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Abstract 
 

Quantum Field Theory (QFT) lies at the foundation of the Standard Model for particle physics (SM) and is 

built in compliance with a number of postulates called consistency conditions. The remarkable success of 

SM can be traced back to a unitary, local, renormalizable, gauge invariant and anomaly-free formulation of 

QFT. Experimental observations of recent years suggest that developing the theory beyond SM may require 

a careful revision of conceptual foundations of QFT. As it is known, QFT describes interaction of stable or 

quasi-stable fields whose evolution is deterministic and time-reversible. By contrast, behavior of strongly 

coupled fields or dynamics in the Terascale sector is prone to become unstable and chaotic. Non-

renormalizable interactions are likely to proliferate and prevent full cancellation of ultraviolet divergences. 

A specific signature of this transient regime is the onset of long-range dynamic correlations in space-time, 

the emergence of strange attractors in phase space and transition from smooth to fractal topology. Our 

focus here is the impact of fractal topology on physics unfolding above the electroweak scale. Arguments 

are given for perturbative renormalization of field theory on fractal space-time, breaking of discrete 

symmetries, hierarchical generation of particle masses and couplings as well as the potential for highly 

unusual phases of matter which are ultra-weakly coupled to SM. A surprising implication of this approach 

is that classical gravity emerges as a dual description of field theory on fractal space-time. 

 
1. INTRODUCTION  
 
Time and again, experimental observations have confirmed that the Standard Model (SM) 

is a robust theoretical framework for the description of elementary particle physics up to 

the scale of electroweak (EW) interaction. Experiments have covered a wide range of 

direct searches at particle accelerators, as well as precision tests of EW parameters. 
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It is known that relativistic Quantum Field Theory (QFT) represents the backbone of SM 

and is built in compliance with a number of postulates called consistency conditions. 

They define the range of applicability of SM. The remarkable success of SM can be 

attributed to a unitary, local, renormalizable, gauge invariant and anomaly-free 

formulation of QFT [1-3]. Since SM is based on a renormalizable gauge field theory, the 

prevailing opinion among theorists is that it can be extrapolated to energies above the EW 

scale. The underlying assumption is that QFT stays compliant to consistency conditions 

throughout all energy scales. 

Despite being confirmed in many independent tests, SM remains an incomplete 

framework. The root cause of EW symmetry breaking (EWSB) is still unknown. We lack 

compelling evidence for the Higgs boson that is alleged to break the electroweak 

(2) (1)L YSU U×  symmetry to its smaller electromagnetic (1)EMU  subgroup. The search 

for the source of EWSB has been one of the main drivers in both experimental and 

theoretical high-energy physics for the past 25 years. 

Beyond our ignorance on the mechanism of EWSB, there are expectations that new 

phenomena will surface at the Large Hadron Collider (LHC) and other detector sites in 

the not-so-distant future [4-6]: 

• A fundamental scalar Higgs boson is not the only way to induce EWSB. What is 

certain is that a light Higgs boson is consistent with precision EW data, but this 

does not generally preclude other EWSB scenarios.  

• The mass parameter of the Higgs boson — which is closely tied to the scale of 

EWSB — is extremely sensitive to quantum corrections. As a result, attempts to 

extrapolate SM to energies much higher than the EW scale lead to the gauge 
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hierarchy problem, where an extreme fine tuning is required to maintain the EW 

scale at its observed value. Although this is not inconsistent with the underlying 

principles of QFT, it is at least un-natural. 

• SM is unable to account for the presence of dark matter. In many theories beyond 

SM, dark matter consists of stable and weakly-coupling states whose existence 

protects the EW scale. 

• SM is unable to account for the asymmetry of visible matter over antimatter. New 

physics near or above the EW scale can potentially explain the fundamental 

baryon asymmetry of the universe. 

