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Graphical analysis of the geometry of a curved ‘three-dimensionablake intrinsic
metric space, (an absolute intrinsic Riemannian metric spatéj, which is curved
onto the absolute timiabsolute intrinsic time ‘dimensions’ (along the vertical), as a
curved hyper-surface, and projects a flat three-dimensiona¢phafpinsic metric space
»E" underlying its outward manifestation namely, the flat proper physicalid&sn
3-spaceF”®, both as flat hyper-surfaces along the horizontal, isolated in partfahiso
paper, is done. Two absolute intrinsic tensor equations, one of whichtfe afiver-
genceless form of Einstein free-space field equations and the othdr islidensorial
statement of local Euclidean invariance@h/>, are derived. Simultaneous (algebraic)
solution of the equations yields the absolute intrinsic metric tensor and absulirie

sic Ricci tensor of absolute intrinsic Riemann geometry on the curvedwsotrin-

sic metric space 2, in terms of an isolated absolute intrinsic curvature parameter.
Relations for absolute intrinsic coordinate projections into the underlyingiftgter
intrinsic space are derived. A superposition procedure that yieldaasabsolute in-
trinsic metric tensor and resultant absolute intrinsic Ricci tensor, as wedsagtant
absolute intrinsic coordinate projection relations when two or a larger nuofleh-
solute intrinsic Riemannian metric spaces co-exist, are developed. Fimnafigahthat

a curved ‘three-dimensional’ absolute intrinsic metric spaBé® is perfectly isotropic
(that is, all directions are perfectly the same) and is consequently ctedrto a ‘one-
dimensional’ absolute intrinsic metric space denoted)pywhich is curved onto the
absolute timg@absolute intrinsic time 'dimensions’ along the vertical and that the under-
lying projective three-dimensional flat proper intrinsic metric spagg® is perfectly
isotropic and is consequently contracted to a straight line one-dimenssmtiadpic
proper intrinsic metric spacgp’ along the horizontal, with respect to observers in the
physical proper Euclidean 3-spaE#® that overliespy’, are deduced.

1 Graphical analysis of absolute intrinsic Riemann geo- we must letAa! — da! and Avw'' — du't in Fig. 1. We
metry of curved absolute intrinsic metric spaces require in this limit that the length of the arc AGB be equal

Let us start with a curved ‘two-dimensional’ absolute ingit the length of the hypotenuse AB of the trangle ABC, then

metric space (an absolute intrinsic Riemannian metricspa@e absolute |rjt1r|n5|c angig: (') |s_smgle—.va.lued, being
& K12 with extended absolute intrinsic ‘dimensionsi' and €aual t0¢va () over the arc AGB in this limit.
$32, a sub-space of the ‘three-dimensional’ absolute intrin- Similarly by taking a short segment, BEAG? (= A¢i?),
sic metric spaceyl® in Fig. 5 of part one of this paperabout pointif,, (= ¢if,)) along the curved ‘dimensiori?
[1]. The extended curved absolute intrinsic ‘dimensiorfs’ ave have, in the limit as\i? becomes very small, that is, in
¢M? originate from a point Qj{fc(lo), qbfc%o)) of the underly- the limit as D— E, we must letA4? — da? and Au/? —
ing two-dimensional proper intrinsic metric spatE’?2, with du’? in Fig. 1. We also require in this limit that the length of
extended straight line proper intrinsic dimensiang' and the arc DHE be equal to the length of the hypotenuse DE of
¢z'%, as illustrated in Fig. 1. We shall temporarily make thiée triangle DEF. Then the absolute intrinsic angle;-(4°)
following changes of notation of intrinsic dimensions fone is single-valued, being equal #a) ;- (ﬁ%l)) over the arc DHE.
venience: Thus by displacing the limiting constant elementary in-
3" — 4’ and dpx’t — u”?, tervalsdd! andda? defined above along the curved ‘dimen-
sions’ &' and 42 respectively, one can attach a locally flat
as already implemented in Fig. 1. On the other hand, thnifold of elementary ‘dimensiong/a! andda? to every
notations¢1?, pE° and¢E" for the intrinsic spaces shallpgint of the ‘2-dimensional’ curved absolute intrinsic epa
be retained in order to avoid confusion. #M?. One can then construct geometry, that is, derive sin-
Let us take a short segment AB Au' (= A¢i') about gle absolute intrinsic metric tensor, single absoluteiristc
pointa(, (= ¢i(,)) along the ‘dimensionti'. Then in the Ricci tensor, single absolute intrinsic Riemann scala, (@t
limit as Aa! becomes very small, that s, in the limitas#, a lumped parameter fashion), which are valid at every point
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X0 lying proper intrinsic metric spacgE’?, by virtue of system
(1), as follows:

(dgl)? = (di')? + (di®)?

= sec? Pt (11%1))(du’1)2 + sec Pihg2 (ﬁ?l))(du'2)2
(20)
or

2
! (dpl)* = Y sec dibu(ilfy,) sec dugn (iify) ) Sipdu’ di™
i,k=1
(2¢)
or

2
(dol)? = > dginliifyy, i) )du’ du'® (2d)
i,k=1

The absolute intrinsic metric tenseg; is purely diagonal,
given in terms of absolute intrinsic anglensbﬂl(a%l)) and
Fig. 1: A curved ‘two-dimensional’ absolute intrinsic metric spac
M2, (an absolute intrinsic Riemannian metric space), and its

derlying projective flat 2-dimensional proper intrinsic metric space

n{&az (fL(QQ)) as follows:

¢E", lying underneath flat proper physical Euclidean 2-spéte G = sec by (1221)) sec Phy (11](“1))6ik
sec? dihgr (ﬁ%l)) 0
within the locally flat neighborhood, with respect to Euelid - 0 sec? g2 (%)) ®)

ean observers in the underlying flat proper physical Eualide

2—spaceE"2 and repeat this about every point of the curved g the |ocally flat region of the curved absolute intrin-
absolute intrinsic metric spaceh 2. This is the graphical sic metric space /2 bounded by elementary coordinate in-
approach to the absolute intrinsic Riemann geometry ot & 41sd4! andda2 about point(it,, 42,,) of $XI2, which
curved ‘2-dimensional’ absolute intrinsic metric spachick ossesses Euclidean metric te Drwi(tlr% respect to a Rie-
has no counterpart in conventional Riemann geometry. Thennian observer at the location of this locally flat regién o
derivation can be easily extended to a curved ‘3-d|meni§|on$M2, possesses the absolute intrinsic sub-Riemannian met-
_abs_olqte |_ntr|n3|c_metr|c space - a 3-dimensional’ abbly;, tensor¢g;, with respect to Euclidean 3-observers in the
intrinsic Riemannian metric space. _underlying flat proper physical spaé®? in Fig. 1.

AlThAezeIementa‘ry mtervat@ a,nddu defllne(.j apouF point However the absolute intrinsic line element (2c) or (2d)
(u(l)’ “(1)) of the 2-dimensional’ absolute intrinsic Rlemanré)iven in terms of the proper intrinsic coordinate intervats
spacep M2, project intervalslu'* anddu'? respectively about anddu’? of ¢E'2, cannot be used to write absolute intrinsic
the corresponding poirit(;, u(})) of the underlying proper geodesics on the curved absolute intrinsic metric spddé.
intrinsic spaceyE’2 in Fig. 1. One obtains the following fromRather the absolute intrinsic geodesicql 2 must be writ-
elementary coordinate geometry, ten in terms of locally straight elementary absolute irsién
coordinate intervalgi! andda? on ¢M2 and the absolute
intrinsic metric tensowg;;, of Eq. (3) with respect to these
observers (inE’? in Fig. 1).

As shall be demonstrated shortly in this paper, there is

focal Euclidean invariance onll/2 with respect to observers
in E’2, which allows us to write,

dull _ dﬁl oS dﬂz)&l (’ljb(ll)) a,nd dUl2 = d?:LQ COS QZS’l]}al (’ll?l))

A Riemannian observer at the poifit.,,, 42,,) on ¢ ?;

o ) . (1) ~(1) .
(this is the proper Riemannian observer), observes Ewgiid
metric tensor locally about his position. He constructslifluc
ean line element in terms of the intervalg' andda? as fol-
lows: 2 2
S dnduidu’t = 3 dypdidint @
(dol)® = (di')* + (di®)* = > dpdi'di®  (2a) ik ik

2
i,k=1 L. . . . . .
This is the discrete version (in the graphical approachhof i

This local Euclidean line element api/2 can be written trinsic local Euclidean invariancesEl) on SM? with re-
equivalently in terms of the coordinate intervals of theamd spect to Euclidean observerskif? in Fig. 1.
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Eq. (4) then allows us to replack/ du’* by di'da* in 1.1 The absolute intrinsic dimensionless curvature pa-

Egs. (2¢) and (2d) yielding the following respectively: rameter of a curved ‘one-dimensional’ absolute in-
trinsic space on a vertical proper intrinsic space -
2 absolute intrinsic time plane

na ;o
(del)” = Z sec ¢t (1)) sec ¢ (i)oo' din” Let us consider a curveon theu/ w/2—plane ing E’3 shown
k=1 in Fig. 2(a). The Eulerian curvaturgs |, (in honor of Euler),

or (5a) of the curves at point P in Fig. 2(a) is given from definition
) [5, see ch.1] as follows:
(dgl)* = Y dgur(afy), gy, )di' did* (50) di .
k=1 75— FEUI (7)

H%heret andn are unit tangent vector and unit normal vector

The absolute intrinsic line element (5a) or (5b) and
ute INSIC (5a) or (5b) réspectively, to the curveat P. Hence,

absolute intrinsic metric tensor (3) admit of easy geneaali

tions to the case of ‘3-dimensional’ absolute intrinsic ricet di do

spacepM3. The absolute intrinsic geodesic is given at an | — \ =|rgy | = 7. = FEUl (8)

arb|trary point(a!, 42, 43) on ¢M3, which corresponds to 5

point (u't, u’? u’3) in the underlying flat proper intrinsic met-  Now let this same curve be on the verticad/' 2°—plane

ric spacerbE’?’ with respect to observers i’ as follows:  as shown in Fig. 2b, where it has been re-denoted by It
now carries a hat label since it is now a ‘one-dimensional ab-

- 3 R solute intrinsic metric space (or an absolute intrinsicrinet
(dol)® = > sec dibyi(irfy)) sec pgn (iify))Sixdi’dit”  space ‘dimension’) on the'a®—plane. Again the curvature
i,k=1 of &' is given by Eq. (7), except that the unit normal vecior

(6a) projects components sin qbzﬁ(ﬁ%l)) into the proper intrinsic

3 dimensionu’! along the horizontal. Hence the curvature of
(dpl)* = > dgi(itfy), iy, iy dit’ dic® (6b) 4! that is valid with respect to observers in (all frames in) the
i,k=1 underlying physical Euclidean space in Fig. 2b is the follow
o : : _ _ing
The absolute intrinsic metric tensor i8 & 3 diagonal matrix di .
containing elementsec? giq1 () ), sec? duqz (43;)) and 75 — nsin oY (1)) KEY 9)
sec </51/Ju3( 1)) in this case. Let us define the absolute intrinsic Riemannian curva-

In the graphlcal approach to the absolute intrinsic Rigre ¢’%R|em(A( )) of the plane curve:!, (which is a one-
mann geometry of curved absolute intrinsic metric space$#mensional absolute intrinsic metric space (an absohe i
once one measures the absolute intrinsic angilﬁﬁ( ‘) on trinsic Riemann space) at point P in Fig. 2b as follows:
M2 or M3, of the inclination of intervalgd’ of the curved
absolute intrinsic ‘dimensioni® to the respective underly-
ing projective straight line proper intrinsic dimensiaxl$ at
a given point, one then obtains the absolute intrinsic metg,
tensor from Eg. (7) of part one of this paper [1] at that point.
There is no correspondence to this in conventional Riemann
geometry, as far as | know. The dimensionless intrinsic paramesgéar ¢1[)(ﬂ%1)) shall

