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ABSTRACT

The Lorentzian “eqntraction” for length, time; mass and
temperature —taken as functlons of a dimensional equa-
tion— enable the suthor 1o define the mathematical struc-
ture of the constants of Nature. In this way the a priori
determination 6f all the canstants of Nature hag been rende-
red possible. :

This new technigue for physical investigation shows
that the constant of gravitation has a certaln variance that,
when properly ¢ompensited. yieldsa true universal constant.
Upon the introduction of the corrected constant in the ‘La~
/grange equations fne planetary motion we are fed to Fins-

tein's equitions and {he ‘correct estimate for peribelion
advanecs. '

1) Introdiction.

Dimensional analysis may be defined as *‘thastudy of the invarisats
for vaviations of the measuring units’', restriciing in this way its scope
to the stady of *‘adimensional pumbers'' and the ‘‘Principle of Dimensio-
nal Homogatieity .

In trying to apply Dimensional Analysis to the study of the rela-
tlonships existing between queniities referred to two coordinate systents
i velative nniform motion we find —uoder the asbove guoted assump-
tions— thar the adimensional numbers continie being invariants and, in
addition, that all the equatipns of physies remain invariant due to the
presence of the Principle of Dimensional Hemogeneity.

Consequently, the extension ol Dimensional Aﬂal_xf&is to. gover relati-
vistio situations must exelude ab initio the study of adimensionzl num-
bers as-well as Lhe aceeptance of a Principle of Dimensional Homogeneity.



E:
!
f
L
[
L

— 44—

Under these circumstances, we must not be surprised by the fact
that the attempts of applying the Theory of Dimensions to the Relati-
vity Theory have not yet been successful. Disregarding this requirement
of dimensional homogeneity —which as is well known originated in a
proposition of Maxwell (*) of an almost political intention— we will be
able to observe, upon the setting up of dimensional equations between
inertial frames of reference, that regularities connected with impor-
tant physical Invariants will appear.

2) The Two Types of Relativistic Transformations.

The study of the relativistic methodology shows the existence of two
different types of transformations.

One of these types of transformation is permanently referred to
both time and space in such a way that we may consider them as real
space-time transformations; vgr. the coordinates of a point situated at
a moving X-axis transform according to the well known Lorentz formula:

(x —vt)
(1)

x’ = ee——e———
VvV1—v/e
The other type of relativistic transformation is referred to “‘pure’’

times or ‘‘pure’’ spaces; vgr. the ‘‘contraction’’ of a segment lying along
the X axis is determined by the equally well known formula:

Ax = Ax, V1— v/ (2)

similar formulae being obtained for intervals of time, mass and for
differences of temperature.

It is important to stress the different structure of (1) and (2):
the first one a mixed space-time formula, meanwhile in the second one
only spatial quantities appear.

The reduction of the number of variables in the second formula has
been rendered possible by the addition of a supplementary requirement.
‘We will turn our attention to the analysis of this extra equation.
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3) The Relativistic Convention.

Taking into aceount the whole group of Lorentz transformations
we may derive the two following formulae for the measurement of the
length of a segment laid along the direction of relative motion of twa
inertial coordinate systems:

Ax—v At

A — (3)
V1—v¥et

AZ = Ax /1 —v/t—v AL (4)

In order to derive formula (2) from formula (8) we must introduce

the auxiliary condition
At=0 (5)

which actually means that we have measured the length of the segment
Ax by taking into account the simultaneous value of the coordinates of
its ends; i.e. we accept that these two X-coordinates correspond to a same
instant t of time. Consequently, this means that the segment coordinates
in the X'"-axis do not belong to a same instant t° of time.

If, instead, we set up the simultaneity of the coordinates in the
X'-axis, in other words, if we accept as auxiliary equation

A=0 , (6)
we-will obtain, according to eq. (4), a different formula.

The formula determining the relativistic behaviour of a segment will
depend on the formulae we choose for the purpose of its determination.
Taking into account, successively, the equations (3) (5) and (4) (6)
we will obtain the two following results:

Ax = Ax, V1I—7V/c (A)

Ax= A%, | V1—ve' (A%

which, translated into current language, means in the first case: the
length of a segment dimsnishes with motion; while the second case (A')
states that the length of a segment increases with motion.

