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Graphical analysis of the geometry of a curved ‘three-dimensional’ absolute intrinsic
metric space, (an absolute intrinsic Riemannian metric space)φIM̂3, which is curved
onto the absolute time/absolute intrinsic time ‘dimensions’ (along the vertical), as a
curved hyper-surface, and projects a flat three-dimensional proper intrinsic metric space
φIE′3 underlying its outward manifestation namely, the flat proper physical Euclidean
3-spaceIE′3, both as flat hyper-surfaces along the horizontal, isolated in part one of this
paper, is done. Two absolute intrinsic tensor equations, one of which is ofthe diver-
genceless form of Einstein free-space field equations and the other which is a tensorial
statement of local Euclidean invariance onφIM̂3, are derived. Simultaneous (algebraic)
solution of the equations yields the absolute intrinsic metric tensor and absoluteintrin-
sic Ricci tensor of absolute intrinsic Riemann geometry on the curved absolute intrin-
sic metric spaceφIM̂3, in terms of an isolated absolute intrinsic curvature parameter.
Relations for absolute intrinsic coordinate projections into the underlying flatproper
intrinsic space are derived. A superposition procedure that yields resultant absolute in-
trinsic metric tensor and resultant absolute intrinsic Ricci tensor, as well asresultant
absolute intrinsic coordinate projection relations when two or a larger number of ab-
solute intrinsic Riemannian metric spaces co-exist, are developed. Finally the fact that
a curved ‘three-dimensional’ absolute intrinsic metric spaceφIM̂3 is perfectly isotropic
(that is, all directions are perfectly the same) and is consequently contracted to a ‘one-
dimensional’ absolute intrinsic metric space denoted byφρ̂, which is curved onto the
absolute time/absolute intrinsic time ’dimensions’ along the vertical and that the under-
lying projective three-dimensional flat proper intrinsic metric spaceφIE′3 is perfectly
isotropic and is consequently contracted to a straight line one-dimensionalisotropic
proper intrinsic metric spaceφρ′ along the horizontal, with respect to observers in the
physical proper Euclidean 3-spaceIE′3 that overliesφρ′, are deduced.

1 Graphical analysis of absolute intrinsic Riemann geo-
metry of curved absolute intrinsic metric spaces

Let us start with a curved ‘two-dimensional’ absolute intrinsic
metric space (an absolute intrinsic Riemannian metric space)
φIM̂2 with extended absolute intrinsic ‘dimensions’φx̂1 and
φx̂2, a sub-space of the ‘three-dimensional’ absolute intrin-
sic metric spaceφIM̂3 in Fig. 5 of part one of this paper
[1]. The extended curved absolute intrinsic ‘dimensions’ of
φIM̂2 originate from a point O(φx̂1

(0), φx̂
2
(0)) of the underly-

ing two-dimensional proper intrinsic metric spaceφIE′2, with
extended straight line proper intrinsic dimensionsφx′1 and
φx′2, as illustrated in Fig. 1. We shall temporarily make the
following changes of notation of intrinsic dimensions for con-
venience:

φx̂i → ûi and φx′i → u′i,

as already implemented in Fig. 1. On the other hand, the
notationsφIM̂3, φÎE3 andφIE′3 for the intrinsic spaces shall
be retained in order to avoid confusion.

Let us take a short segment AB≡ ∆û1(≡ ∆φx̂1) about
point û1

(1)(≡ φx̂1
(1)) along the ‘dimension’̂u1. Then in the

limit as∆û1 becomes very small, that is, in the limit as A→B,

we must let∆û1 → dû1 and∆u′1 → du′1 in Fig. 1. We
require in this limit that the length of the arc AGB be equal
to the length of the hypotenuse AB of the triangle ABC, then
the absolute intrinsic angleφψ̂û1(û1) is single-valued, being
equal toφψ̂û1(û1

(1)) over the arc AGB in this limit.

Similarly by taking a short segment, DE=∆û2(≡∆φx̂2),
about pointû2

(1)(≡ φx̂2
(1)) along the curved ‘dimension’̂u2

we have, in the limit as∆û2 becomes very small, that is, in
the limit as D→ E, we must let∆û2 → dû2 and∆u′2 →
du′2 in Fig. 1. We also require in this limit that the length of
the arc DHE be equal to the length of the hypotenuse DE of
the triangle DEF. Then the absolute intrinsic angleφψ̂û2(û2)

is single-valued, being equal toφψ̂û2(û2
(1)) over the arc DHE.

Thus by displacing the limiting constant elementary in-
tervalsdû1 anddû2 defined above along the curved ‘dimen-
sions’ û1 and û2 respectively, one can attach a locally flat
manifold of elementary ‘dimensions’dû1 anddû2 to every
point of the ‘2-dimensional’ curved absolute intrinsic space
φIM̂2. One can then construct geometry, that is, derive sin-
gle absolute intrinsic metric tensor, single absolute intrinsic
Ricci tensor, single absolute intrinsic Riemann scalar, etc, (in
a lumped parameter fashion), which are valid at every point
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Fig. 1: A curved ‘two-dimensional’ absolute intrinsic metric space
φIM̂2, (an absolute intrinsic Riemannian metric space), and its un-
derlying projective flat 2-dimensional proper intrinsic metric space
φIE′2, lying underneath flat proper physical Euclidean 2-spaceIE′2.

within the locally flat neighborhood, with respect to Euclid-
ean observers in the underlying flat proper physical Euclidean
2-spaceIE′2 and repeat this about every point of the curved
absolute intrinsic metric spaceφIM̂2. This is the graphical
approach to the absolute intrinsic Riemann geometry of a
curved ‘2-dimensional’ absolute intrinsic metric space, which
has no counterpart in conventional Riemann geometry. The
derivation can be easily extended to a curved ‘3-dimensional’
absolute intrinsic metric space - a ‘3-dimensional’ absolute
intrinsic Riemannian metric space.

The elementary intervalsdû1 anddû2 defined about point
(û1

(1), û
2
(1)) of the ‘2-dimensional’ absolute intrinsic Riemann

spaceφIM̂2, project intervalsdu′1 anddu′2 respectively about
the corresponding point(u′1(1), u

′2
(1)) of the underlying proper

intrinsic spaceφIE′2 in Fig. 1. One obtains the following from
elementary coordinate geometry,

du′1 = dû1 cosφψ̂û1(û1
(1)) and du′2 = dû2 cosφψ̂û1(û2

(1))
(1)

A Riemannian observer at the point(û1
(1), û

2
(1)) onφIM̂2;

(this is the proper Riemannian observer), observes Euclidean
metric tensor locally about his position. He constructs Euclid-
ean line element in terms of the intervalsdû1 anddû2 as fol-
lows:

(dφl̂)2 = (dû1)2 + (dû2)2 =
2
∑

i,k=1

δikdû
idûk (2a)

This local Euclidean line element onφIM̂2 can be written
equivalently in terms of the coordinate intervals of the under-

lying proper intrinsic metric spaceφIE′2, by virtue of system
(1), as follows:

(dφl̂)2 = (dû1)2 + (dû2)2

= sec2 φψ̂û1(û1
(1))(du

′1)2 + secφψ̂û2(û2
(1))(du

′2)2

(2b)
or

(dφl̂)2 =

2
∑

i,k=1

secφψ̂ûi(ûi
(1)) secφψ̂ûk(ûk

(1))δikdu
′idû′k

(2c)
or

(dφl̂)2 =
2
∑

i,k=1

φĝik(û1
(1), û

2
(1))du

′idu′k (2d)

The absolute intrinsic metric tensorφĝik is purely diagonal,
given in terms of absolute intrinsic anglesφψ̂û1(û1

(1)) and

φψ̂û2(û2
(2)) as follows:

φĝik = secφψ̂ûi(ûi
(1)) secφψ̂ûk(ûk

(1))δik

=

(

sec2 φψ̂û1(û1
(1)) 0

0 sec2 φψ̂û2(û2
(1))

)

(3)

Thus the locally flat region of the curved absolute intrin-
sic metric spaceφIM̂2 bounded by elementary coordinate in-
tervalsdû1 anddû2 about point(û1

(1), û
2
(1)) of φIM̂2, which

possesses Euclidean metric tensorδik with respect to a Rie-
mannian observer at the location of this locally flat region of
φIM̂2, possesses the absolute intrinsic sub-Riemannian met-
ric tensorφĝik with respect to Euclidean 3-observers in the
underlying flat proper physical spaceIE′2 in Fig. 1.

However the absolute intrinsic line element (2c) or (2d)
given in terms of the proper intrinsic coordinate intervalsdu′1

anddu′2 of φIE′2, cannot be used to write absolute intrinsic
geodesics on the curved absolute intrinsic metric spaceφIM̂2.
Rather the absolute intrinsic geodesic onφIM̂2 must be writ-
ten in terms of locally straight elementary absolute intrinsic
coordinate intervalsdû1 anddû2 on φIM̂2 and the absolute
intrinsic metric tensorφĝik of Eq. (3) with respect to these
observers (inIE′2 in Fig. 1).

As shall be demonstrated shortly in this paper, there is
local Euclidean invariance onφIM̂2 with respect to observers
in IE′2, which allows us to write,

2
∑

i,k

δikdu
′idu′k =

2
∑

i,k

δikdû
idûk (4)

This is the discrete version (in the graphical approach) of in-
trinsic local Euclidean invariance (φLEI) on φIM̂2 with re-
spect to Euclidean observers inIE′2 in Fig. 1.
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Eq. (4) then allows us to replacedu′idu′k by dûidûk in
Eqs. (2c) and (2d) yielding the following respectively:

(dφl̂)2 =
2
∑

i,k=1

secφψ̂ûi(ûi
(1)) secφψ̂ûk(ûk

(1))δikdû
idûk

(5a)
or

(dφl̂)2 =

2
∑

i,k=1

φĝik(û1
(1), û

2
(1))dû

idûk (5b)

The absolute intrinsic line element (5a) or (5b) and the
absolute intrinsic metric tensor (3) admit of easy generaliza-
tions to the case of ‘3-dimensional’ absolute intrinsic metric
spaceφIM̂3. The absolute intrinsic geodesic is given at an
arbitrary point(û1, û2, û3) on φIM̂3, which corresponds to
point(u′1, u′2, u′3) in the underlying flat proper intrinsic met-
ric spaceφIE′3 with respect to observers inIE′3 as follows:

(dφl̂)2 =

3
∑

i,k=1

secφψ̂ûi(ûi
(1)) secφψ̂ûk(ûk

(1))δikdû
idûk

(6a)

(dφl̂)2 =

3
∑

i,k=1

φĝik(û1
(1), û

2
(1), û

3
(1))dû

idûk (6b)

The absolute intrinsic metric tensor is a3×3 diagonal matrix
containing elementssec2 φψ̂û1(û1

(1)), sec2 φψ̂û2(û2
(1)) and

sec2 φψ̂û3(û3
(1)) in this case.

In the graphical approach to the absolute intrinsic Rie-
mann geometry of curved absolute intrinsic metric spaces,
once one measures the absolute intrinsic anglesφψ̂ûi(ûi) on
φIM̂2 orφIM̂3, of the inclination of intervalsdûi of the curved
absolute intrinsic ‘dimension’̂ui to the respective underly-
ing projective straight line proper intrinsic dimensionsu′i at
a given point, one then obtains the absolute intrinsic metric
tensor from Eq. (7) of part one of this paper [1] at that point.
There is no correspondence to this in conventional Riemann
geometry, as far as I know.

The absolute intrinsic metric tensor of the absolute intrin-
sic Riemann geometry of a curved absolute intrinsic metric
spaceφIM̂3 is purely diagonal always. This is so since all the
absolute intrinsic ‘dimensions’ ofφIM̂3 span the absolute in-
trinsic time ‘dimension’û0 ≡ φĉφt̂ along the vertical only,
such that each curved absolute intrinsic ‘dimension’ûk of
φIM̂3 lies above its projective straight line proper intrinsic di-
mensionu′k in φIE′3 (along the horizontal). Consequently
each curved absolute intrinsic ‘dimension’ûk lies on the ver-
tical u′kû0−plane. The cross terms,dû1dû2, dû1dû3 and
dû1dû3 are therefore precluded in the absolute intrinsic line
elements (5a) or (5b) and (6a) or (6b).