The absolute intrinsic metric tensor of the absolute intriR€e referred to as absolute intrinsic curvature parametiyeat
sic Riemann geometry of a curved absolute intrinsic metgiven pointa,, along the curved ‘one-dimensional’ absolute

spacep/? is purely diagonal alwayg This is so since all thigtrinsic metrlc spacé' and denoted byk(iif,) ). Itis an ab-
absolute intrinsic ‘dimensions’ af/” span the absolute in-qte intrinsic parameter since théis a one -dimensional’

¢ 00 = Lo . . .
trinsic time ‘dimension’i® = ¢¢¢i along the vertical only, 4psoiyte intrinsic metric space (or a ‘dimension’ of ‘three

such that each curved absolute intrinsic ‘dimensiof’ of dimensional’ absolute intrinsic metric space). Hence E6) (
# M3 lies above its projective straight line proper intrinsie d‘shall be re-written as follows:

mensionu’* in $E’® (along the horizontal). Consequently

. . di S e
PhRiem(i(1)) = | 25 | = |7 ]sin oy(agy))kgy  (10)

SrRiem(@(1)) = sin ¢y (a;)rgy (11)

each curved absolute intrinsic ‘dimensiaf lies on the ver- diRiam(ily) = dk(al 2
. Riem(t(1)) = k(1)) kEYI (12)
tical u'*a°—plane. The cross termgi'da?, da'da® and em (1) )7 Eu

da'da® are therefore precluded in the absolute intrinsic linehere A A

elements (5a) or (5b) and (6a) or (6b). Pk (afy)) = sin ¢ (i) (13)
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Then by using system (14) in system (15), the components

%0 of the absolute intrinsic metric tensor are given in terms of
AL° 4 absolute intrinsic curvature parameters as follows:
¢g = (1= dkar (af;))%) "
<4 GGz = (1 Ghu(id,))?) (16)
>
L N $go1 = ¢Gi12=0
: . ,f\) . xvll
.._. . A / u"<1]) ....... >u Hence,
T Varahy
1
~~ Co?
2. N - ot (u
vk Pgir = UO = 1 (17)

. L L 1- ¢]%ﬁ2(a%1))2
Fig. 2: Deriving the absolute intrinsic curvature parameter of a
curved ‘one-dimensional’ absolute intrinsic metric space on a VgxtenSK)n to the case Of a ‘3_dimensional’ absolute |nm:|ns
tical proper intrinsic space - absolute intrinsic time plane. metric space;b]\?ﬁ is straight forward, in which case tRex 2
diagonal matrix of Eq. (18) becomes & 3 diagonal matrix.
Since the absolute intrinsic angjﬂ? has constant zero value Thus the absolute intrinsic metric tensor hgs parametnc
dependence on the square of the absolute intrinsic cuevatur

along plane curves in the underlying proper intringi€’3, . N
the absolute intrinsic Riemannian curvature of a planeee:uR/ararne.ter_S n absolute intrinsic Riemann geometry. The ab-
in 6’3 is zero. solute intrinsic curvature parameters shall ultimatelyrée

The absolute intrinsic curvature paramet Gﬁsﬂ and lated to the absolute intrinsic parameter(s) of the absohit

- C 1 o ... trinsic metric force field that gives rise to absolute irgim
okg2 at pointsiy,, andas,, of the curved absolute intrinsic. .

_ . ) 1) ) Y ] Riemann geometry with further development.
‘dimensions’! and4? respectively in Fig. 1 are given as

follows by virtue of definition (13): 1.3 Establishing local Euclidean invariance on a curved
absolute intrinsic metric space

Pk (iify)) = sin Mfll(“%l)) (14) The ‘2-dimensional’ absolute intrinsic metric spatk!? (a
ok (ﬁ%l)) = sin @y (afl)) ‘two-dimensional absolute intrinsic Riemannian manijofd
Fig. 1, is locally Euclidean. Hence the Riemannian observer
i o " incli- located at poin{al,,, 2,) on M2 writes the absolute in-
Since the absolute intrinsic angle,;: measures the incli- pointi,,, i,y) On ¢

nation of the curved absolute intrinsic ‘dimensiari’on the trinsic local Euclidean line element (17a) at that point.te

vertical planeu’'4° relative to the underlying flat proper in-other hand, the absolute intrinsic Euclidean line elem2a (

trinsic spaceE’? (as a hyper-surface) along the horizontal, ith respect to a Riemannian observer at péirft,, a¢, ) on

has the same value with respect to all frames (or all obsgrvesi1? is equivalent to the absolute intrinsic sub-Riemannian

in the underlying flat proper physical Euclidean 3-sp&k& line element (2c) or (2d) with respect to Euclidean observer

(also as a hyper-surface) along the horizontal overlyifi§®. in the underlying flat proper physical spag#®>. An extra

Hence the absolute intrinsic curvature parametey has the term shall be added to the right-hand side of Eqg. (2¢) or (2d)

same value with respect to all frames (or all observers)eén iin order to recover the absolute intrinsic local Eucliddae |

underlying flat proper physical Euclidean 3-spd¢é element ony M2 with respect to observers 2 in this sub-
section.

1.2 Expressing the components of the absolute intrinsic  One observes from Fig. 1 that the interval' of the
metric tensor in terms of absolute intrinsic curva- curved absolute intrinsic ‘dimensiod” projects component
ture parameters in absolute intrinsic Riemann geo- du’! into the underlying proper intrinsic dimensiart' of
metry ¢E" and componenia®! into the vertical absolute intrinsic

From the components of the absolute intrinsic metric teng'(%Je dlme_:ns]on_uo‘. Similarly IQe '”te'i"g‘”“2 of the curved

in Eq. (3), one obtains the following a 50"“}3 Intrinsic d'mens.'on“ of ‘bM ; Projects compo-

nentdu'? into the underlying proper intrinsic dimensiaf?

R R 02 : : T

b = sec? ¢1{)’&1(ﬂ(11)) = (1 — sin? Mjm(ﬂél)))q; %?r?]gr?;?gr:)%toa.rﬁu into the vertical absolute intrinsic time

Ggos = sec® Pz (agyy) = (1 —sin® gz () ™ We have made use of the componefts' anddu/2 pro-

dd12 = ¢ga1 =0 jected into the underlying flat proper intrinsic spagg’? in

(15) deriving the absolute intrinsic metric line element (2cjau)
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with respect to observers ifi’2, while the component$z®!  following
andéa°? have been left out. This is so because the absolute, /.2 N2, 2 5 a1 27
time and absolute intrinsic time ‘dimensions’ along theuverE%qﬂ) = (du") (sec w“j (i) — tan Qp“j (1))
tical, being absolute, are not dimension and intrinsic dime +(du?)?(sec? g2 (7)) — tan® P2 ()
sion _respectiv_ely with respect to observers the relativ?@gr (22)
physical Euclidean 2-spadg’?. Hence the absolute intrin- . ) ) i o
sic coordinate interval§i®' andsa°2 projected along:® are Wh'lcthUPon lﬂf'glgsec W —tan?+ = 1, gives (d¢l’)? =
not absolute intrinsic metric components. Rather they(are(fl“ )* + (du”) o ‘ . o
be referred to as ‘non-metric’ components, while the compo- 1hus by considering the non-metric’ components’
nentsduw’* anddu’2 projected into the underlying flat propeNd 94°* projected into the absolute intrinsic time ‘dimen-
intrinsic metric space E’2, which have been used in derivingSiO?’ u alor12g the vertical along with the metric compon2ents
; Py . - 1
the absolute intrinsic metric line element (2c) or (2d) it @~ @nddu’ projected into the proper mtnngc spap®
referred to as metric components, with respect to obseiver&/0ng the horizontal by the intervadsi andduqo_f the ab-
the proper physical Euclidean 2-spagé solute intrinsic metric space ‘dimensions’ and#.? in Fig. 1,
. . . . . . . A 2
Although the ‘non-metric’ absolute intrinsic coordinatd! constructing the absolu_te,2|ntr|n3|c line element gk
intervalssa®! andsa®? projected along the absolute intrinsidVith réspect to observers ig™, the absolute intrinsic Ipzcal
time ‘dimension’a® are elusive and must be disregarded fuclidean line element is r-e%)vereq at every poindd
deriving absolute intrinsic metric line element on the @atv With réspect to observers i™. This is the same as say-
4wo-dimensional’ absolute intrinsic metric SpaqﬁMZ with N9 thAat there is intrinsic local Euclidean mvarlanng(ill)
respect to observers i in Fig. 1, as done in obtaining the®n 3 with respect to (_)bserversoj?’Q whe22the projective
absolute intrinsic line element (2c) and (2d) and the alieol'0N-Metric’ coordinate intervaléu™ andou™ and the pro-

intrinsic sub-Riemannian metric tensor (17), let us terapor/€Ctive metric coordinate interval,” anddu' are put into
ily put both the metric componenté/! and du’? and the consideration in constructing the absolute intrinsic lgle-

‘non-metric’ component$a® and 5% into consideration ment ong A2, which has been stated mathematically without

in order to recover the absolute intrinsic Euclidean line éifo°f as Eq. (4) earlier.
ement and the absolute intrinsic Euclidean metric tensor 91y tensorial statement of intrinsic local Euclidean in-
¢ M? with respect to observers ii’2. Thus let us apply the

Pythagorean formula to triangles ABC and DEF in Fig. 1 to ) o i )
have the following We shall, by virtue of absolute intrinsic local Euclidean in

variance onp12, (when the projective ‘non-metric’ coordi-
(da")? = (du')?+ (50°1)% and (da2)? = (du'®)2+ (50°%)% nate intervalsia®" andda°? and the projective metric coor-
(18) dinate intervalsiu/t and du'? are put into consideration in
But §a°! and 542 are given in terms of absolute intrinsi€onstructing the absolute intrinsic line element/di*), es-
anglespi); (il,)) andeg= (@2,)) and intervalsia' andda?  tablished above, replace the elementary proper intriresie-c
respectively as follows: dinate intervalglu’! anddu’? by absolute intrinsic coordinate
intervalsda!' andda? respectively at the right-hand side of
dil®! = di* sin grjgr (4ify)) and di®? = di® sin ¢ipge (ify))  E. (22) to have as follows:

(19) AV /142 12\2
Then from systems (18) and (19) we have the following (dg) (di )2 * (Qdu A) o o 1 1
(da*)*(sec” phg (U(1)) — tan gbi/}m(u(l)))

(du’l)Q — (dﬁ1)2 _ (d’&l)Q siIlQ Qﬂz}ﬁl (ﬁ%l))v } (20) +(d,a2)2(sec2 ¢1Z)112 (ﬂ(21)) N tan2 (qu[}fﬁ (ﬁ%l)))
(@) = (di2)* — (d?)?sin? e (32, 23)

variance on absolute intrinsic Riemann spaces

And from system (20) we construct Euclidean line elemerfiuation (223) Stat925 fzormall}/ ir;trinsicALogal Eucjigleaw_iri-
in terms of componenigu’! anddu’? projected intapE’? as  @NCe,(du)? + (du?)? = (da')* + (da?)* on ¢ M*, which

follows: has already been stated without deriving it by Eq (4). Thus
the absolute intrinsic line element recovered at everytyfin
(dpl')? = (du™)? + (du'®)? ¢ M? with respect to observers ifi’”> when both the projec-

tive metric and ‘non-metric’ intrinsic coordinate intetvare

_ SN2 (geIN2 w2 0 al
= (da?)” — (di’)"sin” gvpar (i) + put into consideration is the following

