the time-dependent Schrödinger equation of Eq. (1), which describes

the solitary spinless relativistic free particle, is equivalent to the classical Hamiltonian field system that is
described by the classical Hamiltonian functional H[φψ, πψ] of Eq. (9a). A very notable feature of H[φψ, πψ]
is that it exhibits complete symmetry under the interchange of its canonically conjugate fields φψ and πψ;
indeed these two fields as well have exactly the same dimensions, namely that of action density amplitude.
We now return to the conventional Hamiltonian functional H[φ, π] of Eq. (6a) for the classical Klein-Gordon
field φ and its canonical conjugate π.

Canonical transformation of the classical Klein-Gordon field

We note that the form of the Hamiltonian functional of Eq. (6a) is nonsymmetrical under the interchange

of φ and π; indeed φ and π themselves have different dimensions. It is straightforward to utilize fractional
powers of the real, symmetric nonnegative operator (−∇2 +µ2) to devise a canonical transformation to new

canonical fields that occur symmetrically in the Hamiltonian functional, and which both have the dimensions
of action density amplitude. This canonical transformation is given by,

φψ = c−
1

2 (−∇2 + µ2)
1

4 φ, πψ = c
1

2 (−∇2 + µ2)−
1

4 π, (10a)
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which, of course, implies that,

φ = c
1

2 (−∇2 + µ2)−
1

4 φψ, π = c−
1

2 (−∇2 + µ2)
1

4 πψ. (10b)

Upon substituting these expressions for φ and π in terms of their canonical transforms φψ and πψ into the
Hamiltonian of Eq. (6a), and also taking note of the symmetric-operator nature of powers of the operator
(−∇2 + µ2), the new Hamiltonian functional H[φψ, πψ] is seen to exhibit complete symmetry under the
interchange of φψ and πψ,

H[φψ, πψ] = (c/2)
∫ [

φψ(−∇2 + µ2)
1

2 φψ + πψ(−∇2 + µ2)
1

2 πψ

]
d3r. (10c)

Indeed this canonically transformed Hamiltonian functional of the classical Klein-Gordon field theory is
identical to that of Eq. (9a), whose equations of motion are, as we have noted above, entirely equivalent to
the time-dependent Schrödinger equation of Eq. (1) for the solitary spinless relativistic free particle. Thus
we have demonstrated the canonical equivalence of classical Klein-Gordon field theory to correspondence-
principle first quantization of the spinless relativistic free particle.

We can, in particular, provide the precise linear mapping of the real-valued classical Klein-Gordon field
φ and its canonical conjugate π into the complex-valued Schrödinger wave function ψ,

ψ = (2h̄c)−
1

2 (−∇2 + µ2)
1

4 φ+ i(c/(2h̄))
1

2 (−∇2 + µ2)−
1

4 π, (11a)

which mapping can, of course, be inverted,

φ = ((h̄c)/2)
1

2 (−∇2 + µ2)−
1

4 (ψ + ψ∗), π = −i(h̄/(2c))
1

2 (−∇2 + µ2)
1

4 (ψ − ψ∗). (11b)

One can express the linear mapping of Eqs. (11) entirely in terms of the classical Klein-Gordon field φ
alone by recalling from Eq. (5a) that π = φ̇/c2. It then becomes an interesting exercise, which we leave
to the reader, to verify that merely because φ satisfies the Klein-Gordon equation, which is second-order
in time, the complex-valued wave-function construct ψ of Eq. (11a) satisfies the Schrödinger equation of
Eq. (1), which is first-order in time! Nor is that all: the wave function construct ψ of Eq. (11a) has also
been painstakingly composed to have the dimensions of probability density amplitude, which is appropriate
to a wave function; in fact its detailed construction is such that when it is inserted into the Hamiltonian
functional H[ψ,ψ∗] of Eq. (7a), which is the first-quantized free particle’s conserved mean energy, the result
is the Hamiltonian functional H[φ, π] of Eq. (6a), which is, naturally enough, the energy of the corresponding
classical Klein-Gordon field. The fact that a first-quantized free particle’s mean energy is nonnegative, along
with the form of the Klein-Gordon classical field’s energy density that is given by Eq. (5d), together make
it abundantly clear that the Klein-Gordon classical field is restricted to being real-valued , which gives us
additional insight into the completely unphysical nature of the complex-valued quantum-mechanical Klein-
Gordon wave function of Eq. (2). An alternative approach to verification of the Schrödinger equation of
Eq. (1) from Eq. (11a) is, of course, to apply the Hamilton’s equations of motion for φ and π that are given
by Eqs. (6b) and (6c).

