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Having isolated a four-world picture in which four symmetrical universes in different
spacetime domains coexist and in which an isolated two-dimensional intrinsicspace-
time underlies the four-dimensional spacetime in each universe, and having shown that
the special theory of relativity rests on a four-world background elsewhere, we review
the geometry of spacetime/intrinsic spacetime in a long-range metric force field within
the four-world picture in the four parts of this paper. We show within an elaborate pro-
gramme that the four-dimensional metric spacetime and its underlying two-dimensional
intrinsic metric spacetime undergo two stages of evolution in the sequence ofabsolute
spacetime/absolute intrinsic spacetime→ proper spacetime/proper intrinsic spacetime
→ relativistic spacetime/relativistic intrinsic spacetime in all finite neighborhood of
a long-range metric force field and that these are supported by a sequence of space-
time/intrinic spacetime geometries. The programme takes off in this first paper by
isolating two classes of three-dimensional Riemannian metric space namely, the con-
ventional three-dimensional Riemannian metric space and a new ‘three-dimensional’
absolute intrinsic Riemannian metric space.

1 Introduction

There is perhaps no better place to start a fundamental the-
ory of physics than a discourse of the underlying space(s) and
geometry(ies). We have started this by isolating the proper(or
classical) four-dimensional spacetimes of classical mechan-
ics (CM) and their underlying flat two-dimensional proper
(or classical) intrinsic spacetimes of intrinsic classical me-
chanics (φCM) of co-existing four symmetrical universes, re-
ferred to as positive (or our) universe, negative universe,pos-
itive time-universe and negative time-universe in the previous
papers [1-4]. The four universes exhibit perfect symmetry
of natural laws and perfect symmetry of state among them-
selves. Lorentz transformation/intrinsic Lorentz transforma-
tion (LT/φLT) and their inverses were derived with a new set
of affine spacetime/intrinsic affine spacetime diagrams within
the pertinent four-world picture.

The immutability of Lorentz invariance is shown to be
a consequence of perfect symmetry of state among the four
universes in section 2 of [4], where perfect symmetry of state
implies that the four members of every quartet of symmetry-
partner particles or objects in the four universes have per-
fectly identical magnitudes of masses, perfectly identical sha-
pes and perfectly identical sizes and that they are involved
in perfectly identical relative motions at all times. The flat
two-dimensional proper (or classical) intrinsic metric space-
time of intrinsic classical mechanics (φCM) that underlies the
flat four-dimensional proper (or classical) metric spacetime
of classical mechanics (CM) in each universe, introduced as
ansatz in sub-section 4.3 of [1], were derived formally in sub-
section 1.2 of [4]. There is essentially no outstanding issue in
[1-4] that could prevent the description of the isolation ofthe

four-world picture in those papers as having attained a close-
form.

Now, as discussed in section 5 of [3], the special the-
ory of relativity/intrinsic special theory of relativity (SR/φSR)
operate on extended flat proper (or classical) metric space-
times/underlying extended flat proper (or classical) intrinsic
metric spacetimes of the four universes in the absence of grav-
ity. However, since SR/φSR involve affine spacetime/intrinsic
affine spacetime (or affine spacetime/intrinsic affine space-
time geometry) in each universe, SR/φSR cannot alter the
extended flat four-dimensional proper metric spacetime/ex-
tended flat proper intrinsic metric spacetime on which they
operate in the absence of gravity.

It is the presence of a long-range metric force field, such
as the gravitational field, that can change the extended flat
proper metric spacetimes and its underlying flat two-dimen-
sional proper intrinsic metric spacetimes to four-dimensional
relativistic metric spacetimes and its underlying flat two-di-
mensional relativistic intrinsic metric spacetimes in allfinite
neighborhoods of the sources of symmetry-partner long-
range metric force fields in the four universes. The two-
dimensional intrinsic metric spacetime is unknown and the
relativistic four-dimensional spacetime that evolves from the
flat proper (or classical) spacetime is prescribed to be curved
in a gravitational field within the existing one-world picture
in the context of the general theory of relativity (GR) [5, see
pp. 111-149].

The next natural step in the further development of the
spaces and geometrical foundation for a fundamental theory
of physics in addition to the affine spacetime/affine intrinsic
spacetime geometry for SR/φSR in the four-world picture de-
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veloped in [1-4], is to develop the counterpart metric space-
time/intrinsic metric spacetime geometry, which will convert
extended flat proper (or classical) metric spacetimes and their
underlying flat proper intrinsic metric spacetimes to relativis-
tic metric spacetimes and their underlying relativistic intrinsic
metric spacetimes in all finite neighborhoods of symmetry-
partner long-range metric force fields in the four universes.

More often than not, there arises the need to adapt a sub-
ject from its sophisticated form in pure mathematics to an
applicable form in an applied field. The reason being that,
guided by logical and mathematical consistency only, a pure
mathematical subject can be pursued to any level of general-
ization and sophistication. In application, on the other hand,
the requirement for mathematics to describe physical real-
ity, that is, to model physical situations and concepts and to
satisfy physical constraints, often leads to a lowering of the
levels of sophistication and generalization of a mathematical
subject in its applicable form.

It is therefore the responsibility of a physicist to marry
the underlying concepts and constraints of a physical theory
to the conceptual foundation of a mathematical subject to be
applied and, in the process, as is often possible, evolve the
applicable form of the mathematical subject. Sometimes the
applicable form, having lost all sophistication in the process
of putting on a physical or an application face, bears only a
crude resemblance to the original subject. However whatever
beauty is lost in mathematics is usually gained in terms of
ease of interpretation and transparency of connection to real-
ity of the resulting physical theory.

One subject of pure mathematics that is of direct rele-
vance to fundamental physics is Riemann geometry. Riemann
geometry evolved from elementary differential geometry of
surfaces in the Euclidean space by the usual process of math-
ematical abstraction. Although Albert Einstein applied Rie-
mann geometry to the problem of gravity, the link of the sub-
ject to physics was not formally established prior to this. A
formal link of Riemann geometry to physics would entail a
marriage of the relevant concepts and principles of physics
to the concepts and principles of Riemann geometry and, ac-
cording to the preceding paragraph, such an exercise should
yield the form of Riemann geometry to be applied in physics.

