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Evolutionary sequence of spacetim@trinsic spacetime and associated sequence
of geometries in a metric force field. Part I.
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Having isolated a four-world picture in which four symmetrical universedifferent
spacetime domains coexist and in which an isolated two-dimensional intspaie-
time underlies the four-dimensional spacetime in each universe, aimgrshown that
the special theory of relativity rests on a four-world background dieegy we review
the geometry of spacetirfistrinsic spacetime in a long-range metric force field within
the four-world picture in the four parts of this paper. We show within anaekti pro-
gramme that the four-dimensional metric spacetime and its underlyinditwensional
intrinsic metric spacetime undergo two stages of evolution in the sequertsalte
spacetimfabsolute intrinsic spacetime proper spacetinjproper intrinsic spacetime
— relativistic spacetinyeelativistic intrinsic spacetime in all finite neighborhood of
a long-range metric force field and that these are supported by arsexjoéspace-
time/intrinic spacetime geometries. The programme tak@snothis first paper by
isolating two classes of three-dimensional Riemannian metric space naheskon-
ventional three-dimensional Riemannian metric space and a new tdimemsional’
absolute intrinsic Riemannian metric space.

1 Introduction four-world picture in those papers as having attained aee€los

There is perhaps no better place to start a fundamental Jk?é[n' ) ) ) )
ory of physics than a discourse of the underlying space¢s) an 'NOW: as discussed in section 5 of [3], the special the-
geometry(ies). We have started this by isolating the prégrer ory of relativity/intrinsic special theory of relgtlvny (S’@SR)
classical) four-dimensional spacetimes of classical mechOPerate on extended flat proper (or classical) metric space-
ics (CM) and their underlying flat two-dimensional propeqmeglunderlyl_ng extended flat proper (Qr classical) intrinsic
(or classical) intrinsic spacetimes of intrinsic claskicee- Metric spacetimes of the four universes in the absence of gra
chanics ¢CM) of co-existing four symmetrical universes, relly- However, since SRSR involve dfine spacetimféntrinsic
ferred to as positive (or our) universe, negative univgres; 1N€ spacetime (orfane spacetim@ntrinsic afine space-
itive time-universe and negative time-universe in the jmes M€ geometry) in each universe, SRSR cannot alter the
papers [1-4]. The four universes exhibit perfect symmetRftended flat four-dimensional proper metric spacetme
of natural laws and perfect symmetry of state among theffitded flat proper intrinsic metric spacetime on which they
selves. Lorentz transformationtrinsic Lorentz transforma- CPerate in the absence of gravity.
tion (LT/4LT) and their inverses were derived with a new set It is the presence of a long-range metric force field, such
of affine spacetim@ntrinsic afine spacetime diagrams withiras the gravitational field, that can change the extended flat
the pertinent four-world picture. proper metric spacetimes and its underlying flat two-dimen-
The immutability of Lorentz invariance is shown to p&ional proper intrinsic metric spacetimes to four-dimenali
a consequence of perfect symmetry of state among the figlptivistic metric spacetimes and its underlying flat teio-
universes in section 2 of [4], where perfect symmetry Ogtdpe.nsional relativistic intrinsic metric spacetimes infallte
implies that the four members of every quartet of symmetriyeighborhoods of the sources of symmetry-partner long-
partner particles or objects in the four universes have pEinge metric force fields in the four universes. The two-
fectly identical magnitudes of masses, perfectly idehtiba- dimensional intrinsic metric spacetime is unknown and the
pes and perfectly identical sizes and that they are involvi&lgtivistic four-dimensional spacetime that evolvesrirthe
in perfectly identical relative motions at all times. Thet fiflat proper (or classical) spacetime is prescribed to beetlirv
two-dimensional proper (or classical) intrinsic metri@ase- in a gravitational field within the existing one-world pictu
time of intrinsic classical mechanics@M) that underlies the in the context of the general theory of relativity (GR) [Sese
flat four-dimensional proper (or classical) metric spaueti PP- 111-149].
of classical mechanics (CM) in each universe, introduced as The next natural step in the further development of the
ansatzin sub-section 4.3 of [1], were derived formally in subspaces and geometrical foundation for a fundamental theory
section 1.2 of [4]. There is essentially no outstandingdsau of physics in addition to thefline spacetimeftine intrinsic
[1-4] that could prevent the description of the isolationtied  spacetime geometry for $3&SR in the four-world picture de-
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veloped in [1-4], is to develop the counterpart metric spaagf a long-range metric force fieldng-range intrinsic met-
time/intrinsic metric spacetime geometry, which will convertic force field) at the second (and final) stage of evolution
extended flat proper (or classical) metric spacetimes agid tlof spacetimg@ntrinsic spacetime in a long-range metric force
underlying flat proper intrinsic metric spacetimes to iielat field. The long-range metric force field of gravity shall ul-
tic metric spacetimes and their underlying relativistitiimsic timately be linked to the geometries developed elsewhere in
metric spacetimes in all finite neighborhoods of symmetmraking connection to physics. Division of this paper into a
partner long-range metric force fields in the four universesnumber of parts is inevitable.

More often than not, there arises the need to adapt a sub- _ _ ) ) o )
ject from its sophisticated form in pure mathematics to & On the incorporation of the time dimension into Rie-
applicable form in an applied field. The reason being that, Mann geometry
guided by logical and mathematical consistency only, a pwgederich Bernhard Riemann in his famous lecture of June
mathematical subject can be pursued to any level of genena; 1854, at the &ingen University entitled, “On the Hy-
ization and sophistication. In application, on the otherdha potheses Which Lie at the Foundation of Geometry”, as trans-
the requirement for mathematics to describe physical reiaked in [6], evolved the geometry that is now named after
ity, that is, to model physical situations and concepts andHim. With a prophetic vision, Riemann had raised issues dur-
satisfy physical constraints, often leads to a loweringhef ting this lecture that would have far-reaching consequeinces
levels of sophistication and generalization of a matheraétiphysics. For example, he wrote in the paper he presented at
subject in its applicable form. the lecture, “... the basis of the metric relation of a madifo