Classical field quantization via particle second quantization

The quantization of the classical Klein-Gordon field is by far best done in the Schrödinger wave-function
picture, where it is merely second quantization of the spinless relativistic free particle, which makes both the
physics and the mathematics completely transparent. This second quantization is achieved in the standard
canonical fashion by promoting the wave function ψ and its complex conjugate ψ∗ to become the Hermitian

conjugate operators ψ̂ and ψ̂† which have the commutation relation [3],

[ψ̂(r), ψ̂†(r′)] = δ(3)(r − r′). (12a)

With that, ψ̂†(r) is interpreted as the operator which creates a particular type of spinless relativistic free

particle of mass m at the position r, while ψ̂(r) is interpreted as the operator which annihilates such a
particle at the position r. Fourier transforms of these operators perform these same creation/annihilation
functions in wave-vector (i.e., momentum) space.

The real Hamiltonian functional H[ψ,ψ∗] of Eq. (7a) is thereby quantized as the Hermitian operator

Ĥ[ψ̂, ψ̂†], which is then taken to be the Hamiltonian operator of the second-quantized spinless relativistic
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free particle system (or quantized Klein-Gordon field system). In the Heisenberg picture which is defined
by this Hamiltonian operator, the relativistic free-particle time-dependent Schrödinger equation of Eq. (1)
continues to hold as a field-operator relation, i.e.,

ih̄∂ψ̂(r, t)/∂t = h̄c
[
(−∇2 + µ2)

1

2 ψ̂
]
(r, t). (12b)

By multiple applications of the creation operator, arbitrarily large numbers of this particular type of spin-
less relativistic free particle can be produced. Indeed the Hermitian operator

∫
ψ̂†ψ̂ d3r has the interpretation

of particle number operator [3]. The vast underlying Hilbert space is called Fock space [3].
The relations of Eqs. (11) may be simply transcribed into this second-quantized regime by noting the φ

and π become the Hermitian operators φ̂ and π̂, and of course ψ and ψ∗ become the operators ψ̂ and ψ̂† with
their fundamental canonical commutation relation and interpretation described above. These transcribed
relations of Eqs. (11) capture the technical essence of the relationship between the quantized Klein-Gordon
field theory and the second-quantized spinless relativistic free particle picture that, because of the just-
mentioned interpretation of the precise role of the operators ψ̂ and ψ̂†, is obviously vastly more physically
and calculationally transparent.

Radiation-gauge vector potential equivalence to the first-quantized free photon

Maxwell’s source-free equations for the transverse electric and and magnetic fields have previously been
canonically Hamiltonized by a linear mapping that did not mix these fields, did but treat them in a highly
symmetric manner [2]. This symmetric mapping of the source-free electric and magnetic fields into canon-
ically conjugate counterparts turns out to be directly related to the real and imaginary parts of the free
photon’s first-quantized transverse-vector wave function. The traditional prescription for canonically Hamil-
tonizing source-free electromagnetism in order to quantize it, on the other hand, invariably eschews the
electric and magnetic fields in favor of the vector potential [4], and therefore strongly parallels the treatment
we have just presented of the classical Klein-Gordon field. The transverse part of the electromagnetic vector
potential AT satisfies the two equations,

∇ · AT = 0, ÄT /c
2 −∇2AT = jT /c, (13a)

the second of which becomes simply the classical wave equation in the source-free case. In that case one
may also use the radiation gauge, for which A0 = 0 and ∇ ·A = 0 [4], conditions which imply that the only

nonvanishing part of the electromagnetic four-potential Aµ is precisely AT , and it, of course, satisfies the
classical wave equation, which is merely a special case of the Klein-Gordon equation. For that reason one
arrives at a Lagrangian density which strongly resembles the Lagrangian density of Eq. (4b),