A = (@075 G () @) (agih = (a2 (sec? o (ily) — tan® o i)
Then by using the relationgi! = du't sec ¢ty (ﬁil));i = +(da®)? (sec? pi)ge (ﬁ%l)) — tan? ¢hge (ﬁ%m))
1,2, which follows from system (1), Eq. (21) becomes the (24)
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It is for the purpose of recovering the absolute intrinsar
Euclidean line element (24) on the curved absolute intinsi g3 5 el
metric spac@ > with respect to observers in the underlying 45, — < tan® ¢ig1 (44) 0 ) (30)
proper physical Euclidean spa&#? in Fig. 1 that the ‘non- 0 tan® ¢ipg2 (%)
metric’ intrinsic coordinate intervalsi! andd4°? projected
along the absolute intrinsic time ‘dimension® have been Again the absolute intrinsic tensofz;; vanishes for absolute
considered along with the metric intrinsic coordinate fintentrinsic anglespi;: (a') = 0;i = 1,2, which will be so if
valsdu't anddu'? projected intapE’2 in that figure in deriv- none of the ‘dimensionsi’;i = 1,2, was curving towards
ing the intrinsic line element in Eq. (18)-(22). However oBhe absolute intrinsic ‘dimensioni’ along the vertical in
servers in the proper physical Euclidean spAtemust actu- Fig. 1. Certainly the absolute intrinsic tensgk;;, conveys
ally make use of the metric intrinsic coordinate intervals!  information about the absolute intrinsic curvature of the a
anddu’? projected intopE"? solely in deriving the absolutesolute intrinsic Riemannian metric spaga/2.
intrinsic sub-Riemannian line element (3) ¢M2 with re- The absolute intrinsic local Euclidean line element (25)
spect to themselves, since the ‘non-metric’ intrinsic dpor on the absolute intrinsic metric spag#/? can then be writ-
nate intervals are metrically elusive to these observers. ten in terms of the absolute intrinsic metric tenggg, and

Now, by subtracting the absolute intrinsic metric line efhe new absolute intrinsic (curvature) tengdt;, as follows:
ement (2b) (obtained by using the metric intrinsic coorténa

2 2
intervals only) from the absolute intrinsic Euclidean ligle i i
) o — ¢R;)datdiF = Sipdidik
ement (24), one obtains the absolute intrinsic line elemen{ Z%_:l Pgik — PR )du" di” L%; k@l AU

d¢inm on the ‘non-metric’ sub-space formed by the ‘non- (31)

metric’ compqnentéum aﬂgéuw projected into the absolutethe ahsolute intrinsic Euclidean line element of Eq. (31) ob
intrinsic time ‘dimension’a” along the vertical in Fig. 1 asiains at every point on}/2, once the projective ‘non-metric’
follows: intrinsic coordinate interval§a' and§4°% and the projec-

. . . tive metric coordinate intervalgu’' and du'? are put into
2 _ 2 ~1 11\2 2 (2 12\2
(délnm)” = tan” ¢ (@°)(du”)” + tan” gz (@ )(du(Z)S) consideration in constructing the absolute intrinsic indime

. . . element ony M2 with respect to observers iB’2 in Fig. 1.
Observe thatdplnm)? vanishes forgyg: (i') = éapg: (42) 44 P g

hich ” be th it the absol di Eq. (31) can therefore be said to express intrinsic localiétuc
=0, \,qu will be the case if the absolute intrinsic IMeNaan invariance o2, Thus the tensorial statement of in-
sions’' 4! and? were along the horizontal in Fig. 1. That is

Strinsic local Euclidean invariancel El) on a curved ‘two-
if the 4 and 4> Were not curving onto the absolute 'nt”ns"almensmnal absolute intrinsic metric spagal2 — a ‘two-

time ‘dimension'a® along the vertical in that figure. dimensional’ absolute intrinsic Riemannian metric space
Now let us rewrite the line elemeniginm)® of EQ. (25) i Fig 1, which is also valid foA1?, is the following

as follows:
bgik — ¢Rir, = dix  (PLEI) (32)

2
d l t 2 i t 2 d lzd 1k .
fbnm Z an” ¢t an (WJ“ (8")up " du 1.5 The absolute intrinsic matrix (or scalar) ¢C

i,k=1
(26) Now let us introduce @ x 2 absolute intrinsic matrixsC
Eqg. (26) is the same as the following by virtue of the nowrough the following relation,
validated intrinsic local Euclidean invariance (4) of panie
of this paper [1]: Rk — ¢Coir, = 0 (33)

2 Then from the definitions of the absolute intrinsic tensors
(dolnm)® = Y tan® guhg: (0) tan® gpge (0¥ )pdi’di® 4., andgR;; in Eq. (3) and (30), the absolute intrinsic ma-
i,k=1 trix ¢C is given in the case of ‘2-dimensional’ absolute in-

(27)  trinsic Riemann spacel/? as follows:
Then let us introduce another absolute intrinsic tensor to

be denoted by R;;, and rewrite Eq. (27) as follows: o0 ( sin? gpupar (i) 0 > (34
) B 0 sin? pihg2 (G12)
(dol, Ripda'di® 28 )
(dpinm)” Lkzz:l(b g (8) And from system (14), the matrixC is given in terms of
7 absolute intrinsic curvature parameters as follows:
where
° Phar (47) 0
; s a C= . 35
ORix = tan® gy (i) tan® Gugr (0F)6 (29 ¢ ( 0 hga(i2)? (32)

6 A.J. Adekugbe. Evolutionary sequence of spacefmrinsic spacetime and associated sequence of geometry in a metridiébddé
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Egs. (34) and (35) become the following respectively for ‘3- It must be noted that Egs. (41), (42) or (43) are possible

dimensional’ absolute intrinsic Riemann spade >: for the restrictive situation in which all the curved abgelu
. intrinsic ‘dimensions’a? of ¢.5/3 have identical absolute in-
. sin® ¢ (a') 0 0 trinsic curvatures or identical absolute intrinsic cunratpa-
¢C = 0 sin? pipgz (412) 0 rametersgkq (4?) = ok; ¢ =1,2,3, at each point of /3,
0 0 sin? ¢pihga (43) as stated earlier. Interestingly it is this restrictiveiatton that
(36) pertains to isotropic absolute intrinsic metric spacesicivh
and shall be of relevance in absolute intrinsic Riemann gegmetr
T ultimately. Thus let us re-write Eq. (41), (42) or (43) in the
. Pkqr () R 0 0 following final form in which it shall be found most useful for
¢C = 0 Pka2(a?)? 0 (37) application later,
0 0 Dhgs (03)?
N o
Now by multiplying through Eq. (33) from the left by PRk — Ok“Pgir = 0 (44)
¢g"" one obtains the following wheregk is the identical absolute intrinsic curvature parame-
i incie ‘di H ’ or3
65 b Rin — 35 6C i = 0 (38) Leorir(])tfoafll(bt]r‘wzsfagébsolute intrinsic ‘dimensions’ ¢fl/~ at each

Then by applying the known rules for raising and lowering of What we have achieved in this section is that we have
the indices of a tensor in Riemann geomeiy R,; = R’ formulated the absolute intrinsic Riemann geometry of the

6 S . ~
: Ty i ~ik ) d absolute intrinsic metric spagd/® — an absolute

andg®?g,. = 67; sothatpg™* ¢ Ry = ¢Ri, andggih g, = CoTVed ab: . >

(58 Wy Ol = Ol 0G0 intrinsic Riemann space- relative to 3-observers in its un-

0; Eq. (38) simplifies as follows: derlying flat proper physical Euclidean 3-spd¢€ and have

ORI —¢C =0 derived the two important absolute intrinsic tensor eaurei

! (32) and (44). While Eq. (32) is a tensorial statement of in-
or trinsic local Euclidean invariancel(El) on ¢ 3, as stated
¢C = ¢R§ (39) earlier, the corresponding significance of Eq. (44) shatide

rived elsewhere with further development.

Equations (32) and (44) apply to the curved absolute in-
trinsic metric space ;3. They must be solved algebraically
to obtain the absolute intrinsic metric tensgg;, and ab-
solute intrinsic Ricci tensoplz;, on ¢M3 with respect to
3-observers in the underlying proper physical Euclidean 3-

Thus Eq. (33) can be re-written in terms@R;f as follows:
SRk — ORidGir, = 0 (40)

In a situation wherein? ¢ig1 (a!) = sin? gahg2(42) =
sin? pigs (43) = sin® gy (O Pkgi (0') = Phge(02) =
N + N “ v eE3toh foll :
dkas(4) = ¢k), in Eq. (37), as will be the case for anSpaC O have as 1oTows

isotropic absolute intrinsic metric spagd/? or ¢M3, the

i o1t or 60 (1—ok*)~ 0 0
purely diagonal matrix ?; or ¢C' can be replaced by a num- .
ber namely, ToC'/n or TréR! /n in Eq. (33) or (40) to have ?9ik = 0 (1—pk?)~" 0
0 0 (1— pk2)!
OB — ~Tr 6Cgu, = 0 (41) (45)
n and
or 1 7.2
ORiy — ~Tr $Rioga, = 0 (42) ok 0
" 1— k2
Eq. (42) becomes its familiar form in conventional Riemann . Pk>
geometry fom = 2 namely, PRk = 0 o ,  (46)
A I 0 ok
PRk, — §¢R¢gik: =0 (43) 1— k2

where¢R is any one of the equal entries of the diagonal mahere it must be noted that the situation in which all the ab-
trix q&Rjﬁ or ¢C'. Obviously the absolute intrinsic tensof;;,  solute intrinsic ‘dimensions’ ofsl/® possess identical ab-
defined by Eq. (30), (referred to as absolute intrinsic cunsolute intrinsic curvature parametgk at each point of 173,
ture tensor earlier), is the absolute intrinsic Ricci teriso which pertains to isotropic absolute intrinsic metric gmc
absolute intrinsic Riemann geometry (of curved absolute that shall be the only relevant situation in absolute isidn
trinsic metric spaces). Riemann geometry, has been considered.

A. J. Adekugbe. Evolutionary sequence of spacefimiénsic spacetime and associated sequence of geometry in a metridiébdde 7
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While a Riemannian observer located at a point on the ab- The resultant absolute intrinsic curvature paramgkeof
solute intrinsic Riemann spagel/® constructs absolute in-the absolute intrinsic spad&é) relative to the underlying flat
trinsic Euclidean line element (2a) at that point, sindé? is proper intrinsic spaceE'? can then be derived, and the re-
locally Euclidean,¢2/® possesses unique absolute intrinsig,jtant absolute intrinsic metric tensoy,,., the resultant ab-

sub-Riemannian metric tensoy;,, of Eq. (45) with respect L =
to Euclidean observers 3. I:?g;kce thqul(JcIizjean obseprver§OIUte intrinsic Ricci tensopR;; and the resultant absolute

. . ~2 . . .
write absolute intrinsic line element @/ in terms ofd; . intrinsic I|[1e elementips” can be written straight away in
in the Gaussian form involving isotropic coordinates as fderms ofpk, by simply replacingsk by ¢k in equations (45),

lows: (46) and (48) to accomplish stage two. The resultant projec-
3 , tions into¢ E'? of the curved absolute intrinsic ‘dimensions’
dps® = (di)* = ) dgudi'di” (47)  of K%, can also be derived. The procedure can be extended
k=1 to situations where three, four and larger number of absolut
or intrinsic metric spaces coexist.