1.1 The absolute intrinsic dimensionless curvature pa-
rameter of a curved ‘one-dimensional’ absolute in-
trinsic space on a vertical proper intrinsic space -
absolute intrinsic time plane

Let us consider a curves on theu′1u′2−plane inφIE′3 shown
in Fig. 2(a). The Eulerian curvatureκEul, (in honor of Euler),
of the curves at point P in Fig. 2(a) is given from definition
[5, see ch.1] as follows:

dt̂

ds
= κEuln̂ (7)

wheret̂ andn̂ are unit tangent vector and unit normal vector
respectively, to the curves at P. Hence,

|
dt̂

ds
| = | κEuln̂ | =

dφ

ds
= κEul (8)

Now let this same curves be on the verticalu′1û0−plane
as shown in Fig. 2b, where it has been re-denoted byû1 . It
now carries a hat label since it is now a ‘one-dimensional ab-
solute intrinsic metric space (or an absolute intrinsic metric
space ‘dimension’) on theu′1û0−plane. Again the curvature
of û1 is given by Eq. (7), except that the unit normal vectorn̂
projects componentŝn sinφψ̂(û1

(1)) into the proper intrinsic

dimensionu′1 along the horizontal. Hence the curvature of
û1 that is valid with respect to observers in (all frames in) the
underlying physical Euclidean space in Fig. 2b is the follow-
ing

dt̂

dŝ
= n̂ sinφψ̂(û1

(1))κEul (9)

Let us define the absolute intrinsic Riemannian curva-
ture φκ̂Riem(û1

(1)) of the plane curvêu1, (which is a one-
dimensional absolute intrinsic metric space (an absolute in-
trinsic Riemann space) at point P in Fig. 2b as follows:

φκ̂Riem(û1
(1)) = |

dt̂

dŝ
| = | n̂ | sinφψ̂(û1

(1))κEul (10)

or
φκ̂Riem(û1

(1)) = sinφψ̂(û1
(1))κEul (11)

The dimensionless intrinsic parametersinφψ̂(û1
(1)) shall

be referred to as absolute intrinsic curvature parameter atthe
given pointû1

(1) along the curved ‘one-dimensional’ absolute

intrinsic metric spacêu1 and denoted byφk̂(û1
(1)). It is an ab-

solute intrinsic parameter since theû1 is a ‘one-dimensional’
absolute intrinsic metric space (or a ‘dimension’ of ‘three-
dimensional’ absolute intrinsic metric space). Hence Eq. (26)
shall be re-written as follows:

φκ̂Riem(û1
(1)) = φk̂(û1

(1))κEul (12)

where
φk̂(û1

(1)) = sinφψ̂(û1
(1)) (13)
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Fig. 2: Deriving the absolute intrinsic curvature parameter of a
curved ‘one-dimensional’ absolute intrinsic metric space on a ver-
tical proper intrinsic space - absolute intrinsic time plane.

Since the absolute intrinsic angleφψ̂ has constant zero value
along plane curves in the underlying proper intrinsicφIE′3,
the absolute intrinsic Riemannian curvature of a plane curve
in φIE′3 is zero.

The absolute intrinsic curvature parametersφk̂û1 and
φk̂û2 at pointsû1

(1) and û2
(1) of the curved absolute intrinsic

‘dimensions’ û1 and û2 respectively in Fig. 1 are given as
follows by virtue of definition (13):

φk̂û1(û1
(1)) = sinφψ̂û1(û1

(1))

φk̂û2(û2
(1)) = sinφψ̂û2(û2

(1))

}

(14)

Since the absolute intrinsic angleφψ̂ûi measures the incli-
nation of the curved absolute intrinsic ‘dimension’ûi on the
vertical planeu′iû0 relative to the underlying flat proper in-
trinsic spaceφIE′3 (as a hyper-surface) along the horizontal, it
has the same value with respect to all frames (or all observers)
in the underlying flat proper physical Euclidean 3-spaceIE′3

(also as a hyper-surface) along the horizontal overlyingφIE′3.
Hence the absolute intrinsic curvature parameterφk̂ûi has the
same value with respect to all frames (or all observers) in the
underlying flat proper physical Euclidean 3-spaceIE′3

1.2 Expressing the components of the absolute intrinsic
metric tensor in terms of absolute intrinsic curva-
ture parameters in absolute intrinsic Riemann geo-
metry

From the components of the absolute intrinsic metric tensor
in Eq. (3), one obtains the following

φĝ11 = sec2 φψ̂û1(û1
(1)) = (1 − sin2 φψ̂û1(û1

(1)))
−1;

φĝ22 = sec2 φψ̂û2(û2
(1)) = (1 − sin2 φψ̂û2(û2

(1)))
−1;

φĝ12 = φĝ21 = 0











(15)

Then by using system (14) in system (15), the components
of the absolute intrinsic metric tensor are given in terms of
absolute intrinsic curvature parameters as follows:

φĝ11 = (1 − φk̂û1(û1
(1))

2)−1;

φĝ22 = (1 − φk̂û2(û2
(1))

2)−1;

φĝ21 = φĝ12 = 0











(16)

Hence,

φĝik =









1

1 − φk̂û1(û(1))2
0

0
1

1 − φk̂û2(û2
(1))

2









(17)

Extension to the case of a ‘3-dimensional’ absolute intrinsic
metric spaceφIM̂3 is straight forward, in which case the2×2
diagonal matrix of Eq. (18) becomes a3× 3 diagonal matrix.

Thus the absolute intrinsic metric tensor has parametric
dependence on the square of the absolute intrinsic curvature
parameters in absolute intrinsic Riemann geometry. The ab-
solute intrinsic curvature parameters shall ultimately bere-
lated to the absolute intrinsic parameter(s) of the absolute in-
trinsic metric force field that gives rise to absolute intrinsic
Riemann geometry with further development.

1.3 Establishing local Euclidean invariance on a curved
absolute intrinsic metric space

The ‘2-dimensional’ absolute intrinsic metric spaceφIM̂2 (a
‘two-dimensional absolute intrinsic Riemannian manifold) in
Fig. 1, is locally Euclidean. Hence the Riemannian observer
located at point(û1

(1), û
2
(1)) on φIM̂2 writes the absolute in-

trinsic local Euclidean line element (17a) at that point. Onthe
other hand, the absolute intrinsic Euclidean line element (2a)
with respect to a Riemannian observer at point(û1

(1), û
2
(1)) on

φIM̂2 is equivalent to the absolute intrinsic sub-Riemannian
line element (2c) or (2d) with respect to Euclidean observers
in the underlying flat proper physical spaceIE′2. An extra
term shall be added to the right-hand side of Eq. (2c) or (2d)
in order to recover the absolute intrinsic local Euclidean line
element onφIM̂2 with respect to observers inIE′2 in this sub-
section.

One observes from Fig. 1 that the intervaldû1 of the
curved absolute intrinsic ‘dimension’̂u1 projects component
du′1 into the underlying proper intrinsic dimensionu′1 of
φIE′2 and componentδû01 into the vertical absolute intrinsic
time ‘dimension’û0. Similarly the intervaldû2 of the curved
absolute intrinsic ‘dimension’̂u2 of φIM̂2, projects compo-
nentdu′2 into the underlying proper intrinsic dimensionu′2

and componentδû02 into the vertical absolute intrinsic time
‘dimension’û0.

We have made use of the componentsdu′1 anddu′2 pro-
jected into the underlying flat proper intrinsic spaceφIE′2 in
deriving the absolute intrinsic metric line element (2c) or(2d)
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with respect to observers inIE′2, while the componentsδû01

andδû02 have been left out. This is so because the absolute
time and absolute intrinsic time ‘dimensions’ along the ver-
tical, being absolute, are not dimension and intrinsic dimen-
sion respectively with respect to observers the relative proper
physical Euclidean 2-spaceIE′2. Hence the absolute intrin-
sic coordinate intervalsδû01 andδû02 projected alonĝu0 are
not absolute intrinsic metric components. Rather they are to
be referred to as ‘non-metric’ components, while the compo-
nentsdu′1 anddu′2 projected into the underlying flat proper
intrinsic metric spaceφIE′2, which have been used in deriving
the absolute intrinsic metric line element (2c) or (2d), shall be
referred to as metric components, with respect to observersin
the proper physical Euclidean 2-spaceIE′2.

Although the ‘non-metric’ absolute intrinsic coordinate
intervalsδû01 andδû02 projected along the absolute intrinsic
time ‘dimension’û0 are elusive and must be disregarded in
deriving absolute intrinsic metric line element on the curved
‘two-dimensional’ absolute intrinsic metric spaceφIM̂2 with
respect to observers inIE′2 in Fig. 1, as done in obtaining the
absolute intrinsic line element (2c) and (2d) and the absolute
intrinsic sub-Riemannian metric tensor (17), let us temporar-
ily put both the metric componentsdu′1 and du′2 and the
‘non-metric’ componentsδû01 and δû02 into consideration
in order to recover the absolute intrinsic Euclidean line el-
ement and the absolute intrinsic Euclidean metric tensor on
φIM̂2 with respect to observers inIE′2. Thus let us apply the
Pythagorean formula to triangles ABC and DEF in Fig. 1 to
have the following

(dû1)2 = (du′1)2+(δû01)2 and (dû2)2 = (du′2)2+(δû02)2

(18)
But δû01 and δû02 are given in terms of absolute intrinsic
anglesφψ̂û1(û1

(1)) andφψ̂û2(û2
(1)) and intervalsdû1 anddû2

respectively as follows:

dû01 = dû1 sinφψ̂û1(û1
(1)) and dû02 = dû2 sinφψ̂û2(û2

(1))
(19)

Then from systems (18) and (19) we have the following

(du′1)2 = (dû1)2 − (dû1)2 sin2 φψ̂û1(û1
(1));

(du′2)2 = (dû2)2 − (dû2)2 sin2 φψ̂û2(û2
(1))

}

(20)

And from system (20) we construct Euclidean line element
in terms of componentsdu′1 anddu′2 projected intoφIE′2 as
follows:

(dφl′)2 = (du′1)2 + (du′2)2

= (dû1)2 − (dû1)2 sin2 φψ̂û1(û1
(1)) +

+(dû2)2 − (dû2)2 sin2 φψ̂û2(û2
(1)) (21)

Then by using the relationsdûi = du′i secφψ̂ûi(ûi
(1)); i =

1, 2, which follows from system (1), Eq. (21) becomes the

following

(dφl′)2 = (du′1)2(sec2 ψ̂û1(û1
(1)) − tan2 ψ̂û1(û1

(1)))

+(du′2)2(sec2 ψ̂û2(û2
(1)) − tan2 ψ̂û2(û2

(1)))

(22)

which upon using,sec2 ψ − tan2 ψ = 1, gives (dφl′)2 =
(du′1)2 + (du′2)2.

Thus by considering the ‘non-metric’ componentsδû01

and δû02 projected into the absolute intrinsic time ‘dimen-
sion’ û0 along the vertical along with the metric components
du′1 anddu′2 projected into the proper intrinsic spaceφIE′2

along the horizontal by the intervalsdû1 anddû2 of the ab-
solute intrinsic metric space ‘dimensions’û1 andû2 in Fig. 1,
in constructing the absolute intrinsic line element onφIM̂2

with respect to observers inIE′2, the absolute intrinsic local
Euclidean line element is recovered at every point onφIM̂2

with respect to observers inIE′2. This is the same as say-
ing that there is intrinsic local Euclidean invariance (φLEI)
onφIM̂2 with respect to observers inIE′2 when the projective
‘non-metric’ coordinate intervalsδû01 andδû02 and the pro-
jective metric coordinate intervalsdu′1 anddu′2 are put into
consideration in constructing the absolute intrinsic lineele-
ment onφIM̂2, which has been stated mathematically without
proof as Eq. (4) earlier.

1.4 Tensorial statement of intrinsic local Euclidean in-
variance on absolute intrinsic Riemann spaces

We shall, by virtue of absolute intrinsic local Euclidean in-
variance onφIM̂2, (when the projective ‘non-metric’ coordi-
nate intervalsδû01 andδû02 and the projective metric coor-
dinate intervalsdu′1 anddu′2 are put into consideration in
constructing the absolute intrinsic line element onφIM̂2), es-
tablished above, replace the elementary proper intrinsic coor-
dinate intervalsdu′1 anddu′2 by absolute intrinsic coordinate
intervalsdû1 anddû2 respectively at the right-hand side of
Eq. (22) to have as follows:

(dφl′)2 = (du′1)2 + (du′2)2

= (dû1)2(sec2 φψ̂û1(û1
(1)) − tan2 φψ̂û1(û1

(1)))

+(dû2)2(sec2 φψ̂û2(û2
(1)) − tan2 φψ̂û2(û2

(1)))

(23)

Equation (23) states formally intrinsic local Euclidean invari-
ance,(du′1)2 + (du′2)2 = (dû1)2 + (dû2)2 onφIM̂2, which
has already been stated without deriving it by Eq (4). Thus
the absolute intrinsic line element recovered at every point of
φIM̂2 with respect to observers inIE′2 when both the projec-
tive metric and ‘non-metric’ intrinsic coordinate intervals are
put into consideration is the following

(dφl̂)2 = (dû1)2(sec2 φψ̂û1(û1
(1)) − tan2 φψ̂û1(û1

(1)))

+(dû2)2(sec2 φψ̂û2(û2
(1)) − tan2 φψ̂û2(û2

(1)))

(24)
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It is for the purpose of recovering the absolute intrinsic
Euclidean line element (24) on the curved absolute intrinsic
metric spaceφIM̂2 with respect to observers in the underlying
proper physical Euclidean spaceIE′2 in Fig. 1 that the ‘non-
metric’ intrinsic coordinate intervalsδû01 andδû02 projected
along the absolute intrinsic time ‘dimension’û0 have been
considered along with the metric intrinsic coordinate inter-
valsdu′1 anddu′2 projected intoφIE′2 in that figure in deriv-
ing the intrinsic line element in Eq. (18)-(22). However ob-
servers in the proper physical Euclidean spaceIE′2 must actu-
ally make use of the metric intrinsic coordinate intervalsdu′1

anddu′2 projected intoφIE′2 solely in deriving the absolute
intrinsic sub-Riemannian line element (3) onφIM̂2 with re-
spect to themselves, since the ‘non-metric’ intrinsic coordi-
nate intervals are metrically elusive to these observers.