Among other challenges facing SM, we list the origin of fermion replication, a quantum 

description of gravity, an explanation for the cosmological constant, the source of broken 

discrete symmetries, the sources of flavor mixing and neutrino masses [4-8]. It is 

believed that these open questions are likely to be solved by new physics above the EW 

scale. Irrespective of the particular nature of new physics, it is also generally believed 

that the outcome at the LHC would contain an excess of observed leptons, photons, jets 

and missing transverse energy in some combination. Searches for new physics and SM-

related phenomenology at the LHC and other detector sites include, but are not limited to, 

the following items: 

• Supersymmetry (SUSY), leptoquarks, hidden valley states, unparticles, extra-

dimensions and strings, 

• CP violation in the B-meson sector, 

• Top quark physics,  

• 'Z  physics and other “would-be” heavy bosons,  
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• Probing the origin of neutrino mass,  

• Physics of heavy quarks, quarkonium and gluon-gluon fusion, 

• Understanding the phase diagram of deconfined high-temperature quantum 

chromodynamics (QCD). The goal is explaining the behavior and properties of 

quark-gluon plasma (QGP) and color condensates (GLASMA) resulting from 

hadron collisions,  

• Probing for the fourth family quark and the existence of sterile neutrino, 

• Probing for exotic phases of matter including dark matter.  

Inspired by the ubiquity of nonlinear dynamics and complex behavior in physical 

phenomena [9-11, 58], we follow here a less explored path to physics beyond SM.  To 

this end, we recall that there is a wealth of alleged anomalies and broken symmetries 

which directly or indirectly relate to physics near or above the EW scale: mass generation 

via gauge symmetry breaking, violation of CP and chiral symmetries [2-3], absence of 

flavor transitions between charged leptons and their anomalous magnetic moments [12], 

non-unitarity of lepton mixing matrix due to neutrino masses [13], symmetry violation 

between neutrinos and anti-neutrinos in Mini-BooNE data [14], dijet asymmetry at the 

ATLAS detector [15], anisotropic flow of QGP in ultra-relativistic collisions of heavy 

nuclei [16], top anti-top asymmetry at CDF and D0 [17], CDF muon anomaly [18], 

PAMELA positron anomaly [19] and so on. 

Tying these isolated clues together hints that space-time-asymmetric, charge-asymmetric 

and non-local field theories are among the most likely candidates for physics beyond SM. 

In particular, developing the theory beyond SM may require a careful revision of 

conceptual foundations of QFT and its consistency conditions.  
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It is known that QFT describes interaction of stable or quasi-stable fields whose evolution 

is deterministic and time-reversible. Divergence cancellation in UV is tantamount for a 

successful description of physics beyond SM. By contrast, behavior of strongly coupled 

fields or dynamics in the Terascale sector is prone to become unstable and chaotic. Non-

renormalizable interactions are likely to proliferate and prevent full cancellation of 

ultraviolet divergences. As a result of incessant fluctuations and the upsurge in entropy 

arisen from the loss of predictability, any system of fields in nonlinear interaction much 

above the EW scale is bound to   

• Become inherently statistical and dissipative, 

• Migrate from stationary to out-of-equilibrium conditions. 

A transient regime in nonlinear dynamics opens the door for the emergence of strange 

attractors in phase space and transition from smooth to fractal topology [20-21]. Drawing 

from these premises, the goal of this report is to evaluate the likely impact of fractional 

dynamics and fractal topology on physics unfolding above the EW scale. 

Ideas introduced below are gradually built in self-contained steps. For the sake of 

concision and clarity, the presentation is often times formatted in a “bulleted” style. Next 

section develops the motivation for model building using fractional dynamics. A brief 

review of what fractional dynamics stands for and its array of current applications is 

outlined in section 3. Section 4 focuses on a series of hints for fractional dynamics 

stemming from the theoretical structure of SM. The remainder of the report discusses the 

connection between physics beyond SM and fractional dynamics. Conclusions are 

presented in the last section. 



 6

We caution from the outset that ideas presented here are in their infancy. Since, by 

construction, SM is an “effective” theoretic framework, any proposed extensions beyond 

its realm must be approached with a healthy dose of skepticism. At this stage, many 

controversial issues remain unsettled and successful theoretical developments are yet to 

come. We believe that the intricate nature of topics and incomplete knowledge from the 

experimental side preclude a comprehensive and definitive analysis. Model building 

efforts as well as concurrent testing data are needed to falsify, confirm or expand these 

tentative findings.  