It is therefore the responsibility of a physicist to marnust be sought outside the manifold in the binding forces tha
the underlying concepts and constraints of a physical $heakt upon it.”
to the conceptual foundation of a mathematical subject to be |t would be a disservice to describe Riemann lesser than
applied and, in the process, as is often possible, evolve #recursor of the various metric theories of physics, with t
applicable form of the mathematical subject. Sometimes ieneral theory of relativity being the leading member. How-
applicable form, having lost all sophistication in the @8€ ever the time dimension and the significant role it plays in
of putting on a physical or an application face, bears onlyliaking Riemann geometry to physics, as developed by Al-
crude resemblance to the original subject. However whatewert Einstein [5, see pp. 111-149], was unknown to Riemann.
beauty is lost in mathematics is usually gained in terms Rfemann simply generalized Gauss’s theory of surfacesein th
ease of interpretation and transparency of connectiorale resuclidean 3-space to general curveddimensional spaces
ity of the resulting physical theory. (without time dimension), where points are characterizged b

One subject of pure mathematics that is of direct relgcoordinates as follows:
vance to fundamental physics is Riemann geometry. Riemann . b1 9 3 "
geometry evolved from elementaryfidirential geometry of u’ = (et 2% et s at) v =1,2,3,.n (1)
surfaces in the Euclidean space by the usual process of mMaff jistance elemenit between two indefinitely close points

ematical abstraction. Although AIbert_Emstem apphe«!&Rl-n this general n-dimensional curved space is given as fol-
mann geometry to the problem of gravity, the link of the su SWS:

ject to physics was not formally established prior to this. A
formal link of Riemann geometry to physics would entail a
marriage of the relevant concepts and principles of physics
to the concepts and principles of Riemann geometry and, ac-
cording to the preceding paragraph, such an exercise shoufgre the metric tensay,,, is defined as,
yield the form of Riemann geometry to be applied in physics. n o e " U
The concepts of absolute spacetime, absolutism and o> ;1 ;2 ;8 ny of* of* _ N Ou® Ou
servers in physics are incorporated into Riemann geometry”~ =~ 7 777 “— Ozt Ozv £ Oxt Ox¥
and a ‘two-dimensional’ absolute intrinsic Riemann geom- (©)
etry on certain curved ‘two-dimensional’ absolute intitns  Albert Einstein introduced the time dimensian,= z°,
metric spacetime (which should support absolute intringito Riemann geometry in a direct manner somewhat. Having
metric theory of physics), is isolated at the first stage @f ewsuccessfully added to the three dimensions', 22 andxz? of
lution of spacetiméntrinsic spacetime in a long-range metrithe Euclidean 3-space to have the flat four-dimensionakspac
force field. Then the concepts of relative spacetime, retati time, (the Minkowski space), in the special theory of rela-
and observers in physics are brought into play in develdpsty [5, see pp. 37-65], he considered the four-dimenaion
ing a local Lorentzian spacetirfigtrinsic spacetime geome-spacetime to be curved, thereby yielding a four-dimensiona
try on a curved proper intrinsic spacetime, within the fouRiemannian spacetime manifold in a gravitational field im th
world picture, (which should support the theory of relatigeneral theory of relativity [5, see pp. 111-149] and [7, see
ity/intrinsic theory of relativity associated with the presenchap. 5].

ds?® = Z glw(xl,xz,z‘g,...,x”)dm“dx” 2)

=1
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Albert Einstein applied Riemann geometry in an unal- xP=ct
tered form to the proposed curved four-dimensional space-
time in a gravitational field [5, see pp. 111-149;7, see cBhp.
The only significant dference in Riemann geometry without
time dimension (that is, manifolds of ty@g?) and Riemann
geometry with time dimension (that is, manifolds of the type
MP*t9)is in the structure of the metric tensor. While the met- B! x2x?)
ric tensor is elliptical with signaturé+ + ++) in a four-
dimensional Riemann space with a sub-Riemannian metric
tensor (without time dimension), it is hyperbolic with ségn

ture(+ — ——) or (— — —+) on a curved four-dimensional Fig. 1: (a) Graphical representation of the Galileo space.
spactime with a sub-Riemannian metric tensor. As a matter of

fact, itis at the point of solving Einstein’s field equatiotisat xo-¢t

K. Schwarzschild introduced the hyperbolic metric tensor, B! x2x%)

that the metric tensor obtained could reduce to the Lorantzi
metric tensor at infinity [7, see pp. 185-186].

The important point to note in the foregoing is that Al-
bert Einstein introduced the time dimension into Riemann
geometry by allowing the time dimension and the three di-
mensions of space to be curved at once (or simultaneously)
to form a curved four-dimensional spacetime continuum. He /
then applied Riemann geometry (for four-dimensional Rie- /
mann space without time dimension) in an unaltered form to
the curved four-dimensional spacetime continuum thus ob-
tained. This approach of introducing the time dimensioa int
Riemann geometry by Albert Einstein has been referred tofg 1: (b) The Euclidean 3-spadg” of the Galileo space evolves
direct approach earlier. into a curved 3-dimensional (Riemannian) metric spAf£&, such

However quite apart from the direct approach of Einsteiwat tlpne of the coordinates 13 spans the absolute time coordi-
there is another approach, (which shall be referred to as inrbateCt along the vertical.
rect approach), towards introducing the time dimensioa int
Riemann geometry, which leads to a kind of Riemannian S%@'per—surface, as illustrated in Fig. 1a.

cetime geometry that is fierent from the conventional Rie- Inth f hical tatior{ BI?: ¢0). th
mannian spacetime geometry of Einstein’s direct approach. n the case of graphical representa lor{ J ct), there
The first two parts of this paper shall be devoted to the devafe wo pgss'b'“t'es' The_ first |s_0bt_a|ned by letting theér
opment of the new kind of Riemannian spacetime geometty. rfaceks alon%the_z horizontal n Fig. 1a to become a curved
yper-surfacel/* still on the horizontal plane, so that none