~1\2 ~2\2 ~3)\2
(da’)” + (di )A + (di”) (48) 1.6.1 The resultant absolute intrinsic metric tensor and
1 — ¢k? resultant absolute intrinsic Ricci tensor when two

) ) ) ) or a larger number of parallel absolute intrinsic
We have accomplished in this section the two stages of  atric spaces coexist

formulation of the absolute intrinsic Riemann geometry of
curved absolute intrinsic metric spaces (or of curved alisolLet us consider a pair of ‘two-dimensional’ absolute intrin
metric nospaces) isolated in part one of this paper nanilyS{c Riemann spaces denoted b/7,) and ¢ Mp, with ab-
derivation of the projections of the curved absolute irsiiin solute intrinsic ‘dimensionsi!, 4% and ¢!, 9 respectively.
‘dimensions’ of an absolute intrinsic metric spagk/® into Let these ‘dimensions’ of the two absolute intrinsic metric
its underlying projective proper intrinsic metric spatE”®, spaces be curved relative to the same proper intrinsic dimen
and (ii) formulation of absolute intrinsic Riemann georyetsionsw’! andw/? respectively of their underlying global flat
on the curved absolute intrinsic metric space from the projgroper intrinsic spaceE'? prior to their superposition. In
tions. The derived projection relations (1) fol/2, which other words, as the two absolute intrinsic metric spaces ex-
is directly extendable t@ M3, with respect to Euclidean ob-isted at their separate locations before superposing ttrem,
servers in the underlying proper physical Euclidean 3-spdollowing intrinsic coordinate transformations existed:

E’3, is accomplishment of stage one. On the other hand, the

dps?® = (da®)? —

/1

derivation of the two absolute intrinsic tensor equatid) ( uto= fiat); u? = f2a?); (49)
and (44) by starting from system (18) and the absolute in- ut = gleh); u? = g*(0?)
trinsic metric tensor (45), absolute intrinsic Ricci tenétb)

and the absolute line element (48) by solving equations (J4)e absolute intrinsic metric spaaﬁM(Ql) and¢M(22) in this

and (44) simultaneously, is accomplishment of stage two. leuation in whicha! of ¢M(21) and 9! of ¢M(22) are both
shall proceed to the accomplishment of the two stages of fgg'rved relative tou’! of ¢E' andi? of ¢AI2, and 92 of
mulation of absolute intrinsic Riemann geometry on curved.. )

. . . . . . . 2 H 2 2 H b
absolute intrinsic metric space in the next sub-section irf4/(z) are both curved relative td" of o E™* at their dfferent

situation where two or a larger number of absolute intrind@cations, as illustrated in Figs. 3a and 3b, shall be reterr
metric spaces co-exist or are superposed. to as parallel absolute intrinsic metric spaces (or pdrable

solute intrinsic Riemannian metric spaces).

1.6 Superposition of absolute intrinsic Riemann spaces . NOW et us superpose the absolute intrinsic metric spaces
. . ¢MP ) and M, in Figs. 3a and 3b by bringingh/(;, to the

Although superposition of Riemann spaces may be unknoyvgation of oI12. . The origin P of¢lI2, does not have to
or meaningless in conventional Riemann geometry, it is det- () 9 R (2)
initely of important relevance in absolute intrinsic Rigma coincide with the origin O oA/, in doing this. Since the
geometry. The ‘two—dimensionali absolute intrinsic Riema curved absolute intrinsic ‘dimensions! of qu(Ql) ando! of
spaceplM?, to be re-denoted bnnyl), with curved absolute ST
intrinsic ‘dimensions’a' and#? in Fig. 1, is curved relative 2
to its underlying projective flat proper intrinsic spagk’?. If
another ‘two-dimensional’ absolute intrinsic Riemanncgpa

both lie above the same proper intrinsic dimensitn
of ¢ E" (and dimension:”* of £'*) and the curved absolute
intrinsic ‘dimensionsa” of $M7, andd? of MM, both lie

¢ M2, with curved absolute intrinsic ‘dimensions* andd? above the same proper intrinsic dimensigh of $£™ (and
) _ _ . - ' dimensionz"? of E'?) prior to their superposition, the curved
say, is brought into the location 6/, so thatp M,y and  gpsolute intrinsic ‘dimensiors! will be naturally curved rel-

M2, co-exist, thems M2, will be curved relative tal/2,.  ative to the curved absolute intrinsic ‘dimensiar on the
(2) (2) (1)

8 A.J. Adekugbe. Evolutionary sequence of spacefmrinsic spacetime and associated sequence of geometry in a metridiébdde
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sion’ 92 at pomtv(l) relative to relative tapE’? or with re-

spect to observers B2, when the absolute intrinsic metric
spaceng(Qz) is curved relative to the absolute intrinsic met-

ric spacenga) as in Fig. 4 and then write the resultant ab-
solute intrinsic metric tensor, resultant absolute irgidriRicci
tensor and resultant absolute intrinsic line element amtpoi
(v 1)) of ¢M 2 in terms of the resultant absolute intrin-
SIC curvature parameters relative to these observers.

Now the resultant absolute intrinsic metric tensgr,,, at

o P point (ﬁ(llyﬁ?l)) of ¢M(22) is given in terms of the absolute
L e intrinsic angles(wf,l(f;(ll)) and ¢ (8%,)) of inclination of
the curved absolute intrinsic ‘dimension* relative to the
& — ! straight line proper intrinsic dimensiari' and of the curved
P absolute intrinsic ‘dimension)? relative to the straight line
"""" ’ proper intrinsic dimension’? respectively in Fig. 3b as fol-
lows:
O e ——
X2 b2 OF
L 0
Fig. 3: A pair of parallel ‘.twe-dirr']ension.al‘ absollute intrinsic metric 2 1 — sin2 gaby (@(11))
spaces (or absolute intrinsic Riemannian metric spaces) are un(ﬁgék = 1

lied by the global two-dimensional flat proper intrinsic space and 0
proper physical Euclidean 2-space, prior to their superposition.

1- SlIl2 ¢¢U ( (1))

1
T 0
vertical u'4°—plane, and the curved absolute intrinsic ‘di- - 1= ‘bkﬁl(”(l)) (50)
mension’? will be naturally curved relative to the curved ;
absolute intrinsic ‘dimensiorz? on the verticat/24a° —plane 1 — dlg2 (02)7)

upon bringing them to the same location (or upon superposing

them), as illustrated in Fig. 4. This case shall be refemeast Likewise the absolute intrinsic metric tensor is given ahpo

superposition of parallel absolute intrinsic Riemann sgac (ﬁ% 1) “(1 ) of ¢M(1) in Fig. 7a as follows:
The pointd} 1) measured from point P (dfM(Q) lies above

pomtu(l) measured from point O qu(l), and they both lie 1

vertically above pomu of E'? (and pOIﬂtx’l) of E?). (1) 1 — sin? ¢y (a}l))

L|keW|se pomtv(l) of ¢>M lies vertically above pomfﬂl) i 0 1

.92 3 ~

of oI (1) and they both lie vertlcally above pomg of pE"? 1 = sin® ¢ihg2 (U%l))

(and pomtx’2 of E'?). The curved absolute mtrlnsic space 1

‘dimension’ ¢ 1 has known absolute intrinsic curvature para- m 0

metergkg: (0 o(,y) atpointo/, relative top %, and the curved = @ 1 (51)

absolute intrinsic ‘dimension?? has known absolute intrin- T a2,

sic curvature parametefk: ( ) at pomtv(l) relative to ~ Phaz (@ )(1)

¢E'? from Fig. 3b. Likewise the curved absolute intrinsic

‘dimension’a! has known absolute intrinsic curvature para- When the two parallel absolute intrinsic Riemann spaces

meterqbk: (u(1 ) at pomtu relative top E'? and the curved coexist, as illustrated in Fig. 4, then the resultant akisolu

absolute intrinsic ‘dlmenS|ona2 has known absolute intrin-intrinsic metric te”SO@Qm of the upper absolute intrinsic
sic curvature parametej‘kuz( ) at pomtu(l) relative to metric space;bM2 2 relative to the underlying proper intrin-
$E"? from Fig. 3a. sic metric spaceE’? and proper physical Euclidean space

2 -
We wish to obtain the resultant absolute intrinsic curvaE 'S given in terms of the resultant absolute intrinsic an

ture parameters of the curved absolute intrinsic ‘dimemsugleww (0") a”d¢¢u2( ?), and in terms of the resultant ab-
ol at pomtv(l) and of the curved absolute intrinsic ‘dimensolute intrinsic curvature paramet@r&, (o1) and¢k (0%)

0

A. J. Adekugbe. Evolutionary sequence of spacefimiénsic spacetime and associated sequence of geometry in a metridiéddé 9
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511 — Sin2 Qﬁ?])ﬁl (ﬂl) = 511 - ¢IA€&1 (ﬁ’l)z;
899 — sin? apgz (G2) = dag — Phigz (G2)2;

(¢g5)) " =0 (for GIIZ)).

(55)

Upon the two absolute intrinsic Riemann spaces co-exist-

X and
A X
: Ayl NE
(691) 7" =
S L
W (6355)7" =
~(1)\ —
" (6912)7! =
AR g\VVZ(v( 1
e, V(lz)
rs un—

Fig. 4: Two co-existing parallel absolute intrinsic metric spaces:

ing as in Fig. 4, on the other hand, while th@/?2

2 oz curved relative to the flat proper intrinsic spagg&’?, such
2 M that the tangent to the curved absolute intrinsic ‘dimemisio
o' at pointﬁ%l) is inclined to the straight line proper intrin-

sic dimensionu’! at absolute intrinsic angl@z/;ul( ) and

(1) s still

the tangent to absolute intrinsic ‘dimensial? at pomtu(l)
is inclined tow’? at absolute angle mtrms@z/zuz( ) the

respectively as follows:

absolute intrinsic Riemann spag¢d/,

(2) is curved relatlve to

1 0 the absolute intrinsic Riemann spa@éffl) with absolute in-

1 — sin® ¢apg (1) trinsic metric tensozbgm Consequently the tangent to the

¢§ik = 1

0 _ absolute intrinsic ‘dimensiond® at pomtv(l) of ¢M(2)

B NN .
1 — sin® @12 (02) now inclined at absolute intrinsic angley;: (4 ,)) relative to

(52)

the tangent to absolute intrinsic ‘dimensiart’ at pointa

and of ¢M2 and the tangent to the absolute intrinsic ‘dimension’

1

92 at pomt

0 of qSM @ is now inclined at absolute intrinsic

0 angleqswf, (0 (1)) relative to the tangent to the curved absolute

GG1, = 1= ¢kgl (07)? 1 (53)

intrinsic ‘dimension'a? at pointa, , of ¢>M(21). In the present
1— qﬁﬁz (62)2 situation, the absolute intrinsic metric tensi@r“) of the ab-

solute intrinsic metric spaaﬁMQ) serves as the foundation
where, as can be observed from Fig. 4, absolute intrinsic metric tensor upon which the absolute in
trinsic metric tensor of absolute intrinsic metric spaﬂ%@)

Gor (1) = dhor (01) + Pt () must be constructed.

The components of the resultant absolute intrinsic met-

and ric tensor, (i.e. of the upper curved absolute intrinsicrinet

¢@A2(@2) = g2 (%) + Pihgz (02). space¢M(2) relative to the flat proper intrinsic spages’?
in Flg 4) are therefore given in terms of the components

Now the absolute intrinsic Riemann spa(szM (2 and of ¢g

, (like system (54) or (55) is written relative to the

qSM(l) are curved relative to the flat proper intrinsic spachcIldean metrid;; ) as follows:

¢E'?, with the Euclidean metrid;;, (in Figs. 3a and 3b),
prior to their superposition. Hence the components of their
absolute intrinsic metric tensors can be written in terms of
the components of the Euclidean metric prior to their super-
position respectively as follows:

(¢§7§21))_1 811 — sin® g1 (81) = 811 — por (01)%

(h353) ! Fap — sin? duyz (02) = Gag — e (82)%

(@g55)™" = (9g8)) 1 =0; (for pBIZ).