2. FOUNDATIONAL QUESTIONS 
 
In our view, there are three foundational questions that need to be answered prior to 

developing the theory beyond SM: 

• Are Terascale phenomena in dynamic equilibrium?  

By dynamic equilibrium we mean a condition in which all processes act simultaneously 

to maintain the system of interacting fields in an overall steady state. Consider a few-

body system of interacting classical fields. Its steady state follows from minimization of 

the interaction energy and is described as stable if sufficiently small perturbations away 

from it damp out in time. Perturbations may be internal to the system or external, the 

latter case describing open systems coupled to their environment. The replica of 

equilibrium states in nonlinear dynamics are the fixed point solutions of evolution 

equations [20-21]. 

• Are Terascale phenomena quantum or classical? 

Take an isolated system of interacting quantum fields whose Hamiltonian factors out into 

three independent contributions, 
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                                                         0 P IH H H H= + +                                                    (1)       

0H  is the term associated with the fields, PH  describes internal perturbations and IH  the 

coupling between fields and perturbations. Decoherence represents the inherent loss of 

phase information induced by IH  and is responsible for suppressing the quantum nature 

of fields [22]. The time it takes a generic system of quantum oscillators to decohere is on 

the order of  

                                                        2

1
d

P

t
E T Eγ ∆

�                                                    (2)      

Here, γ  encodes the dissipative effects produced by perturbations, E  is the average 

overall energy of the system, T  its temperature and PE∆  the average energy spacing in 

the perturbation spectrum. Since Terascale physics is characterized by large values of 

parameters appearing in the denominator, transition to classical behavior is bound to 

occur extremely fast. A similar scenario applies to interacting quantum fields whose 

dynamics exhibits spontaneous symmetry breaking [22]. It is instructive to note that: 

• Decoherence enables non-abelian gauge fields to undergo transition to chaos as 

classical fields [23].  

• Erasing phase information encoded in the quantum description of phenomena is 

an inherent source of entropy increase [61].  

It follows from these premises that at very large temperatures, commensurate with 

probing the near and deep Terascale sector, many quantum phenomena are likely to 
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decohere almost instantaneously and become unstable1. On account of previous points, 

we adopt the foundational view of [24, 65, 66] that unstable few-body quantum processes 

are intrinsically time-asymmetric and favor the onset of non-equilibrium dynamics. This 

conjecture has been reinforced in recent years by the observation that complex behavior 

in the form of bifurcations and chaos, fractal geometry and random-looking evolution in 

time and space can occur in low-dimensional as well as in few-body systems [11]. 

Because chaos is ubiquitous at the level of microscopic dynamics of single particles it 

should also determine to a large extent the macroscopic behavior of interacting fields. 

• What constraints need to be applied to phenomenological models of the 

Terascale sector? 

A successful model of the Terascale sector must be able to recover the physics of SM in 

its low-energy limit [8]. In particular: 

• Has to be compatible with EW precision data, 

• Has to convincingly resolve the unitarity problem at the SM scale,  

• Has to maintain gauge invariance and renormalizability at the SM scale. 

Next sections indicate how fractional dynamics has the potential of meeting all these 

constraints as the departure from equilibrium dynamics goes to zero. In a nut-shell, 

transition to equilibrium at low-energies decouples fractional dynamics from the physics 

of SM.  

3. WHAT IS FRACTIONAL DYNAMICS? 

Fractional dynamics studies the behavior of nonlinear physical systems that are [25] 

                                                 
1 It is unclear if this assumption remains true regardless of the energy scale. Fast thermalization of QGP 
may provide a valid counter-argument, if it stands at transition temperatures well above tτ  = 175 MeV [55, 

61]. 
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• Out-of-equilibrium and 

• Described by differential and integral operators of non-integer orders (fractal 

operators). 

Equations containing such operators are used to analyze the behavior of systems 

characterized by 

• Power-law nonlinearity, 

• Power-law long-range spatial correlations or long-term memory, 

• Fractal or multi-fractal properties. 