, ) ) ) of the coordinates:!, 22 and2? of M3 spans the absolute

3 Isolating two classes of three-dimensional Riemann-(ime coordinate along the vertical, as illustrated in Fig. 1b.

lan metric spaces The coordinates of the curved spae€ span the coordi-
Let us start by considering the proper (or classical) Eeeliu nates of the proper (or classical) Euclidean 3-spaCeonly.
3-space, denoted B in [1-4], but which shall be denoted byActually the proper Euclidean 3-spaé#® has evolved into
E’® in the three parts of this paper, with dimensiaris 2’2 the curved spac#/® within the region of 3-space being con-
andz’ and the absolute time ‘dimension’ to be denoted Isjdered. Hence the proper Euclidean space does not exist
¢t = 29, The proper Euclidean 3-space and the absolute tialeng with A/3 within the region. Nevertheless the curved
‘dimension’ constitutes the Galileo spa¢E’®; ¢t). Let us metric spacel/® is embedded in the global proper Euclidean
assume that due to a yet unspecified phenomenon, the pr@pgpaceE’ and the coordinates” of E’® serve as cartesian
Euclidean 3-space becomes a curved space to be denotecbiydinates for points o/?, while z* are the coordinates of
M3 within a region of the universal 3-space, while the al#4>.
solute time coordinate remains not curved. The second possibility (or case) is obtained by allowing

Let us give a graphical illustration of the Galileo spadfe coordinates’, 2 andx? of the curved spacs/? to span
(E"3;¢t) and the curved spadd/®; ét). In doing this, we the absolute time coordinaté along the vertical solely, so
shall considetE’? as an hyper-surfacéf = const, and rep- that #*° is curved towardsi as illustrated in Fig. 1c. In-
resent it by a plane surface along the horizontal and the sdrmediate cases in which some coordinate#/dfspan the
solute time ‘dimensionét by a vertical normal line to the absolute time coordinate, while others do not, are actually

— T 1
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possible. However such cases must be considered as generic
forms of the second case illustrated in Fig. 1c.

Since a vacuum cannot be created along the horizontal,
the curved spacd/3 will project a new hyper-surface a
new Euclidean 3-space to be denoted by3, with coordi-
natesz!', 22 andz? along the horizontal, as shown in Fig. 1c.
In other words, the curved spadé?® will be underlied by i ________

3
M(xl,xz,x3)

its projective Euclidean 3-spadgé’® in this second case. The
concept of underlying projective space does not arise in the
first case, (Fig. 1b), since the curved hyper-surfafe lies
along the horizontal in that case. We shall now investigate
the two cases of curved space formed from the Galileo space
(of Fig. 1a) described above in order to show the essential
difference that may exist between them. Fig. 1: (c) The proper (or classical) Euclidean 3-sp&tg of the
Galileo space evolves into a curved 3-dimensional (Riemannian)
metric spacdi/®, such that the coordinates Bf* span the absolute
Case I: Conventional Riemannian metric 3-space time coordinate?t the vertical solely. The curved spadéd® (as

. . _curved hyper-surface) projects a new Euclidean 3-sgaitewith
The first case of curved metric space formed from the Gallls&ordinatEStl, 2 andz® underneath it, lying as a flat hyper-surface

space, in which each coordinate of the curved spdéepans along the horizontal.

one, two or all the coordinates of the proper Euclidean 3-

spaceE’? that evolved into it and none spans the absolute

time coordinate along the vertical, illustrated in Fig. iba Case Il: A new kind of Riemannian metric 3-space

conventional _Riemannian metric 3-space. It must be notﬁqe curved spacaf® in Fig. 1c has evolved from the proper
that two metric spaces namely, the proper Euclidean 3-space )

i - - 3
E’3, (with Euclidean metric tensor), and the curved metr O; ((:)I:\ z’zEﬂ%ﬁgﬁg?;?gr:ai%a&;o.mi?Cgrle:_zqes.Lfg?l th\sgh]g?or
spacell/?, (with a Riemannian metric tensor), do not co-exi 9 y quatly

T . /3 . 3. : ~Tthe curved spack/? in Fig. 1c. There is however a necessary
miOFr']go'fltzéS'r;geEer Igjcsli(cei\g\r:%d—;ntzi{a within the given re further step to be taken in this second case, which consists i
g Eqs (1)pth:)ough 3) in convé)ntioﬁal Riemann geometﬁ;?tainmg the projection of the Riemannian metric sphfé

" NS . . to the horizontal to obtain the underlying new Euclidean
are applicable in this case. We must simplyrdet 3 in them ying

to have as follows: 3-spaceis® in Fig. 1c.

: The second case of curved metric spa¢é that evolves
from the Galileo space, illustrated in Fig. 1c, shall underg
extensive modification with further development in this@ap
wherez' are the coordinates of the three-dimensional propvé/F shall be led in a consistent manner to the identification of

(or classical) spac&’ of the Galileo space that evolved imoce_rtam curved one-d!mensmnal _absolute mtn_nsp i
instead of the physical (or relative) 3-space in Fig. 1c.

M3, but which still serve as the cartesian coordinates TJ(BFr
points on the curved spade®, andz” are the coordinates 4
of M3. The distance element is given &> as follows:

3
E W x2x%)

2 = fr(xt, 2% 2%); v=1,2,3. 4

Isolating absolute intrinsic Riemannian metric spaces
and absolute intrinsic Riemann geometry

3 Now two observers located at two distinct positiaRsand
ds? = Z g (2, 2%, 2°)da* dx” (5) P, in the Riemannian metric spade® in Fig. 1b or 1c are
pov=1 located at positions of fferent Riemannian curvaturds;
and K, respectively, wherd<; and K are determined rel-
where ative to the reference Euclidean spd¢8. These observers

3 3 will therefore observe dierent curvatured<s; and K35 re-
of* of* _ g~ Ou” du” (6) spectively, of a third positiorP; on the curved spac#/ 3,

¢ Ot dxv = Ot ¥ Consequently these observers will observedent metric

tensors and constructftérent Riemann geometries for the

Since we have identified the first case of curved space ttratd position.