(¢g11)

(¢29) ™

(¢g19)

= ¢35 — sin? g (0]y)
= 641y — dka (8])%
= g8y — sin? gie (0 (56)

= 00 — Pk (02)%

= (¢g2)" ' =0

It is appropriate to further elucidate system (56). The
(54) componentspj!’)

and ¢g§§) of the absolute intrinsic met-

10 A. J. Adekugbe. Evolutionary sequence of spacetirensic spacetime and associated sequence of geometry in a metridiébaldé
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ric tensorng of the curved absolute intrinsic metric spactllowing
qSM 2 have been written relative to the intrinsic Euclidean

metric tensor reference in system (53) (by virtue of the ap{6d11) ™" = 1 —sin® ¢ (i) — sin® gehy (8f;)
pearance of the componenis; and d2, of the Euclidean S S
metric tensor in (53)), becausﬁwa) is curved relative to = 1= kar(@))” — dkar((1))%

the proper intrinsic metric spaegl’? with intrinsic Euclid-

= -1 _ 1 —si 2 40 (a2 w2 Aol (2
ean metric tensor in Fig. 3a. The componefgs,) andgg?) (6922) sin® ¢vgz (A7) — sin® dbya (077

of the absolute intrinsic metric tens@ﬁg) of the curved ab- = 1-— pkge (“(1 )2 — gy (@(21))2;

solute intrinsic metric spacei/ 22 have likewise been writ-

ten relative to the absolute intrinsic Euclidean metric-ten (¢g,5)"" = (¢gsy) ' =0

sor reference in system (54), becauﬂ%) is curved rel- (57)
ative to the proper intrinsic metric spageE’? in Fig. 3b. The components of the resultant absolute intrinsic metric

The components;; andds. of the intrinsic Euclidean metric tensor in system (59) are the same as in Egs. (39) and (40).
tensor of E'2 that appear in systems (53) and (54) are rklence we obtain expressions for the resultant absoluie-intr
lated to the constant zero absolute intrinsic arigle = 0) sic angles@p and the resultant absolute intrinsic curvature

of inclination to the horizontal of the intrinsic d'mensmnparameterqbk in terms of the absolute intrinsic angléﬂ;u
ut (= ¢a't) andu? (= ¢a'?) of ¢E™ in Figs. 3a and 3b and<z>wv and absolute intrinsic curvature parametgts and
as,11 = 0az = cos?(¢r) = 0) = 1. ok of the individual absolute intrinsic metric spaces prior to

their superposition respectively as follows:

On the other hand, the componetp?ﬁ@l) andqbyég) of the

A . T
resultant absolute intrinsic metric tensoj; of the curved ~ ¥911 = (1 —sin® ¢y (Ul))
absolute intrinsic metric spacghl?, relative to the proper . . -1
o : 2 : (1 — sin? ¢phgr (aly,) — sin? gy (01 ))
intrinsic Euclidean spacgE'? in Fig. 4 have been written rel- @ \T(1) oRAE()
ative to absolute intrinsic sub-Riemannian metric tensér r
erence in system (55). This is so becawfw2 is curved Hence
relative to the intermediate curved absolute intrinsicrioet S B ( s ) .
space;bM(zl), which is, in turn, curved relative to the proper St (Wl(v(l)) = sin® ( gan (“(1 )+ ¢ 1(11(1)) ;

intrinsic metric spaceE’? in Fig. 4. The componentsgﬁ) — sin? ¢idy ]< ) + sin 2 iy (@ ) (584)
and ¢g§§) of the absolute intrinsic metric metric tensor on crw o

the absolute intrinsic metric spa¢eM 2 that appear in sys- ) 1

tem (55) are related to the varying agsolute intrinsic agle ¢g,, = (1 — sin? aﬂﬁz(@?))

dar (a') and ¢ihg2(a2) of inclinations of the curved ab-
solute intrinsic ‘dimensionsi! (= ¢#') and4? (= ¢32)

of ¢M(21) relative to the proper intrinsic dimension$ and

u'? of ¢E'? respectively at an arbitrary point Wa) as, Hence

631 = cos? guar (1) andegly = cos? giba (i2). sin? g1y (%)) = sin? (dthae (@) + Pisen (0)) ) :

A ) -1
(1 — sin? giye (ﬁ?l)) — sin® ¢tpe (@(21)))

In other words, the constant zero absolute intrinsic an-
5 T . = i o 58b
gle (¢7» = 0) of inclination to the horizontal of the proper = sin® gebya (@ agy)) + sin 2 piby 2(001)) (58b)
intrinsic dimensions,’* andu/? of the reference proper in-Consequently,

trinsic Euclidean spacgE’? in Figs. 3a and 3b have been re-

placed by the varying absolute intrinsic angfs;: (i') and qﬁﬁl(ﬁ(ll))? = kg (fy))? + Pk (D)) (59a)
(;51/Juz( 2) of |ncI|nat|ons to the horizontal of the absolute in- .
trinsic ‘dimensions! and4? of the intermediate curved ab- ¢E2(@(21))2 = Plge (a%l))Q + pkye (@(21))2 (590)

solute intrinsic metric spao@M(zl) in Fig. 4. Consequently,

011 = dap = cos®(¢¢p = 10) =1in systems (33) anld (34)  Equations (58a) and (58b) give the rules for the compo-
have been replaced hyg{}’ = cos® ¢ty (i') andgsy’ =  sition of two absolute intrinsic angles, and ¢is, while
cos? g2 (42) respectively in system (56). Egs. (59a) and (59b) give the corresponding rule for compo-
sition two absolute intrinsic curvature parameters forghe
By substituting system (55) into system (56) we have tpese of writing the resultant absolute intrinsic metricsiam
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and resultant absolute intrinsic Ricci tensor in absoloiieri-

and

sic Riemann geometry, for the situation where a pair of paral

lel ‘two-dimensional’ absolute intrinsic metric spacegxist,

as illustrated in Fig. 4. They can be extended to the sitnatio =

where a pair of parallel ‘three-dimensional’ absoluteiirgic
Riemann spaces coexist as follows:

sin? ¢@1 (17(11)) = sin? (Qﬁ/}ﬂl (ﬁh)) + (151/}61(@(11))) ;
= sin® gear () + sin® dear (0f;));
sin? 6,(0)) = sin® (@t (a2,) + dudea (7))
= sin? ¢ige (a?l)) + sin? gy (17(21));
sin? 0y (67)) = sin® (s (i) + dubes (7))
= sin? @Lud (&:()’1)) + sin? ¢'[Z;,[)3 (ﬁf’l))
(60)
And
GR1(0})> = Ghar (@) + st (0]1))%;
Oha(0%))2 = o (i) + dhoa (03))% o (61)
Oh3(03))2 = Bhas(83)2 + dhos (83,,)°

Systems (60) and (61) admit of generalization to a sit
tion where N parallel ‘3-dimensional’ absolute intrinsi@R
mann spaces coexist, (where the Nth absolute intrinsic my
ric spaceng(SN) has curved absolute intrinsic ‘dimensions

W', w? andw?), as follows:

sin? (b@l(w(ll)) = sin? (@ﬁal(a%n) + @%1({}(11))

SRR ¢1/3w1(w(11)))

= sin? QWAJal (ﬂ%l)) + sin® ¢7j}@1 (17(11))
4o+ sin® Gehyn (w(ll));

=5

) = e b+ 5

o g (w(21))) ;

= sin® dihye (a%l)) + sin® gy (@(21))
4+ sin® Gehye (7«5(21))§

)

sin? ¢$3(UA}Z(31)) = sin® ((MA}ﬁB (a:(zl)) * QM{’S (ﬁ?l))

o Py (ﬁ’?l))) ;

= sin® pigs (a:()ﬁ)) + sin® gips (ﬁﬁl))
+ -+ Sin2 Qﬁ’l[]wS ('[Z)?l))

(62)

Ok (W(;)? = ¢7A€a1(a%1))2 + ¢];‘@1(77(11))2 +o
s Pl (D)%

Pha(0f))? = ka2 (0F)))? + Phoe (87))% + -
s Qg (7))

Pha(i})? = Ghas (U3)))? + Ghos (7)) + -
e+ d)kmS (7.[)?1))2

(63)
Although equations (60) - (63) show no ceiling on the resul-
tant absolute intrinsic angléiq; q = 1,2 or 3, we know

that ¢1, has a maximum value afy, = %, since then the
curved absolute intrinsic ‘dimensio? of the last (i.e. the
Nth) absolute intrinsic metric space will lie along the veat,
parallel to the absolute intrinsic time ‘dimensioé®. This
implies that there is a ceiling on the number of absolute in-
trinsic metric spaces that can be superposed. The imglicati
of going beyond the ceiling, that is, for maki@q > 3,
will be derived elsewhere with further development.

The resultant absolute intrinsic metric tena@k of the
last (i.e. the Nth) absolute intrinsic metric spa;rM(?’N) rel-

ative to the underlying proper intrinsic metric spaglB’? is

U@Ven in terms of the resultant absolute intrinsic angled an

the resultant absolute intrinsic curvature parametengsees
R;ély as follows:

1
—= 0 0
1 —sin® oY,
¢L(2) — 0 % 0
Gk 1 — sin? g1, ,
0 0 —
1 —sin? PYs
(64
or
1
— 0 0
1— (¢k1)? .
2(2) _ 0 _— 0
¢gzk’ 1-— ((]5%2)2 ,
0 0 — =
1— (¢ks)?

(65)
The resultant absolute intrinsic Ricci tensor is likewiseeg
in terms of resultant absolute intrinsic angles and restilta
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absolute intrinsic curvature parameters as follows: 1.6.2 The resultant absolute intrinsic coordinate projec-
tion relations when two or a larger number of par-
sin2 éﬁl . . allel absolute intrinsic metric spaces co-exist
1 — sin? qﬂl Now let us redraw Fig. 4 while showing certain detail re-
N sin? @];2 quired for this sub-sub-section as Fig. 5. Let us consider
PRk = 0 A 0 elementary absolute intrinsic metric coordinate intesvial
1 = sin” g, , = andds? defined about pointi ), (1)) of 112, to be the di-
0 0 M mensions of a locally flat frame oan(Q) The intervaldo®
2 T
1 —sin (MJ%GG) about pomtv(l) of ¢M(2) projects componenii! into the

underlying curved absolute intrinsic ‘dimensiait at point

or
iy of a', as shownin Fig. 5. Likewise the intervi® about
(¢@1)2 pomtv(1 of qué) projects componenti? into the underly-
1_ (¢é1)2 0 0 ing curved absolute intrinsic ‘dimensiofi® of (;51&2/(21), which
N (¢@ 2 lies along the tangent t@? at pointﬁ%l) of 4.2, as also shown
R, = 0 727 0 in Fig. 5. The following projection relations obtain fromeel
1 — (¢ko)? mentary coordinate geometry:
(Wfs) R .
0 0 L= (G dat = do* cos iy (0)); da® = do® cos gihya (07))

71)
(67) . (

And the resultant absolute intrinsic line element is thiofel In turn, the componenti;” projected about p?'m<1> of
ing the curved absolute intrinsic ‘dimension* of $AZ7, pro-

jects componentu/! about the corresponding poinﬁ) of

(A5 = (di)? — ((da')? + (da*)? + (da®)?) (68) its underlying straight line proper intrinsic dimensioft of

1— (qbﬁ)? ¢E" and the componenti? projected about poin&%l) of
the curved absolute intrinsic ‘dimensiofi® projects compo-
e =~ 2~ ~ 12 . . . .
wheredk = ¢k = ¢y = ¢k has been assumed. nent[du .about the (_:orr_espon_dlng p_omxﬁ) of its underlying
straight line proper intrinsic dimensiarf? of $ £’2, as shown
As mentloned earlier, only the S|tuat|on wh@rkl( b, in Fig. 5

¢ks(1?) and ks (i°) are all identical task, as assumed in Again the following coordinate projection relations obtai

ertlng Eq (68), shall be of relevance in absolute intl’dﬂSi‘rom F|g 5 from e|ementary coordinate geometry:
Riemann geometry ultimately. For that situation, the twe ab

solute intrinsic tensor equations (32) and (44) derivedhint du'! = da! cos ¢¢u1( 1))- du'? = di? cos ¢1@ﬁ2 (ﬁ%l))
context of absolute intrinsic Riemann geometry earlier are (72)
given in terms of the resultant absolute intrinsic tenggrs. Then by combining systems (71) and (72) we obtain the fol-

and¢R;;, and resultant absolute intrinsic curvature parameteéwing:

as follows: . 1 ) 1
- - du't = ddlcos g (aly) cos gy
$Gir, — dRik = dik (69) qﬁ% (1fyy) cos o (i ) 73)
du? = db?cos ¢¢,&2(A(1))c05 Pz (D (21))
and
¢§'k —( (bé)z G5 =0 (70) System (73) gives the resultant length contraction rela-

tions of the absolute intrinsic metric coordinate intesvaf

The solution to equations (69) and (70) are equations (65) &he absolute intrinsic metric spagd/?, with respect to ob-
(67) with (¢k) (6k1)? = (¢k2) (¢k3) assumed. servers inE’2. They become the followmg in terms of ab-