The concepts of absolute spacetime, absolutism and ob-
servers in physics are incorporated into Riemann geometry
and a ‘two-dimensional’ absolute intrinsic Riemann geom-
etry on certain curved ‘two-dimensional’ absolute intrinsic
metric spacetime (which should support absolute intrinsic
metric theory of physics), is isolated at the first stage of evo-
lution of spacetime/intrinsic spacetime in a long-range metric
force field. Then the concepts of relative spacetime, relativity
and observers in physics are brought into play in develop-
ing a local Lorentzian spacetime/intrinsic spacetime geome-
try on a curved proper intrinsic spacetime, within the four-
world picture, (which should support the theory of relativ-
ity/intrinsic theory of relativity associated with the presence

of a long-range metric force field/long-range intrinsic met-
ric force field) at the second (and final) stage of evolution
of spacetime/intrinsic spacetime in a long-range metric force
field. The long-range metric force field of gravity shall ul-
timately be linked to the geometries developed elsewhere in
making connection to physics. Division of this paper into a
number of parts is inevitable.

2 On the incorporation of the time dimension into Rie-
mann geometry

Friederich Bernhard Riemann in his famous lecture of June
10, 1854, at the G̈otingen University entitled, “On the Hy-
potheses Which Lie at the Foundation of Geometry”, as trans-
lated in [6], evolved the geometry that is now named after
him. With a prophetic vision, Riemann had raised issues dur-
ing this lecture that would have far-reaching consequencesin
physics. For example, he wrote in the paper he presented at
the lecture, “... the basis of the metric relation of a manifold
must be sought outside the manifold in the binding forces that
act upon it.”

It would be a disservice to describe Riemann lesser than
a precursor of the various metric theories of physics, with the
general theory of relativity being the leading member. How-
ever the time dimension and the significant role it plays in
linking Riemann geometry to physics, as developed by Al-
bert Einstein [5, see pp. 111-149], was unknown to Riemann.
Riemann simply generalized Gauss’s theory of surfaces in the
Euclidean 3-space to general curvedn−dimensional spaces
(without time dimension), where points are characterized by
n coordinates as follows:

uν = fν(x1, x2, x3, ..., xn); ν = 1, 2, 3, ..., n (1)

The distance elementds between two indefinitely close points
in this general n-dimensional curved space is given as fol-
lows:

ds2 =
n∑

µ,ν=1

gµν(x1, x2, x3, ..., xn)dxµdxν (2)

where the metric tensorgµν is defined as,

gµν(x1, x2, x3, ..., xn) =

n∑

α=1

∂fα

∂xµ

∂fα

∂xν
=

n∑

α=1

∂uα

∂xµ

∂uα

∂xν

(3)
Albert Einstein introduced the time dimension,ct ≡ x0,

into Riemann geometry in a direct manner somewhat. Having
successfully addedct to the three dimensionsx1, x2 andx3 of
the Euclidean 3-space to have the flat four-dimensional space-
time, (the Minkowski space), in the special theory of rela-
tivity [5, see pp. 37-65], he considered the four-dimensional
spacetime to be curved, thereby yielding a four-dimensional
Riemannian spacetime manifold in a gravitational field in the
general theory of relativity [5, see pp. 111-149] and [7, see
chap. 5].
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Albert Einstein applied Riemann geometry in an unal-
tered form to the proposed curved four-dimensional space-
time in a gravitational field [5, see pp. 111-149;7, see chap.5].
The only significant difference in Riemann geometry without
time dimension (that is, manifolds of typeIMp) and Riemann
geometry with time dimension (that is, manifolds of the type
IMp+q) is in the structure of the metric tensor. While the met-
ric tensor is elliptical with signature(+ + ++) in a four-
dimensional Riemann space with a sub-Riemannian metric
tensor (without time dimension), it is hyperbolic with signa-
ture (+ − −−) or (− − −+) on a curved four-dimensional
spactime with a sub-Riemannian metric tensor. As a matter of
fact, it is at the point of solving Einstein’s field equations, that
K. Schwarzschild introduced the hyperbolic metric tensor,so
that the metric tensor obtained could reduce to the Lorentzian
metric tensor at infinity [7, see pp. 185-186].

The important point to note in the foregoing is that Al-
bert Einstein introduced the time dimension into Riemann
geometry by allowing the time dimension and the three di-
mensions of space to be curved at once (or simultaneously)
to form a curved four-dimensional spacetime continuum. He
then applied Riemann geometry (for four-dimensional Rie-
mann space without time dimension) in an unaltered form to
the curved four-dimensional spacetime continuum thus ob-
tained. This approach of introducing the time dimension into
Riemann geometry by Albert Einstein has been referred to as
direct approach earlier.

However quite apart from the direct approach of Einstein,
there is another approach, (which shall be referred to as indi-
rect approach), towards introducing the time dimension into
Riemann geometry, which leads to a kind of Riemannian spa-
cetime geometry that is different from the conventional Rie-
mannian spacetime geometry of Einstein’s direct approach.
The first two parts of this paper shall be devoted to the devel-
opment of the new kind of Riemannian spacetime geometry.

3 Isolating two classes of three-dimensional Riemann-
ian metric spaces

Let us start by considering the proper (or classical) Euclidean
3-space, denoted byΣ′ in [1-4], but which shall be denoted by
IE′3 in the three parts of this paper, with dimensionsx′1, x′2

andx′3 and the absolute time ‘dimension’ to be denoted by
ĉt̂ ≡ x̂0. The proper Euclidean 3-space and the absolute time
‘dimension’ constitutes the Galileo space(IE′3; ĉt̂). Let us
assume that due to a yet unspecified phenomenon, the proper
Euclidean 3-space becomes a curved space to be denoted by
IM3 within a region of the universal 3-space, while the ab-
solute time coordinate remains not curved.

Let us give a graphical illustration of the Galileo space
(IE′3; ĉt̂) and the curved space(IM3; ĉt̂). In doing this, we
shall considerIE′3 as an hyper-surface,̂ct̂ = const, and rep-
resent it by a plane surface along the horizontal and the ab-
solute time ‘dimension’̂ct̂ by a vertical normal line to the

Fig. 1: (a) Graphical representation of the Galileo space.

Fig. 1: (b) The Euclidean 3-spaceIE′3 of the Galileo space evolves
into a curved 3-dimensional (Riemannian) metric spaceIM3, such
that none of the coordinates ofIM3 spans the absolute time coordi-
nateĉt̂ along the vertical.

hyper-surface, as illustrated in Fig. 1a.
In the case of graphical representation of(IM3; ĉt̂), there

are two possibilities. The first is obtained by letting the hyper-
surfaceIE′3 along the horizontal in Fig. 1a to become a curved
hyper-surfaceIM3 still on the horizontal plane, so that none
of the coordinatesx1, x2 andx3 of IM3 spans the absolute
time coordinatêct̂ along the vertical, as illustrated in Fig. 1b.