evolved from the Galileo space, illustrated in Fig. 1b, as a Since observers within the region of space being consid-

conventional Riemannian metric space of tyl®@; p = 3, ered are necessarily located on the curved sgdéen the

there is nothing new to know about it. We shall therefofast case (Fig. 1b), there is no way of resolving the problem

proceed to investigate the second case illustrated in Eig. 1of the non-uniqueness of Riemann geometry derived by ob-

gltl/(‘rlvx27x3) =

o=
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x=ct B relative to point A of the curve is given as follows:
d¢ dt’s
—|p = =k 8
7.8 = g, = Fpa (8)

wheret’s andn/y are the unit tangent vector and unit normal
vector to the curveu with respect to the ‘one-dimensional
observer’ at A, which correspond tg andnp respectively
(shown in Fig. 2) with respect to ‘one-dimensional obsérver
located anywhere along

We find from the above that the curvature at a given point
on a plane curve on the verticak:ét—plane depends on the
Fig. 2. A one-dimensional metric space curving onto the absollﬂgsmon of_the ‘one-dlmenslonal ‘Obser\_/er’ '°9ated alamgy t
time ‘dimension’ along the vertical, projects a straight line on&Urve, butis the same _r(_elatlv_e to one-d|njen5|o_nal obse’r_ve
dimensional metric space along the horizontal. located at dierent positions in the one-dimensional straight

line metric space:, which the one-dimensional curved met-
ric spaceu projects along the horizontal. The curvatukes

servers located at flierent positions in a Riemannian metriandk s of equations (7a) and (7b) are valid relative to a ‘one-
space discussed in the preceding paragraph in the first celgsensional observer’ located at point C that may be any-
On the other hand, Riemann geometry of the curved spadeere along the one-dimensional spacéience the position
13 can be formulated uniquely with respect to observers I6-0f such ‘observer’ does not appear as a labét gandk .
cated at dierent positions in the underlying Euclidean spaé2n the other hand, the position A of the ‘observer’ located
E?inthe second case, (Fig. 1c), as explained below. along the curve: appears as a label on the curvathige, at

Let us consider a plane curve which is curved onto position B of the curve: in Eq. (8).
the absolute time ‘dimension’ and underneath which lies a Now the curveu in Fig. 2 is a one-dimensional Riemann
straight line coordinate: along the horizontal, (which themetric spacel/!, as mentioned above. It is a member of
curveu projects along the horizontal), as illustrated in Fig. #he second case of Riemannian metric spaces illustrated in
The curvedu and its projectionz shall be taken to be one-Fig. 1c, which can be generated from the Galileo space of
dimensional metric spaces. Fig. 1a. Fig. 2 and the discussion on it above can be gen-

The curvatureg 4 andkp at points A and B respective|yeralized to the case of the 3-dimensional metric splce

of the one-dimensional curved metric spacare given by (with dimensions:',«* andu®), which is curved towards the
definition [5, see chap. 1], as follows: absolute time ‘dimensiong*, and which is curved relative
to its projective 3-dimensional Euclidean spdcg (with di-

o, dta mensionszt, 22 and z?), (also a metric space), in Fig. 1c,
@'A T du ka (7a)  e.illustrated as Fig. 3.
One observes that there are two co-existing metric spaces
and of different metric tensors namely, the curved spiacewith
d£|B _dts _ kg (7b) Riemannian metric tensor and the underlying flat spaée
du du with Euclidean metric tensor in Fig. 3. However only singula

The angld is measured relative to the one-dimensional sti@etric spaces are known in Riemann geometry. This paradox
ight line metric space: along the horizontal in Fig. 2. Itraised by Fig. 3 shall be resolved with further development
can thus be said that the curvatuies and kg at points A of this paper. The first class of Riemannian metric spaces
and B respectively of the curve are valid relative to ‘one- M3 illustrated in Fig. 1b, which evolves from the proper (or
dimensional observer’ at point C that can be anywhere in #lgssical) Euclidean 3-space, does not raise the parathexira
coordinater along the horizontal. by Fig. 1c or Fig. 3 mentioned above, since the curved hyper-
Now let us consider the curvature ofat point B rela- Surfacel/? lies along the horizontal, thereby precluding any
tive to a ‘one-dimensional observer’ at point A on the cunfojective space in Fig. 1b of conventional Riemannian imetr
u. The projective one-dimensional metric spacalong the space. There is no duplication of metric spaces in the first
horizontal on which the ‘one-dimensional observer’ at poif@se (or in conventional Riemann geometry).
C is located must be replaced by the tangent DE on which The metric manifold?/® in Fig. 3 is locally Euclidean
the ‘one-dimensional observer’ at point A is located. TH¥ every point of it relative to an observer at that point. On
curvature ofu must be defined in terms of affiirent angle the other handi/* possesses a Riemannian curvatiitg:
¢ measured relative to the line DE with respect to the ‘onand Riemannian metric tensg»j;fc) at point A on it relative
dimensional observer’ at A. Hence the curvatkige, at point to the observer at point C iB®, and Riemannian curvature
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As mentioned previously, the proper Riemannian 3-obser-
ver at position B observes Euclidean metric tengptocally
on the curved manifoldiZ® at his position. Hence this ob-
server writes the Gaussian line element locally at his josit
as follows:

3
ds® = &Edi* = > Sidu’du® (9)

ik=1

On the other hand, the curved manifdld® possesses a
unique Riemannian metric tenspﬁr,f) at point B relative to
all observers in the underlying Euclidean 3-sp&te (or rel-
ative to all Euclidean observers). Hence Euclidean obsgrve

. . 3 L .
Fig. 3: A 3-dimensional Riemannian metric space curving onto tWeIII formulate Riemann geometry akf* in Fig. 1c or Fig. 3

absolute time ‘dimension’ along the vertical (as a curved hypd?. (€ context of conventional Riemann geometry by writ-

surface) and its underlying projective Euclidean 3-space (as a Hid 9eneral cqordinate transformations like system (4_)CWh
hyper-surface) along the horizontal. shall be re-written as follows because of a certain poin&to b

made:

" = fr(ut ), v =1,2,3. (10a)
K 4 and Riemannian metric tensgﬁ,fm) atpoint B relative .o
to the observer at point A on it (oM/?) in Fig. 3. Thus the
Riemannian curvature and metric tensor at a given point on
a curved metric spack/3, underneath which lies its projec- gi(

tive Euclidean spac&?, illustrated in Fig. 3, depends on the

location of the observer in general. The point to note is that’” are the coordinates of the
Now theBlgiemannian curvatui€zc, and hence the met-griginal proper (or classical) Euclidean 3-spd&@ in Fig. 1a

ric tensorg,;”” at point B onl* are the same for fierent that evolved into the curved spadé? in Fig. 1c or Fig. 3,

positions C, (or for dierent 3-observers or frames), in thgshile v~ are the coordinates df/3. The Euclidean observers

underlying Euclidean spade®. Thus the label C of the posi-in £/3 will then write a unique Gaussian line element at point
tion of the 3-observer ikz? is redundant and does not have tg on 173 as follows:

appear in the curvature and metric tensor at any point in the

) ) 3) _ 3 afa afoz B 3 ax/a ax/a

= 106
whunu — Out Ouv — Out Ouv (100)

3
curved _spaC(M3._ In other words_gf,f) andgg,f) are unique ds? = &2di2 — Z gf,f)(ul,u2,u3)duidu’“; (11)
or invariant metric tensors at points B and A respectively on Py
M3 with respect to 3-observers located atetient positions o
in E3. (w.r.t. 3 — observers in E?).

On the other hand. the curvature and metric tensor at aThe Euclidean 3-observers will construct Riemann geom-
given point on the curved spadé? relative to an observer at€t"y in the context of conventional Riemann geometry, (équa
another point orl/* depends on the position of the observefons (10b) and (10)), uniquely on the curved manifalc?

H 1,2 3 3 i
This h cunaun s, and e vt ers atpan % I <COTae L A of 1 They vl
B on M relative to an observer at position A di? in Fig. 3, Proj

H 3
contains the position A of the observer as a label. Euclidean spacé”, as shall be done shortly.

H 2,3
We shall sometimes refer to the 3-observer in the unde;- Now let us change local coordinate set fréat, u2’ u3)

i o : 3 . of one local frame to another local coordinate (€t v2, v3)
ying projective Euclidean spadg” as Euclidean observers,of another local frame at the same position B on the curved
while observers at ierent positions on the curved (or RiefnanifoIdM3 (in Fig. 3), in Eq. (11) tg have the followin
mann) spacd\/ shall be referred to as Riemannian obser- ' g-2) 4 9

vers. The foregoing two paragraphs simply state that the met ~2 ) o 3 B) 1 2 ik
fic tensor at any given point on the curved metric manifold ~ d3* = ¢%df* — Y g5 (0!, 0%, v%)dv' dv*; (12)
M3 is the same with respect to all Euclidean observers (or ik=1

in all frames) in the underlying Euclidean spaEg, but de- (w.r.t 3 — observers in E3).
pends on the location (or the local frame) of a Riemannian Thg jine element is invariant with re-parametrization (or

observer. We shall be .concer.ned With the Riemann geqfn change of local frame). By applying this between equa-
etry of the curved metric manifold/? in the second CaSeions (11) and (12) we have the following

illustrated in Fig. 1c or Fig. 3, relative to Euclidean oh&ss ‘ _
mainly. gf,f) (ut, u?, u?)dutdu® = g}g}f) (v, 02, v3)dvido®

6 A. J. Adekugbe. Evolutionary sequence of spacetimrinsic spacetime and associated sequence of geometries in a meteifiétod.
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Hence ‘ M3 are identical with respect to 3-observers in the underly-
(B) _ (B)Ou’ 871/“ (13) ing projective Euclidean 3-spade®, and this is true at every
ik~ = ik G gk point of A3, in the Riemann geometry of the second case.

Now the Riemannian curvatuf€ at point B on the man- It follows from the foregoing that all local coordinate sets
ifold 143 relative to the underlying Euclidean 3-spake is (ut,u? u?), (v', 0%, 0%), (W', w? w?), etc, at any point on
the same for all local frames at that point. This is so becatiBé curved manifoldi/® are identical to a singular local co-
all local frames lie on the curved hyper-surfaké® at the ordinate set (or frame) with coordinates to be denoted by
given point B and thereby possess the same unique curvatéfe&?, £®) with respect to all 3-observers in the underlying
K5 relative to E3 as the curved hyper-surfade® itself. 1t Euclidean spac&?. Thus natural laws formulated in terms
follows then that the metric tensor at point B 8f° is un- Of the singular local coordinate sgf', £, ¢%) at any posi-
changed as one changes from the local fréntew?, «3) to  tiononl/? is valid for every local coordinate set', u*, u*),
the local frame(v?, v2, %) at this point, with respect to 3-(v',v*,v?), (w',w?, w?), etc, at that position, with respect to
observers at dlierent positions (or in dierent frames) in the all 3-observers (or local frames) in the underlying Euciide
underlying Euclidean 3-spadé®. In other Wordsgg,f)(vl, 3-spa_ceE3. It then follows that laws of nature are naturally

covariant [7, see pg. 117; 5, see pg. 117] on the curved space
M3 with respect to all observers (or frames) in the underlying
Euclidean 3-spacg?.

v?,03%) is the same a@l(,f)(ul,uQ,u?’), with respect to 3-

observers at dierent positions (or in dierent frames) in the
underlying Euclidean 3-spade’.

The foregoing paragraph states a significaffedence be- Now a space _in which all local coorqlinate sets (or I(_)<3al
tween Riemann geometry of a curved metric sphieof the frames) are identical to a _smgul_a_r coordinate set (or ausing
second case, in which the curved space (as a curved hyfglocal frame) at each point of it is an absolute space, an ab
surface) lies above its projective Euclidean spBédas s flat sol_ute space being a distinguished coordinate ;et (oriadist
hyper-surface along the horizontal) in which the obseraees guished frame) [7, see pg. 2]. Thus the curdédin the sec-
located, illustrated in Fig. 1c or Fig. 3, and the converalonend _class_ of Riemannian metric spaces illustrated in Fig. 1_c
Riemann geometry of the first case in which the curved méf-Fig- 3 is an absolute space with respect to observers in
ric spacel? is embedded in the global Euclidean 3-spad@e underlying Euclidean 3-spade’. It shall be re-denoted
E’3, asillustrated in Fig. 1b. There is no projective Euclidedy /° with curved global absolute ‘dimensiong', * and
space in the first case, and observers are necessarilydocdte The diferent local coordinate sets in the absolute space
in the curved metric spack/® within the region covered by M° shall likewise be denoted bgi', @, a%), (o1, 9%,9%),