Now, by subtracting the absolute intrinsic metric line el-
ement (2b) (obtained by using the metric intrinsic coordinate
intervals only) from the absolute intrinsic Euclidean lineel-
ement (24), one obtains the absolute intrinsic line element
dφl̂2nm on the ‘non-metric’ sub-space formed by the ‘non-
metric’ componentsδû01 andδû02 projected into the absolute
intrinsic time ‘dimension’û0 along the vertical in Fig. 1 as
follows:

(dφl̂nm)2 = tan2 φψ̂û1(û1)(du′1)2 +tan2 φψ̂û2(û2)(du′2)2

(25)
Observe that(dφl̂nm)2 vanishes forφψ̂û1(û1) = φψ̂û2(û2)
= 0, which will be the case if the absolute intrinsic ‘dimen-
sions’ û1 andû2 were along the horizontal in Fig. 1. That is,
if the û and û2 were not curving onto the absolute intrinsic
time ‘dimension’û0 along the vertical in that figure.

Now let us rewrite the line element(dφl̂nm)2 of Eq. (25)
as follows:

(dφl̂nm)2 =
2
∑

i,k=1

tan2 φψ̂ûi(ûi) tan2 φψ̂ûk(ûk)δikdu
′idu′k

(26)
Eq. (26) is the same as the following by virtue of the now
validated intrinsic local Euclidean invariance (4) of partone
of this paper [1]:

(dφl̂nm)2 =
2
∑

i,k=1

tan2 φψ̂ûi(ûi) tan2 φψ̂ûk(ûk)δikdû
idûk

(27)
Then let us introduce another absolute intrinsic tensor to

be denoted byφR̂ik and rewrite Eq. (27) as follows:

(dφl̂nm)2 =
2
∑

i,k=1

φR̂ikdû
idûk (28)

where

φR̂ik = tan2 φψ̂ûi(ûi) tan2 φψ̂ûk(ûk)δik (29)

or

φR̂ik =

(

tan2 φψ̂û1(û1) 0

0 tan2 φψ̂û2(û2)

)

(30)

Again the absolute intrinsic tensorφR̂ik vanishes for absolute
intrinsic anglesφψ̂ûi(ûi) = 0; i = 1, 2, which will be so if
none of the ‘dimensions’̂ui; i = 1, 2, was curving towards
the absolute intrinsic ‘dimension’̂u0 along the vertical in
Fig. 1. Certainly the absolute intrinsic tensorφR̂ik conveys
information about the absolute intrinsic curvature of the ab-
solute intrinsic Riemannian metric spaceφIM̂2.

The absolute intrinsic local Euclidean line element (25)
on the absolute intrinsic metric spaceφIM̂2 can then be writ-
ten in terms of the absolute intrinsic metric tensorφĝik and
the new absolute intrinsic (curvature) tensorφR̂ik as follows:

(dφl̂)2 =
2
∑

i,k=1

(φĝik − φR̂ik)dûidûk =
2
∑

i,k=1

δikdû
idûk

(31)
The absolute intrinsic Euclidean line element of Eq. (31) ob-
tains at every point onφIM̂2, once the projective ‘non-metric’
intrinsic coordinate intervalsδû01 andδû02 and the projec-
tive metric coordinate intervalsdu′1 and du′2 are put into
consideration in constructing the absolute intrinsic metric line
element onφIM̂2 with respect to observers inIE′2 in Fig. 1.
Eq. (31) can therefore be said to express intrinsic local Euclid-
ean invariance onφIM̂2. Thus the tensorial statement of in-
trinsic local Euclidean invariance (φLEI) on a curved ‘two-
dimensional’ absolute intrinsic metric spaceφIM̂2 − a ‘two-
dimensional’ absolute intrinsic Riemannian metric space−
in Fig. 1, which is also valid forφIM̂3, is the following

φĝik − φR̂ik = δik (φLEI) (32)

1.5 The absolute intrinsic matrix (or scalar)φĈ

Now let us introduce a2 × 2 absolute intrinsic matrixφĈ
through the following relation,

φR̂ik − φĈφĝik = 0 (33)

Then from the definitions of the absolute intrinsic tensors
φĝik andφR̂ik in Eq. (3) and (30), the absolute intrinsic ma-
trix φĈ is given in the case of ‘2-dimensional’ absolute in-
trinsic Riemann spaceφIM̂2 as follows:

φĈ =

(

sin2 φψ̂û1(û1) 0

0 sin2 φψ̂û2(û2)

)

(34)

And from system (14), the matrixφĈ is given in terms of
absolute intrinsic curvature parameters as follows:

φĈ =

(

φk̂û1(û1)2 0

0 φk̂û2(û2)2

)

(35)
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Eqs. (34) and (35) become the following respectively for ‘3-
dimensional’ absolute intrinsic Riemann spaceφIM̂3:

φĈ =





sin2 φψ̂û1(û1) 0 0

0 sin2 φψ̂û2(û2) 0

0 0 sin2 φψ̂û3(û3)





(36)
and

φĈ =





φk̂û1(û1)2 0 0

0 φk̂û2(û2)2 0

0 0 φk̂û3(û3)2



 (37)

Now by multiplying through Eq. (33) from the left by
φĝik one obtains the following

φĝikφR̂ik − φĝikφĈφĝik = 0 (38)

Then by applying the known rules for raising and lowering of
the indices of a tensor in Riemann geometry,gαβRαδ = Rβ

δ ,
andgαβgαγ = δβ

γ ; so thatφĝikφR̂ik = φR̂i
k, andφĝikφĝik =

δi
i , Eq. (38) simplifies as follows:

φR̂i
i − φĈ = 0

or
φĈ = φR̂i

i (39)

Thus Eq. (33) can be re-written in terms ofφR̂i
i as follows:

φR̂ik − φR̂i
iφĝik = 0 (40)

In a situation wheresin2 φψ̂û1(û1) = sin2 φψ̂û2(û2) =

sin2 φψ̂û3(û3) ≡ sin2 φψ̂ (or φk̂û1(û1) = φk̂û2(û2) =

φk̂û3(û3) ≡ φk̂), in Eq. (37), as will be the case for an
isotropic absolute intrinsic metric spaceφIM̂2 or φIM̂3, the
purely diagonal matrixφR̂i

i or φĈ can be replaced by a num-
ber namely, TrφĈ/n or TrφR̂i

i/n in Eq. (33) or (40) to have

φR̂ik −
1

n
TrφĈφĝik = 0 (41)

or

φR̂ik −
1

n
TrφR̂i

iφĝik = 0 (42)

Eq. (42) becomes its familiar form in conventional Riemann
geometry forn = 2 namely,

φR̂ik −
1

2
φR̂φĝik = 0 (43)

whereφR̂ is any one of the equal entries of the diagonal ma-
trix φR̂i

i or φĈ. Obviously the absolute intrinsic tensorφR̂ik

defined by Eq. (30), (referred to as absolute intrinsic curva-
ture tensor earlier), is the absolute intrinsic Ricci tensor in
absolute intrinsic Riemann geometry (of curved absolute in-
trinsic metric spaces).

It must be noted that Eqs. (41), (42) or (43) are possible
for the restrictive situation in which all the curved absolute
intrinsic ‘dimensions’̂uq of φIM̂3 have identical absolute in-
trinsic curvatures or identical absolute intrinsic curvature pa-
rameters,φk̂ûq (ûq) = φk̂; q = 1, 2, 3, at each point ofφIM̂3,
as stated earlier. Interestingly it is this restrictive situation that
pertains to isotropic absolute intrinsic metric spaces, which
shall be of relevance in absolute intrinsic Riemann geometry
ultimately. Thus let us re-write Eq. (41), (42) or (43) in the
following final form in which it shall be found most useful for
application later,

φR̂ik − φk̂2φĝik = 0 (44)

whereφk̂ is the identical absolute intrinsic curvature parame-
ter of all the absolute intrinsic ‘dimensions’ ofφIM̂3 at each
point ofφIM̂3.

What we have achieved in this section is that we have
formulated the absolute intrinsic Riemann geometry of the
curved absolute intrinsic metric spaceφIM̂3 − an absolute
intrinsic Riemann space− relative to 3-observers in its un-
derlying flat proper physical Euclidean 3-spaceIE′3 and have
derived the two important absolute intrinsic tensor equations
(32) and (44). While Eq. (32) is a tensorial statement of in-
trinsic local Euclidean invariance (φLEI) on φIM̂3, as stated
earlier, the corresponding significance of Eq. (44) shall bede-
rived elsewhere with further development.

Equations (32) and (44) apply to the curved absolute in-
trinsic metric spaceφIM̂3. They must be solved algebraically
to obtain the absolute intrinsic metric tensorφĝik and ab-
solute intrinsic Ricci tensorφR̂ik on φIM̂3 with respect to
3-observers in the underlying proper physical Euclidean 3-
spaceIE′3 to have as follows:

φĝik =







(1 − φk̂2)−1 0 0

0 (1 − φk̂2)−1 0

0 0 (1 − φk̂2)−1







(45)
and

φR̂ik =



















φk̂2

1 − φk̂2
0 0

0
φk̂2

1 − φk̂2
0

0 0
φk̂

1 − φk̂2



















, (46)

where it must be noted that the situation in which all the ab-
solute intrinsic ‘dimensions’ ofφIM̂3 possess identical ab-
solute intrinsic curvature parameterφk̂ at each point ofφIM̂3,
which pertains to isotropic absolute intrinsic metric spaces
that shall be the only relevant situation in absolute intrinsic
Riemann geometry, has been considered.
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While a Riemannian observer located at a point on the ab-
solute intrinsic Riemann spaceφIM̂3 constructs absolute in-
trinsic Euclidean line element (2a) at that point, sinceφIM̂3 is
locally Euclidean,φIM̂3 possesses unique absolute intrinsic
sub-Riemannian metric tensorφĝik of Eq. (45) with respect
to Euclidean observers inIE′3. Hence the Euclidean observers
write absolute intrinsic line element onφIM̂3 in terms ofφĝik

in the Gaussian form involving isotropic coordinates as fol-
lows:

dφŝ2 = (dû0)2 −
3
∑

i,k=1

φĝikdû
idûk (47)

or

dφŝ2 = (dû0)2 −
(dû1)2 + (dû2)2 + (dû3)2

1 − φk̂2
(48)

We have accomplished in this section the two stages of
formulation of the absolute intrinsic Riemann geometry of
curved absolute intrinsic metric spaces (or of curved absolute
metric nospaces) isolated in part one of this paper namely, (i)
derivation of the projections of the curved absolute intrinsic
‘dimensions’ of an absolute intrinsic metric spaceφIM̂3 into
its underlying projective proper intrinsic metric spaceφIE′3,
and (ii) formulation of absolute intrinsic Riemann geometry
on the curved absolute intrinsic metric space from the projec-
tions. The derived projection relations (1) forφIM̂2, which
is directly extendable toφIM̂3, with respect to Euclidean ob-
servers in the underlying proper physical Euclidean 3-space
IE′3, is accomplishment of stage one. On the other hand, the
derivation of the two absolute intrinsic tensor equations (32)
and (44) by starting from system (18) and the absolute in-
trinsic metric tensor (45), absolute intrinsic Ricci tensor (46)
and the absolute line element (48) by solving equations (32)
and (44) simultaneously, is accomplishment of stage two. We
shall proceed to the accomplishment of the two stages of for-
mulation of absolute intrinsic Riemann geometry on curved
absolute intrinsic metric space in the next sub-section in a
situation where two or a larger number of absolute intrinsic
metric spaces co-exist or are superposed.

1.6 Superposition of absolute intrinsic Riemann spaces

Although superposition of Riemann spaces may be unknown
or meaningless in conventional Riemann geometry, it is def-
initely of important relevance in absolute intrinsic Riemann
geometry. The ‘two-dimensional’ absolute intrinsic Riemann
spaceφIM̂2, to be re-denoted byφIM̂2

(1), with curved absolute

intrinsic ‘dimensions’û1 andû2 in Fig. 1, is curved relative
to its underlying projective flat proper intrinsic spaceφIE′2. If
another ‘two-dimensional’ absolute intrinsic Riemann space
φIM̂2

(2) with curved absolute intrinsic ‘dimensions’v̂1 andv̂2,

say, is brought into the location ofφIM̂2
(1), so thatφIM̂2

(2) and

φIM̂2
(2) co-exist, thenφIM̂2

(2) will be curved relative toIM̂2
(1).

The resultant absolute intrinsic curvature parameterφk̂ of
the absolute intrinsic spaceIM̂2

(2) relative to the underlying flat

proper intrinsic spaceφIE′2 can then be derived, and the re-
sultant absolute intrinsic metric tensorφĝik, the resultant ab-

solute intrinsic Ricci tensorφR̂ik and the resultant absolute
intrinsic line elementdφŝ

2
can be written straight away in

terms ofφk̂, by simply replacingφk̂ by φk̂ in equations (45),
(46) and (48) to accomplish stage two. The resultant projec-
tions intoφIE′2 of the curved absolute intrinsic ‘dimensions’
of IM̂2

(2) can also be derived. The procedure can be extended
to situations where three, four and larger number of absolute
intrinsic metric spaces coexist.