LA = 1

2
(|Ȧ|2/c2 − |∇ × A|2), (13b)

where A is, of course, constrained to be transverse, i.e., ∇ · A = 0 and ∇ · Ȧ = 0. This Lagranian density
yields the canonical momentum ΠA = Ȧ/c2, and therefore we have that Ȧ = c2ΠA. Clearly ΠA is also

transverse, i.e., ∇·ΠA = 0. With these results for the canonical momentum, the corresponding Hamiltonian
density comes out to be,

HA,ΠA
= 1

2
(|∇ × A|2 + c2|ΠA|

2), (13c)

which is nonnegative and strongly resembles the Hamiltonian density of Eq. (5d). Of course the Hamiltonian
functional is the integral of the Hamiltonian density over three-dimensional space. Noting that ∇ · A = 0
and integrating by parts, one readily puts the Hamiltonian functional into a form which is in essence the
same as that of Eq. (6a) for the classical Klein-Gordon field,

H[A,ΠA] = 1

2

∫ [
A · (−∇2A) + c2|ΠA|

2
]
d3r. (14a)

This Hamiltonian functional has corresponding Hamilton’s equations of motion that are very similar to those
of Eqs. (6b) and (6c),

Ȧ = c2ΠA, Π̇A = ∇2A. (14b)

Eq. (14b) implies that both A and ΠA obey the classical wave equation.
The nonsymmetry ofH[A,ΠA] under interchange of A and ΠA now motivates a canonical transformation

which is completely analogous to the one made in Eq. (10a) for the classical Klein-Gordon field,

Φ = c−
1

2 (−∇2)
1

4 A, Π = c
1

2 (−∇2)−
1

4 ΠA. (15a)
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We note that both Φ and Π are transverse vector fields, i.e., ∇·Φ = ∇·Π = 0. This canonical transformation
results in a change to the form of the Hamiltonian functional, with a result that is completely analogous to
the Hamiltonian functionals of Eqs. (10c) and (9a),

H[Φ,Π] = 1

2

∫ [
Φ ·

(
c(−∇2)

1

2 Φ
)

+ Π ·
(
c(−∇2)

1

2 Π
)]

d3r. (15b)

The Hamiltonian functional H[Φ,Π] has corresponding Hamilton’s equations of motion that are very similar
to those of Eq. (9c),

Φ̇ = c(−∇2)
1

2 Π, Π̇ = −c(−∇2)
1

2 Φ. (15c)

If one now, in analogy with Eq. (8b), defines,

Ψ
def
= (Φ + iΠ)/(2h̄)

1

2 , (16a)

which has the dimensions of probability density amplitude appropriate to a wave function, one deduces from
Eq. (15c) that its equation of motion is,

ih̄Ψ̇ = h̄c(−∇2)
1

2 Ψ, (16b)

which is precisely that of the time-dependent Schrödinger equation for the free photon because, since p̂ =
−ih̄∇ in configuration representation, h̄c(−∇2)

1

2 = |cp̂| in that representation. We further note that this
complex-valued free-photon wave function Ψ of Eq. (16a) is of course a transverse vector field, i.e., ∇·Ψ = 0,
and that its dimensions are indeed appropriate to a wave function.

We have thus demonstrated that in the case of source-free electromagnetism there exists a linear mapping
of the electromagnetic transverse-vector canonically conjugate fields A and ΠA into the real and imaginary
parts of the free photon wave function Ψ. This linear mapping is, of course, highly analogous to that given
in Eq. (11a) for the classical Klein-Gordon field,

Ψ = (2h̄c)−
1

2 (−∇2)
1

4 A + i(c/(2h̄))
1

2 (−∇2)−
1

4 ΠA, (17a)

and its inverse is,

A = ((h̄c)/2)
1

2 (−∇2)−
1

4 (Ψ + Ψ∗), ΠA = −i(h̄/(2c))
1

2 (−∇2)
1

4 (Ψ − Ψ∗). (17b)

The Schrödinger equation of Eq. (16b) and the result for A given by Eq. (17b) are exactly the same as those
which were previously obtained via the symmetric canonical Hamiltonization of the electric and magnetic
fields which satisfy Maxwell’s source-free equations [2].