In the last decade, the number of applications of fractional dynamics in science and 

engineering has been steadily growing. They include models of fractional-relaxation 

effects, anomalous transport in fluids and plasma, wave propagation in complex media, 

viscoelastic materials, universal response in dielectric media, non-Markovian evolution 

of quantum fields, networks of fractional oscillators, dynamics of non-extensive 

statistical systems and so on. The reader is referred to [26] for a comprehensive update 

of fractional calculus and fractional dynamics.  

For the sake of convenience, we introduce next few definitions and properties of fractal 

operators that are relevant to our context. Let 1( , ) ( )pf x L Eλ ∈  an arbitrary function of 

x  defined on a one-dimensional Euclidean space 1E  where λ  is a parameter and 

11 p α< < . Fractional integration of order α on ( , )y−∞ and ( , )y +∞ is described by 

[27] 

1

1 ( , )
( )( , )

( ) ( )

y f x dx
I f y

y x
α

α

λλ
α+ −−∞

=
Γ −∫    

(3a)           
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1

1 ( , )
( )( , )

( ) ( )y

f x dx
I f y

x y
α

α

λλ
α

+∞

− −=
Γ −∫             

An alternate formulation is given by the left (L) and right (R) Riemann-Liouville 

operators,  

0
0

1
( , ) ( ) ( , )

(1 )

y

L

d
D f y y x f x dx

dy
α αλ λ

α
−= −

Γ − ∫   

(3b)  

 
0

0

1
( , ) ( ) ( ) ( , )

(1 )R
y

d
D f y x y f x dx

dy
α αλ λ

α
−= − −

Γ − ∫   

  
There is a close connection between fractals and fractional dynamics [25-27]. Fractals 

are metric sets with non-integer dimensionality. Integration over an axially-symmetric 

fractal space W  with Hausdorff dimension D  is defined as 

                                        
2

1

0

2
( ) ( ) ( )

( )2

D

D
HW

f x d x f r r dr
D
πµ

∞ −=
Γ∫ ∫                                     (4)  

in which ( )Hd xµ  stands for the differential Hausdorff measure of W [27]. It satisfies the 

scale-invariance property 

                                                     ( ) ( )D
H H

xd s d xsµ µ−=                                                 (5)                                                

The same property applies to (4) on account of (5) 

                                        ( ) ( ) ( ) ( )D
H HW W

f sx d x s f x d xµ µ−=∫ ∫                                       (6)  

The Hausdorff dimension for a subset E W⊂ is given by 

                                                           dim ( )HD E=                                                        (7a)                                                                              

such that, for any non-negative number α , 

( )H Eµ = ∞  if 0 Dα≤ <  
(7b) 

( ) 0H Eµ =  if D α< < ∞    
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In section 9 we introduce quantum charges associated with non-abelian gauge theory. In 

anticipation of that discussion, consider an arbitrary charge distribution on W defined by 

dimension D . Let ( , )tρ r  describe the charge density function. The total charge enclosed 

within the fractal volume DV  is described by [28] 

                                   ( ) ( , )D DW
q W t dVρ= ∫ r ,  3 3( , )DdV c D dV= r                                  (8a) 

where 3V  represents the ordinary volume of space and 

                                                 
3

3
3

32 ( )2( , )
( )2

D
D

c D
D

−
−Γ

=
Γ

r r                                              (8b)  

A close connection can also be established between fractional dynamics, q-deformed Lie 

algebras [70] and non-extensive statistical mechanics [65]. The latter has led to many 

successful applications dealing with the study of dynamical systems outside equilibrium.                                                     

4. HINTS FOR FRACTIONAL DYNAMICS IN HIGH-ENERGY PHYSICS  

Unusual quantum regimes such as ultra-relativistic nucleus-nucleus collisions, quark-

gluon plasma, decay of heavy resonances, strong-coupling in infrared QCD, behavior of 

non-Fermi liquids, fractional quantum Hall effect, non-extensive behavior of high-

temperature or large-density QCD, spin glasses, high-momentum scattering of 

longitudinally polarized vector bosons are few representative examples of out-of-

equilibrium processes2. 