1.6.1 The resultant absolute intrinsic metric tensor and
resultant absolute intrinsic Ricci tensor when two
or a larger number of parallel absolute intrinsic
metric spaces coexist

Let us consider a pair of ‘two-dimensional’ absolute intrin-
sic Riemann spaces denoted byφIM̂2

(1) andφIM̂2
(2) with ab-

solute intrinsic ‘dimensions’̂u1, û2 and v̂1, v̂2 respectively.
Let these ‘dimensions’ of the two absolute intrinsic metric
spaces be curved relative to the same proper intrinsic dimen-
sionsu′1 andu′2 respectively of their underlying global flat
proper intrinsic spaceφIE′2 prior to their superposition. In
other words, as the two absolute intrinsic metric spaces ex-
isted at their separate locations before superposing them,the
following intrinsic coordinate transformations existed:

u′1 = f1(û1); u′2 = f2(û2);

u′1 = g1(v̂1); u′2 = g2(v̂2)

}

(49)

The absolute intrinsic metric spacesφIM̂2
(1) andφIM̂2

(2) in this

situation in whichû1 of φIM̂2
(1) and v̂1 of φIM̂2

(2) are both

curved relative tou′1 of φIE′2 and û2 of φIM̂2
(1) and v̂2 of

φIM̂2
(2) are both curved relative tou′2 of φIE′2 at their different

locations, as illustrated in Figs. 3a and 3b, shall be referred
to as parallel absolute intrinsic metric spaces (or parallel ab-
solute intrinsic Riemannian metric spaces).

Now let us superpose the absolute intrinsic metric spaces
φIM̂2

(1) andφIM̂2
(2) in Figs. 3a and 3b by bringingφIM̂2

(2) to the

location ofφIM̂2
(1). The origin P ofφIM̂2

(2) does not have to

coincide with the origin O ofφIM̂2
(1) in doing this. Since the

curved absolute intrinsic ‘dimensions’û1 of φIM̂2
(1) andv̂1 of

φIM̂2
(2) both lie above the same proper intrinsic dimensionu′1

of φIE′2 (and dimensionx′1 of IE′2) and the curved absolute
intrinsic ‘dimensions’̂u2 of φIM̂2

(1) andv̂2 of φIM̂2
(2) both lie

above the same proper intrinsic dimensionu′2 of φIE′2 (and
dimensionx′2 of IE′2) prior to their superposition, the curved
absolute intrinsic ‘dimension’̂v1 will be naturally curved rel-
ative to the curved absolute intrinsic ‘dimension’û1 on the
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Fig. 3: A pair of parallel ‘two-dimensional’ absolute intrinsic metric
spaces (or absolute intrinsic Riemannian metric spaces) are under-
lied by the global two-dimensional flat proper intrinsic space and
proper physical Euclidean 2-space, prior to their superposition.

vertical u′1û0−plane, and the curved absolute intrinsic ‘di-
mension’ v̂2 will be naturally curved relative to the curved
absolute intrinsic ‘dimension’̂u2 on the verticalu′2û0−plane
upon bringing them to the same location (or upon superposing
them), as illustrated in Fig. 4. This case shall be referred to as
superposition of parallel absolute intrinsic Riemann spaces.

The pointv̂1
(1) measured from point P ofφIM̂2

(2) lies above

point û1
(1) measured from point O ofφIM̂2

(1), and they both lie

vertically above pointu′1(1) of φIE′2 (and pointx′1(1) of IE′2).

Likewise pointv̂2
(1) of φIM̂2

(2) lies vertically above point̂u2
(1)

of φIM̂2
(1) and they both lie vertically above pointu′2(1) of φIE′2

(and pointx′2(1) of IE′2). The curved absolute intrinsic space

‘dimension’ v̂1 has known absolute intrinsic curvature para-
meterφk̂v̂1(v̂1

(1)) at pointv̂1
(1) relative toφIE′2, and the curved

absolute intrinsic ‘dimension’̂v2 has known absolute intrin-
sic curvature parameterφk̂v̂2(v̂2

(1)) at point v̂2
(1) relative to

φIE′2 from Fig. 3b. Likewise the curved absolute intrinsic
‘dimension’ û1 has known absolute intrinsic curvature para-
meterφk̂û1(û1

(1)) at pointû1
(1) relative toφIE′2 and the curved

absolute intrinsic ‘dimension’̂u2 has known absolute intrin-
sic curvature parameterφk̂û2(û2

(1)) at point û2
(1) relative to

φIE′2 from Fig. 3a.

We wish to obtain the resultant absolute intrinsic curva-
ture parameters of the curved absolute intrinsic ‘dimension’
v̂1 at point v̂1

(1) and of the curved absolute intrinsic ‘dimen-

sion’ v̂2 at point v̂2
(1) relative to relative toφIE′2 or with re-

spect to observers inIE′2, when the absolute intrinsic metric
spaceφIM̂2

(2) is curved relative to the absolute intrinsic met-

ric spaceφIM̂2
(1) as in Fig. 4 and then write the resultant ab-

solute intrinsic metric tensor, resultant absolute intrinsic Ricci
tensor and resultant absolute intrinsic line element at point
(v̂1

(1), v̂
2
(1)) of φIM̂2

(2) in terms of the resultant absolute intrin-
sic curvature parameters relative to these observers.

Now the resultant absolute intrinsic metric tensor,φĝik at
point (̂v1

(1), v̂
2
(1)) of φIM̂2

(2) is given in terms of the absolute

intrinsic anglesφψ̂v̂1(v̂1
(1)) andφψ̂v̂2(v̂2

(1)) of inclination of

the curved absolute intrinsic ‘dimension’v̂1 relative to the
straight line proper intrinsic dimensionu′1 and of the curved
absolute intrinsic ‘dimension’̂v2 relative to the straight line
proper intrinsic dimensionu′2 respectively in Fig. 3b as fol-
lows:

φĝ
(2)
ik =











1

1 − sin2 φψ̂v̂1(v̂1
(1))

0

0
1

1 − sin2 φψ̂v̂2(v̂2
(1))











=











1

1 − φk̂v̂1(v̂1
(1))

2
0

0
1

1 − φk̂v̂2(v̂2)2(1)











(50)

Likewise the absolute intrinsic metric tensor is given at point
(û1

(1), û
2
(1)) of φIM̂(1) in Fig. 7a as follows:

φĝ
(1)
ik =











1

1 − sin2 φψ̂û1(û1
(1))

0

0
1

1 − sin2 φψ̂û2(û2
(1))











=











1

1 − φk̂û1(û1
(1))

2
0

0
1

1 − φk̂û2(û2)2(1)











(51)

When the two parallel absolute intrinsic Riemann spaces
coexist, as illustrated in Fig. 4, then the resultant absolute
intrinsic metric tensorφĝik of the upper absolute intrinsic
metric spaceφIM̂ (2)

2 relative to the underlying proper intrin-
sic metric spaceφIE′2 and proper physical Euclidean space
IE′2, is given in terms of the resultant absolute intrinsic an-

glesφψ̂v̂1(v̂1) andφψ̂v̂2(v̂2), and in terms of the resultant ab-

solute intrinsic curvature parametersφk̂v̂1(v̂1) andφk̂v̂2(v̂2)
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Fig. 4: Two co-existing parallel absolute intrinsic metric spaces.

respectively as follows:

φĝik =









1

1 − sin2 φψ̂v̂1(v̂1)
0

0
1

1 − sin2 φψ̂v̂2(v̂2)









(52)

and

φĝik =









1

1 − φk̂v̂1(v̂1)2
0

0
1

1 − φk̂v̂2(v̂2)2









(53)

where, as can be observed from Fig. 4,

φψ̂v̂1(v̂1) = φψ̂v̂1(v̂1) + φψ̂û1(û1)

and
φψ̂v̂2(v̂2) = φψ̂v̂2(v̂2) + φψ̂û2(û2).

Now the absolute intrinsic Riemann spacesφIM̂2
(2) and

φIM̂2
(1) are curved relative to the flat proper intrinsic space

φIE′2, with the Euclidean metricδik, (in Figs. 3a and 3b),
prior to their superposition. Hence the components of their
absolute intrinsic metric tensors can be written in terms of
the components of the Euclidean metric prior to their super-
position respectively as follows:

(φĝ
(2)
11 )−1 = δ11 − sin2 φψ̂v̂1(v̂1) = δ11 − φk̂v̂1(v̂1)2;

(φĝ
(2)
22 )−1 = δ22 − sin2 φψ̂v̂2(v̂2) = δ22 − φk̂v̂2(v̂2)2;

(φĝ
(2)
12 )−1 = (φĝ

(2)
21 )−1 = 0; (for φIM̂2

(2)).



























(54)

and

(φĝ
(1)
11 )−1 = δ11 − sin2 φψ̂û1(û1) = δ11 − φk̂û1(û1)2;

(φĝ
(1)
22 )−1 = δ22 − sin2 φψ̂û2(û2) = δ22 − φk̂û2(û2)2;

(φĝ
(1)
12 )−1 = (φĝ

(1)
21 )−1 = 0; (for φIM̂2

(1)).



























(55)
Upon the two absolute intrinsic Riemann spaces co-exist-

ing as in Fig. 4, on the other hand, while theφIM̂2
(1) is still

curved relative to the flat proper intrinsic spaceφIE′2, such
that the tangent to the curved absolute intrinsic ‘dimension’
û1 at point û1

(1) is inclined to the straight line proper intrin-

sic dimensionu′1 at absolute intrinsic angleφψ̂û1(û1
(1)) and

the tangent to absolute intrinsic ‘dimension’û2 at pointû2
(1)

is inclined tou′2 at absolute angle intrinsicφψ̂û2(û2
(1)), the

absolute intrinsic Riemann spaceφIM̂2
(2) is curved relative to

the absolute intrinsic Riemann spaceφIM̂2
(1) with absolute in-

trinsic metric tensorφĝ(1)
ik . Consequently the tangent to the

absolute intrinsic ‘dimension’̂v1 at point v̂1
(1) of φIM̂2

(2) is

now inclined at absolute intrinsic angleφψ̂v̂1(v̂1
(1)) relative to

the tangent to absolute intrinsic ‘dimension’û1 at pointû1
(1)

of φIM̂2
(1) and the tangent to the absolute intrinsic ‘dimension’

v̂2 at pointv̂2
(1) of φIM̂2

(2) is now inclined at absolute intrinsic

angleφψ̂v̂2(v̂2
(1)) relative to the tangent to the curved absolute

intrinsic ‘dimension’û2 at pointû2
(1) of φIM̂2

(1). In the present

situation, the absolute intrinsic metric tensorφĝ
(1)
ik of the ab-

solute intrinsic metric spaceφIM̂2
(1) serves as the foundation

absolute intrinsic metric tensor upon which the absolute in-
trinsic metric tensor of absolute intrinsic metric spaceφIM̂2

(2)

must be constructed.
The components of the resultant absolute intrinsic met-

ric tensor, (i.e. of the upper curved absolute intrinsic metric
spaceφIM̂2

(2) relative to the flat proper intrinsic spaceφIE′2

in Fig. 4), are therefore given in terms of the components
of φĝ(1)

ik , (like system (54) or (55) is written relative to the
Euclidean metricδik) as follows:

(φĝ11)
−1 = φĝ

(1)
11 − sin2 φψ̂v̂1(v̂1

(1))

= φĝ
(1)
11 − φk̂v̂1(v̂1

(1))
2;

(φĝ22)
−1 = φĝ

(1)
22 − sin2 φψ̂v̂2(v̂2

(1))

= φĝ
(1)
22 − φk̂v̂2(v̂2

(1))
2;

(φĝ12)
−1 = (φĝ21)

−1 = 0























































(56)

It is appropriate to further elucidate system (56). The
componentsφĝ(1)

11 and φĝ(1)
22 of the absolute intrinsic met-
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ric tensorφĝ(1)
ik of the curved absolute intrinsic metric space

φIM̂2
(1) have been written relative to the intrinsic Euclidean

metric tensor reference in system (53) (by virtue of the ap-
pearance of the componentsδ11 and δ22 of the Euclidean
metric tensor in (53)), becauseφIM̂2

(1) is curved relative to

the proper intrinsic metric spaceφIE′2 with intrinsic Euclid-
ean metric tensor in Fig. 3a. The componentsφĝ

(2)
11 andφĝ(2)

22

of the absolute intrinsic metric tensorφĝ(2)
ik of the curved ab-

solute intrinsic metric spaceφIM̂2
(2) have likewise been writ-

ten relative to the absolute intrinsic Euclidean metric ten-
sor reference in system (54), becauseφIM̂2

(2) is curved rel-

ative to the proper intrinsic metric spaceφIE′2 in Fig. 3b.
The componentsδ11 andδ22 of the intrinsic Euclidean metric
tensor ofφIE′2 that appear in systems (53) and (54) are re-
lated to the constant zero absolute intrinsic angle(φψ̂ = 0)
of inclination to the horizontal of the intrinsic dimensions
u′1 (≡ φx′1) andu′2 (≡ φx′2) of φIE′2 in Figs. 3a and 3b
as,δ11 = δ22 = cos2(φψ̂ = 0) = 1.