We have again accomplished in this sub-section the ﬁ§&lute intrinsic curvature parameters:

stage of the formulation of absolute intrinsic Riemann geom

wl o = o 1 _ 1 1/2.
etry in a situation where two or a larger number of parallefl 011 = P (@ Y )) 21— ki (0 Ya ))) '
absolute intrinsic metric spaces co-exist. We shall now prafu’? = do(1 — ¢kgz (@ aty NY2(1 = gz (0 o )))1/2
ceed to the second stage namely, obtaining resultant absolu (74)

intrinsic coordinate projection relations, when two ori@é& where the definitions of the absolute intrinsic curvaturapa
number of parallel absolute intrinsic metric spaces catexi meters of system (14) have been used.
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X0 their outward manifestations. The outward manifestatmis
?ﬁ" systems (75) and (76) obtained by simply removing the sym-
: bol ¢ are the following respectively,

&
. V'A o dz’t = dit COS}bal(A%l))COS’lﬁﬁl(f}(l))
Lo A e+ 008 Y ((y)); 77
T USSR )dV (O R s 5 S v (77)
: Yy dz'* = di*costhy( (1)) COS g2 (”(1)) e
: A )2 . Cos %z(wﬁl))
1
and
d’t = A2 (1= kar (@) V2 (1 = ko (00;))"/2
(]. — ffﬁ;l( A(ll)))l/2;
do'? = di?(1 —]%ﬁQ (@3)) 2 (1 — kg2 (03)))1/2
(1 — kg (@)

78
Fig. 5: Obtaining the resultant intrinsic coordinate projections whénmust be recalled, as stated at the beginning of this( sm)ctio
a pair of parallel ‘two-dimensional’ absolute intrinsic metric spac¢fat’ stands forsz* andw’* stands forpz’?, andi* — a co-
co-exist. ordinate of absolute spade? — is the outward manifestation
of ¢pit.

Systems (73) and (74) admit of generalization to a situ- N the case of a singular absolute intrinsic metric space,
ation where any number N of ‘two-dimensional’ parallel atsystems (77) and (78) simplify respectively as follows:
solute intrinsic Riemann spaces co-exist, in which casg the

_ gal Sl 7002 s -
become the following respectively: P=di Coswﬂl(u(l))v da” = di? COS%Z(“(I)) (79)

du't = di! cos g (ﬁ%l)) cos ¢ (@(11)) e and
”Cosqul(w(ll)); (75) da'"t = dil(l—k‘al(ﬂ( )))1/2 dz'? = di?(1—kg2 (4 Uy ))2;2)2)
2 _ 2 Do (112 Do (92 ) -+ . ; ; ;
du™ = dwcos % (U(U) cos ¢Pho= (0y)) Systems (79) or (80) is the outward or physical manifestatio
- cos P2 (W) of system (1) derived from Fig. 1. System (79) or (80) ex-
presses the evolution of the flat two-dimensional propesphy
and ical spacez’? from the flat ‘two-dimensional’ absolute space
" ) . 1/2 a1 /2 E? with the presence of absolute intrinsic Riemann geometry.
du” = dw’(1 — Pk (4 (1= ko1 (9(1)))"*% | |t must be noted that the coordinatesand:? of the absolute

1
(1)
1
bt

)

(1 = Qheg (W 1)))1/2; spaceE? are not curved despite systems (79) and (80).
)
)

du? = d’lf)g( k‘uz( 21

2 1201 — ¢f€ﬁ2(@(21)))1/2>< Once the absolute intrinsic ‘dimensions'(= ¢z') and
2
(1 - ¢k?w2( Wiy

4?(= ¢2?) of the initially flat absolute intrinsic spacek?

1/2 underlylngE2 become curved to form the absolute intrinsic
(76) Riemann space /2 and project proper intrinsic dimensions
Systems (72) through (76) for superposition of ‘two-diu'!(= ¢2'!) andu’?(= ¢x'?) respectively along the horizon-
mensional’ parallel absolute intrinsic metric spaces adri tal in Fig. 1, then the projective proper intrinsic dimemsio
easy and direct extension to superposition of ‘three-dimari' andu’? of ¢E’? along the horizontal are made manifest
sional’ parallel absolute intrinsic metric spaces, in vhidn the proper dimensiong’' andz'? respectively of the flat
case, a third expression fdu'® must be added to each ofroper physical spacE’? along the horizontal, without any
the systems. need to prescribe the curvature of the ‘dimensiarsandz?

Now the two-dimensional proper physical Euclideanf the initially flat absolute spac&? overlying the initially
spaceE’? is the outward manifestation @fE’2 in Fig. 1 flat absolute intrinsic spaceE?2. The flat proper physical
through Fig. 5 of this paper. The intrinsic coordinate pcejespaceE’? has simply evolved from the initial flat absolute
tion formulae relating the proper intrinsic coordinatesivals spaceE? by virtue of the evolution of curved absolute in-
duw'* anddu’? of E'? to the absolute intrinsic coordinate intrinsic metric space /2 (or evolution of absolute intrinsic
tervalsdw® and dw? of ng(?N) respectively, likewise have Riemann geometry).
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The results of the first stage of the formulation of absoluiteg rule for composition of absolute intrinsic curvature- pa
intrinsic Riemann geometry for a singular ‘two-dimensibnarameterspk,:, ¢kyr, . . ., pkgr andokaz, dkye, ..., dkge.
or ‘three-dimensional’ absolute intrinsic metric spacsu- These rules shall be written more compactly as follows:
sections 1.1 through 1.5 and for two or a larger number of

co-existing parallel ‘two-dimensional’ or ‘three-dimémsal’ cos pthires = cos(Qi1 + Pz + -+ + dYin)
absolute intrinsic metric spaces in sub-section 1.6 ari val = oS Pthy COS g - - - cos pthin  (85)
with respect to observers in the flat proper physical sizée

or E3. and

It is the intervals of intrinsic dimensiongu’!, du’? and Y Y - -
du’ of the proper intrinsic metric spaceE’® projected by ~ Pkires=1— (1 — ¢k1)(1 — okiz) - -~ (1 — dkiy)  (86)
Fh_e corre sp(')nfj;ngA;ntervalASS of the curved at_Jso_Iutt_a Inmn%/vherei = 1,2 or 3 refers to the three curved absolute intrin-
dimensions’'do*, do* anddo- of the absolute intrinsic met-

ric spaces I, expressed by system (73) or (74) for= 2 sic d|menS|oqs of the absolute intrinsic metric spacgsesu
(2) N Posed, and N is the number of absolute intrinsic metric space

or by system (75) or (76) for N co-existing curved absquS(?J perposed

intrinsic metric spaces, and indeed the entire properintri One observes from Eq. (85) thatdfg@iq — 900 g =

sic spacepE"? projected by in absolute intrinsic Rie- N :
mann geometry that intrinsic observers located i3 could 1©r20r3 ... or N, thencos ¢yiy = 0 andcos ¢ipires = 0.
observe. And it is the outward manifestations of intervai€ncediires= 90° too. Also if okiy = 1; ¢ = 1,2,3,... or
du'", du'? anddu’® namely,dz"*, dz'> anddz’® expressed by N, which corresponds tov;, = 90° from ¢k;, = sin ¢eyg,
system (79) or (80) or system (77) or (78) in general, and ien ¢k res = 1 too. These results show that the rules for
deed the entire flat proper physical 3-spd¢@ that evolved composition of absolute intrinsic angles and absoluténintr
from flat absolute spacE? in the context of absolute intrinsicsic curvature parameters for the purpose of obtaining tasul
Riemann geometry, which observersAl¥ could observe. intrinsic coordinate projections, (or resultant intrin&ngth
Now let us rewrite system (75) in terms of resultant alsontraction formulae), in absolute intrinsic Riemann geom
solute intrinsic angle@&lresandqbz/?gresas follows: etry do not lead to values of resultant absolute intrinsic an
" o . . - R gles larger tha®0° or resultant absolute intrinsic curvature
du” = di” cos pihires  du’” = dw” cos pipares  (81) parameters larger than unity. In other words, absoluténintr

. EAPPU . . T
And let us rewrite system (76) in terms of resultant absoluera? da:g;,l(ﬁ Ltbe%tgr)i% S'iésci?\;ngargan;rzt;s:gi'T”{;S:nemgle
intrinsic curvature parametegs:,.; andks.s as follows: P o

variant absolute intrinsic curvature parameter in thesfie
du't = di' (1 — ¢kires)™/?; du? = di*(1 — pkoreg)’/?  cOmposition of absolute intrinsic angles and absoluterintr
(82) sic curvature parameters, for the purpose of obtaining-resu

Then as follows from systems (75) and (81) tant absolute intrinsic coordinate projection relationsesul-
R R . R tant intrinsic length contraction formulae with respecbts
cos Ppires cos(dar + g + -+ - + Py ); servers in the underlying proper physical Euclidean 3-spac
— S Pihgr cOS iyt - - - COS P E’3, when tvvc_) or a larger number of absolute intrinsic metric
X X . R spaces co-exist.
cos pgres = cos(Pg2 + Pvga + -+ PPy2); Finally it is important to remark the majorftirence be-
cos ¢1[)ﬂ2 cos ¢1[J@2 ... cos ¢>l/3u>2 tween the rule for composition of absolute intrinsic angles
(83) of system (62) (or the equivalent rule for composition of ab-
And as follows from systems (78) and (82), solute intrinsic curvature parameters of system (63)) fier t
purpose of writing the resultant absolute intrinsic metteic-
dkdes = 1—(1—ok2,)(1 — pk2,)--- sor and resultant absolute intrinsic Ricci tensor and theeeo
e (1- ¢kwl)2; sponding rule for composition of absolute intrinsic anglés
. R R (84) system (83) (or its equivalent rule for composition of abgel
Pkdres = 1—(1—¢k2,)(1— pk?,)--- intrinsic curvature parameters of system (84)) for the pur-
(- d)l%wz)Z pose of writing the resultant intrinsic coordinate projeit

relations or resultant intrinsic length contraction foteiin
System (83) expresses the rule for composition of the dbe context of absolute intrinsic Riemann geometry. These
solute intrinsic anglessiai, g, . .., ¢y and ¢ia2, rules are valid with respect to all observers in the underly-
sz, . .., dibye for the purpose of obtaining resultant intrining proper physical Euclidean 3-spaké, when a general N
sic coordinate projections (or resultant intrinsic lengtim- parallel ‘three-dimensional’ absolute intrinsic metrjgases
traction formulae) in the context of absolute intrinsic Rigor N parallel ‘three-dimensional’ absolute intrinsic met
mann geometry, while system (84) expresses the corresp@pices) are superposed.
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1.6.3 Parallelism of all absolute intrinsic metric spaces However the absolute intrinsic ‘dimensiorts’, 92 and 3 of
in the universe ¢M3) are curved relative to the proper intrinsic coordinates