                                                 
2 We mention here the pioneering work of Prigogine who conjectured that non-equilibrium microscopic 

processes cannot be properly described by S-matrix theory and require moving beyond the conventional 

Hilbert space of quantum theory [24]. 
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Recent years have consistently shown that fractional dynamics is an indispensable tool 

for modeling such processes [29]. A natural question to ask is: What leads are there that 

suggest using fractional dynamics for model building beyond SM? Answering this 

question is our next objective.    

• Hints from dimensional regularization 

Theoretical challenges associated with divergences of perturbative QFT were first 

recognized by Heisenberg and Pauli in 1929 and 1930. A viable solution had to wait until 

1949 when Dyson realized that divergences can be reabsorbed in a countable number of 

parameters defining the theory. Models that accommodate this procedure were called 

“renormalizable”. It was later determined that typical non-renormalizable theories contain 

coupling coefficients having dimensions of inverse powers of mass [30]. 

Standard renormalization in QFT is conceived as a two-step program: regularization and 

subtraction. One first controls the divergence present in momentum integrals by inserting 

a suitable “regulator”, and then brings in a set of “counter-terms” to cancel out the 

divergence.  Momentum integrals in perturbative QFT have the generic form 

                                                             4

0
( )I d qF q

∞
= ∫                                                      (9)        

Two regularization techniques are frequently employed to manage (9), namely 

“momentum cutoff” and “dimensional regularization”. In the momentum cutoff scheme, 

the upper limit of (9) is replaced by a finite mass scale M , 

                                                   4

0
( )

M

MI I d q F q→ = ∫                                                   (10)      

Explicit calculation of the convergent integral (10) amounts to a sum of three polynomial 

terms  
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                                                 1( ) ( )MI A M B C M= + +                                                (11)  

Dimensional regularization proceeds instead by shifting the momentum integral (9) from 

a four-dimensional space to a continuousD - dimensional space 

                                                    
0

( )D
DI I d qF q

∞
→ = ∫                                                   (12) 

Introducing the parameter 4 Dε = −  leads to 

                                            1'( ) ' '( )DI I A B Cε ε ε→ = + +                                             (13)     

It is known that M  and ε  are not independent regulators and relate to each other via the 

approximate connection [31] 

                                            

0

1
4

log( )
D

M
M

ε = − ≈                                                        (14) 

where 0M  stands for an arbitrary and finite reference scale. (11) and (13) may be 

interpreted in two different ways: 

a) In the asymptotic limit M →∞  and 0ε → , C  and 'A  vanish whilst A  and 'C  

become singular. 

b) Let E  denote the energy scale of phenomena described by a given field theory. If the 

regulator is chosen to stay finite or non-zero (that is, either M < ∞or 0ε ≠ ), the theory is 

no longer meaningful for any E M≥ or for any 'ε ε≤ .  

Renormalizability goes along with a) and boils down to the requirement that all 

momentum integrals (1) are convergent and independent of the regulator as M →∞  or 

0ε → . For a number of years, this criterion was regarded as a necessary consistency 

condition that any trustworthy QFT must satisfy [32]. The modern point of view has now 

shifted to b). According to this interpretation, a field theory that is non-renormalizable 
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represents a valid low-energy approximation to a more comprehensive theoretical 

framework. To understand why this is the case, consider a non-renormalizable theory 

with a single generic coupling g  whose mass dimension is 2M − . The renormalized 

perturbative expansion of an N - point amplitude up to the order 2( )ng  reads [32] 

                                                0 2

0

( ) ( ) ( )
n

i
N N i

i

E
A E A E c

M=

= ∑                                              (15)       

Here 0 1c =  and all coefficients ic , 2,3,...., 1i n= −  are fixed once renormalization has 

been carried out for amplitudes with less than N  points. Since new divergences may 

develop at order n , the last coefficient in the series ( nc ) cannot be derived from theory. 