The relativity theory offers, consequently, two alternate possibilities
for the behaviour of a segment moving along in its own direction with

=
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aniform relative veloeity. A choice between the two alternatives stated
appears easy at first sight. But a minute attention will prove this task
to be a hard one since nothing authorizes us to give preference to one
or the other way of stating the simultaneity condition. The selection of
the gystem of equations to which we will aseribe the simultaneity eondition
is purely a conventional matter. That is equivalent to state that in the
relativity theory the behaviour of a moving segment is a purely eonven-
tional matter.

As a matter of fact, formula (A) is universally accepted by the phy- -
sicists, being in consequence, the convention preferred in order to consider
the behaviour of a relativistie segment.

4) Relativistic Underterminacy.

The very fact that the behaviour of a segment in the Relativity Theory
depends on the conventional attitude we adopt may give rise to serious
doubts regarding the physical posibilities of the analysis we are trying
to develop. Nevertheless, the problem is not so serious as it appears at
first sight since, as we are going to show, the circumstance here appearing
as ‘““conventional’’ implies the existence of an extra degree of freedom
in the system of equations constituting the mathematical expression of
the laws of physics. The significance of this circumstance is epistemolo-
gically concrete since it is referred to the solutions of the systems of de-
terminants we may obtain out of the exponents of the dimensional formu-
lae for the constants of Nature. In such a case the qualification of “‘con-
ventional’’ should be better replaced by a statement of “Indeterminacy’’.
Leaving this problem for a later chapter we shall pass to analyze the very
important problem presented by the behaviour of the quantity fime in
the Relativity Theory.

Along the same lines as for the case of lengths we can obtain, out
of the whole group of Lorentz transformations, the following formulae
for time transformation:

At— Axv/e?
At = (7)

V1—v'/¢®

At = At V1—v/c* — AX v/e? (8)
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which supplemented by the corresponding equations of condition:
Ax =0 (9)
AX =10, (10)

yields these two formulae for the behaviour of time in the wrelativy
theory :

At = At, V1—v/e? (B)
At = Ady /1 — v e’ (B")

Parallelling what we observed regarding segments we find here
that the relativistie behaviour of an interval of time depends on the con-
ventional selection of the auxiliary conditions; i.e. the selection of the so
called ““‘conditions of isotopy’’ (*) stated by equations (9) and (10)., But
opposing what we discover in relation to segments, the relativists have
accepted universally formula B’ to determine the behaviour of a time in-
terval in the Relativity Theory. It is difficult to explain why in one
case (segments) the relativists have accepted one convention and the
opposite one in the other case (time). But this is one historical case we
can summarize by stating: In the Relativity Theory we perform the mea-
surement of moving rods with units at rest and, viceversa, we appreciate
a time interval given by a clock at rest upon comparing it with units of
time given by a clock in motion.

5) The Ambivalence of Time Transformation.

The necessity for auxiliary equations —to complemeni; the Lorentz
equations in regard to the behaviour of a segment— has not presented
difficulties in the history of physics. But in relation to time transforma-
tion the difficulties encountered have been very great. Among them I
wish_to mention the famous case of the ‘“clock paradox’’ —a problem still
unsolved after fifty years of discussions. It would take a long time to
develop here, extensively, this problem and the elements of the Theory of
Relativity connected with it. As I have made an ample analysis of these

(*) In my paper (®) “The Meaning of the Clock Paradox” I proposed to
call the conditions (9) (10) “Localicity conditions”; the term “isotopy condi-
tions” 1 adopt here has been suggested by Palacios (%).
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questions elsewhere (* (°) (*) (*) I limit myself to quote the following
statements:

i) The Clock Paradoz. As stated above, the equations of Lorentz are
characterized by the simultaneous presence of both temporal and spatial
parameters. To take them out of their conneetion by treating them sepa-
rately with reference to space and time means to leave the scope of the
Loventz transformations: The equations of Lorentz have physical validity
only in regard to space-time intervals. A fact T have been able to demons-
trate in the above guoted paper (°) is that the clock paradox has arisen
upon the relativistic treatment of non-relativistic entities like “pure’’ spa-
ces and ‘“‘pure”’ times. As shown in the quoted paper, the clock paradox
has appeared owing to the implicit (not explicit!) use of an universal t-
time instead of the two t and t’-times required by the Relativity Theory.