The coordinates of the curved spaceIM3 span the coordi-
nates of the proper (or classical) Euclidean 3-spaceIE′3 only.
Actually the proper Euclidean 3-spaceIE′3 has evolved into
the curved spaceIM3 within the region of 3-space being con-
sidered. Hence the proper Euclidean space does not exist
along with IM3 within the region. Nevertheless the curved
metric spaceIM3 is embedded in the global proper Euclidean
3-spaceIE′3 and the coordinatesx′i of IE′3 serve as cartesian
coordinates for points onIM3, whilexi are the coordinates of
IM3.

The second possibility (or case) is obtained by allowing
the coordinatesx1, x2 andx3 of the curved spaceIM3 to span
the absolute time coordinatêct̂ along the vertical solely, so
that IM3 is curved towardŝct̂ as illustrated in Fig. 1c. In-
termediate cases in which some coordinates ofIM3 span the
absolute time coordinate, while others do not, are actually
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possible. However such cases must be considered as generic
forms of the second case illustrated in Fig. 1c.

Since a vacuum cannot be created along the horizontal,
the curved spaceIM3 will project a new hyper-surface− a
new Euclidean 3-space− to be denoted byIE3, with coordi-
natesx1, x2 andx3 along the horizontal, as shown in Fig. 1c.
In other words, the curved spaceIM3 will be underlied by
its projective Euclidean 3-spaceIE3 in this second case. The
concept of underlying projective space does not arise in the
first case, (Fig. 1b), since the curved hyper-surfaceIM3 lies
along the horizontal in that case. We shall now investigate
the two cases of curved space formed from the Galileo space
(of Fig. 1a) described above in order to show the essential
difference that may exist between them.

Case I: Conventional Riemannian metric 3-space

The first case of curved metric space formed from the Galileo
space, in which each coordinate of the curved spaceIM3 spans
one, two or all the coordinates of the proper Euclidean 3-
spaceIE′3 that evolved into it and none spans the absolute
time coordinate along the vertical, illustrated in Fig. 1b,is a
conventional Riemannian metric 3-space. It must be noted
that two metric spaces namely, the proper Euclidean 3-space
IE′3, (with Euclidean metric tensor), and the curved metric
spaceIM3, (with a Riemannian metric tensor), do not co-exist
in Fig. 1b, sinceIE′3 has evolved intoIM3 within the given re-
gion of the proper Euclidean 3-space.

Eqs. (1) through (3) in conventional Riemann geometry
are applicable in this case. We must simply letn = 3 in them
to have as follows:

x′ν = fν(x1, x2, x3); ν = 1, 2, 3. (4)

wherex′ν are the coordinates of the three-dimensional proper
(or classical) spaceIE′3 of the Galileo space that evolved into
IM3, but which still serve as the cartesian coordinates for
points on the curved spaceIM3, andxν are the coordinates
of IM3. The distance element is given onIM3 as follows:

ds2 =
3∑

µ,ν=1

gµν(x1, x2, x3)dxµdxν (5)

where

gµν(x1, x2, x3) =

3∑

α=1

∂fα

∂xµ

∂fα

∂xν
=

3∑

α=1

∂uα

∂xµ

∂uα

∂xν
(6)

Since we have identified the first case of curved space that
evolved from the Galileo space, illustrated in Fig. 1b, as a
conventional Riemannian metric space of typeIMp; p = 3,
there is nothing new to know about it. We shall therefore
proceed to investigate the second case illustrated in Fig. 1c.

Fig. 1: (c) The proper (or classical) Euclidean 3-spaceIE′3 of the
Galileo space evolves into a curved 3-dimensional (Riemannian)
metric spaceIM3, such that the coordinates ofIM3 span the absolute
time coordinatêct̂ the vertical solely. The curved spaceIM3 (as
curved hyper-surface) projects a new Euclidean 3-spaceIE3, with
coordinatesx1, x2 andx3 underneath it, lying as a flat hyper-surface
along the horizontal.

Case II: A new kind of Riemannian metric 3-space

The curved spaceIM3 in Fig. 1c has evolved from the proper
(or classical) Euclidean 3-spaceIE′3. Hence Eqs. (4) through
(6) of conventional Riemann geometry are equally valid for
the curved spaceIM3 in Fig. 1c. There is however a necessary
further step to be taken in this second case, which consists in
obtaining the projection of the Riemannian metric spaceIM3

into the horizontal to obtain the underlying new Euclidean
3-spaceIE3 in Fig. 1c.

The second case of curved metric spaceIM3 that evolves
from the Galileo space, illustrated in Fig. 1c, shall undergo
extensive modification with further development in this paper.
We shall be led in a consistent manner to the identification of
certain curved ‘one-dimensional’ absolute intrinsic space for
it, instead of the physical (or relative) 3-space in Fig. 1c.

4 Isolating absolute intrinsic Riemannian metric spaces
and absolute intrinsic Riemann geometry

Now two observers located at two distinct positionsP1 and
P2 in the Riemannian metric spaceIM3 in Fig. 1b or 1c are
located at positions of different Riemannian curvaturesK1

andK2 respectively, whereK1 andK2 are determined rel-
ative to the reference Euclidean spaceIE′3. These observers
will therefore observe different curvaturesK31 andK32 re-
spectively, of a third positionP3 on the curved spaceIM3.
Consequently these observers will observe different metric
tensors and construct different Riemann geometries for the
third position.

Since observers within the region of space being consid-
ered are necessarily located on the curved spaceIM3 in the
first case (Fig. 1b), there is no way of resolving the problem
of the non-uniqueness of Riemann geometry derived by ob-
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Fig. 2: A one-dimensional metric space curving onto the absolute
time ‘dimension’ along the vertical, projects a straight line one-
dimensional metric space along the horizontal.

servers located at different positions in a Riemannian metric
space discussed in the preceding paragraph in the first case.
On the other hand, Riemann geometry of the curved space
IM3 can be formulated uniquely with respect to observers lo-
cated at different positions in the underlying Euclidean space
IE3 in the second case, (Fig. 1c), as explained below.