This lack of predictivity on nc  becomes however irrelevant if E M�  due to the small 

contribution arisen from the corresponding term in (15). Higher-order divergences can be 

safely ignored as long as E M�  or 'ε ε≥  and the chosen built-in scale M  or 

continuous dimension ε  sets the limit of validity of the underlying theory.  

We conclude this discussion by noting that non-renormalizable interactions may be 

linked to the fundamental baryon asymmetry of the Universe [33]. 

• Hints from effective Lagrangian analysis 

The goal of the effective Lagrangian method is to represent in a simple way the 

dynamical content of a field theory in its low energy limit. A generic effective 

Lagrangian can be presented as [34] 

                                                          EFF i i
i

L g O=∑                                                        (16)   
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where iO  are local operators built with the light fields, and the information on any heavy 

fields is contained in the couplings ig . The operators iO  are usually organized according 

to their dimension ( id ) which fixes the dimension of their coefficients: 

                                                   [ ] 4

1
ii i i dO d g −= →

Λ
�                                                  (17)      

with Λ  some characteristic heavy scale of the system. At energies below this scale 

(E < Λ ), the behavior of the different operators is determined by their dimension. There 

are three types of operators: relevant ( 4id < ), marginal ( 4id = ) and irrelevant ( 4id > ). 

The effect of irrelevant operators is weak at low energies because it is suppressed by 

powers of E
Λ . Irrelevant operators usually contain interesting information about the 

underlying dynamics at higher scales. For example, the SM Lagrangian without the Higgs 

and Yukawa sectors assumes the generic form 

             
α µ α µν α α µν

µ µν µ µν
α

γ= Ψ Ψ − = Ψ Ψ −∑
1 1

[ ( ) ] [ ,( ) ]
4 4

a a a a
SM M

L i D F F L D F F           (18)                 

Using (16) and (17) we may write (18) as  

                                                ( 4) 4
4

i i

i

i i
EFF SM d d

d

g O
L L < −

>

= +
Λ∑                                               (19)     

where corrections induced by non-renormalizable interactions 4id >  are highly 

suppressed by powers of E
Λ  at energies E < Λ . For example, the dependence of matter 

Lagrangian ML on aF µν as well as higher covariant derivatives D Dν µΨ  creates non-

renormalizable terms that are absent below the scale of EW interaction. 
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A basic premise of effective field theory is that non-local heavy–particle exchanges can 

be replaced by a tower of local and non-renormalizable interactions among light particles 

[34]. There are two ways in which this assumption can be violated at large energies: 

• Heavy fields that yield relevant interactions near Λ  cannot be integrated out and 

remain coupled to light fields, 

• The onset of out-of-equilibrium dynamics prevents non-local heavy particles to be 

replaced by local interactions among light particles. 

The general view is that effective Lagrangian analysis places meaningful bounds on new 

dynamical structures that may occur in the Terascale sector and beyond [3]. In light of 

our discussion, it is apparent that this kind of analysis may no longer be a reliable metric 

for what happens at energies far beyond the EW scale. 

• Hints from the requirement of scale invariance 

The Lagrangian density for classical massless electrodynamics reads 

                                               
1
4

L F F i Dµν µ
µν µψ γ ψ= − +                                               (20)     

An arbitrary change in coordinate scale 'x x xλ→ =  along with the corresponding field 

transformations 

                           
3
2( ) '( ) ( )x x xψ ψ λ ψ→ = ,  ( ) ' ( ) ( )A x A x A xµ µ µλ→ =                          (21)  

can be shown to leave the action unchanged [35]. The Noether current associated with the 

change of scale is given by 

                                                           scaleJ xµ µν
νθ=                                                          (22)     
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in which µνθ represents the conserved energy-momentum tensor of the theory, 

0µν
µθ∂ = . The conservation of scale current (22) amounts to the vanishing of the trace 

of the energy-momentum tensor, that is, 

                                                        0scaleJ µ µ
µ µθ∂ = =                                                       (23)     

In D  space-time dimensions the trace of massive theory can be cast in the form 

                                 ( , , , , , )
4

F F m R m F Fµ ησ ησ
µ ησ ησ

εθ ψψ ε ψ ψ= + +                              (24) 

where the first two terms explicitly highlight the contribution of electron mass and the 

deviation from four-dimensionality of underlying space-time. All terms vanish in the 

limiting case 0m =  and 0ε = . The residual term in (24) embodies correction effects not 

included in the first two terms. 