In concrete words: The clock paradox shows the existence of two ty-
pes of time transformation in the Relativity Theory (namely, formulae
B, B)).

i) The Lorentz Transformations. As shown above the unavoidable
presence of two auxiliary conditions to supplement the Lorentz transfor-
mations, in order to determine the formulae for time transformation, leads
to the undeterminacy implied by the existence of the two formulae B, B

1t) The Wave Méchanics. A very important point regarding Wave
Mechanics —which is generally ignored— is the presence, in Wave Me-
chanies, of two time transformations. Professor de Broglie himself has
confirmed to me this point about which some literature (") & ®
may be quoted. According to Prof. de Broglie, these two transformations
for time correspond to the ““‘time of waves’’ (formula B') and to the ‘1.
me of corpuscles’’ (formula B).

It is interesting to observe that in Wave Mechanies formula B’ be-
longs to the ““‘time of waves’’ and that in Special Relativity this same
formula B’ ecorresponds to the ‘‘time of particles’” — sinee the phenomena
studied by Special Relativity belong to what in Wave Mechanies is asso-
ciated to “‘group velocities’’.

We arrive at the conclusion that, also in Wave Mechanies, we have
to deal with two kinds of time transformation (formulae B, B).
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w) The Experiment of Michelson-Morley. The correct form for wri-
ting the Lorentz transformations should be:

x—vt
¥ =k——m
V1—v/e?
y =ky
zZ =kz (11)
t—xv/e?
= e—————
v1—v'/e

in which the constant k is really indetermined. Lorentz himself made the
hypothesis k=1 (accepted sinece that time in relativity) but, as Ives
(*) (™) and Palacios (°) have been able to show, nothing warrants the
correctness of this comvenmtion. On the other hand, from the standpoint
of Relativity Theory, the eondition k=1 is equivalent to the require-
ment of equivalence of both inertial systems. But the requirement of
the equivalence of the reading of clocks in two Inertial systems has led
to Palacios (°) (**) to a different statement of the transformations of Lio-
rentz.

Summing up we may say that in the own strueture of the experiment
of Michelson-Morley is this indeterminacy present which leads to formu-
lae B, B". )

v) The Expervmental Determinations. The admitted purpose of the
experiments of Ives-Stillwell-Otting was to overcome the undeterminacy
introduced by the presence of the unknown k in the equations of Lio-
rentz. According to the statement of Ives (*') an auxiliary experiment
—additional to Michelson-Morley experiment— was required, and to this
end the first experiment suggested was based on the so called ‘‘lateral
relativistic Doppler--effect’’. But, as remarked by Jones (**), this effect
cannot furnish any information regarding the relativistic ‘‘expansion”
of time since it wounld lead to the two formulae B, B according to whether
we consider either the emitter or the reeceiver in motion. This is to say
that the lateral relativistic Doppler effeet is also endowed with the amb.-
valence of time transformation.

This was the reason why Ives-Stillwell-Otting decided to employ the
so called ‘‘longitudinal relativistic Doppler-effect’’. Unfortunately, as
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I have been able to show elsswhere (*), the experiments of Tves-Stillwell-
Otting lead to the two following formulae of transformation (¥*):

Vi —I— Vr I'O
Vay — = (12)
2 Vi—d/d
X = Ay Ao
Ay = = (13)
2 VI=Ve

These two formulae were obtained by Ives in his theoretical papers
() (™) (™) (™) previous to the experiment. Their physieal interpreta-
tion means that the relativistic effect inereases (at the same time !) the -
frequency of light and its wave length. T want to express my surprise
about the fact that this clear self-contradiction, implied by the formulae
(12) and (13), has not been observed before. The decision of Ives to take
into account formula (12) was determined by the fact that he had his
spectrometer ealibrated for frequencies. If he had had his speetrometer cali-
brated for wave lengths, we could be sure that he would have arrived at
opposite conclusions regarding the behaviour of fast moving clocks.

‘We may conclude that the experiments of Ives-Stillwell-Otting stresses
the ambivalence of the formulae for time transformation in the Relati-

(*) The deduction of eq. (12) and (13) proceeds as follows: Taking into
account the relativistic formulae for the Doppler effect,

we obtain:
Vi —I— Vr Yo
Vay F— -
2 V1—v?/ e’
and
Av + A Ao

Aav — == ’

2 V1-—ve

where the subindices b and r means the blue and red shift, respectivily, pro-
duced by the Doppler effect.
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vity Theory. Formulae (12) and (13) form a system perfectly equiva-
lent to formulae B and B’

vi) The ambivalence of Length Transformation: The two formulae A,
A’ lead to the two formulae B, B’ through the well known equality (*):

Av = Xgvg = €

where A is the wave length, v the frequency and c the veloeity of light.
Taking into acconnt that » =1/t we arrive easily at the conclusion that

(*) This equality means that the fundamental postulate of the Theory of Re-
lativity (namely, the constancy of light velocity) is valid only in the case that
the length and time transformations belong, respectively, to formulae A, B or
A’, B’. Otherwise, it denies the validity of the Relativity Theory. For instance,
if we accept for length and time transformations the commonly accepted formulae

T=T,/ V1— v/
we obtain out of the above equality:
Av = Xy (1 —VPfe?) =g (1—""/c")

what is against the fundamental postulate of the constancy of light velocity.