On the other hand, the componentsφĝ
(2)

11 andφĝ
(2)

22 of the

resultant absolute intrinsic metric tensorφĝ
(2)

ik of the curved
absolute intrinsic metric spaceφIM̂2

(2) relative to the proper

intrinsic Euclidean spaceφIE′2 in Fig. 4 have been written rel-
ative to absolute intrinsic sub-Riemannian metric tensor ref-
erence in system (55). This is so becauseφIM̂2

(2) is curved
relative to the intermediate curved absolute intrinsic metric
spaceφIM̂2

(1), which is, in turn, curved relative to the proper

intrinsic metric spaceφIE′2 in Fig. 4. The componentsφĝ(1)
11

andφĝ(1)
22 of the absolute intrinsic metric metric tensor on

the absolute intrinsic metric spaceφIM̂2
(1) that appear in sys-

tem (55) are related to the varying absolute intrinsic angles
φψ̂û1(û1) and φψ̂û2(û2) of inclinations of the curved ab-
solute intrinsic ‘dimensions’̂u1 (≡ φx̂1) and û2 (≡ φx̂2)
of φIM̂2

(1) relative to the proper intrinsic dimensionsu′1 and

u′2 of φIE′2 respectively at an arbitrary point onφIM̂2
(1) as,

φĝ
(1)
11 = cos2 φψ̂û1(û1) andφĝ(1)

22 = cos2 φψ̂û2(û2).

In other words, the constant zero absolute intrinsic an-
gle (φψ̂ = 0) of inclination to the horizontal of the proper
intrinsic dimensionsu′1 andu′2 of the reference proper in-
trinsic Euclidean spaceφIE′2 in Figs. 3a and 3b have been re-
placed by the varying absolute intrinsic anglesφψ̂û1(û1) and
φψ̂û2(û2) of inclinations to the horizontal of the absolute in-
trinsic ‘dimensions’̂u1 andû2 of the intermediate curved ab-
solute intrinsic metric spaceφIM̂2

(1) in Fig. 4. Consequently,

δ11 = δ22 = cos2(φψ̂ = 0) = 1 in systems (53) and (54)
have been replaced byφĝ(1)

11 = cos2 φψ̂û1(û1) andφĝ(1)
22 =

cos2 φψ̂û2(û2) respectively in system (56).

By substituting system (55) into system (56) we have the

following

(φĝ11)
−1 = 1 − sin2 φψ̂û1(û1

(1)) − sin2 φψ̂v̂1(v̂1
(1))

= 1 − φk̂û1(û1
(1))

2 − φk̂v̂1(v̂1
(1))

2;

(φĝ22)
−1 = 1 − sin2 φψ̂û2(û2

(1)) − sin2 φψ̂v̂2(v̂2
(1))

= 1 − φk̂û2(û2
(1))

2 − φk̂v̂2(v̂2
(1))

2;

(φĝ12)
−1 = (φĝ21)

−1 = 0























































(57)
The components of the resultant absolute intrinsic metric

tensor in system (59) are the same as in Eqs. (39) and (40).
Hence we obtain expressions for the resultant absolute intrin-

sic anglesφψ̂ and the resultant absolute intrinsic curvature

parameterφk̂ in terms of the absolute intrinsic anglesφψ̂û

andφψ̂v̂ and absolute intrinsic curvature parametersφk̂û and
φk̂v̂ of the individual absolute intrinsic metric spaces prior to
their superposition respectively as follows:

φĝ11 =
(

1 − sin2 φψ̂v̂1(v̂1)
)

−1

=
(

1 − sin2 φψ̂û1(û1
(1)) − sin2 φψ̂v̂1(v̂1

(1))
)

−1

Hence

sin2 φψ̂1(v̂
1
(1)) = sin2

(

φψ̂û1(û1
(1)) + φψ̂v̂1(v̂1

(1))
)

;

= sin2 φψ̂û1(û1
(1)) + sin2 φψ̂v̂1(v̂1

(1)) (58a)

φĝ22 =
(

1 − sin2 φψ̂v̂2(v̂2)
)

−1

=
(

1 − sin2 φψ̂û2(û2
(1)) − sin2 φψ̂v̂2(v̂2

(1))
)

−1

Hence

sin2 φψ̂2(v̂
2
(1)) = sin2

(

φψ̂û2(û2
(1)) + ψ̂φv̂2(v̂2

(1))
)

;

= sin2 φψ̂û2(û2
(1)) + sin2 φψ̂v̂2(v̂2

(1)) (58b)

Consequently,

φk̂1(v̂
1
(1))

2 = φk̂û1(û1
(1))

2 + φk̂v̂1(v̂1
(1))

2 (59a)

φk̂2(v̂
2
(1))

2 = φk̂û2(û2
(1))

2 + φk̂v̂2(v̂2
(1))

2 (59b)

Equations (58a) and (58b) give the rules for the compo-
sition of two absolute intrinsic anglesφψ̂û andφψ̂v̂, while
Eqs. (59a) and (59b) give the corresponding rule for compo-
sition two absolute intrinsic curvature parameters for thepur-
pose of writing the resultant absolute intrinsic metric tensor

A. J. Adekugbe. Evolutionary sequence of spacetime/intrinsic spacetime and associated sequence of geometry in a metric forcefield II. 11
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and resultant absolute intrinsic Ricci tensor in absolute intrin-
sic Riemann geometry, for the situation where a pair of paral-
lel ‘two-dimensional’ absolute intrinsic metric spaces coexist,
as illustrated in Fig. 4. They can be extended to the situation
where a pair of parallel ‘three-dimensional’ absolute intrinsic
Riemann spaces coexist as follows:

sin2 φψ̂1(v̂
1
(1)) = sin2

(

φψ̂û1(û1
(1)) + φψ̂v̂1(v̂1

(1))
)

;

= sin2 φψ̂û1(û1
(1)) + sin2 φψ̂v̂1(v̂1

(1));

sin2 φψ̂2(v̂
2
(1)) = sin2

(

φψ̂û2(û2
(1)) + φψ̂v̂2(v̂2

(1))
)

;

= sin2 φψ̂û2(û2
(1)) + sin2 φψ̂v̂2(v̂2

(1));

sin2 φψ̂3(v̂
3
(1)) = sin2

(

φψ̂û3(û3
(1)) + φψ̂v̂3(v̂3

(1))
)

;

= sin2 φψ̂û3(û3
(1)) + sin2 φψ̂v̂3(v̂3

(1))











































































(60)
And

φk̂1(v̂
1
(1))

2 = φk̂û1(û1
(1))

2 + φk̂v̂1(v̂1
(1))

2;

φk̂2(v̂
2
(1))

2 = φk̂û2(û2
(1))

2 + φk̂v̂2(v̂2
(1))

2;

φk̂3(v̂
3
(1))

2 = φk̂û3(û3
(1))

2 + φk̂v̂3(v̂3
(1))

2























(61)

Systems (60) and (61) admit of generalization to a situa-
tion where N parallel ‘3-dimensional’ absolute intrinsic Rie-
mann spaces coexist, (where the Nth absolute intrinsic met-
ric spaceφIM̂3

(N) has curved absolute intrinsic ‘dimensions’

ŵ1, ŵ2 andŵ3), as follows:

sin2 φψ̂1(ŵ
1
(1)) = sin2

(

φψ̂û1(û1
(1)) + φψ̂v̂1(v̂1

(1))

+ · · · + φψ̂ŵ1(ŵ1
(1))
)

= sin2 φψ̂û1(û1
(1)) + sin2 φψ̂v̂1(v̂1

(1))

+ · · · + sin2 φψ̂ŵ1(ŵ1
(1));

sin2 φψ̂2(ŵ
2
(1)) = sin2

(

φψ̂û2(û2
(1)) + φψ̂v̂2(v̂2

(1))

+ · · · + φψ̂ŵ2(ŵ2
(1))
)

;

= sin2 φψ̂û2(û2
(1)) + sin2 φψ̂v̂2(v̂2

(1))

+ · · · + sin2 φψ̂ŵ2(ŵ2
(1));

sin2 φψ̂3(ŵ
3
(1)) = sin2

(

φψ̂û3(û3
(1)) + φψ̂v̂3(v̂3

(1))

+ · · · + φψ̂ŵ3(ŵ3
(1))
)

;

= sin2 φψ̂û3(û3
(1)) + sin2 φψ̂v̂3(v̂3

(1))

+ · · · + sin2 φψ̂ŵ3(ŵ3
(1))



































































































































(62)

and

φk̂1(ŵ
1
(1))

2 = φk̂û1(û1
(1))

2 + φk̂v̂1(v̂1
(1))

2 + · · ·

· · · + φk̂ŵ1(ŵ1
(1))

2;

φk̂2(ŵ
2
(1))

2 = φk̂û2(û2
(1))

2 + φk̂v̂2(v̂2
(1))

2 + · · ·

· · · + φk̂ŵ2(ŵ2
(1))

2;

φk̂3(ŵ
3
(1))

2 = φk̂û3(û3
(1))

2 + φk̂v̂3(v̂3
(1))

2 + · · ·

· · · + φk̂ŵ3(ŵ3
(1))

2



























































(63)
Although equations (60) - (63) show no ceiling on the resul-

tant absolute intrinsic angleφψ̂q; q = 1, 2 or 3, we know

thatφψ̂q has a maximum value ofφψ̂q = π
2 , since then the

curved absolute intrinsic ‘dimension’̂wq of the last (i.e. the
Nth) absolute intrinsic metric space will lie along the vertical,
parallel to the absolute intrinsic time ‘dimension’û0. This
implies that there is a ceiling on the number of absolute in-
trinsic metric spaces that can be superposed. The implication

of going beyond the ceiling, that is, for makingφψ̂q > π
2 ,

will be derived elsewhere with further development.

The resultant absolute intrinsic metric tensorφĝik of the
last (i.e. the Nth) absolute intrinsic metric spaceφIM̂3

(N) rel-

ative to the underlying proper intrinsic metric spaceφIE′3 is
given in terms of the resultant absolute intrinsic angles and
the resultant absolute intrinsic curvature parameters respec-
tively as follows:

φĝ
(2)

ik =



















1

1 − sin2 φψ̂1

0 0

0
1

1 − sin2 φψ̂2

0

0 0
1

1 − sin2 φψ̂3



















(64)
or

φĝ
(2)

ik =



















1

1 − (φk̂1)2
0 0

0
1

1 − (φk̂2)2
0

0 0
1

1 − (φk̂3)2



















(65)
The resultant absolute intrinsic Ricci tensor is likewise given
in terms of resultant absolute intrinsic angles and resultant
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absolute intrinsic curvature parameters as follows:

φR̂ik =























sin2 φψ̂1

1 − sin2 φψ̂1

0 0

0
sin2 φ ˆ̄ψ2

1 − sin2 φψ̂2

0

0 0
sin2 φψ̂3

1 − sin2 φψ̂3























(66)
or

φR̂ik =























(φk̂1)
2

1 − (φk̂1)2
0 0

0
(φk̂2)

2

1 − (φk̂2)2
0

0 0
(φk̂3)

2

1 − (φk̂3)2























(67)
And the resultant absolute intrinsic line element is the follow-
ing

(dφŝ)2 = (dû0)2 −

(

(dû1)2 + (dû2)2 + (dû3)2
)

1 − (φk̂)2
(68)

whereφk̂ = φk̂1 = φk̂2 = φk̂3 has been assumed.

As mentioned earlier, only the situation whereφk̂1(ŵ
1),

φk̂2(ŵ
2) andφk̂3(ŵ

3) are all identical toφk̂, as assumed in
writing Eq. (68), shall be of relevance in absolute intrinsic
Riemann geometry ultimately. For that situation, the two ab-
solute intrinsic tensor equations (32) and (44) derived in the
context of absolute intrinsic Riemann geometry earlier are
given in terms of the resultant absolute intrinsic tensorsφĝik

andφR̂ik and resultant absolute intrinsic curvature parameter
as follows:

φĝik − φR̂ik = δik (69)

and

φR̂ik − (φk̂)2φĝik = 0 (70)

The solution to equations (69) and (70) are equations (65) and

(67) with (φk̂)2 = (φk̂1)
2 = (φk̂2)

2 = (φk̂3)
2 assumed.

We have again accomplished in this sub-section the first
stage of the formulation of absolute intrinsic Riemann geom-
etry in a situation where two or a larger number of parallel
absolute intrinsic metric spaces co-exist. We shall now pro-
ceed to the second stage namely, obtaining resultant absolute
intrinsic coordinate projection relations, when two or a larger
number of parallel absolute intrinsic metric spaces co-exist.

1.6.2 The resultant absolute intrinsic coordinate projec-
tion relations when two or a larger number of par-
allel absolute intrinsic metric spaces co-exist

Now let us redraw Fig. 4 while showing certain detail re-
quired for this sub-sub-section as Fig. 5. Let us consider
elementary absolute intrinsic metric coordinate intervals dv̂1

anddv̂2 defined about point(v̂1
(1), v̂

2
(1)) of φIM̂2

(2) to be the di-

mensions of a locally flat frame onφIM̂2
(2). The intervaldv̂1

about pointv̂1
(1) of φIM̂2

(2) projects componentdû1 into the

underlying curved absolute intrinsic ‘dimension’û1 at point
û1

(1) of û1, as shown in Fig. 5. Likewise the intervaldv̂2 about

point v̂2
(1) of φIM̂2

(2) projects componentdû2 into the underly-

ing curved absolute intrinsic ‘dimension’û2 of φIM̂2
(1), which

lies along the tangent tôu2 at pointû2
(1) of û2, as also shown

in Fig. 5. The following projection relations obtain from ele-
mentary coordinate geometry:

dû1 = dv̂1 cosφψ̂v̂1(v̂1
(1)); dû2 = dv̂2 cosφψ̂v̂2(v̂2

(1))
(71)

In turn, the componentdû1 projected about point̂u1
(1) of

the curved absolute intrinsic ‘dimension’û1 of φIM̂2
(1) pro-

jects componentdu′1 about the corresponding pointu′1(1) of

its underlying straight line proper intrinsic dimensionu′1 of
φIE′2 and the componentdû2 projected about point̂u2

(1) of

the curved absolute intrinsic ‘dimension’û2 projects compo-
nentdu′2 about the corresponding pointu′2(1) of its underlying

straight line proper intrinsic dimensionu′2 of φIE′2, as shown
in Fig. 5.