We have considered so far in this sub-section the highly 8f+7~ andn'® respectively ofhcin?erameAif?E’?’, while the
dered situation of the co-existence of parallel absoluténin absolute intrinsic ‘dimensiont:”, 4* and 4" of ¢M (1) are

sic metric spaces. As defined previously, a pair of ‘thregUrved relative to the proper intrinsic coordinagés ¢ and
dimensional’ absolute intrinsic metric spage/?}, with ab- ¢'% of another frame i £

solute intrinsic ‘dimensionsi!, 42, * and ¢M3 with ab- Having described the superposition of parallel absolute
intrinsic metric spaces and the superposition of non-feral
absolute intrinsic metric spaces above, it shall now be show
, that non-parallel absolute intrinsic metric spaces do kst e
ved ‘dimension’a’ of ¢ 117}, lie on the same vertical @~ in nature. As deduced from the consistent arguments leading
plane. In this S|tuat|on the curved absolute '””'”S'md”' to the isolation of absolute intrinsic metric spaces inisect
sions’ o', 9%, 0% of pM (2) anda', a*,a* of g M, (1) are para- 4 of part one of this paper [1], all local absolute intrinse ¢
meterized in the same set of |ntr|nS|c dimensiaflsu?,u  ordinate sets (or local absolute intrinsic fram@s), @2, 4°),

of the underlying global proper intrinsic spag&’> prior to (o', 92, 0°%), (@', w?,@°), etc, at a point in an absolute in-

solute intrinsic ‘dimensionsb', 9%, 3%, are paraIIeI if each
curved ‘dimensions¢ of ¢M ) and the corresponding cur-

their superposition as, trinsic metric spaceﬁM3 are equivalent to a singular local
" L o o 13 53 absolute intrinsic coordinate set (or local absolute msid
ut =g (00); U = g7(0%); u = g°(0°) (87a)  frame) (a', a2, 43) with respect to observers in the proper

physical Euclidean 3-spade® underlyingp 3. All the pro-

jective local proper intrinsic coordinate sets (or locatimsic
W= fLEY); o = f2@%); o = () (87) frames)(u’l,u’Qzu’?’), (v’l.,v’Q,v’?’), (w't, w2, w'?), etc, at

the corresponding point in the underlying projective prope
When <;$M3) and ¢M3) coexist, the curved absolute intrinintrinsic spaceE” are equivalent to a singular local intrinsic
sic ‘dimension’#7 lies above the curved absolute intrinsigoordinate set (or local intrinsic framé)*, w2, '), with
‘dimension’ 4% on the verticalu/a°—plane, forq = 1,2 respectto all observers a3, asaconsequence.
and 3, as illustrated in Fig. 4 for the pair of parallel ‘two- It follows from the foregoing paragraph that the two fra-
dimensional’ absolute intrinsic metric spaces in Figs. 8& ames(¢1, €2, ¢3) and(n't, n'2, n’3) in the flat proper intrinsic
10b prior to their superposition. spacepE’3 that lie underneath two co- existing non-parallel

Now let us consider the chaotic situation of the coexiabsolute intrinsic metric spacaisM 1 and ¢M (2) respec-

tence of non-parallel absolute intrinsic metric spaceshis tively in our discussion above, are equwalent to the singu-
situation, some or aII of the curved absolute intrinsic ‘diar intrinsic coordinate set (or framéy', u'?, u’3) in pE'3,
mensions's? of ¢M,) do not lie above the correspondingwhereu’, v'* andv’® are actually the |ntr|n5|c dimensions

curved absolute |ntr|ns|c ‘dimensiong? of ¢M3) on the of ¢El3) It then fO”OWS that the curved absolute intrinsic

H2 0 b2, 03 it .
verticalw/?4°—plane. In this situation, while the absolute mdlm?ln?lot?sl , 02, @° andd?, 0 of thegco egis]t‘;ig non
trinsic ‘dimensions’a', 2 and4? of ¢M3) are parameter- paraliel absolute |ntr|nS|c metric spaaﬁM( ) an ¢ @'

gectively, are actually curved relative to the smgulalmr

and

ized in terms of a proper intrinsic coordinate set (or framg) =~ . 2 o

(€1, ¢2,€73) in the underlying global proper intrinsic spac trinsic coordinate set (or framéy e ) of the under-
#E", the curved absolute intrinsic ‘dimensions, 92 and Y'"9 Proper intrinsic metric spaoﬁlE’ 'QWhS'Ch makes them

RN ’ H / / / i
3 of ¢M(32) are parameterized in terms of dfdrent proper parallel. Th_e local C,‘{O“E'Q'”a,ge.sei 1,7 in (103a) and
L di ¢ 2 Y in th der- local coordinate sef'!, ¢2, ¢’° in system (103b) must be re-
intrinsic coordinate set (or framéy ,773 ,n’?) in the under placed by the same local coordinate et u’2, u’®). The
. . . . /3 - . ) ) .
lying global proper intrinsic spaceE™ in general prior to conclusion that follows from this is that all absolute ingic

r3
]tchﬁ super?osmfon O‘f)iw 1) a?d (?[M( )’ n Ot(;]er ;/vordzt the metric spaces in the universe are parallel, all lying abbee t
ollowing transformations of intrinsic coordinates ofptan singular coordinate set (or framg)'!, u'?, u/?) of the univer-

3 3 .
general prior to the superposmon@M 1) andng 2)’ sal isotropic proper intrinsic spagel’? that lies underneath
all absolute intrinsic metric spaces.

/1 Traly, 2 2752\, /3 _ £33
e =E00); 07 = E07); 07 = 507 (88a) The programme of this sub-section, which is to formulate
and absolute intrinsic Riemann geometry when two or a larger
number of absolute intrinsic metric spaces co-exist, (ttoth
gt =gl(at); €2 = g*(a?); €7 = g*(a®) (88b) first and second stages of the formulation), has been accom-

R R . plished. We shall proceed to the next and concluding section
WhengME,) and¢ M coexist, or are superposed, they aigt this paper to discuss an interesting and dramatic aspect o
both underlied by the global flat proper intrinsic spadé’>. absolute intrinsic Riemann geometry.
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2 Perfect isotropy and implied ‘one-dimensionality’ of ean observers itE’3 underlying ¢M3. Consequently the
each of curved absolute intrinsic metric space and its different local absolute intrinsic coordinatés?, po2, pw?,
underlying proper intrinsic metric space with respect etc, are all aligned along a singular direction thereby con-
to observers in the proper physical Euclidean 3-space stituting a singular local absolute intrinsic coordinat& at

We shall for th  di ion in thi . h the point P onp A3 with respect to Euclidean observers in
€ shall Tor In€ purpose ol discussion in this section chan Likewise the diferent local absolute intrinsic coordi-

il 52 53 i insic ‘di - . . .
from t,hef notalt;onf {u ’t“. for theta_bsoluteJr;trlnzlct:hdm"nten natespi®, ¢p°, p®, etc, are all aligned along a singular di-
sions’ of an absolute intrinsic metric spagdl’"and the stra- o i, thereby constituting a singular local absolutdrisic

i i intrinsic di iongl 1,/2 4,73 A A
ight line proper |nt.r|n5|c d'me,Qs'O”*‘*‘ DU U of the global coordinatep&? at point P onp M3 with respect to all Euclid-
flat proper intrinsic space E’> that lies underneath all ab'ean observers if’3

solute intrinsic metric spaces, adopted for conveniendteiso . . .
P b We find from the foregoing two paragraphs that two direc-

point in this paper, to the natural notations', pi2, i3 . e . A )

for ‘dimensions’ of absolute intrinsic metric spag@/* and tions within an apprpxmately flat infinitesimal IQC‘?' nggh

o't px'?, pa'3 for the intrinsic dimensions of the underlyingfOrhOOd abAo?:Jt apointP OT the cur'ved 'absolute Intrinsic met-

flat proper intrinsic spaceE’s. ic spa(_:e;SM g which are distinct directions s_eparated by ab-
solute intrinsic Euler anglega, 5 and ¢4 with respect to

As deduced from the fact that both the absolute mt”n%;;Riemannian observer located at point ng are the

Ilmla te Igrrtlgnt.and etlpsolute 'g;%ns'c _metn-c t(tens_f[)hr Or? an allime direction with respect to observgrs in the proper physi
solute intrinsic metric spacel/™ are invariant with change ., g jigean 3-spacE’? underlyinggM3. This is so since

of local absolute intrinsic coordinate set in section 4 crltpaany magnitudes of the absolute intrinsic anglés ¢4 and
one of this paper [1], dierent local absolute intrinsic coordi-gzw in 1* are equivalent to zero magnitudes of the corre-

hate Se,twﬂl’ . sponding angles’, 3’ and+’ in the proper physical Euclid-
¢a2’ d)ﬁd)’ ((;5’[717 (ZSTAJQ, d),ﬁ?)), (d)wl’ ¢w2’ ¢w3), etc, that are ean 3-spacE’3 ’
arbitrarily orientated relative to one another at a pointrP o It then follows (from the preceding paragraph) that a sin-

the curved absolute intrinsic metric spagk/3 with respect S - - . .

to a Riemannian observer located at the point R&f?, are gular IQC:?I a_bsolute Intrinsic fran_(asfl, 97, ¢¢%) at p(_)lnt_

identical to a singular local absolute intrinsic coordnatt Spisgfﬁji’n\;vt'g;)gm;?yéﬁgé%in?&f’v:ﬁ;fggﬁgﬁﬁlgézl'gtt:'n'
‘1 9€2, ¢¢3) at the point P o3 with respect to Euclid- | CEERS ) s ’ )

(6, 667, 0€°) P » P solute intrinsic coordinate setea’, a2, pu?), (po', ¢9?,

(uaﬁge?:;?ﬁé\;ﬁeﬂ%m the proper physical Euclidean 3-sizite 66), (b, o, ¢id), etc, at point P o@M3 are identi-

L . . cal with respect to Euclidean observerdif¥, as known until
An implication of the foregoing paragraph is that the |

%ow in this paper, is impossible. This is so because the ab-
cal absolute intrinsic coordinatesi!, o' andgw!, etc, of Paper, P

) Lo . _ solute intrinsic angley = £~ separating the local absolute
the diferent local absolute intrinsic frames, which are orien- glep 2 P 9

tated along dferent directions about point P @i/ with intrinsic ‘dimensions'p¢* and¢&? and the absolute intrinsic
o _ ¢ . . . . ' H
respect to a Riemannian observer at this point, are all idgﬂglew = % separating the local absolute intrinsic ‘dimen-

tical to a singular local absolute intrinsic coordinatg! at SIONS’ ¢&” and¢¢” with respect to the Riemannian observer
the point P ony i3 with respect to observers ii® underly- at point P ongA®, both vanish with respect to Euclidean
ing ¢I13. It thus follows that the dierent absolute intrinsic Observers inE"?, thereby causing¢?, ¢¢> and ¢¢° to be
anglesod, ¢, ¢4, etc, at which the local absolute intrinsi@ligned along a singular direction. They thereby consitut
coordinatessii!, ¢!, ¢!, etc, of diferent local absolute in- singular local absolute intrinsic coordinat€p at point P on
trinsic coordinate sets are inclined relative to each athére ¢ ° with respect to all observers ifi".
point P on(bMi” with respect to a Riemannian observer at this  The result derived at point P on the absolute intrinsic met-
point, all vanish, that ispa = qsﬁ = ¢4 = 0, with respect ric spacegl? in the foregoing paragraph obtains at every
to observers in the proper physical Euclidean 3-sggéain-  other point onp*. In other words, only singular local ab-
derlying ¢3/3. The diferent absolute intrinsic coordinatesolute intrinsic coordinatessq, ¢&r, ¢&s, ¢ér, etc, exist
pul, ¢!, ot etc, are all aligned along a singular directiorat points Q, R, S, T, etc, opM 3 with respect to Euclidean
thereby constituting a singular local absolute intringior@li- observers in the proper physical Euclidean 3-sp&teun-
natep¢! at the point P oI/ with respect to observers inderlying ¢/, When the singular indefinitely short local ab-
the proper physical Euclidean 3-spag€ consequently. solute intrinsic coordinates at every pointoi/? are joined
The diferent absolute intrinsic angm;?, ¢é, #¢, etc, at together, one obtains a continuous curved ‘one-dimenkiona
which the local absolute intrinsic coordinatgs?, ¢02, g2, absolute intrinsic metric space (a ‘one-dimensional’ aliso
etc, of diferent local absolute intrinsic coordinate sets (8trinsic Riemannian metric space) be denotedgpy with
frames) are inclined relative to one another at point Bbf¢  respect to Euclidean observershr?.
with respect to a Riemannian observer at this point all van- We have arrived at an important conclusion in the forego-

ish, that is,¢$ = qbé = ¢ = 0, with respect to Euclid- ing paragraph that the curved absolute intrinsic metricapa
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(or absolute intrinsic Riemannian metric spaces), whicleha Ao o

been considered to be ‘two-dimensionalli?[2 or ‘three-di- ox 4

mensional'¢ M3 with respect to Euclidean observers in the : Y gﬁ

underlying proper physical Euclidean spak& or E” so - | proper (physical) - curved isotropic
far in this paper, are actually ‘one-dimensional’ curved ab - | Euclidean 3-space .~ %Slgggéute Intrinsic
solute intrinsic metric spaces (or ‘one-dimensional’ @av :

absolute intrinsic Riemannian metric spaces) denotegdbhy .-*“é-observers

isotropic proper

with respect to all 3-observers in the underlying propergshy (s
1Ntrinsic space

ical Euclidean 3-space’3.