If we do not accept, as stated in this paper, formulae A and B for length and
time transformation, respectively, we are obliged to deny the validity of the
above equality. But in this case we will be obliged to deny many other funda-
mental concepts of the Relativity Theory like, for instance, the constancy of
electric charge under Lorentz transformations which, as is well known, is ob-
tained out of the transformation formulae for charge density and volume

p=po/ VI—V/)e* dv = dv, V1 —v*/¢

that yield the invariant
dg = pdv = p, dv, .

1 want to remark that the above obtainment of Lorentzian invariants has vali-
dity only on the base of an accepted “principle of variational homogeneity”
which we are going to demonstrate more in advance in this paper.

An additional argument regarding the necessity of a parallelism between the
variance of length and time in relativistic transformations may be obtained directly
from Lorentz transformations upon observing that for the case of two inertial
reference systems (v = const.) we have ’

ax ot
—_—em e = (1)
ox ot

A more rigorous demonstration may be found through a variational analysis
of Minkowsky’s interval which shows that the covariant transformation of a
space-time tetravector requires a parallel behaviour of the space and time com-
ponents. But, of course, that treatment is outside the scope of the present paper.
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formula A implies formula B and formula A’ is associated to formula
B’. The ambivalence of length transformation (determined by the relati-
vity of simultaneity) implies the ambivalence of time transformation (na-
mely, formulae B, B’).

6) Variance of Mass.

Proceeding with our analysis of the bases for a Relativistic Dimen-
sional Analysis we arrive at the moment to determine the behaviour of mass
in the Relativity Theory. Fortunately enough, there is complete agre-
ement among the relativists regarding the point so that we can write di-
rectly:

M,
M= . (©)

V1—+v/¢
7) Variance of Temperature.

We will take advantage, for the determination of the relativistic
béhaviour of temperature intervals, of the Einstein law for energy.
Considering that we can aseribe a given mass to any amount of energy
we may write for temperature transformations:

0,
frm————— (D)

V1—+v'/e
8) Relativistic Dimensional 'Invariams.

Now we proceed to the application of Dimensional Analysis to rela-
tivistic situations. If we consider a systems S, —possessing an observer
that considers himself as at rest— it will be possible to set up a system
of quantities L— M — T —  that will transform according to the Follo-
wing equations:

TABLE I
L=L, V1—v/c (A)
T=T,V1—v/c (B)
M=M,/\/1—v/c (C)
6= 6,/\V1—v/c (D)
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With the help of the four above transformations we can build up the
following Relativistic Dimensional Invarienis (°):

TABLE II

IM — L/T — L§ — MT — M/§ — T¢

These invariants being such owing to mutual compensation of their
relativistic variances; namely, LM = LM, , L/T=1L,/T, , ete.

It is easy to deduce that different powers of the above invariants
will continue to be invariants for any observer regardless his state of
relative motion. In eonsequence, the above invariants will appear as
‘‘universal constants’’ for any observer whatever be his physical condi-
tion. This aprienstic determination of ‘‘universal constants’’ is confir-
med by the experience sinee, according to TABLE IV, the structure of
all the ““CONSTANTS OF NATURE’’ heretofore known obeys the rule
of formation we have theoretically developed. Comparing the constants
of TABLE IV with those appearing in TABLE III (determined experi-
mentally) we may observe their absolute quantitative and qualitative
coincidence. '

Summarizing the theoretical and experimental faets deducible from
TABLE III and TABLE IV we can say that the Relativistic Dimensio-
nal Analysis has made possible the obtainment of an unique formula for
all the Constants of Nature:

Lih+k=5 Mk T—h §—i— np—i (14)

(k=0,1
(h=0,123)
(J == 0;1y293s4)5)

where n and r are numerical constants.

9) Universal and Empirical Constants.