Again the following coordinate projection relations obtain
from Fig. 5 from elementary coordinate geometry:

du′1 = dû1 cosφψ̂û1(û1
(1)); du′2 = dû2 cosφψ̂û2(û2

(1))
(72)

Then by combining systems (71) and (72) we obtain the fol-
lowing:

du′1 = dv̂1 cosφψ̂û1(û1
(1)) cosφψ̂v̂1(v̂1

(1));

du′2 = dv̂2 cosφψ̂û2(û2
(1)) cosφψ̂v̂2(v̂2

(1))

}

(73)

System (73) gives the resultant length contraction rela-
tions of the absolute intrinsic metric coordinate intervals of
the absolute intrinsic metric spaceφIM̂2

(2) with respect to ob-

servers inIE′2. They become the following in terms of ab-
solute intrinsic curvature parameters:

du′1 = dv̂1(1 − φk̂û1(û1
(1)))

1/2(1 − φk̂v̂1(v̂1
(1)))

1/2;

du′2 = dv̂2(1 − φk̂û2(û2
(1)))

1/2(1 − φk̂v̂2(v̂2
(1)))

1/2

}

(74)
where the definitions of the absolute intrinsic curvature para-
meters of system (14) have been used.
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Fig. 5: Obtaining the resultant intrinsic coordinate projections when
a pair of parallel ‘two-dimensional’ absolute intrinsic metric spaces
co-exist.

Systems (73) and (74) admit of generalization to a situ-
ation where any number N of ‘two-dimensional’ parallel ab-
solute intrinsic Riemann spaces co-exist, in which case they
become the following respectively:

du′1 = dŵ1 cosφψ̂û1(û1
(1)) cosφψ̂v̂1(v̂1

(1)) · · ·

· · · cosφψ̂ŵ1(ŵ1
(1));

du′2 = dŵ2 cos ψ̂û2(û2
(1)) cosφψ̂v̂2(v̂2

(1)) · · ·

· · · cosφψ̂ŵ2(ŵ2
(1))



























(75)

and

du′1 = dŵ1(1 − φk̂û1(û1
(1)))

1/2(1 − φk̂v̂1(v̂1
(1)))

1/2×

· · · (1 − φk̂ŵ1(ŵ1
(1)))

1/2;

du′2 = dŵ2(1 − φk̂û2(û2
(1)))

1/2(1 − φk̂v̂2(v̂2
(1)))

1/2×

· · · (1 − φk̂ŵ2(ŵ2
(1)))

1/2



























(76)
Systems (72) through (76) for superposition of ‘two-di-
mensional’ parallel absolute intrinsic metric spaces admit of
easy and direct extension to superposition of ‘three-dimen-
sional’ parallel absolute intrinsic metric spaces, in which
case, a third expression fordu′3 must be added to each of
the systems.

Now the two-dimensional proper physical Euclidean
spaceIE′2 is the outward manifestation ofφIE′2 in Fig. 1
through Fig. 5 of this paper. The intrinsic coordinate projec-
tion formulae relating the proper intrinsic coordinate intervals
du′1 anddu′2 of φIE′2 to the absolute intrinsic coordinate in-
tervalsdŵ1 anddŵ2 of φIM̂2

(N) respectively, likewise have

their outward manifestations. The outward manifestationsof
systems (75) and (76) obtained by simply removing the sym-
bol φ are the following respectively,

dx′1 = dx̂1 cos ψ̂û1(û1
(1)) cos ψ̂v̂1(v̂1

(1)) · · ·

· · · cos ψ̂ŵ1(ŵ1
(1));

dx′2 = dx̂2 cos ψ̂û2(û2
(1)) cos ψ̂v̂2(v̂2

(1)) · · ·

· · · cos ψ̂ŵ2(ŵ2
(1))



























(77)

and

dx′1 = dx̂1(1 − k̂û1(û1
(1)))

1/2(1 − k̂v̂1(v̂1
(1)))

1/2 · · ·

· · · (1 − k̂ŵ1(ŵ1
(1)))

1/2;

dx′2 = dx̂2(1 − k̂û2(û2
(1)))

1/2(1 − k̂v̂2(v̂2
(1)))

1/2 · · ·

· · · (1 − k̂ŵ2(ŵ2
(1)))

1/2



























(78)
It must be recalled, as stated at the beginning of this section,
that ûi stands forφx̂i andu′i stands forφx′i, andx̂i − a co-
ordinate of absolute spaceÎE2 − is the outward manifestation
of φx̂i.

In the case of a singular absolute intrinsic metric space,
systems (77) and (78) simplify respectively as follows:

dx′1 = dx̂1 cos ψ̂û1(û1
(1)); dx′2 = dx̂2 cos ψ̂û2(û2

(1)) (79)

and

dx′1 = dx̂1(1−k̂û1(û1
(1)))

1/2; dx′2 = dx̂2(1−k̂û2(û2
(1)))

1/2

(80)
Systems (79) or (80) is the outward or physical manifestation
of system (1) derived from Fig. 1. System (79) or (80) ex-
presses the evolution of the flat two-dimensional proper phys-
ical spaceIE′2 from the flat ‘two-dimensional’ absolute space
ÎE2 with the presence of absolute intrinsic Riemann geometry.
It must be noted that the coordinatesx̂1 andx̂2 of the absolute
spaceÎE2 are not curved despite systems (79) and (80).

Once the absolute intrinsic ‘dimensions’û1(≡ φx̂1) and
û2(≡ φx̂2) of the initially flat absolute intrinsic spaceφÎE2

underlyingÎE2 become curved to form the absolute intrinsic
Riemann spaceφIM̂2 and project proper intrinsic dimensions
u′1(≡ φx′1) andu′2(≡ φx′2) respectively along the horizon-
tal in Fig. 1, then the projective proper intrinsic dimensions
u′1 andu′2 of φIE′2 along the horizontal are made manifest
in the proper dimensionsx′1 andx′2 respectively of the flat
proper physical spaceIE′2 along the horizontal, without any
need to prescribe the curvature of the ‘dimensions’x̂1 andx̂2

of the initially flat absolute spaceÎE2 overlying the initially
flat absolute intrinsic spaceφÎE2. The flat proper physical
spaceIE′2 has simply evolved from the initial flat absolute
spaceÎE2 by virtue of the evolution of curved absolute in-
trinsic metric spaceφIM̂2 (or evolution of absolute intrinsic
Riemann geometry).
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The results of the first stage of the formulation of absolute
intrinsic Riemann geometry for a singular ‘two-dimensional’
or ‘three-dimensional’ absolute intrinsic metric space insub-
sections 1.1 through 1.5 and for two or a larger number of
co-existing parallel ‘two-dimensional’ or ‘three-dimensional’
absolute intrinsic metric spaces in sub-section 1.6 are valid
with respect to observers in the flat proper physical spaceIE′2

or IE′3.
It is the intervals of intrinsic dimensionsdu′1, du′2 and

du′3 of the proper intrinsic metric spaceφIE′3 projected by
the corresponding intervals of the curved absolute intrinsic
‘dimensions’dv̂1, dv̂2 anddv̂3 of the absolute intrinsic met-
ric spaceφIM̂3

(2), expressed by system (73) or (74) forN = 2
or by system (75) or (76) for N co-existing curved absolute
intrinsic metric spaces, and indeed the entire proper intrin-
sic spaceφIE′3 projected byφIM̂3 in absolute intrinsic Rie-
mann geometry that intrinsic observers located inφIE′3 could
observe. And it is the outward manifestations of intervals
du′1, du′2 anddu′3 namely,dx′1, dx′2 anddx′3 expressed by
system (79) or (80) or system (77) or (78) in general, and in-
deed the entire flat proper physical 3-spaceIE′3 that evolved
from flat absolute spaceÎE3 in the context of absolute intrinsic
Riemann geometry, which observers inIE′3 could observe.

Now let us rewrite system (75) in terms of resultant ab-
solute intrinsic anglesφψ̂1resandφψ̂2resas follows:

du′1 = dŵ1 cosφψ̂1res; du′2 = dŵ2 cosφψ̂2res (81)

And let us rewrite system (76) in terms of resultant absolute
intrinsic curvature parametersφk̂1res andk̂2res as follows:

du′1 = dŵ1(1 − φk̂1res)
1/2; du′2 = dŵ2(1 − φk̂2res)

1/2

(82)
Then as follows from systems (75) and (81)

cosφψ̂1res = cos(φψ̂û1 + φψ̂v̂1 + · · · + φψ̂ŵ1);

= cosφψ̂û1 cosφψ̂v̂1 · · · cosφψ̂ŵ1

cosφψ̂2res = cos(φψ̂û2 + φψ̂v̂2 + · · · + φψ̂ŵ2);

= cosφψ̂û2 cosφψ̂v̂2 · · · cosφψ̂ŵ2























(83)
And as follows from systems (78) and (82),

φk̂2
1res = 1 − (1 − φk̂2

û1)(1 − φk̂2
v̂1) · · ·

· · · (1 − φk̂ŵ1)2;

φk̂2
2res = 1 − (1 − φk̂2

û2)(1 − φk̂2
v̂2) · · ·

· · · (1 − φk̂ŵ2)2























(84)

System (83) expresses the rule for composition of the ab-
solute intrinsic anglesφψ̂û1 , φψ̂v̂1 , . . . , φψ̂ŵ1 and φψ̂û2 ,
φψ̂v̂2 , . . . , φψ̂ŵ2 for the purpose of obtaining resultant intrin-
sic coordinate projections (or resultant intrinsic lengthcon-
traction formulae) in the context of absolute intrinsic Rie-
mann geometry, while system (84) expresses the correspond-

ing rule for composition of absolute intrinsic curvature pa-
rametersφk̂û1 , φk̂v̂1 , . . ., φk̂ŵ1 andφk̂û2 , φk̂v̂2 , . . . , φk̂ŵ2 .
These rules shall be written more compactly as follows:

cosφψ̂ires = cos(φψ̂i1 + φψ̂i2 + · · · + φψ̂iN )

= cosφψ̂i1 cosφψ̂i2 · · · cosφψ̂iN (85)

and

φk̂2
ires= 1 − (1 − φk̂2

i1)(1 − φk̂2
i2) · · · (1 − φk̂2

iN ) (86)

wherei = 1, 2 or 3 refers to the three curved absolute intrin-
sic ‘dimensions’ of the absolute intrinsic metric spaces super-
posed, and N is the number of absolute intrinsic metric spaces
superposed.

One observes from Eq. (85) that ifφψ̂iq = 90o; q =

1or 2 or 3 . . . orN , thencosφψ̂iq = 0 andcosφψ̂ires = 0.
Henceφψ̂ires= 90o too. Also ifφk̂iq = 1; q = 1, 2, 3, . . . or
N, which corresponds toφψ̂iq = 90o from φk̂iq = sinφψ̂iq,
thenφk̂1res = 1 too. These results show that the rules for
composition of absolute intrinsic angles and absolute intrin-
sic curvature parameters for the purpose of obtaining resultant
intrinsic coordinate projections, (or resultant intrinsic length
contraction formulae), in absolute intrinsic Riemann geom-
etry do not lead to values of resultant absolute intrinsic an-
gles larger than90o or resultant absolute intrinsic curvature
parameters larger than unity. In other words, absolute intrin-
sic angle,φψ̂ = 90o, is an invariant absolute intrinsic angle
and absolute intrinsic curvature parameter,φk̂ = 1, is an in-
variant absolute intrinsic curvature parameter in the rules for
composition of absolute intrinsic angles and absolute intrin-
sic curvature parameters, for the purpose of obtaining resul-
tant absolute intrinsic coordinate projection relations or resul-
tant intrinsic length contraction formulae with respect toob-
servers in the underlying proper physical Euclidean 3-space
IE′3, when two or a larger number of absolute intrinsic metric
spaces co-exist.

Finally it is important to remark the major difference be-
tween the rule for composition of absolute intrinsic angles
of system (62) (or the equivalent rule for composition of ab-
solute intrinsic curvature parameters of system (63)) for the
purpose of writing the resultant absolute intrinsic metricten-
sor and resultant absolute intrinsic Ricci tensor and the corre-
sponding rule for composition of absolute intrinsic anglesof
system (83) (or its equivalent rule for composition of absolute
intrinsic curvature parameters of system (84)) for the pur-
pose of writing the resultant intrinsic coordinate projection
relations or resultant intrinsic length contraction formulae in
the context of absolute intrinsic Riemann geometry. These
rules are valid with respect to all observers in the underly-
ing proper physical Euclidean 3-spaceIE′3, when a general N
parallel ‘three-dimensional’ absolute intrinsic metric spaces
(or N parallel ‘three-dimensional’ absolute intrinsic metric
spaces) are superposed.