It is known that scale invariance of the theory can be interpreted as the independence of 

the action functional from the choice of measurement units. Scale invariance represents a 

fundamental symmetry of covariant field theories and is broken in SM by the presence of 

fermion masses or the mass scale of QCD [3]. Enforcing scale invariance defined by a 

vanishing trace in (24) implies that electrons gain mass on account of deviations from 

4D = . Since ε  is related to the mass scale of the theory M  and 0ε →  is equivalent to 

M →∞ , the relationship between m  and ε  amounts to a non-perturbative 

Renormalization Group  (RG) flow. The flow equation can be presented as  

                                                          ( )m

dm
m

d
β

ε
=                                                         (25a)   

Unlike the electromagnetic field tensor, the field tensor of Yang-Mills theory ( Fµν )  

depends explicitly on the coupling charge YMg . The “pure” Yang-Mills term in (24) 
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vanishes in four-dimensional space-time ( 0ε → ). This means that, when considering 

free Yang-Mills theories in four-dimensional space-time, there are no grounds to invoke a 

flow equation similar to (25a). This is no longer the case when 0ε ≠  and gauge fields 

interact with fermions.  In this situation, YMg  plays a dynamic role similar to m  in (24). 

One is led to a flow equation for YMg  having the form 

                                                       ( )YM
g YM

dg
g

d
β

ε
=                                                      (25b)                                 

5. FROM QUANTUM FIELD THEORY TO FRACTIONAL DYNAMICS  

It is instructive, for the sake of clarity, to consolidate all arguments developed so far in a 

mnemonic flowchart. Its purpose is to enable a “bird’s eye view” of how description of 

the Terascale sector of particle physics may evolve from QFT to a framework based on 

fractional dynamics [36-37]. This transition may uncover a new layer of reality with its 

own set of concepts and rules and it may very well emerge in a variety of unexpected 

ways.    

NONLINEAR QUANTUM FIELDS  
⇓  

DECOHERENCE                                      
⇓                                                                          

NONLINEAR CLASSICAL FIELDS                                                                                
⇓  

TRANSITION TO CHAOS AND FRACTALS  
⇓  

SELF-SIMILARITY 
⇓  

NON-LOCALITY AND NON-EQUILIBRIUM CONDITIONS  
⇓  

FRACTIONAL DYNAMICS  
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The meaning of the flowchart is as follows: SM describes quantum interaction of non-

linear gauge fields with matter fields. Decoherence turns quantum fields into their 

classical counterparts and triggers the irreversible transition to chaos and fractal topology 

of underlying space-time and phase-space. Self-similarity associated with fractal 

structures blurs the traditional distinction between “locality” and “non-locality”: fractals 

are structures living on infinitely many observation scales. Physical processes on fractals 

are no longer in stationary conditions but in an ever-evolving and random state of change. 

Adequate modeling of such processes requires use of fractional dynamics and fractal 

operators.  

6. FRACTIONAL DYNAMICS AND CONSISTENCY CONDITIONS 

It is known that unitarity and locality are two fundamental principles that ensure internal 

consistency of both QFT and SM [1-3]. Perturbative QFT relies on a unitary S-matrix 

formulation, regularization of quantum corrections is required to preserve consistency by 

suppressing infrared or ultraviolet divergences, introduction of unphysical “ghost” states 

is mandatory for internal consistency of local gauge field theories. Likewise, since QFT 

is a manifestly relativistic field theory, locality is mandatory to ensure compliance with 

Lorentz invariance. In a nut-shell, 

• Unitarity enforces conservation of probability. It excludes transitions that fail to 

be norm-preserving as well as negative-norm solutions of field theory. 