One can express the linear mapping of Eqs. (17) entirely in terms of the transverse vector potential A

alone by recalling that ΠA = Ȧ/c2 (e.g., see Eq. (14b)). It then becomes an interesting exercise to verify
that the time-dependent Schrödinger equation of Eq. (16b) for the free photon’s wave function Ψ, as given
by Eq. (17a) and supplemented by the formula ΠA = Ȧ/c2, follows merely from the fact that the transverse
vector potential A satisfies the classical wave equation, notwithstanding that the classical wave equation
is second-order in time, whereas the Schrödinger equation of Eq. (16b) is first-order in time! Of course an
alternative approach to verification of the Schrödinger equation of Eq. (16b) from Eq. (17a) is to apply the
Hamilton’s equations of motion for A and ΠA that are given by Eq. (14b).

Conclusion

The most striking results of this paper are the one-to-one linear mappings, given by Eqs. (11) and (17), of
real-valued dynamical classical fields that are described by simple, second-order in time, wave equations,
i.e., the classical Klein-Gordon equation and the classical wave equation, onto correspondence-principle first-
quantized relativistic Schrödinger-equation wave functions for free particles, i.e., spinless relativistic free
particles and free photons—particularly in light of the fact that such correspondence-principle first-quantized
free-particle wave functions can be transparently converted in a flash into the free-particle annihilation and
creation operators that are the very heart of the quantum many-free-particle description. These one-to-one
linear mappings lend a truly gratifying dollop of theoretical concreteness to the heretofore vague notion of
complementarity between dynamical classical wave fields and the corresponding particle quanta.

Fascinating though it is that classical Klein-Gordon field theory is equivalent to the elementary correspon-
dence-principle first quantization of the spinless relativistic free particle, there is in fact no practical point
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to the exercise. Elementary correspondence-principle first quantization is clearly enormously simpler and
more physically transparent than is long-winded canonical Hamiltonization and canonical transformation of
classical field equations that are second-order in time. Furthermore, elementary correspondence-principle
first quantization is by far the most physically and mathematically transparent gateway to field quantization
because its second quantization is so extraordinarily straightforward and simple. It is only for electromag-
netism, where classical field theoretic methods have been completely entrenched for a century and a half, that
discussion of the relationship of classical field theory to elementary correspondence-principle first quantiza-
tion is at all worthwhile. Even there, field quantization definitely ought to be handled by proceeding directly
from the photon’s elementary correspondence-principle first quantization to its second quantization—there
is clearly no alternative field-theory approach that is as physically transparent or calculationally simple.

There can by now be no doubt at all that elementary correspondence-principle first- and second-quan-
tization is physically correct in all cases [2, 5]. It has clearly proved its mettle vis-à-vis both classical
electromagnetism and classical Klein-Gordon field theory. As for Dirac theory, it is even more unphysical (if
such a thing is possible!) than is treating the classical Klein-Gordon field as a complex-valued wave function.
Not merely does Dirac theory manifest the signature unbounded-below energies, its artificially introduced
anticommuting matrices cause the commutators of some very basic observables to behave insanely. The
commutator of any two orthogonal components of the free-particle Dirac velocity operator not only fails

to vanish, its value is not affected in the slightest by taking the classical limit h̄ → 0. And when the
nonrelativistic limit c → ∞ is taken, these orthogonal velocity-component commutators diverge! The free-

particle Dirac theory as well violates Newton’s first law of motion with mind-boggling spontaneous particle
acceleration that is inversely proportional to Planck’s constant and directly proportional to particle mass
and the cube of the speed of light; it also features a universal fixed particle speed which is 73% greater than
that of light, and it unaccountably manifests strong spontaneous spin-orbit coupling [5]. In light of the
fact that elementary correspondence-principle first- and second-quantization has no discernible pathologies

whatsoever , it is patently obvious what the physics status of Dirac theory ought to be.
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