It is hardly possible for physicists to think that TABLE IV be the
result of some simple coincidence. On the contrary, such regular
arrangement of all the constants of Nature should be the argument
to prove the correctness of our selection of the Lorentz metrical
transformations that lead to TABLE 1 if it were not the ecase
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that the opposite selection would have lead to an arrangement equally
suitable. It is only on an experimental basis that we may decide
between the two possible systems of conventions, and, as we have seen,
our only foundation for the system exposed in TABLE I is the experi-
mental evidence regarding the formula for mass transformation : the expe-
rimental fact that mass increases with veloeity.

We may wish to have some theoretical argument to stress the experi-
mental evidence that proves the correctness of our selection between two
equally suitable systems of metrical Lorents transformations. In trying
to find such argument our first attempt is directed toward the proposi-
tion of Planck (™) about the so called ‘‘absolute units’’. Bus as soon
as we try to obtain absolute units out of the arrangement of constants
of Nature shown in TABLE IV we meef with the fact that ‘‘it is impos-
sible to determine a system of absolute units with the help of all the
constants of Nature’’.

This curious cirenmstance is so general that we may raise it to the
cathegory of a principle determining the structure of the constants of
Nature. In trying to analyze it more deeply we must remember the follo-
wing well known Theorem : ‘‘ A system of monomes constituted by products
and quotients of unknowns has a solution if, and only if, the number of
independent monomes is equal to the number of unknowns”’.

Actually, as it may be observed upon inspection of TABLE IV, in
the constitution of the constants of Nature, the number of independent
monomes amounts only to three (LM -—L#—T§d) and the number of
unknowns (Li— M — T — @) is four. This is the reason why it is impossi-
ble to materialize the project of Planck. Analyzing further the origin of
this undeterminacy of the system of constants of Nature we find as an
explanation the absence of the invariant (MT) in TABLE IV.

Bridgman (*) has given an excelent account of the possibilities of
forming systems of absolute units remarking, at the same time, that a
necessary requirement is the presence, in the systems of constants
selected to this end, of the eonstant of gravitation. I wish to add that
with the help of any empirical constant it is possible to obtain other
types of “‘absolute’’ units, and in TABLE V I have grouped as ‘‘ Empiri-
cal Constants’’ all those constants leading to the determination of such
units.
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I have no idea about the reason why the invariant (MT) does not
appear in physical laws but this very faet is responsable for the extra
degree of freedom the system of natural laws possess which leads to many
special features we will analyze later on in dealing with some epistemo-
logical problems of the physieal theory.

T congider that at this height of our development we are in a posi-
tion to enunciate the following:

Principle of Varigtional Homogeneity: The two members of any
physical equation have the same variation in regard to metrical Lorentz
transformations,

As stated at the beginning, the requirement of ‘‘dimensional homo-
geneity’’ gives automatic validity to that requirement but it may be
observed that in order to give physical validity to the Principle of Dimen-
sional Homogeneity it has been necessary to introduce artificially in the
expression of the physical laws the so called ‘‘dimensional constants’’,
But the very important faet is that if we write the laws of physics without
giving dimensions to the dimensional constants the ‘“principle of varia-
tional homogeneity’” is still valid.

This observation leads us to the enunciation of a theorem which I
wish to call ““The Second Theorem =’’.

““If we write the physical laws in a purely observational form in such
a4 way that we equate the resultant dimensional monome with its pure nume
rical value, the numbers so obtained are invariant under Lorentz trans.
formations’’.

10) Tolman’s Principle of Similitude.

We can write TABLE I in a purely qualitative way in the following
form :

TABLE V
L= Lx ,T=T;x
M= Mx", 0 = 8x"'

where x is a simple numerical factor.

The fact that this table condenses just what Tolman (') (**) ()
called “‘Principle of Similitude’’ must attract our attention. In other
" words, TABLE V shows that the conclusions of the Relativistic Dimen-
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TABLE III

CONSTANTS OF NATURE

56650 X 10
.7989 X 10
0270 X 10
62617 X 10-%
.J0674 X 1020
38044 X 101
.07066 X 10
76 X 10~
69362 < 10
24795 X 108
.b6%Y X 10
J79931L X 10
95442 X 10¢
. 19088 X 10+
J67283 X 10°F
.301 X 10+
. 43880

.41784

.28978

R X 108
99793 X 10
-24405 X 10%

¢.m.u.

gr em

gr em? deg

erg deg™!

e.s..

crg deg™?

crg deg™

erg deg™

erg deg”?