M?3. The significant dference between Riemann geometridg > @, %), etc. A hat label shall be used to denote absolute
for the two cases is that both the line element and metric téf0rdinategbsolute intrinsic coordinates and absolute para-
sor are invariant with re-parametrizatiofis?> = ds? and meter$ab§olute intrinsic parameters uniformly in the three
gik = Gir), in the second case (of Fig. 1c or Fig. 3), while thearts pf this paper. The curved absolgte spﬂc?emtroduced

line element is invariant but the metric tensor transforms Bere is diferent from the controversial Newtonian absolute
Eq. (13) with re-parametrization in the first case (of Fig). LiSPace [7, see pg. 2; 8, 9], as shall become clear with further
Riemann geometry for the first case (of Fig. 1b) is obviousfigvelopment in this paper.

the conventional Riemann geometry, as identified earlier. Now, the curved absolute spadé? will project a flat

The necessary invariance with re-parametrization of bdtipper-surface- a flat three-dimensional spaeeto be de-
the metric tensor and the line element in the second case abted bys’ temporarily along the horizontal, such that the
curved metric space, which lies above its projective Eeelid extended curved global ‘dimensiong!, 7% and#® of M3
space in which the observers are located, (in Fig. 3), alloscome projected as extended straight line global dimasasio
us to write the following from Eq. (13): n't,n"? andn’® respectively of>"® and the singular local co-

ordinate sets¢h, £3,€%), (5. €5,5). (60, €2,60), etc, at

~(B) (B) Ou OuF (B) different positions A, B, C, etc, on the curved absolute space
i =ik gy gok ~ ik (14) I3, become projected as singular local coordinate s
), (ER,€3,€8), (E8,62,£83), etc, at the correspond-
Hence - ing positionsA’, B/, C’, etc, ina’3. In other words, the dif-
ou* ou® Sin (15) ferentlocal coordinate set8)y, 4%, %), (0}, 0%, 0%), (@},
v’ gok w4, w%), etc, all of which are equivalent to a singular coor-

Equation (15) is valid for every pair of local coordinateinate se(cl, £, %) at a point A onli/3, are projected as
sets (or local frames) at any given point on the the curvietal coordinate seta/}, v/, u'3), (v, v'3,v'3), (W'}, w3,
manifold A/3 in the Riemann geometry of the second cas€s), etc, all of which are equivalent to a singular local coor-
illustrated in Fig. 1(c) or Fig. 3. It simply states that ait | dinate set¢’),, ¢’Z, %) at the corresponding point’ in o3
cal coordinate sets at a given point on the curved manifeldd this is true at every other positiondf?.

A. J. Adekugbe. Evolutionary sequence of spacefimiénsic spacetime and associated sequence of geometries in a metifiétad. 7
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Now, as noted earlier, two distinct observable metric spa-
ces of diferent metric tensors in Fig. 1c or Fig. 3 have evolved
from the singular Galileo space of Fig. 1a, whereas such du-
plication of observable metric spaces is not observed in na-
ture. This has been remarked as a paradox raised by Fig. 1c
or Fig. 3 earlier. The duplication of metric spaces in Fig. 1c
or Fig. 3 has now become a triplet of metric spaces in Fig. 4.

Euclidean 3-space  1hese are the curved absolute spacé with absolute Rie-
\ mannian metric tensor, the proper physical Euclidean 8espa
Bl 2 3 E’3 (with Euclidean metric tensor) and the projective flat pro-
G~ n5n”) 3 . . . g
per space’> also with Euclidean metric tensor in Fig. 4.
) In order for the 3-observers to observe only the proper
physical Euclidean 3-spadgé’® in which they are located in
Fig. 4, so that the paradox noted above is resolved, the pro-
jective underlying proper spaeg® must be an intrinsic (i.e,
) .. a non-observable and non-detectable) space to observers in
The projective space’® of A in which all local coordi- 73, Thuso’ shall be referred to as proper intrinsic space.
nate sets (or local frames) at any given point of it are i@@ihti The curved absolute spadé? that projects the flat proper in-
to a singular coordinate set at the given point, is certatifly trinsic spacer’® along the horizontal must itself be an intrin-
ferent from the observed physical Euclidean 3-sptevith  sjc space. It shall be renamed absolute intrinsic spaceseons
uncountable number of possible distinctllocal coordinats Squently. Thus the non-observable absolute intrinsic spate
at every point of it. The projective spae¢’ is not the space projects the non-observable proper intrinsic spa@ealong
in which 3-observers are located but the phySical EUC“de% horizontaL |eaving the proper physica| Euclidean &w
3-spacef®. Itis therefore mandatory for us to prescribe bofis the only observable space to observers in it in Fig. 4.
the physical Euclidean 3-spa¢€’ in which 3-observers are  |tjs natural to associate an absolute intrinsic time ‘dimen
located and the flat projective 3-spae® of the curved ab- sjon’ 0 with the proper intrinsic spaee?, which lies parallel
solute spacél/*® along the horizontal, such that’ lies un- (o the absolute time ‘dimensio#f along the vertical, as done
derneathE?. in Fig 4.
Contrary to Fig. 1c or Fig. 3 that we started with, in which  Thus one consequence of the fact deduced earlier, that
a curved physical (or relative) 3-dimensional spA€éthatis the metric tensor and line element are both invariant with re
curved towards the absolute time ‘dimension’ along the vegrarametrization in Riemann geometry in which a curved 3-
tical, lies above its projective Euclidean spat@, the flat- space, (as a curved hyper-surface) is curved onto the absolu
ness of the original physical proper (or classical) Eucitetime ‘dimension’ along the vertical, lies above its projeet
3-spaceE™ (in Fig. 1a) shall be left urfected by the evo- Euclidean 3-space (as a flat hyper-surface) along the herizo
lution of the curved absolute spadé®, which lies above its tal, in which the observers are located, illustrated in Hig.
projective flat space’, wheres’® underliesE’®. Conse- or Fig. 3, is that such Riemann geometry is realizable on a
quently Fig. 3 shall be modified as Fig. 4 temporarily, whetgirved non-observable and non-detectable absolute Sitrin
the curved absolute space lies above its projective flatespggaceli/3, in which all local coordinate sets are equivalent to
o'3 that lies underneath the original proper Euclidean spagiagular local absolute intrinsic coordinate séts,, 7%, 7% ),
E’3 in this situation. (N5, n%,1%), (W&, nE. M), etc, at diferent positions A, B,
The flat space’® projected along the horizontal by theC, etc, on it. The curved absolute intrinsic space lies above
curved absolute spadd® has been given a prime label likdts projective flat proper intrinsic spaee?, in which all lo-
the proper physical Euclidean 3-spd¢€ in which observers cal coordinate sets (or local frames) are equivalent to sin-
are located, lying over it along the horizontal. The printeela gular local coordinate sets (or local framésgli,, 7'z, n'3,),
shall be used to indicate proper (or classical) spacesdioo(n’s,, nz,, n3/), (g, ng . n2), etc, at diferent positionst’,
nates and parameters uniformly in this paper and later pa{sC’, etc, in it, with respect to 3-observers in the proper
of it. Consequently’3 is a proper (or classical) space likghysical Euclidean 3-spadg’® that lies abover’® along the
E'3. The reference to the projectivé® as proper is educatedhorizontal. The Riemann geometry on the curved absolute
by the fact that an absolute coordinate evolves into a properinsic spacel/® with respect to 3-observers in the under-
coordinate and a proper coordinate evolves into a relatiiging proper physical Euclidean 3-spaB&® shall be entitled
tic coordinate in the evolutionary sequence of coordinatesabsolute intrinsic Riemann geometry.
mechanics. For instance, the absolute tinegolves into the As the next step, we shall adopt more appropriate nota-
proper timet’ (or 7), and the proper time evolves into théions and representations for the intrinsic spaces andghe a
relativistic timet, as known in relativity. sociated intrinsic time coordinates than used above. The no