Let us consider a plane curveu, which is curved onto
the absolute time ‘dimension’ and underneath which lies a
straight line coordinatex along the horizontal, (which the
curveu projects along the horizontal), as illustrated in Fig. 2.
The curvedu and its projectionx shall be taken to be one-
dimensional metric spaces.

The curvatureskA andkB at points A and B respectively
of the one-dimensional curved metric spaceu are given by
definition [5, see chap. 1], as follows:

dθ

du
|A =

dtA

du
= kA (7a)

and
dθ

du
|B =

dtB

du
= kB (7b)

The angleθ is measured relative to the one-dimensional stra-
ight line metric spacex along the horizontal in Fig. 2. It
can thus be said that the curvatureskA andkB at points A
and B respectively of the curveu are valid relative to ‘one-
dimensional observer’ at point C that can be anywhere in the
coordinatex along the horizontal.

Now let us consider the curvature ofu at point B rela-
tive to a ‘one-dimensional observer’ at point A on the curve
u. The projective one-dimensional metric spacex along the
horizontal on which the ‘one-dimensional observer’ at point
C is located must be replaced by the tangent DE on which
the ‘one-dimensional observer’ at point A is located. The
curvature ofu must be defined in terms of a different angle
φ measured relative to the line DE with respect to the ‘one-
dimensional observer’ at A. Hence the curvaturekBA at point

B relative to point A of the curveu is given as follows:

dφ

du
|B =

dt′B
du

= kBA (8)

wheret′B andn′

B are the unit tangent vector and unit normal
vector to the curveu with respect to the ‘one-dimensional
observer’ at A, which correspond totB andnB respectively
(shown in Fig. 2) with respect to ‘one-dimensional observer’
located anywhere alongx.

We find from the above that the curvature at a given point
on a plane curveu on the verticalxĉt̂−plane depends on the
position of the ‘one-dimensional observer’ located along the
curve, but is the same relative to ‘one-dimensional observers’
located at different positions in the one-dimensional straight
line metric spacex, which the one-dimensional curved met-
ric spaceu projects along the horizontal. The curvatureskA

andkB of equations (7a) and (7b) are valid relative to a ‘one-
dimensional observer’ located at point C that may be any-
where along the one-dimensional spacex. Hence the position
C of such ‘observer’ does not appear as a label onkA andkB .
On the other hand, the position A of the ‘observer’ located
along the curveu appears as a label on the curvaturekBA at
position B of the curveu in Eq. (8).

Now the curveu in Fig. 2 is a one-dimensional Riemann
metric spaceIM1, as mentioned above. It is a member of
the second case of Riemannian metric spaces illustrated in
Fig. 1c, which can be generated from the Galileo space of
Fig. 1a. Fig. 2 and the discussion on it above can be gen-
eralized to the case of the 3-dimensional metric spaceIM3,
(with dimensionsu1, u2 andu3), which is curved towards the
absolute time ‘dimensions’̂ct̂, and which is curved relative
to its projective 3-dimensional Euclidean spaceIE3, (with di-
mensionsx1, x2 andx3), (also a metric space), in Fig. 1c,
re-illustrated as Fig. 3.

One observes that there are two co-existing metric spaces
of different metric tensors namely, the curved spaceIM3 with
Riemannian metric tensor and the underlying flat spaceIE3

with Euclidean metric tensor in Fig. 3. However only singular
metric spaces are known in Riemann geometry. This paradox
raised by Fig. 3 shall be resolved with further development
of this paper. The first class of Riemannian metric spaces
IM3 illustrated in Fig. 1b, which evolves from the proper (or
classical) Euclidean 3-space, does not raise the paradox raised
by Fig. 1c or Fig. 3 mentioned above, since the curved hyper-
surfaceIM3 lies along the horizontal, thereby precluding any
projective space in Fig. 1b of conventional Riemannian metric
space. There is no duplication of metric spaces in the first
case (or in conventional Riemann geometry).

The metric manifoldIM3 in Fig. 3 is locally Euclidean
at every point of it relative to an observer at that point. On
the other hand,IM3 possesses a Riemannian curvatureKAC

and Riemannian metric tensorg
(AC)
ik at point A on it relative

to the observer at point C inIE3, and Riemannian curvature
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Fig. 3: A 3-dimensional Riemannian metric space curving onto the
absolute time ‘dimension’ along the vertical (as a curved hyper-
surface) and its underlying projective Euclidean 3-space (as a flat
hyper-surface) along the horizontal.

KBA and Riemannian metric tensorg
(BA)
ik at point B relative

to the observer at point A on it (onIM3) in Fig. 3. Thus the
Riemannian curvature and metric tensor at a given point on
a curved metric spaceIM3, underneath which lies its projec-
tive Euclidean spaceIE3, illustrated in Fig. 3, depends on the
location of the observer in general.

Now the Riemannian curvatureKBC , and hence the met-
ric tensorg(BC)

ik at point B onIM3 are the same for different
positions C, (or for different 3-observers or frames), in the
underlying Euclidean spaceIE3. Thus the label C of the posi-
tion of the 3-observer inIE3 is redundant and does not have to
appear in the curvature and metric tensor at any point in the
curved spaceIM3. In other words,g(B)

ik andg
(A)
ik are unique

or invariant metric tensors at points B and A respectively on
IM3 with respect to 3-observers located at different positions
in IE3.

On the other hand, the curvature and metric tensor at a
given point on the curved spaceIM3 relative to an observer at
another point onIM3 depends on the position of the observer.
Thus the curvatureKBA and the metric tensorg(BA)

ik at point
B onIM3 relative to an observer at position A onIM3 in Fig. 3,
contains the position A of the observer as a label.

We shall sometimes refer to the 3-observer in the under-
lying projective Euclidean spaceIE3 as Euclidean observers,
while observers at different positions on the curved (or Rie-
mann) spaceIM3 shall be referred to as Riemannian obser-
vers. The foregoing two paragraphs simply state that the met-
ric tensor at any given point on the curved metric manifold
IM3 is the same with respect to all Euclidean observers (or
in all frames) in the underlying Euclidean spaceIE3, but de-
pends on the location (or the local frame) of a Riemannian
observer. We shall be concerned with the Riemann geom-
etry of the curved metric manifoldIM3 in the second case
illustrated in Fig. 1c or Fig. 3, relative to Euclidean observers
mainly.