crg em

erg em™ deg-*
see deg

erg em? see™

erg em? see™t
erg em see” deg™
erg em® see! deg™?
em deg

em eg

em deg

volt® deg®

em see™

em2 gr! see? deg

Fleetron Charge (square)
Band Spectra Constant

Rot. Specific Heat Constant
Planck’s Constant

Fleetron Charge (square)
Boltzmann's Constant

Mol. Transiational Energy
Mol. Surface Energy

Mol. Sackur-Tetrode Constant
First Radiation Constant
inergy Dens. of Enel. Radiation
Atom. Speeif. Ileat Constant
Iirst Radiation Constant
IMirst Radiation Constant
Stefan-Boltzmann’s Constant
Intensity Coefficient

Second Radiation (‘onstant
Third Radiation Constant
Wien’s Displacem. Constant
Wicdemann-Franz's Law Const.
Light Veloeity

Seeond Avogadro’s Number

ADIMENSIONAL NUMBERS

1/137.0373
496511423
= 3.443390

5

97324

6.02486 X 10**

- 6

.66 X 10*

3.60 X 10"

0
2

270
L33 X 10-¢

ine Sirueture (‘onstant
Prop. Constant: ¢;/A
Prop. Constant: es/A
Prop. Constant: S,/R,
Avogadroe’s Number

EMPIRICAL CONSTANTS

em® grt see?

€. em~2 see™! deg?
em® /2

em7/¢ grt/t gee?

Giravitational Constant
Richardson’s Constant
Debye-tliickel’s Constant
Langmuir’s Constant

NOTE: Values ¢, e, h and k are taken from “Atomic Ceonstants, 1955”. Cohen,

Values a and o from Birge’s “Least Square
(No correction made for the new (1954)

thermodynantic scale of temperature). Value C; belongs to LC.T.
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TABLE IV

CONSTANTS OF NATURE

# | 3 |  DIMENSIONAL INVARIANTS Adimet- VALUE

5 | UM U Lo Moo= Te | Fader | (Caluated)
1| e | (LAY a/2x% | 2.56659 X 107
2 (LM) 1/8a% | 2. 79884 X 105
3 (1.3 (LO) 1/85% | £.02704 X 10
4 | h | (LM) (LT) 1 6.62517 X 10~
5 | e | (LM) (LPY): a/25 | 2.80674 X 10
6 |k (LT)® (Ma-) 1 1. 38044 X 10-3¢
T | e (LT (Ma-) 8/2 | 2.07066 X 10~
8 [ K (1)* (M) 2 | 2.76088 X 10
& | S (Iie2)= (Mo™) —§ | 7.69952 X 10

10 [ e | (LM) (ET)? Zx | 1.22795 X 10

11 | a (L)Y (M&?)(Ta)= | 4y | T7.56899 X 10

12 |B (Ta) 1 4.79931 X 10

18 | ¢, [ (EM) (LTY)* 1 5.95442 X 10+

M| e | (LMY (L)s 2 10088 X 102

15 | o (MB7) (Ta)= ¥ | 587288 X 10°2

16 | C (LO)™ (MO™) (Pa)" | [.36764 X 10

i Y [ (LEY) 1 1.43880

I8 | ey (L) 1/y | 041784

19 [ A (Le) 1/8 | 028078

P (L) (M) (TR)? | 27 y/a | 2 65661 3 100

21 | e (L) 1 2.99743 X 10

2 | N (LT-)-2 (Me2) 1 T.24405 X 10

.
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sional Analysis were enunciated in a qualitative form by the great phy-
sicist Tolman many years ago. In general lines it can be said that the
proposition called “‘Principle of Similitude’’ is simply a corollary of the
“‘Prineciple of Variational Homogeneity’’. I am quite sure that sooner
or later the discussion about the ‘‘Prineiple of Similitude’” of Tolman will
be reopened (*) and at that time there will be found of importance the fo-
lNowing theorem — which I only state sinece its demonstration is easy
taking into account the ‘‘Second Theorem =’*:

TurorEM : All the determinants obtained out of the matrix formed
with the dimensional exponents of the constants of Nature vanish.

This theorem, which is a verifiable principle of Nature, is also
another form of stating the ‘‘Principle of Variational Homogeneity '’
And it must be observed that the ‘‘Principle of Similitude’’ of Tolman,
the *‘Relativity of Size’’ of Hoffmann (*) (*), the Straneo proposition
(*) trying to impose on the constant of Nature requeriments identifiable
with systems of homogeneous linear eqrations, and, also, Maizlisch’s (**)
““Principle of Projective Covariance’” must be considered as corollaries
of the prineciple. Along similar lines we can include the eletromagnetic
setting up of the “‘unified field’” theory of Weyl among the corollaries
of the P.V.H.