A. J. Adekugbe. Evolutionary sequence of spacetime/intrinsic spacetime and associated sequence of geometry in a metric forcefield II. 15



Volume 1 THE FUNDAMENTAL THEORY (MONOGRAPH) Article 6 (pre-print)

1.6.3 Parallelism of all absolute intrinsic metric spaces
in the universe

We have considered so far in this sub-section the highly or-
dered situation of the co-existence of parallel absolute intrin-
sic metric spaces. As defined previously, a pair of ‘three-
dimensional’ absolute intrinsic metric spacesφIM̂3

(1) with ab-

solute intrinsic ‘dimensions’̂u1, û2, û3 andφIM̂3
(2) with ab-

solute intrinsic ‘dimensions’̂v1, v̂2, v̂3, are parallel if each
curved ‘dimension’̂vi of φIM̂3

(2) and the corresponding cur-

ved ‘dimension’ûi of φIM̂3
(1) lie on the same verticalu′iû0-

plane. In this situation, the curved absolute intrinsic ‘dimen-
sions’ v̂1, v̂2, v̂3 of φIM̂3

(2) andû1, û2, û3 of φIM̂3
(1) are para-

meterized in the same set of intrinsic dimensionsu′1, u′2, u′3

of the underlying global proper intrinsic spaceφIE′3 prior to
their superposition as,

u′1 = g1(v̂1); u′2 = g2(v̂2); u′3 = g3(v̂3) (87a)

and

u′1 = f1(û1); u′2 = f2(û2); u′3 = f3(û3) (87b)

WhenφIM̂3
(2) andφIM̂3

(1) coexist, the curved absolute intrin-
sic ‘dimension’ v̂q lies above the curved absolute intrinsic
‘dimension’ ûq on the verticalu′qû0−plane, forq = 1, 2
and 3, as illustrated in Fig. 4 for the pair of parallel ‘two-
dimensional’ absolute intrinsic metric spaces in Figs. 3a and
10b prior to their superposition.

Now let us consider the chaotic situation of the coexis-
tence of non-parallel absolute intrinsic metric spaces. Inthis
situation, some or all of the curved absolute intrinsic ‘di-
mensions’v̂q of φIM̂3

(2) do not lie above the corresponding

curved absolute intrinsic ‘dimensions’̂uq of φIM̂3
(1) on the

verticalu′qû0−plane. In this situation, while the absolute in-
trinsic ‘dimensions’û1, û2 and û3 of φIM̂3

(1) are parameter-
ized in terms of a proper intrinsic coordinate set (or frame)
(ξ′1, ξ′2, ξ′3) in the underlying global proper intrinsic space
φIE′3, the curved absolute intrinsic ‘dimensions’v̂1, v̂2 and
v̂3 of φIM̂3

(2) are parameterized in terms of a different proper

intrinsic coordinate set (or frame)(η′1, η′2, η′3) in the under-
lying global proper intrinsic spaceφIE′3 in general prior to
the superposition ofφIM̂3

(1) andφIM̂3
(2). In other words, the

following transformations of intrinsic coordinates obtain in
general prior to the superposition ofφIM̂3

(1) andφIM̂3
(2):

η′1 = f1(v̂1); η′2 = f2(v̂2); η′3 = f3(v̂3) (88a)

and

ξ′1 = g1(û1); ξ′2 = g2(û2); ξ′3 = g3(û3) (88b)

WhenφIM̂3
(2) andφIM̂3

(1) coexist, or are superposed, they are

both underlied by the global flat proper intrinsic spaceφIE′3.

However the absolute intrinsic ‘dimensions’v̂1, v̂2 andv̂3 of
φIM̂3

(2) are curved relative to the proper intrinsic coordinates

η′1, η′2 andη′3 respectively of one frame inφIE′3, while the
absolute intrinsic ‘dimension’̂u1, û2 and û3 of φIM̂3

(1) are

curved relative to the proper intrinsic coordinatesξ′1, ξ′2 and
ξ′3 of another frame inφIE′3.

Having described the superposition of parallel absolute
intrinsic metric spaces and the superposition of non-parallel
absolute intrinsic metric spaces above, it shall now be shown
that non-parallel absolute intrinsic metric spaces do not exist
in nature. As deduced from the consistent arguments leading
to the isolation of absolute intrinsic metric spaces in section
4 of part one of this paper [1], all local absolute intrinsic co-
ordinate sets (or local absolute intrinsic frames)(û1, û2, û3),
(v̂1, v̂2, v̂3), (ŵ′1, ŵ2, ŵ3), etc, at a point in an absolute in-
trinsic metric spaceφIM̂3 are equivalent to a singular local
absolute intrinsic coordinate set (or local absolute intrinsic
frame) (û1, û2, û3) with respect to observers in the proper
physical Euclidean 3-spaceIE′3 underlyingφIM̂3. All the pro-
jective local proper intrinsic coordinate sets (or local intrinsic
frames)(u′1, u′2, u′3), (v′1, v′2, v′3), (w′1, w′2, w′3), etc, at
the corresponding point in the underlying projective proper
intrinsic spaceφIE′3 are equivalent to a singular local intrinsic
coordinate set (or local intrinsic frame)(u′1, u′2, u′3), with
respect to all observers inIE′3, as a consequence.

It follows from the foregoing paragraph that the two fra-
mes(ξ′1, ξ′2, ξ′3) and(η′1, η′2, η′3) in the flat proper intrinsic
spaceφIE′3 that lie underneath two co-existing non-parallel
absolute intrinsic metric spacesφIM̂3

(1) and φIM̂3
(2) respec-

tively in our discussion above, are equivalent to the singu-
lar intrinsic coordinate set (or frame)(u′1, u′2, u′3) in φIE′3,
(whereu′1, u′2 andu′3 are actually the intrinsic dimensions
of φIE′3). It then follows that the curved absolute intrinsic
‘dimensions’û2, û2, û3 andv̂2, v̂2, v̂3 of the co-existing non-
parallel absolute intrinsic metric spacesφIM̂3

(1) andφIM̂3
(2) re-

spectively, are actually curved relative to the singular proper
intrinsic coordinate set (or frame)(u′1, u′2, u′3) of the under-
lying proper intrinsic metric spaceφIE′3, which makes them
parallel. The local coordinate set(η′1, η′2, η′3) in (103a) and
local coordinate setξ′1, ξ′2, ξ′3 in system (103b) must be re-
placed by the same local coordinate set(u′1, u′2, u′3). The
conclusion that follows from this is that all absolute intrinsic
metric spaces in the universe are parallel, all lying above the
singular coordinate set (or frame)(u′1, u′2, u′3) of the univer-
sal isotropic proper intrinsic spaceφIE′3 that lies underneath
all absolute intrinsic metric spaces.

The programme of this sub-section, which is to formulate
absolute intrinsic Riemann geometry when two or a larger
number of absolute intrinsic metric spaces co-exist, (boththe
first and second stages of the formulation), has been accom-
plished. We shall proceed to the next and concluding section
of this paper to discuss an interesting and dramatic aspect of
absolute intrinsic Riemann geometry.
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2 Perfect isotropy and implied ‘one-dimensionality’ of
each of curved absolute intrinsic metric space and its
underlying proper intrinsic metric space with respect
to observers in the proper physical Euclidean 3-space

We shall for the purpose of discussion in this section change
from the notation̂u1, û2, û3 for the absolute intrinsic ‘dimen-
sions’ of an absolute intrinsic metric spaceφIM̂3 and the stra-
ight line proper intrinsic dimensionsu′1, u′2, u′3 of the global
flat proper intrinsic spaceφIE′3 that lies underneath all ab-
solute intrinsic metric spaces, adopted for convenience tothis
point in this paper, to the natural notationsφx̂1, φx̂2, φx̂3

for ‘dimensions’ of absolute intrinsic metric spaceφIM̂3 and
φx′1, φx′2, φx′3 for the intrinsic dimensions of the underlying
flat proper intrinsic spaceφIE′3.

As deduced from the fact that both the absolute intrinsic
line element and absolute intrinsic metric tensor on an ab-
solute intrinsic metric spaceφIM̂3 are invariant with change
of local absolute intrinsic coordinate set in section 4 of part
one of this paper [1], different local absolute intrinsic coordi-
nate sets(φû1,
φû2, φû3), (φv̂1, φv̂2, φv̂3), (φŵ1, φŵ2, φŵ3), etc, that are
arbitrarily orientated relative to one another at a point P on
the curved absolute intrinsic metric spaceφIM̂3 with respect
to a Riemannian observer located at the point P onφIM̂3, are
identical to a singular local absolute intrinsic coordinate set
(φξ̂1, φξ̂2, φξ̂3) at the point P onφIM̂3 with respect to Euclid-
ean observers in the proper physical Euclidean 3-spaceIE′3

underlyingφIM̂3.
An implication of the foregoing paragraph is that the lo-

cal absolute intrinsic coordinatesφû1, φv̂1 andφŵ1, etc, of
the different local absolute intrinsic frames, which are orien-
tated along different directions about point P onφIM̂3 with
respect to a Riemannian observer at this point, are all iden-
tical to a singular local absolute intrinsic coordinateφη̂1 at
the point P onφIM̂3 with respect to observers inIE′3 underly-
ing φIM̂3. It thus follows that the different absolute intrinsic
anglesφα̂, φβ̂, φγ̂, etc, at which the local absolute intrinsic
coordinatesφû1, φv̂1, φŵ1, etc, of different local absolute in-
trinsic coordinate sets are inclined relative to each otherat the
point P onφIM̂3 with respect to a Riemannian observer at this
point, all vanish, that is,φα̂ = φβ̂ = φγ̂ = 0, with respect
to observers in the proper physical Euclidean 3-spaceIE′3 un-
derlying φIM̂3. The different absolute intrinsic coordinates
φû1, φv̂1, φŵ1, etc, are all aligned along a singular direction,
thereby constituting a singular local absolute intrinsic coordi-
nateφξ̂1 at the point P onφIM̂3 with respect to observers in
the proper physical Euclidean 3-spaceIE′3 consequently.

The different absolute intrinsic anglesφδ̂, φθ̂, φϕ̂, etc, at
which the local absolute intrinsic coordinatesφû2, φv̂2, φŵ2,
etc, of different local absolute intrinsic coordinate sets (or
frames) are inclined relative to one another at point P onφIM̂3

with respect to a Riemannian observer at this point all van-
ish, that is,φδ̂ = φθ̂ = φϕ̂ = 0, with respect to Euclid-

ean observers inIE′3 underlyingφIM̂3. Consequently the
different local absolute intrinsic coordinatesφû2, φv̂2, φŵ2,
etc, are all aligned along a singular direction thereby con-
stituting a singular local absolute intrinsic coordinateφξ̂2 at
the point P onφIM̂3 with respect to Euclidean observers in
IE′3. Likewise the different local absolute intrinsic coordi-
natesφû3, φv̂3, φŵ3, etc, are all aligned along a singular di-
rection thereby constituting a singular local absolute intrinsic
coordinateφξ̂3 at point P onφIM̂3 with respect to all Euclid-
ean observers inIE′3.

We find from the foregoing two paragraphs that two direc-
tions within an approximately flat infinitesimal local neigh-
borhood about a point P of the curved absolute intrinsic met-
ric spaceφIM̂3, which are distinct directions separated by ab-
solute intrinsic Euler anglesφα̂, φβ̂ andφγ̂ with respect to
a Riemannian observer located at point P onφIM̂3, are the
same direction with respect to observers in the proper physi-
cal Euclidean 3-spaceIE′3 underlyingφIM̂3. This is so since
any magnitudes of the absolute intrinsic anglesφα̂, φβ̂ and
φγ̂ in φIM̂3 are equivalent to zero magnitudes of the corre-
sponding anglesα′, β′ andγ′ in the proper physical Euclid-
ean 3-spaceIE′3.

It then follows (from the preceding paragraph) that a sin-
gular local absolute intrinsic frame(φξ̂1, φξ̂2, φξ̂3) at point
P onφIM̂3, with mutually perpendicular local absolute intrin-
sic coordinatesφξ̂1, φξ̂2 andφξ̂3, to which different local ab-
solute intrinsic coordinate sets(φû1, φû2, φû3), (φv̂1 , φv̂2 ,
φv̂3), (φŵ1 , φŵ2 , φŵ3), etc, at point P onφIM̂3 are identi-
cal with respect to Euclidean observers inIE′3, as known until
now in this paper, is impossible. This is so because the ab-
solute intrinsic angleφϕ̂ = φπ

2 separating the local absolute

intrinsic ‘dimensions’φξ̂1 andφξ̂2 and the absolute intrinsic
angleφθ̂ = φπ

2 separating the local absolute intrinsic ‘dimen-

sions’φξ̂2 andφξ̂3 with respect to the Riemannian observer
at point P onφIM̂3, both vanish with respect to Euclidean
observers inIE′3, thereby causingφξ̂2, φξ̂2 andφξ̂3 to be
aligned along a singular direction. They thereby constitute a
singular local absolute intrinsic coordinateφξ̂P at point P on
φIM̂3 with respect to all observers inIE′3.