As mentioned previously, the proper Riemannian 3-obser-
ver at position B observes Euclidean metric tensorδik locally
on the curved manifoldIM3 at his position. Hence this ob-
server writes the Gaussian line element locally at his position
as follows:

ds2 = ĉ2dt̂2 −

3∑

i,k=1

δikduiduk (9)

On the other hand, the curved manifoldIM3 possesses a
unique Riemannian metric tensorg

(B)
ik at point B relative to

all observers in the underlying Euclidean 3-spaceIE3, (or rel-
ative to all Euclidean observers). Hence Euclidean observers
will formulate Riemann geometry onIM3 in Fig. 1c or Fig. 3
in the context of conventional Riemann geometry by writ-
ing general coordinate transformations like system (4), which
shall be re-written as follows because of a certain point to be
made:

x′ν = fν(u1, u2, u3); ν = 1, 2, 3. (10a)

Hence

gik(u1, u2, u3) =

3∑

α=1

∂fα

∂uµ

∂fα

∂uν
=

3∑

α=1

∂x′α

∂uµ

∂x′α

∂uν
(10b)

The point to note is thatx′ν are the coordinates of the
original proper (or classical) Euclidean 3-spaceIE′3 in Fig. 1a
that evolved into the curved spaceIM3 in Fig. 1c or Fig. 3,
while uν are the coordinates ofIM3. The Euclidean observers
in IE′3 will then write a unique Gaussian line element at point
B on IM3 as follows:

ds2 = ĉ2dt̂2 −

3∑

i,k=1

g
(B)
ik (u1, u2, u3)duiduk; (11)

(w.r.t. 3 − observers in IE3).
The Euclidean 3-observers will construct Riemann geom-

etry in the context of conventional Riemann geometry, (equa-
tions (10b) and (10)), uniquely on the curved manifoldIM3

in terms of coordinateu1, u2 andu3 of IM3. They will also
derive the projection ofIM3 into the horizontal to form the
Euclidean spaceIE3, as shall be done shortly.

Now let us change local coordinate set from(u1, u2, u3)
of one local frame to another local coordinate set(v1, v2, v3)
of another local frame at the same position B on the curved
manifoldIM3, (in Fig. 3), in Eq. (11) to have the following

ds̃2 = ĉ2dt̂2 −

3∑

i,k=1

g̃
(B)
ik (v1, v2, v3)dvidvk; (12)

(w.r.t 3 − observers in IE3).
The line element is invariant with re-parametrization (or

with change of local frame). By applying this between equa-
tions (11) and (12) we have the following

g
(B)
ik (u1, u2, u3)duiduk = g̃

(B)
ik (v1, v2, v3)dvidvk
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Hence

g̃
(B)
ik = g

(B)
ik

∂ui

∂vi

∂uk

∂vk
(13)

Now the Riemannian curvatureKB at point B on the man-
ifold IM3 relative to the underlying Euclidean 3-spaceIE3 is
the same for all local frames at that point. This is so because
all local frames lie on the curved hyper-surfaceIM3 at the
given point B and thereby possess the same unique curvature
KB relative toIE3 as the curved hyper-surfaceIM3 itself. It
follows then that the metric tensor at point B onIM3 is un-
changed as one changes from the local frame(u1, u2, u3) to
the local frame(v1, v2, v3) at this point, with respect to 3-
observers at different positions (or in different frames) in the
underlying Euclidean 3-spaceIE3. In other words,̃g(B)

ik (v1,

v2, v3) is the same asg(B)
ik (u1, u2, u3), with respect to 3-

observers at different positions (or in different frames) in the
underlying Euclidean 3-spaceIE3.

The foregoing paragraph states a significant difference be-
tween Riemann geometry of a curved metric spaceIM3 of the
second case, in which the curved space (as a curved hyper-
surface) lies above its projective Euclidean spaceIE3 (as s flat
hyper-surface along the horizontal) in which the observersare
located, illustrated in Fig. 1c or Fig. 3, and the conventional
Riemann geometry of the first case in which the curved met-
ric spaceIM3 is embedded in the global Euclidean 3-space
IE′3, as illustrated in Fig. 1b. There is no projective Euclidean
space in the first case, and observers are necessarily located
in the curved metric spaceIM3 within the region covered by
IM3. The significant difference between Riemann geometries
for the two cases is that both the line element and metric ten-
sor are invariant with re-parametrization,(ds2 = ds̃2 and
gik = g̃ik), in the second case (of Fig. 1c or Fig. 3), while the
line element is invariant but the metric tensor transforms as
Eq. (13) with re-parametrization in the first case (of Fig. 1b).
Riemann geometry for the first case (of Fig. 1b) is obviously
the conventional Riemann geometry, as identified earlier.

The necessary invariance with re-parametrization of both
the metric tensor and the line element in the second case of a
curved metric space, which lies above its projective Euclidean
space in which the observers are located, (in Fig. 3), allows
us to write the following from Eq. (13):

g̃
(B)
ik = g

(B)
ik

∂ui

∂vi

∂uk

∂vk
= g

(B)
ik (14)

Hence
∂ui

∂vi

∂uk

∂vk
= δik (15)

Equation (15) is valid for every pair of local coordinate
sets (or local frames) at any given point on the the curved
manifold IM3 in the Riemann geometry of the second case
illustrated in Fig. 1(c) or Fig. 3. It simply states that all lo-
cal coordinate sets at a given point on the curved manifold

IM3 are identical with respect to 3-observers in the underly-
ing projective Euclidean 3-spaceIE3, and this is true at every
point of IM3, in the Riemann geometry of the second case.

It follows from the foregoing that all local coordinate sets
(u1, u2, u3), (v1, v2, v3), (w1, w2, w3), etc, at any point on
the curved manifoldIM3 are identical to a singular local co-
ordinate set (or frame) with coordinates to be denoted by
(ξ1, ξ2, ξ3) with respect to all 3-observers in the underlying
Euclidean spaceIE3. Thus natural laws formulated in terms
of the singular local coordinate set(ξ1, ξ2, ξ3) at any posi-
tion onIM3 is valid for every local coordinate set(u1, u2, u3),
(v1, v2, v3), (w1, w2, w3), etc, at that position, with respect to
all 3-observers (or local frames) in the underlying Euclidean
3-spaceIE3. It then follows that laws of nature are naturally
covariant [7, see pg. 117; 5, see pg. 117] on the curved space
IM3 with respect to all observers (or frames) in the underlying
Euclidean 3-spaceIE3.