Fig. 4:
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Fig. 5: The ‘3-dimensional’ absolute intrinsic space curving towards
the absolute intrinsic time ‘dimension’ along the vertical, projects
flat 3-dimensional proper intrinsic space, which lies underneath the

flat proper physical 3-space along the horizontal.

tation M3 (7, 72, 73) for the curved absolute intrinsic space

shall be replaced by M3 (¢it, p22, $23), and the the pro-
jective flat proper intrinsic spaeg®(nt, 2, n"?) shall be re-
placed byp E"(px't, p2'?, px'?). Also the absolute intrin-
sic time ‘dimension’° shall be replaced by)i® = ¢éot.

By effecting these new notations in Fig. 4, we have Fig. 5.
The non-observable and non-detectable (or hidden) imtrins
spaces have been shown with dotted boundaries in Fig. 5, as

shall be done henceforth.

Since diferent local proper intrinsic coordinate sets or lo-

cal intrinsic frameggu'y, , pu'3,, du's)), (pv's,, V'3, pv'3,),
(pw'},, pw'3,, pw'’3,), etc, at a positiom’, say, in the projec-

tive proper intrinsic spaceE’® are equivalent to a singular

intrinsic local coordinate set¢’y, &'z, p€3,) with respect
to 3-observers in the physical proper Euclidean 3-sg&ce

natural laws inp E’3 are naturally covariant with respect to 3-
observers irE’3. The fact that natural laws on the curved ab-

solute intrinsic space/? that projectspE’ along the hor-
izontal are naturally covariant with respect to 3-obsesar
E” has been deduced in a similar manner earlier.

The following features of the new notations in Fig. 5 make

them more appropriate than those in Fig. 4:

1. Apart from the attachment of the symhpoto the usual

20 = ¢t. The fact that the proper physical 3-spdté

is the outward (or physical) manifestation of the proper
intrinsic spacepE’2, which is clear from the forego-
ing, cannot be easily seen or demonstrated with other
notations, such as the one adopted initially, illustrated
in Fig. 4.

. Following the formal derivation of the two-dimensional

proper intrinsic spacetime (or proper nospace-notime)
that underlies the flat four-dimensional proper space-
time (X', ¢t’) in sub-section 1.2 of [4], the symbal
attached to the intrinsic coordinates in the new nota-
tions has the meaning of ‘void’ or ‘null’. Thugspace

can be referred to as ‘void-space’ or ‘null-space’, but
‘nospace’ has been preferred, as discussed in sub-sec-
tion 1.2 of [4]. Any distancepd’ of proper intrinsic
space (or proper nospace)’? is equivalent to zero
distance of the pro- per physical Euclidean 3-space
E’3. This can be seen directly from the symioht-
tached togd’, with the meaning of ‘void’ or ‘null’,
whereas the fact that an interval of intrinsic spdog

in the notation of Fig. 4 is equivalent to zero distance
of the physical 3-space cannot be seen directly. The
fact that any interval of intrinsic space (or nospace) is
equivalent to zero interval of physical space makes it
non-detectable to observers in the physical space. The
symbol¢ attached to a space or coordinate or a physi-
cal parameter is used to indicate that the space or coor-
dinate or parameter is intrinsic, that is, non-detectable
(or hidden) to observers in the proper physical Euclid-
ean 3-spac&’3.

4. The intrinsic coordinatesz’!, px'2, pz'> andpcot’ of

the proper intrinsic spacetime must be deemed to have
been formally derived following the formal derivation
of the two-dimensional proper intrinsic spacetime (or
proper nospace-notime) that underlies the flat four-di-
mensional proper spacetiME’, ¢t’) in sub-section 1.2

of [4], from which it is clear that these new intrinsic co-
ordinates and their notations are not arbitrary creations.
The new notations in Fig. 5 for the new intrinsic space-
time coordinates are the natural notations.