The result derived at point P on the absolute intrinsic met-
ric spaceφIM̂3 in the foregoing paragraph obtains at every
other point onφIM̂3. In other words, only singular local ab-
solute intrinsic coordinatesφξ̂Q, φξ̂R, φξ̂S , φξ̂T , etc, exist
at points Q, R, S, T, etc, onφIM̂3 with respect to Euclidean
observers in the proper physical Euclidean 3-spaceIE′3 un-
derlyingφIM̂3. When the singular indefinitely short local ab-
solute intrinsic coordinates at every point onφIM̂3 are joined
together, one obtains a continuous curved ‘one-dimensional’
absolute intrinsic metric space (a ‘one-dimensional’ absolute
intrinsic Riemannian metric space) be denoted byφρ̂, with
respect to Euclidean observers inIE′3.

We have arrived at an important conclusion in the forego-
ing paragraph that the curved absolute intrinsic metric spaces
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(or absolute intrinsic Riemannian metric spaces), which have
been considered to be ‘two-dimensional’φIM̂2 or ‘three-di-
mensional’φIM̂3 with respect to Euclidean observers in the
underlying proper physical Euclidean spaceIE′2 or IE′3 so
far in this paper, are actually ‘one-dimensional’ curved ab-
solute intrinsic metric spaces (or ‘one-dimensional’ curved
absolute intrinsic Riemannian metric spaces) denoted byφρ̂,
with respect to all 3-observers in the underlying proper phys-
ical Euclidean 3-spaceIE′3.

The ‘one-dimensional’ absolute intrinsic metric spaceφρ̂
curving towards the absolute intrinsic time ‘dimension’φĉφt̂
along the vertical with respect to Euclidean observers inIE′3,
will naturally project a one-dimensional straight line proper
intrinsic space, to be denoted byφρ′ underneath the proper
physical Euclidean 3-spaceIE′3 with respect to observers in
IE′3. However we shall for completeness show below that
a three-dimensional flat proper intrinsic spaceφIE′3 consid-
ered to be projected underneath the proper physical Euclid-
ean 3-spaceIE′3 by curved ‘three-dimensional’ absolute in-
trinsic metric spaceφIM̂3 previously in this paper, naturally
contracts to a one-dimensional proper intrinsic metric space
φρ′ with respect to observers inIE′3.

Now any magnitudes of proper intrinsic Euler anglesφα′,
φβ′ andφγ′ in the flat proper intrinsic spaceφIE′3 are equiv-
alent to zero magnitude of proper physical Euler anglesα′, β′

andγ′ respectively in the proper physical Euclidean 3-space
IE′3 with respect to observers inIE′3 overlyingφIE′3; knowing
thatφα′ ≡ 0 × α′, φβ′ ≡ 0 × β′, andφγ′ ≡ 0 × γ′. Con-
sequently any two distinct directions, which are separatedby
non-zero intrinsic anglesφα′, φβ′ andφγ′ in the flat three-
dimensional proper intrinsic spaceφIE′3 with respect to in-
trinsic observers inφIE′3, are the same direction with respect
to observers in the proper physical Euclidean 3-spaceIE′3

A consequence of the foregoing paragraph is that mutu-
ally perpendicular proper intrinsic dimensionsφη′1, φη′2 and
φη′3 of φIE′3 with respect to intrinsic 3-observers inφIE′3 are
impossible with respect to 3-observers inIE′3. This is so be-
cause the intrinsic angleφϕ′ = φπ

2 between intrinsic dimen-
sionsφη′1 andφη′2 andφθ′ = φπ

2 between intrinsic dimen-
sionsφη′2 andφη′3 with respect to intrinsic observers inφIE′3

both vanish with respect to observers inIE′3. The three intrin-
sic dimensionsφη′1, φη′2 andφη′3 of φIE′3 are consequently
aligned along a singular direction, thereby constituting asin-
gular intrinsic space denoted byφρ′ above, which underlies
the proper physical Euclidean 3-spaceIE′3 with respect to all
observers inIE′3.

The one-dimensional proper intrinsic spaceφρ′ has no
unique orientation in the flat three-dimensional proper intrin-
sic spaceφIE′3 that contracts to it. Consequently it has no
unique orientation in the proper physical Euclidean 3-space
IE′3. Thusφρ′ is an isotropic intrinsic space (or intrinsic di-
mension) inIE′3. It can be considered to lie along any direc-
tion in IE′3 by observers inIE′3.

Fig. 6: The ‘three-dimensional’ absolute intrinsic metric space
φIM̂3, which is curved onto the absolute intrinsic time ‘dimen-
sion’ φx̂0 along the vertical and its underlying projective flat three-
dimensional proper intrinsic metric spaceφIE′3 (in Fig. 1 of part one
of this paper [1]), are naturally contracted into ‘one-dimensional’ ab-
solute intrinsic metric spaceφρ̂ and one-dimensional proper intrinsic
metric spaceφρ′ respectively, whereφρ̂ is curved onto straight line
absolute intrinsic time ‘dimension’ along the vertical andφρ′ is a
straight line isotropic one-dimensional proper intrinsic space under-
lying the proper physical Euclidean 3-spaceIE′3 along the horizontal
with respect to 3-observers inIE′3.

The curved ‘one-dimensional’ absolute intrinsic metric
spaceφρ̂ to which the curved ‘three-dimensional’ absolute
intrinsic metric spaceφIM̂3 is naturally contracted with re-
spect to observers in the physical proper Euclidean 3-space
IE′3, is curved onto the straight line absolute intrinsic time
‘dimension’ φx̂0 = φĉφt̂ along the vertical and projects a
straight line isotropic proper intrinsic metric spaceφρ′ un-
derneath the proper physical Euclidean 3-spaceIE′3 along the
horizontal with respect to observers inIE′3, thereby yielding
Fig. 6.

Thus the ‘three-dimensional’ absolute intrinsic metric
spacesφIM̂3, (which are ‘three-dimensional’ absolute intrin-
sic metric spaces), underlied by flat three-dimensional proper
intrinsic metric spaceφIE′3, which we have carried along
from the beginning of this paper to this point, have now been
found to be naturally contracted to curved ‘one-dimensional’
absolute intrinsic metric spaces, (which are ‘one-dimension-
al’ absolute intrinsic Riemannian metric spaces)φIM̂1, un-
derneath which lies its projective one-dimensional isotropic
proper intrinsic metricφρ′, with respect to observers inIE′3.

The proper physical Euclidean 3-spaceIE′3 that has been
known to be the outward manifestation of the 3-dimensional
proper intrinsic metric spaceφIE′3 until now in this paper is
now the outward manifestation of the one-dimensional iso-
tropic proper intrinsic spaceφρ′ in Fig. 6. It may be recalled
that this fact has been stated asansatz in sub-section 4.4 of
[3], prior to formal validation of the existence of the proper
intrinsic spaceφρ′ underlying the proper physical Euclidean
3-spaceIE′3 in nature in section 1 of [4].
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The absolute intrinsic metric tensorsφĝik of absolute in-
trinsic Riemann geometry on curved ‘three-dimensional’ ab-
solute intrinsic metric spacesφIM̂3, which are3× 3 diagonal
matrices in section 1, are actually1 × 1 matrices or numbers
φĝ11 or φĝ11 on curved ‘one-dimensional’ absolute intrinsic
metric spacesφρ̂. Likewise for the absolute intrinsic Ricci
tensors. The absolute intrinsic Gaussian line element writ-
ten in terms of elementary intervals of three absolute intrin-
sic metric ‘dimensions’̂u1, û2 and û3, (which are the same
asφx̂1, φx̂2 andφx̂3), of φIM̂3 as Eq. (47) or (48), is actu-
ally the following absolute intrinsic Gaussian line element in
terms of the interval of the one-dimensional absolute intrinsic
spaceφρ̂:

(dφŝ)2 = (dφx̂0)2 − φĝ11(dφρ̂)
2 = (dφx̂0)2 −

(dφρ̂)2

1 − (φk̂)2

(89)
It must be remembered thatφρ̂ has been formed by bundling
together into ‘one-dimensional’ absolute intrinsic spaceof the
curved absolute intrinsic space ‘dimensions’φx̂1, φx̂2 and
φx̂3 of φIM̂3 with respect to observers in the proper phys-
ical Euclidean 3-spaceIE′3. We have, in effect, simply re-
placed(dφx̂1)2 + (dφx̂2)2 + (dφx̂3)2 in Eq. (48) by(dφρ̂)2

in Eq. (93).
All absolute intrinsic Riemannian metric spaces in the

universe are curved ‘one-dimensional’ absolute intrinsicmet-
ric spaces,φρ̂, φρ̂′, φρ̂′′, etc, which are all curved relative to
the singular universal isotropic proper intrinsic metric space
φρ′, (with no unique orientation in the universal proper phys-
ical Euclidean 3-spaceIE′3) with respect to observers inIE′3.
Hence they are all parallel absolute intrinsic metric spaces
with respect to observers inIE′3.

Illustrated in Fig. 7 is a situation where two absolute in-
trinsic metric spacesφρ̂ andφρ̂′ co-exist (or are superposed),
such thatφρ̂ is curved relative to curvedφρ̂′ andφρ̂′ is curved
relative to the proper intrinsic metric spaceφρ′ along the hor-
izontal. For the purpose of writing absolute intrinsic metric
tensor and absolute intrinsic Ricci tensor on the upper curved
‘one-dimensional’ absolute intrinsic metric spaceφρ̂ with re-
spect to observers inIE′3, the resultant absolute intrinsic angle

φψ̂ of inclination ofφρ̂ relative toφρ′ at pointφρ̂(1) along
φρ̂, which corresponds to pointφρ̂′(1) alongφρ̂′ and point
φρ′(1) alongφρ′, is given in terms of the absolute intrinsic

anglesφψ̂2(φρ̂(1)) andφψ̂1(φρ̂
′

(1)) as follows, as derived in
sub-sub-section 1.6.1, (see Eqs. (58a) and (58b)):

sin2 φψ̂ = sin2
(

φψ̂1(φρ̂
′

(1)) + φψ̂2(φρ̂(1))
)

= sin2 φψ̂1(φρ̂
′

(1)) + sin2 φψ̂2(φρ̂(1)) (90)

Hence the resultant absolute intrinsic curvature parameter

φk̂ of the upper curved absolute intrinsic spaceφρ̂ at point
φρ̂(1) alongφρ̂ in Fig. 7 to appear in the component of the
resultant absolute intrinsic metric tensorφĝ11 at this point is

Fig. 7: Co-existing pair of ‘one-dimensional’ absolute intrinsic met-
ric spaces with respect to 3-observers in the underlying proper phys-
ical Euclidean 3-space.

given in terms of the absolute intrinsic curvature parameters
φk̂2(φρ̂(1)) andφk̂1(φρ̂

′

(1)) of the curved absolute intrinsic
metric spacesφρ̂ andφρ̂′ respectively relative toφρ′ deter-
mined prior to their superposition as follows:

(φk̂)2 = φk̂1(φρ̂
′

(1))
2 + φk̂2(φρ̂(1))

2 (91)

The component of the resultant absolute intrinsic metric ten-
sorφĝ11 at pointφρ̂(1) on the upper curved absolute intrinsic

spaceφρ̂ is then given in terms of(φk̂)2 as follows:

φĝ11 =
(

1 − (φk̂)2
)

−1

=
(

1 − φk̂1(φρ̂
′

(1))
2 − φk̂2(φρ̂(1))

2
)

−1

(92)

And the resultant absolute intrinsic line element must be writ-
ten by simply replacing(φk̂)2 by (φk̂)2 in Eq. (89).

Finally, while the curved ‘one-dimensional’ absolute in-
trinsic metric space, (or absolute intrinsic metric space), φρ̂
is absolute, hence with hat label, the underlying proper in-
trinsic metricφρ′, (without hat label), is relative. (This is
similar to the fact that the absolute time parametert̂ is ab-
solute, while the proper timet′ (or τ ) that evolves from it is
relative). Thus whileφρ̂ andφρ̂′ must not be counted as extra
intrinsic dimensions in physics, (being mere absolute intrin-
sic parameters), in Fig. 7, their underlying isotropic proper
intrinsic metric spaceφρ′ is an extra intrinsic, (that is, a non-
observable and non-detectable) dimension in physics, where
its intrinsic (or non-detectable nature) is accounted for by the
symbolφ attached to it.

There are four dimensions already in Fig. 7 namely, the
dimensionsx′1, x′2, x′3 of the proper physical Euclidean 3-
spaceIE′3 and the proper intrinsic space (or intrinsic dimen-
sion)φρ′. The isotropic intrinsic space (or dimension)φρ′ is
a straight line, just as the proper physical 3-spaceIE′3 overly-
ing it is flat or Euclidean. The isotropic proper intrinsic space
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φρ′ has no unique orientation or basis in the physical Euclid-
ean 3-spaceIE′3.

This first part of this paper shall be ended at this point,
while the development of absolute intrinsic Riemann geome-
try shall be extended to curved ‘two-dimensional’ absolutein-
trinsic metric spacetime(φρ̂, φĉφt̂), which is underlied by its
projective proper intrinsic metric spacetime(φρ′, φcφt′) and
flat four-dimensional proper physical spacetime(IE′3, ct′) in
the second part.
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