Now a space in which all local coordinate sets (or local
frames) are identical to a singular coordinate set (or a singu-
lar local frame) at each point of it is an absolute space, an ab-
solute space being a distinguished coordinate set (or a distin-
guished frame) [7, see pg. 2]. Thus the curvedIM3 in the sec-
ond class of Riemannian metric spaces illustrated in Fig. 1c
of Fig. 3 is an absolute space with respect to observers in
the underlying Euclidean 3-spaceIE3. It shall be re-denoted
by IM̂3 with curved global absolute ‘dimensions’η̂1, η̂2 and
η̂3. The different local coordinate sets in the absolute space
IM̂3 shall likewise be denoted by(û1, û2, û3), (v̂1, v̂2, v̂3),
(ŵ1, ŵ2, ŵ3), etc. A hat label shall be used to denote absolute
coordinates/absolute intrinsic coordinates and absolute para-
meters/absolute intrinsic parameters uniformly in the three
parts of this paper. The curved absolute spaceIM̂3 introduced
here is different from the controversial Newtonian absolute
space [7, see pg. 2; 8, 9], as shall become clear with further
development in this paper.

Now, the curved absolute spaceIM̂3 will project a flat
hyper-surface− a flat three-dimensional space− to be de-
noted byσ′3 temporarily along the horizontal, such that the
extended curved global ‘dimensions’η̂1, η̂2 and η̂3 of IM̂3

become projected as extended straight line global dimensions
η′1, η′2 andη′3 respectively ofσ′3 and the singular local co-
ordinate sets(ξ̂1

A, ξ̂2
A, ξ̂3

A), (ξ̂1
B , ξ̂2

B , ξ̂3
B), (ξ̂1

C , ξ̂2
C , ξ̂3

C), etc, at
different positions A, B, C, etc, on the curved absolute space
IM̂3, become projected as singular local coordinate sets(ξ′1A ,

ξ′2A , ξ′3A ), (ξ′1B , ξ′2B , ξ′3B ), (ξ′1C , ξ′2C , ξ′3C ), etc, at the correspond-
ing positionsA′, B′, C ′, etc, inσ′3. In other words, the dif-
ferent local coordinate sets(û1

A, û2
A, û3

A), (v̂1
A, v̂2

A, v̂3
A), (ŵ1

A,

ŵ2
A, ŵ3

A), etc, all of which are equivalent to a singular coor-
dinate set(ξ̂1

A, ξ̂2
A, ξ̂3

A) at a point A onIM̂3, are projected as
local coordinate sets(u′1

A, u′2
A, u′3

A), (v′1
A , v′2

A , v′3
A), (w′1

A , w′2
A ,

w′3
A), etc, all of which are equivalent to a singular local coor-

dinate set(ξ′1A′ , ξ′2A′ , ξ′3A′) at the corresponding pointA′ in σ′3

and this is true at every other position inσ′3.
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Volume 1 THE FUNDAMENTAL THEORY (MONOGRAPH) Article 5 (pre-print)

Fig. 4:

The projective spaceσ′3 of IM̂3 in which all local coordi-
nate sets (or local frames) at any given point of it are identical
to a singular coordinate set at the given point, is certainlydif-
ferent from the observed physical Euclidean 3-spaceIE3 with
uncountable number of possible distinct local coordinate sets
at every point of it. The projective spaceσ′3 is not the space
in which 3-observers are located but the physical Euclidean
3-spaceIE3. It is therefore mandatory for us to prescribe both
the physical Euclidean 3-spaceIE3 in which 3-observers are
located and the flat projective 3-spaceσ′3 of the curved ab-
solute spaceIM̂3 along the horizontal, such thatσ′3 lies un-
derneathIE3.

Contrary to Fig. 1c or Fig. 3 that we started with, in which
a curved physical (or relative) 3-dimensional spaceIM3 that is
curved towards the absolute time ‘dimension’ along the ver-
tical, lies above its projective Euclidean spaceIE3, the flat-
ness of the original physical proper (or classical) Euclidean
3-spaceIE′3 (in Fig. 1a) shall be left unaffected by the evo-
lution of the curved absolute spaceIM̂3, which lies above its
projective flat spaceσ′3, whereσ′3 underliesIE′3. Conse-
quently Fig. 3 shall be modified as Fig. 4 temporarily, where
the curved absolute space lies above its projective flat space
σ′3 that lies underneath the original proper Euclidean space
IE′3 in this situation.

The flat spaceσ′3 projected along the horizontal by the
curved absolute spaceIM̂3 has been given a prime label like
the proper physical Euclidean 3-spaceIE′3 in which observers
are located, lying over it along the horizontal. The prime label
shall be used to indicate proper (or classical) spaces, coordi-
nates and parameters uniformly in this paper and later parts
of it. Consequentlyσ′3 is a proper (or classical) space like
IE′3. The reference to the projectiveσ′3 as proper is educated
by the fact that an absolute coordinate evolves into a proper
coordinate and a proper coordinate evolves into a relativis-
tic coordinate in the evolutionary sequence of coordinatesin
mechanics. For instance, the absolute timet̂ evolves into the
proper timet′ (or τ ), and the proper time evolves into the
relativistic timet, as known in relativity.

Now, as noted earlier, two distinct observable metric spa-
ces of different metric tensors in Fig. 1c or Fig. 3 have evolved
from the singular Galileo space of Fig. 1a, whereas such du-
plication of observable metric spaces is not observed in na-
ture. This has been remarked as a paradox raised by Fig. 1c
or Fig. 3 earlier. The duplication of metric spaces in Fig. 1c
or Fig. 3 has now become a triplet of metric spaces in Fig. 4.
These are the curved absolute spaceIM̂3 with absolute Rie-
mannian metric tensor, the proper physical Euclidean 3-space
IE′3 (with Euclidean metric tensor) and the projective flat pro-
per spaceσ′3 also with Euclidean metric tensor in Fig. 4.

In order for the 3-observers to observe only the proper
physical Euclidean 3-spaceIE′3 in which they are located in
Fig. 4, so that the paradox noted above is resolved, the pro-
jective underlying proper spaceσ′3 must be an intrinsic (i.e,
a non-observable and non-detectable) space to observers in
IE′3. Thusσ′3 shall be referred to as proper intrinsic space.
The curved absolute spaceIM̂3 that projects the flat proper in-
trinsic spaceσ′3 along the horizontal must itself be an intrin-
sic space. It shall be renamed absolute intrinsic space conse-
quently. Thus the non-observable absolute intrinsic spaceIM̂3

projects the non-observable proper intrinsic spaceσ′3 along
the horizontal, leaving the proper physical Euclidean 3-space
as the only observable space to observers in it in Fig. 4.