11) The Principle of Equivalence and Newton’s Law.

Tolman proved that with his Principle of Similitude the aprioristic qua-
litative determination of all the laws of Nature was possible. He also pointed
out that this was not the case for Newton’s law of gravitation ; and the main
objection against Tolman’s Principle of Similitude was that with its help
the aprioristic determination of Newton’s law of gravitation was impossible.
Owing to this circumstance the Principle of Tolman was rejected as a
physical principle. It is surprising to observe that nobody, at that time,
considered the other possibility: that the ‘‘constant’’ of the gravitational
law were not a real constant of Nature.

The equivalence between gravitational mass and inertial mass, im-
plicit in the Newton law of gravitation, has always appeared as demons-

(*) The importance of the Principle of Tolman as a cosmological principle
has recently been stressed by the developments of Hoffmann in his “Relativity
of Size”. In this respect Tolman’s Principle must be considered as the limiting
Euclidean case of the Conformal Geometry of Hoffman,
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trated by the existing isochronism of penduli formed out of different
materials. Later on, Eotviiss confirmed the result of the isochronical expe-
riments with the help of his famous balance, demonstrating that the rela-
tionship existing between masses of different substances in regard to the
gravitational and inertial actions was invariant at the poles and at the equa.
tor. Taking into aecount that at the equator the action of the gravitationa)
force is somewhat opposed by the centrifugal action due to the rotation
of the Earth, this experimental determination was considered sufficient
proof for the statement of a ‘‘Principle of Equivalence’ of the gravita-
tional and inertial masses.

All these experiments and analyses have been so amply discussed
in the scientific literature that it is surprising that nobody observed that
the experiments of Eo6tviss —regardless their extreme accuracy— were
performed under conditions we could qualify as static ones: i.e. the rela-
tionship between the masses (terrestrial mass and the mass in the balan-
ee) is referred to masses at rest. This is the reason why Eo6tviss’ experi-
ments say nothing in regard to the relativistic behaviour of masses in
relative motion (as, for instance, the masses of a planet and the Sun). In
face of such facts —I have analyzed at full length in a previous pa-
per (*)— it is hardly dubious that a physicist will not qualify the rela-
tivistic applying of such experiments as ‘‘illegitimate extrapolation of ex-
perimental results’”

We arrive at the conclusion that nobody has demonstrated that the
“‘eonstant’’ of the gravitational law is really a constant of Nature, and
that in spite of this lack of experimental evidence the constancy of such
an entity is an accepted fact of modern physics. Let us think of the me-
thodological mistake involved in the rejection of the Principle of Simili-
tude on the basis of its inability for determining a “‘constant’’ that nobody
has yet shown to be a constant of Nature.

12) The Perihelion Advance.

Let us consider the above quoted question from the standpoint of the
“‘Relativistic Dimensional Analysis’’. In trying to express the gravitational
constant in terms of relativistic dimensional invariants we write:

[G] =LAM~T~* = (LM~") (LT (12)
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what means that the constant of gravitation cannot be split into di-
mensional invariants because the factor (LM™) is not a relativistic in-
variant.

Confronting this result with the splitting of the constants of Nature
shown in TABLE IV we are obliged to think of the special character of
the constant of gravitation in face of all the other constants of Nature.
Notwithstanding this evidence the acceptance of the constant of gravita-
tion is so extended that it will be necessary to give addltmnal demons-
trations to the already expressed arguments.

Upon analyzing the ‘‘variance’’ of the constant of gravitation we
find:

(LTHHLM™Y) = (LeTy ™) (LMo ™) (1—v*/e?),

according to TABLE I; i.e. that the actual invariant should be a gravi-
tational wonstant with the following correction :

G 6,66 X 102
G, = = cm® gr'see™ (16)
1—v*/e? 1—v?/e?

and we will call the above expression, really constant, the ‘‘corrected
constant of gravitation’’.

In order to demonstrate its efficiency in handling physical situs
tions, let us consider a Coulombian gravitational field to which, in the
absence of external forces, we will apply Lagrange’s equations. We arri-
ve at the classical integrals for the energy and the angular momentum :

dr \* de \* 2GM
dt dt T
de
r? =h.
dt

Upon replacing for the corrected constant, — G' = G/(1 —v*/e*) —
and expanding in power series, we arrive, neglecting infinitesimals, at:



dy
which is the Einsteinian formula for planetary motion.
This shows that the Einsteinian correction consisted exactly in
transforming the constant of gravitation into a Lorentzian invariant.
The ulterior transformation of the formula for the calculus of the
perihelion advance, shows that the substitution of coordinate time for
proper time does not amount to an appreciable value.