The ‘one-dimensional’ absolute intrinsic metric spage D N PRI TSRPS0 >
curving towards the absolute intrinsic time ‘dimensigit
along the vertical with respect to Euclidean observer&'ih
will naturally project a one-dimensional straight line ped Fig. 6: The ‘three-dimensional’ absolute intrinsic metric space
intrinsic space, to be denoted By’ underneath the properg73, which is curved onto the absolute intrinsic time ‘dimen-
physical Euclidean 3-spadg’® with respect to observers insion’ $2° along the vertical and its underlying projective flat three-
E’3. However we shall for completeness show below thdimensional proper intrinsic metric spag&" (in Fig. 1 of part one
a three-dimensional flat proper intrinsic spag®’® consid- ©f this paper [1]), are naturally contracted into ‘one-dimensional’ ab-
ered to be projected underneath the proper physical Eucfilute intrinsic metric spacgep and one-dimensional proper intrinsic
ean 3-spac&”® by curved ‘three-dimensional’ absolute inMetic spacesy’ respectively, where; is curved onto straight line
trinsic metric spaceﬁM?’ previously in this paper, naturallyabsome intrinsic time ‘dimension’ along the vertical apgl is a

tracts t d | t tri straight line isotropic one-dimensional proper intrinsic space under-
con “’?‘C s 1o a one- |menS|0na/?E)roper Intrinsic me rImep"’]ying the proper physical Euclidean 3-spdg€ along the horizontal
¢p’ with respect to observers if".

with respect to 3-observers ',

Now any magnitudes of proper intrinsic Euler angjes,
¢3 and¢y’ in the flat proper intrinsic spacgE’ are equiv-
alent to zero magnitude of proper physical Euler angles’ The curved ‘one-dimensional’ absolute intrinsic metric
and~’ respectively in the proper physical Euclidean 3-spagpaceg¢ to which the curved ‘three-dimensional’ absolute
E’ with respect to observers ii® overlyingp E’*; knowing intrinsic metric spaceM? is naturally contracted with re-
thatpa’ = 0 x o/, ¢3' = 0 x ', andgy’ = 0 x 7'. Con- spect to observers in the physical proper Euclidean 3-space
sequently any two distinct directions, which are separbted £3 | is curved onto the straight line absolute intrinsic time
non-zero intrinsic anglega’, ¢3" and ¢’ in the flat three- ‘dimension’ ¢2° = ¢é¢i along the vertical and projects a
dimensional proper intrinsic spagefs” with respect to in- straight line isotropic proper intrinsic metric spagg’ un-
trinsic observers ipE’3, are the same direction with respecierneath the proper physical Euclidean 3-spéealong the
to observers in the proper physical Euclidean 3-sgelée  horizontal with respect to observers 3, thereby yielding

A consequence of the foregoing paragraph is that muftig. 6.
ally perpendicular proper intrinsic dimensiops'*, ¢n’> and Thus the ‘three-dimensional’ absolute intrinsic metric
¢n'* of pE’ with respect to intrinsic 3-observersdrE’® are  spacesp A3, (which are ‘three-dimensional’ absolute intrin-
impossible with respect to 3-observersht?. This is so be- sic metric spaces), underlied by flat three-dimensiongb@ro
cause the intrinsic angley’ = % between intrinsic dimen- intrinsic metric spacesE’®, which we have carried along
sions¢n’t and¢n? and¢d’ = % between intrinsic dimen- from the beginning of this paper to this point, have now been
sions¢n’? andgn’® with respect to intrinsic observersd®’®  found to be naturally contracted to curved ‘one-dimendiona
both vanish with respect to observerdify. The three intrin- absolute intrinsic metric spaces, (which are ‘one-dimamsi
sic dimensionsy’t, ¢n’2 and¢n’® of pE’> are consequently al’ absolute intrinsic Riemannian metric spaceg)/®, un-
aligned along a singular direction, thereby constitutirgjra derneath which lies its projective one-dimensional iqutro
gular intrinsic space denoted by’ above, which underlies proper intrinsic metrigp’, with respect to observers .
the proper physical Euclidean 3-spag€ with respectto all  The proper physical Euclidean 3-spagé that has been
observers int”. known to be the outward manifestation of the 3-dimensional

The one-dimensional proper intrinsic spage has no proper intrinsic metric spacgE’® until now in this paper is
unique orientation in the flat three-dimensional propeinat now the outward manifestation of the one-dimensional iso-
sic spacepE’® that contracts to it. Consequently it has nopic proper intrinsic spacgy’ in Fig. 6. It may be recalled
unique orientation in the proper physical Euclidean 3-spatat this fact has been stated assatz in sub-section 4.4 of
E". Thusgp' is an isotropic intrinsic space (or intrinsic di{3], prior to formal validation of the existence of the prope
mension) inE’3. It can be considered to lie along any diredntrinsic spacepp’ underlying the proper physical Euclidean
tion in E’3 by observers irE’3. 3-spacel’? in nature in section 1 of [4].
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The absolute intrinsic metric tensapg;;, of absolute in- %0
trinsic Riemann geometry on curved ‘three-dimensional’ ab PRGN

solute intrinsic metric spacesh/3, which are3 x 3 diagonal A A

matrices in section 1, are actuallyx 1 matrices or numbers fop AN

G11 O ¢g,, on curved ‘one-dimensional’ absolute intrinsic . N Sop’
¢g11 OF $gy, Rt SuTE e ; 3-observers dop, 96
metric spacesp. Likewise for the absolute intrinsic Ricci 5 | W A,
tensors. The absolute intrinsic Gaussian line element writ 7 < 20
ten in terms of elementary intervals of three absolutenintri X

A i A
oWL,@p,) -/

sic metric ‘dimensionst!, 42 and4?, (which are the same
asoit, pi? and¢i?), of pM> as Eq. (47) or (48), is actu-
ally the following absolute intrinsic Gaussian line elermien
terms of the interval of the one-dimensional absolutenstd

spacepp:

(dqb§)2 _ (d¢§30)2 _ ¢§11(d¢ﬁ)2 _ (d(bi,O)Q o (d¢f’)A2 Eig. 7 Co-e>.<isting pair of ‘one-dimensilonal’ absolutg intrinsic met-
1— (¢k)2  ric spaces with respect to 3-observers in the underlying proper phys-
(89) ical Euclidean 3-space.
It must be remembered thap has been formed by bundling
together into ‘one-dimensional’ absolute intrinsic spafie

o ) i . iven in terms of the absolute intrinsic curvature paransete
curved absolute intrinsic space ‘dimensiogg!, 3% and 9 P

s - - I N & A~ f h I . . .
o3 of ¢ M3 with respect to observers in the proper phy -kzt(fép(l)) andfbkl((fpg)) oft (:. culrvedl eti.bsotutel QT”SIC
ical Euclidean 3-spac&’®. We have, in fect, simply re- NeliC spaces) and ¢y’ respectively relative tgy" deter-

placed(dsil)? + (ddi2)? + (dé2)? in Eq. (48) by(dep)? mined prior to their superposition as follows:
in EqQ. (93). RV I ARY. IYYIRY:
S . . . k) = ¢k k 91

All absolute intrinsic Riemannian metric spaces in the (0R)” = 9ha(@0(0))” + dka(0p) (1)
universe are curved ‘one-dimensional’ absolute intrinsét- The component of the resultant absolute intrinsic metrie te
ric spacesgp, ¢p’, ¢p”, etc, which are all curved relative tosor ¢g,, at pointép(1) on the upper curved absolute intrinsic
the/ smgular umyersal _|sotrop|c proper mtnnsm metiiase spaces) is then given in terms ofpk)? as follows:
¢p’, (with no unique orientation in the universal proper phys-
ical Euclidean 3-spacE’?) with respect to observers '3, ~ _ > 9

PR : ?g911 = 1 — (¢k)

Hence they are all parallel absolute intrinsic metric space

with respect to observers if’. ( PPV 2o 2)
N . . . . = 1— ok — ok
lllustrated in Fig. 7 is a situation where two absolute in- Ok (6P1)” = Pha(9D )

trinsic metric spacesy and¢y’ co-exist (or are superposed)ang the resultant absolute intrinsic line element must ke wr
such thatpp is curved relative to curvedy’ and¢p’ is curved (e py simply replacingek)? by (¢k)? in Eq. (89).

relative to the proper intrinsic metric spagg’ along the hor-  Einaly, while the curved ‘one-dimensional’ absolute in-
izontal. For the purpose of writing absolute intrinsic Metryinsic metric space, (or absolute intrinsic metric spage)
tensor.and a_bsolute intrinsig Ri_cci_tensor.on the up.pereﬂjr\{s absolute, hence with hat label, the underlying proper in-
‘one-dimensional’ absolute intrinsic metric spagewith re-  trinsic metric¢p’, (without hat label), is relative. (This is
spect to observers iB’3, the resultant absolute intrinsic anglgimilar to the fact that the absolute time paramétes ab-

¢v of inclination of ¢ relative togp’ at point¢p(1) along  solute, while the proper timé& (or 7) that evolves from it is
¢p, which corresponds to poin;t;’)(l) along ¢p’ and point relative). Thus whilesp andgp’ must not be counted as extra
¢p/(1) along ¢p’, is given in terms of the absolute intrinsiéntrinsic dimensions in physics, (being mere absolutarintr

angbs(ﬁ%(d)ﬁ(l)) and@]’l((ﬁﬁzl)) as follows, as derived in sic parameters), in Fig. 7, their underlying isotropic @op

-1

1
(92)

sub-sub-section 1.6.1, (see Eqs. (58a) and (58b)): intrinsic metric spacey’ is an extra intrinsic, (that is, a non-
( as. (58a) (58b) observable and non-detectable) dimension in physics,avher
sin g = sin (¢1[Jl(¢/3/(1)) i ¢1[Jz(¢>/3(1))) its intrinsic (or non-detectable nature) is accounted foihe

R R symbol¢ attached to it.
= sin? gbz/)l((ép”(l)) + sin? P2 (dp(1y) (90) There are four dimensions already in Fig. 7 namely, the
L dimensionsz’!, 22, 2’3 of the proper physical Euclidean 3-
R Hence the resultant absolute intrinsic curvature parameblsaceEls and the proper intrinsic space (or intrinsic dimen-
¢k of the upper curved absolute intrinsic spaggat point sjon)¢,’. The isotropic intrinsic space (or dimensiafy)’ is
$p(1y alongpp in Fig. 7 to appear in the component of the straight line, just as the proper physical 3-spBteoverly-
resultant absolute intrinsic metric tens@y,; at this point is ing it is flat or Euclidean. The isotropic proper intrinsiasg
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¢p' has no unique orientation or basis in the physical Euclid-
ean 3-spac&’3.

This first part of this paper shall be ended at this point,
while the development of absolute intrinsic Riemann geome-
try shall be extended to curved ‘two-dimensional’ absointe
trinsic metric spacetim@sp, ¢pépt), which is underlied by its
projective proper intrinsic metric spacetingy’, pcgét’) and
flat four-dimensional proper physical spacetitd?, ct') in
the second part.
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