It is natural to associate an absolute intrinsic time ‘dimen-
sion’ η̂0 with the proper intrinsic spaceσ′3, which lies parallel
to the absolute time ‘dimension’ĉt̂ along the vertical, as done
in Fig 4.

Thus one consequence of the fact deduced earlier, that
the metric tensor and line element are both invariant with re-
parametrization in Riemann geometry in which a curved 3-
space, (as a curved hyper-surface) is curved onto the absolute
time ‘dimension’ along the vertical, lies above its projective
Euclidean 3-space (as a flat hyper-surface) along the horizon-
tal, in which the observers are located, illustrated in Fig.1c
or Fig. 3, is that such Riemann geometry is realizable on a
curved non-observable and non-detectable absolute intrinsic
spaceIM̂3, in which all local coordinate sets are equivalent to
singular local absolute intrinsic coordinate sets,(η̂1

A, η̂2
A, η̂3

A),
(η̂1

B , η̂2
B , η̂3

B), (η̂1
C , η̂2

C , η̂3
C), etc, at different positions A, B,

C, etc, on it. The curved absolute intrinsic space lies above
its projective flat proper intrinsic spaceσ′3, in which all lo-
cal coordinate sets (or local frames) are equivalent to sin-
gular local coordinate sets (or local frames)(η′1

A′ , η′2
A′ , η′3

A′),
(η′1

B′ , η′2
B′ , η′3

B′), (η′1
C′ , η′2

C′ , η′3
C′), etc, at different positionsA′,

B′, C ′, etc, in it, with respect to 3-observers in the proper
physical Euclidean 3-spaceIE′3 that lies aboveσ′3 along the
horizontal. The Riemann geometry on the curved absolute
intrinsic spaceIM̂3 with respect to 3-observers in the under-
lying proper physical Euclidean 3-spaceIE′3 shall be entitled
absolute intrinsic Riemann geometry.

As the next step, we shall adopt more appropriate nota-
tions and representations for the intrinsic spaces and the as-
sociated intrinsic time coordinates than used above. The no-
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Fig. 5: The ‘3-dimensional’ absolute intrinsic space curving towards
the absolute intrinsic time ‘dimension’ along the vertical, projects
flat 3-dimensional proper intrinsic space, which lies underneath the
flat proper physical 3-space along the horizontal.

tationIM̂3(η̂1, η̂2, η̂3) for the curved absolute intrinsic space
shall be replaced byφIM̂3(φx̂1, φx̂2, φx̂3), and the the pro-
jective flat proper intrinsic spaceσ′3(η′1, η′2, η′3) shall be re-
placed byφIE′3(φx′1, φx′2, φx′3). Also the absolute intrin-
sic time ‘dimension’η̂0 shall be replaced by,φx̂0 ≡ φĉφt̂.
By effecting these new notations in Fig. 4, we have Fig. 5.
The non-observable and non-detectable (or hidden) intrinsic
spaces have been shown with dotted boundaries in Fig. 5, as
shall be done henceforth.

Since different local proper intrinsic coordinate sets or lo-
cal intrinsic frames(φu′1

A′ , φu′2
A′ , φu′3

A′), (φv′1
A′ , φv′2

A′ , φv′3
A′),

(φw′1
A′ , φw′2

A′ , φw′3
A′), etc, at a positionA′, say, in the projec-

tive proper intrinsic spaceφIE′3 are equivalent to a singular
intrinsic local coordinate set(φξ′1A′ , φξ′2A′ , φξ′3A′) with respect
to 3-observers in the physical proper Euclidean 3-spaceIE′3,
natural laws inφIE′3 are naturally covariant with respect to 3-
observers inIE′3. The fact that natural laws on the curved ab-
solute intrinsic spaceφIM̂3 that projectsφIE′3 along the hor-
izontal are naturally covariant with respect to 3-observers in
IE′3 has been deduced in a similar manner earlier.

The following features of the new notations in Fig. 5 make
them more appropriate than those in Fig. 4:

1. Apart from the attachment of the symbolφ to the usual
coordinates, no new symbol has been introduced to rep-
resent the intrinsic coordinates. This minimizes the
number of symbols that enters into the theory, which
is aesthetically desirable.

2. The fact that the observed physical space is outward
manifestation of the underlying non-observable intrin-
sic space can be seen from the new notations. For if
we remove the symbolφ from φIE′3(φx′1, φx′2, φx′3)
we obtainIE′3(x′1, x′2, x′3), which must be interpreted
as IE′3 is the outward manifestation ofφIE′3; x′1 is
the outward manifestation ofφx′1; etc. Likewise if
we remove the symbolφ from φx̂0 ≡ φĉφt̂ we obtain

x̂0 ≡ ĉt̂. The fact that the proper physical 3-spaceIE′3

is the outward (or physical) manifestation of the proper
intrinsic spaceφIE′3, which is clear from the forego-
ing, cannot be easily seen or demonstrated with other
notations, such as the one adopted initially, illustrated
in Fig. 4.

3. Following the formal derivation of the two-dimensional
proper intrinsic spacetime (or proper nospace-notime)
that underlies the flat four-dimensional proper space-
time (Σ′, ct′) in sub-section 1.2 of [4], the symbolφ
attached to the intrinsic coordinates in the new nota-
tions has the meaning of ‘void’ or ‘null’. Thusφspace
can be referred to as ‘void-space’ or ‘null-space’, but
‘nospace’ has been preferred, as discussed in sub-sec-
tion 1.2 of [4]. Any distanceφd′ of proper intrinsic
space (or proper nospace)φIE′3 is equivalent to zero
distance of the pro- per physical Euclidean 3-space
IE′3. This can be seen directly from the symbolφ at-
tached toφd′, with the meaning of ‘void’ or ‘null’,
whereas the fact that an interval of intrinsic space∆η′

in the notation of Fig. 4 is equivalent to zero distance
of the physical 3-space cannot be seen directly. The
fact that any interval of intrinsic space (or nospace) is
equivalent to zero interval of physical space makes it
non-detectable to observers in the physical space. The
symbolφ attached to a space or coordinate or a physi-
cal parameter is used to indicate that the space or coor-
dinate or parameter is intrinsic, that is, non-detectable
(or hidden) to observers in the proper physical Euclid-
ean 3-spaceIE′3.