What we end up having as the new kind of Riemannian

coordinates, no new symbol has been introduced 10 r'gRsyric space in which the coordinates of a curved three-di-
resent the intrinsic coordinates. This minimizes thaangjonal spac#/? span the absolute time coordinate along
number of symbols that enters into the theory, WhiGe vertical solely, which projects a flat 3-spak& under-

is aesthetically desirable.

neath it, illustrated in Fig. 1c or Fig. 3, is a curved absslut

2. The fact that the observed physical space is outwantrinsic space (or curved absolute nospaﬁéj3(¢£1, o2,
manifestation of the underlying non-observable intriny3), an absolute intrinsic Riemann space, whose all its ab-
sic space can be seen from the new notations. Fosdlute intrinsic ‘dimensions’ span the absolute intrirtsice

we remove the symbab from ¢E'3 (¢pz't, pa'?, pa'3)

‘dimension’ along the vertical solely, which projects a flat

we obtainE"3 (2", 22, 23), which must be interpretedproper intrinsic space (or flat proper nospagd)’® under-
as E’? is the outward manifestation afE’3; z'* is neath the proper physical Euclidean 3-spté along the
the outward manifestation afz’!; etc. Likewise if horizontal, illustrated in Fig. 5. The observers with resyie
we remove the symbab from ¢3° = ¢éot we obtain whom the new geometry is valid are all 3-observers located in

A. J. Adekugbe. Evolutionary sequence of spacefimiénsic spacetime and associated sequence of geometries in a metifiétad. 9



Volume 1 THE FUNDAMENTAL THEORY (MONOGRAPH) Article 5 (preint)

A A A
A 0X =00t A OX°-gCot
Re-&t A Ro-&
proper physical

Euclidean 3-space flat absolute space

flat absolute
intrinsic space

" observers
observers ]E'S(x'l x2x?) -

A
B &1 x2%3)

A
O 0k, 0%2 o}?)
flat ‘absolute intrinsic space’ A3
P oE (m’il, mAcz, @)?3)

Fig. 6: The flat proper physical 3-space - absolute time, (the Gali % 7: Flat ‘3-dimensional’ absolute space - absolute time, under-
space), underlied by flat ‘3-dimensional’ absolute intrinsic space ' - . , T o
absolute intrinsic time, (an impossible situation). ﬁed by flat ‘3-dimensional’ absolute intrinsic space - absolute intrin-

sic time, (a possible situation).

the underlying physical proper Euclidean 3-spat& which  yoometry). Fig. 7 will exist everywhere in a universe that is
is the outward (or phys;cal) manifestation of its underyin,y nsthetically devoid of a long-range metric force field, as
proper intrinsic space E". shall be explained formally elsewhere with further develop

True to the title of this section, we can only talk of a newent.
absolute intrinsic Riemannian metric space (or absoluée Ri Now let us introduce the source of a long-range absolute
mannian metric nospace) and the associated new absolutggric force field at a point in the flat absolute spacein
trinsic Riemann geometry (or absolute Riemannian nospasg 7, which implies that the source of a long-range absolut
geometry), which are being unearthed in this paper. As Sgjttinsic metric force field is automatically introduceddrthe
above, the observers with respect to whom the absolute dgso|ute intrinsic spaceE?, directly underneath the source
trinsip Riemann geometry is valid are all 3-observers in the ihe long-range absolute metric force field & in that
physical proper Euclidean 3-spafé’. figure. As shall be explained with further development else-

Now in the absence of absolute intrinsic Riemann geomhere, this action will cause the flat absolute intrinsiccgpa
etry, the curved absolute intrinsic spag#/® in Fig. 5 be- ¢E? in Fig. 7 to evolve into curved absolute intrinsic space
comes a flat absolute intrinsic spage”® underlying the flat ¢ /3 in Fig. 5. The curved &/ will then project flat proper
proper physical Euclidean 3-spag#* along the horizontal, intrinsic space)E"> along the horizontal, which will be made
as illustrated in Fig. 6. Now the proper physical 3-spat& manifest outwardly in flat proper physical 3-spdcé, as il-
lies above the proper intrinsic spagd”® in Fig. 5. That |ustrated in Fig. 5. It then follows that the flat absolutecspa
is a correct situation. Indeed the proper physical 3-spag@ in Fig. 7 automatically transforms into flat proper phys-
E3(z', 22, 2'3) is the outward (or physical) manifestatiorical spaceE’ in Fig. 5 within a long-range absolute metric
of the proper intrinsic spacgE’3 (pz'!, pz'2, ¢p2’3) in Fig. 5, force field without any need to prescribe the curvature of ab-
since the removal of symbal from ¢ E’® converts it toE’®, solute space. Only the absolute intrinsic space is required
as discussed earlier. be curved.

On the other hand, the flat proper physical 3-spate We have described the first stage of evolution of space
lies above the flat absolute intrinsic spag&? in Fig. 6. and its underlying intrinsic space within a long-range foetr
This is an incorrect situation because the flat proper phyfirce field. Thus the product of the first stage of evolution of
cal 3-spaceE’® cannot be the outward (or physical) manispacgntrinsic space is the extended curved absolute intrinsic
festation of the absolute intrinsic spa¢@? underlying it. metric spacesM?, its projective extended flat proper intrin-
The removal of the symbap from ¢E3 converts it toE3, sic metric space E’® and the outward manifestation of’3
which implies that£? is the correct outward manifestatiomamely, the proper physical Euclidean 3-sp&t& in which
of pE3. Let us therefore replace the flat proper physical e observers are located. The absolute intrinsic timeédim
spacel’ (2't, 1'%, 2/3) by flat absolute spacE? (2!, #2,4%) sion’ is not curved from its vertical position simultanelyus
in Fig. 6 to have Fig. 7. Fig. 7 must replace Fig. 6 as the referith the ‘three-dimensional’ absolute intrinsic metricasp
ence geometry, (in the absence of absolute intrinsic Riamamthe context of the absolute intrinsic metric phenomeia& th

10A. J. Adekugbe. Evolutionary sequence of spacétirtresic spacetime and associated sequence of geometries in a metitidtad.
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give rise to curved absolute intrinsic metric spaces. Conse
qguently the curvature of the absolute intrinsic time ‘dimen
sion’ is not considered in this first paper. We shall proceed t
a robust graphical analysis of the geometry of the curved ab-
solute intrinsic metric spacgh/? (an absolute intrinsic Rie-
mannian metric space) in Fig. 5 with respect to 3-observers i
the underlying proper physical Euclidean 3-sp#&?@ in the
second part of this paper.
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