Multiplying the first equation by dt/d¢ , and with the help of the
second one, we arrive at:

dr \* ot 2GMr?
) +r=k -+ + 2GMr
de h® - h?

by means of the classical device of making r = 1/u, we obtain,

d*u aM 3h*u®
tn=— (1+ ) (19)

de® r '

If the term 3hn’/c® were not present, the integration of the equa-
tion should be immediate, leading to the classical 2= period. In order to
obtain the value of the perturbation we ean follow any of the well known
methods, which lead to an angle for two successive perihelions of about

GzMZ

2 + 67
¢’h?

Calculating per century, we arrive, for the case of Mercury, at an angle
next to 43” for the perihelion advance.

This outstanding result is the best proof that the accepted ‘‘cons-
tant of gravitation’’ is not a constant of Nature,
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13) Episterhological Considerations.

In the above quoted (°) paper I have amply dealt with epistemolo-
gical questions arising in relation with the Principle of Variational Homo-
geneity and its physical applications; notwithstanding this circumstance
1 will make here some remarks on the topie.

It is important to consider at the beginning of these analyses the
following corollary of the P.V.H.

Corollary: The determination of the state of relative motion of two
frames of reference, with the only help of the constants of Nature, is
impossible. This corollary —whose statement is just the inverse propo-
sition to that of the principle— could be enunciated as a principle lea-
ding to the ‘‘theorem’ of variational homogeneity.

Starting from the existence of certain physical entities that appear
as invariants under relativistie transformations (the so called ‘‘constants
of Nature’’) we arrive at the conclusion that, in the universe, some
absolute (invariant) entities exist which, in order to be observed, must
be decomposed by us in relafive (variant) elements (our dimensional
units). . :
According to this mealistic interpretation, the invariants (quantum
of action, velocity of light in vacuum, Stephan constant, ete.) do exist
by themselves in Nature, but in order to be able to observe them we are
obliged to decompose these invariants in various quantities of relative
nature; ie. our four units of measurement: length, time, mass and tem-
perature.

The opposite interpretation is also logically possible: Our quantities
of measurement are four and they are altered under relativistic trans-
formations. But there are combinations of these measuring units which,
upon mutual compensation of their variance, appear as invariant entities.
According to this idealistic interpretation, these special combinations are
what we interpret as invariants, but this appreciation is only a ‘‘hypos-
tasis’’ of the subjective phenomenon of de relativity of our measuring
units — subjective in reference to the observer who does not need to be
a human observer.

The circumstance that with the help of all the constants of Nature
it is impossible to determine ‘‘absolute’’ units —owing to the vanishing
of all the determinants formed out of the dimensional matrix of the cons-
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tants of Nature— does not permit a decision in regard tothe alternative:
realism-idealism. In this way, the selection between realism and idealism,
in physies, is impossible — due to the presence of the Principle of Varia-
tional Homogeneity.

On the other hand, it is interesting to observe that the endless dis-
cussion regarding the necessary number of units in physies is overcome
by the statement that a measuring unit must possess, as one of its featu-
res, a relativistic variance. The statement that we can have no more than
four units of measurement follows. And, for instance, some propositions
trying to introduce, in electricity, the electric charge as a unit must be
considered, from this viewpoint, as senseless.

Another important epistemological consequence of the P.V.H. is that
Heisenberg’s Principle of Uncertainty is nothing but a corrollary of the
Principle of Variational Homogeneity. The appearance of a ‘‘Principle
of Complementarity’’ (*) follows as the logical consequence of the two
possible pictures of our philosophical scheme: realism or idealism.

In reference to the old question about the bidimensionality of electric
charge, it is to be observed that both the electrostatic and the electromag-
netie charge are invariant under Liorentz transformations. From the view-
point of the P.V.H. there is no trouble in finding two dimensions for the
“‘electric charge’’ since they are related by the velocity of light.

1 want to conclude this introductory note on P.V.H. pointing out
the great genveralit& the Special Relativity may achieve in connection with
the Relativistic Dimensional Analysis. Its scope mayzbe enlarged to cover
the whole physics as shown by the following statement: ‘‘Physics is the
study of Lorentz transformation invariants”’.
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