4. The intrinsic coordinatesφx′1, φx′2, φx′3 andφcφt′ of
the proper intrinsic spacetime must be deemed to have
been formally derived following the formal derivation
of the two-dimensional proper intrinsic spacetime (or
proper nospace-notime) that underlies the flat four-di-
mensional proper spacetime(Σ′, ct′) in sub-section 1.2
of [4], from which it is clear that these new intrinsic co-
ordinates and their notations are not arbitrary creations.
The new notations in Fig. 5 for the new intrinsic space-
time coordinates are the natural notations.

What we end up having as the new kind of Riemannian
metric space in which the coordinates of a curved three-di-
mensional spaceIM3 span the absolute time coordinate along
the vertical solely, which projects a flat 3-spaceIE′3 under-
neath it, illustrated in Fig. 1c or Fig. 3, is a curved absolute
intrinsic space (or curved absolute nospace)φIM̂3(φx̂1, φx̂2,

φx̂3), an absolute intrinsic Riemann space, whose all its ab-
solute intrinsic ‘dimensions’ span the absolute intrinsictime
‘dimension’ along the vertical solely, which projects a flat
proper intrinsic space (or flat proper nospace)φIE′3 under-
neath the proper physical Euclidean 3-spaceIE′3 along the
horizontal, illustrated in Fig. 5. The observers with respect to
whom the new geometry is valid are all 3-observers located in
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Fig. 6: The flat proper physical 3-space - absolute time, (the Galileo
space), underlied by flat ‘3-dimensional’ absolute intrinsic space -
absolute intrinsic time, (an impossible situation).

the underlying physical proper Euclidean 3-spaceIE′3, which
is the outward (or physical) manifestation of its underlying
proper intrinsic spaceφIE′3.

True to the title of this section, we can only talk of a new
absolute intrinsic Riemannian metric space (or absolute Rie-
mannian metric nospace) and the associated new absolute in-
trinsic Riemann geometry (or absolute Riemannian nospace
geometry), which are being unearthed in this paper. As said
above, the observers with respect to whom the absolute in-
trinsic Riemann geometry is valid are all 3-observers in the
physical proper Euclidean 3-spaceIE′3.

Now in the absence of absolute intrinsic Riemann geom-
etry, the curved absolute intrinsic spaceφIM̂3 in Fig. 5 be-
comes a flat absolute intrinsic spaceφÎE′3 underlying the flat
proper physical Euclidean 3-spaceIE′3 along the horizontal,
as illustrated in Fig. 6. Now the proper physical 3-spaceIE′3

lies above the proper intrinsic spaceφIE′3 in Fig. 5. That
is a correct situation. Indeed the proper physical 3-space
IE′3(x′1, x′2, x′3) is the outward (or physical) manifestation
of the proper intrinsic spaceφIE′3(φx′1, φx′2, φx′3) in Fig. 5,
since the removal of symbolφ from φIE′3 converts it toIE′3,
as discussed earlier.

On the other hand, the flat proper physical 3-spaceIE′3

lies above the flat absolute intrinsic spaceφÎE3 in Fig. 6.
This is an incorrect situation because the flat proper physi-
cal 3-spaceIE′3 cannot be the outward (or physical) mani-
festation of the absolute intrinsic spaceφÎE3 underlying it.
The removal of the symbolφ from φÎE3 converts it toÎE3,
which implies thatÎE3 is the correct outward manifestation
of φÎE3. Let us therefore replace the flat proper physical 3-
spaceIE′3(x′1, x′2, x′3) by flat absolute spaceÎE3(x̂1, x̂2, x̂3)
in Fig. 6 to have Fig. 7. Fig. 7 must replace Fig. 6 as the refer-
ence geometry, (in the absence of absolute intrinsic Riemann

Fig. 7: Flat ‘3-dimensional’ absolute space - absolute time, under-
lied by flat ‘3-dimensional’ absolute intrinsic space - absolute intrin-
sic time, (a possible situation).

geometry). Fig. 7 will exist everywhere in a universe that is
hypothetically devoid of a long-range metric force field, as
shall be explained formally elsewhere with further develop-
ment.

Now let us introduce the source of a long-range absolute
metric force field at a point in the flat absolute spaceÎE3 in
Fig. 7, which implies that the source of a long-range absolute
intrinsic metric force field is automatically introduced into the
absolute intrinsic spaceφÎE3, directly underneath the source
of the long-range absolute metric force field inÎE3 in that
figure. As shall be explained with further development else-
where, this action will cause the flat absolute intrinsic space
φÎE3 in Fig. 7 to evolve into curved absolute intrinsic space
φIM̂3 in Fig. 5. The curvedφIM̂3 will then project flat proper
intrinsic spaceφIE′3 along the horizontal, which will be made
manifest outwardly in flat proper physical 3-spaceIE′3, as il-
lustrated in Fig. 5. It then follows that the flat absolute space
ÎE3 in Fig. 7 automatically transforms into flat proper phys-
ical spaceIE′3 in Fig. 5 within a long-range absolute metric
force field without any need to prescribe the curvature of ab-
solute space. Only the absolute intrinsic space is requiredto
be curved.

We have described the first stage of evolution of space
and its underlying intrinsic space within a long-range metric
force field. Thus the product of the first stage of evolution of
space/intrinsic space is the extended curved absolute intrinsic
metric spaceφIM̂3, its projective extended flat proper intrin-
sic metric spaceφIE′3 and the outward manifestation ofφIE′3

namely, the proper physical Euclidean 3-spaceIE′3, in which
the observers are located. The absolute intrinsic time ‘dimen-
sion’ is not curved from its vertical position simultaneously
with the ‘three-dimensional’ absolute intrinsic metric space
in the context of the absolute intrinsic metric phenomena that
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give rise to curved absolute intrinsic metric spaces. Conse-
quently the curvature of the absolute intrinsic time ‘dimen-
sion’ is not considered in this first paper. We shall proceed to
a robust graphical analysis of the geometry of the curved ab-
solute intrinsic metric spaceφIM̂3 (an absolute intrinsic Rie-
mannian metric space) in Fig. 5 with respect to 3-observers in
the underlying proper physical Euclidean 3-spaceIE′3 in the
second part of this paper.
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