• Locality precludes the possibility of action-at-a distance. Lagrangian is forbidden 

to contain terms depending on two spatially separated points, for example 

                          3 3( ) ( )NLL x y d xd yϕ ϕ= ∫    or  3 3( )NLL x y d xd yϕ= ±∫                         (26)                                                    
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The object of this section is to elaborate upon the relationship between fractional 

dynamics and these two principles of QFT. To fix ideas, consider the inelastic scattering 

of longitudinally polarized W  bosons. The tree-level scattering amplitude computed in 

SM without the Higgs boson grows with the square of scattering energy and it threatens 

to violate unitarity around 1 TeV [38]. The contribution from the Higgs exchange cancels 

the dangerously growing terms and the full amplitude is well behaving for arbitrary high 

energies.  

The unitarity issue in WW scattering at large energies can be, however, approached from 

a standpoint that goes beyond S-matrix theory. To this end we proceed in two steps: 

• We first follow [39] and indicate the difference between “transient” and 

“persistent” scattering. The latter leads to violation of unitarity condition. 

• Next, we show how fractional dynamics can be used to restore unitarity of 

persistent scattering upon a suitable re-definition of probability distribution 

function. 

The probability distribution function ( , , )tρ x p  in S-matrix theory is localized in phase 

space and can be normalized to unity 

                             ( , , ) ( ) ( , ) ( ) 1d d t const d d tρ ρ δ= =∫ ∫ ∫ ∫ kp x x p p k p k                           (27)      

where ( , )tρk p represents the Fourier transform of ( , , )tρ x p  

                                                ( , ) ( , , ) it t e dρ ρ −= ∫ px
k kp x p x                                             (28)  

Unitarity can be alternatively expressed as 

                             ( , , ) ( ) ( , ) ( ) 1d d t const d d tρ ρ δ= =∫ ∫ ∫ ∫ λx p x p x λ x λ                            (29)      

with  
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                                                 ( , ) ( , , ) it t e dρ ρ= ∫ px
λ λx x p p                                             (30)       

Relations (27) to (30) describe “transient” scattering. Consider now the situation where 

( , , )tρ x p  is a function which is delocalized in phase space. For example, it fails to vanish 

either in the infrared limit →∞x or in the ultraviolet limit →∞p . In these asymptotic 

cases, the Fourier component of ( , , )tρ x p  becomes singular at 0=k and 0=λ , 

respectively, with a delta function singularity. Consider the first case, that is,  

                                                        lim ( , , ) 0
x

tρ
→∞

>x p                                                      (31)  

The scattering is now “persistent”. The Fourier component of the distribution function is 

singular at 0=k with a delta-function singularity 

                                            0( , ) ( , ) ( ) ( , )NSt t tρ ρ δ ρ= +k kp p k p                                         (32) 

in which NSρk is the non-singular part of the distribution function at 0=k . This 

distribution function cannot be normalized to unity as the square of the delta function and 

not the delta function enters (27) [39].   

One can employ to the tools of fractional calculus to restore unitarity [27]. Consider a 

generic probability distribution function ( , )xρ λ  depending on parameter λ  and defined 

on one-dimensional Euclidean space 1E , 1
1( , ) ( )x L Eρ λ ∈ . The standard normalization 

condition corresponding to (27) is given by 

                                                        ( , ) 1x dxρ λ
+∞

−∞
=∫                                                      (33)      

 
Using (3) we can generalize (33) as follows 
 
                                               ( )( , ) ( )( , ) 1I y I yα αρ λ ρ λ+ −+ =                                             (34)      
 
Fractional equivalent of the normalization condition reads 
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                                                     ( , ) ( ) 1x d xαρ λ µ
+∞

−∞
=∫                                                  (35)      

 
where 
 

                                         
1

( , ) [ ( , ) ( , )]
2

x y x y xρ λ ρ λ ρ λ= − + +                                     (36) 

 
and the Hausdorff measure introduced in section 3 is  

                                                        
1

( )
( )

x
d x dx

α

αµ α

−

=
Γ

                                                   (37)                                                  

Comparing of (36) with (26) shows that the price paid for restoring unitarity in (35) is a 

manifest loss of locality. To restore locality, we note that self-similarity of fractals blurs 

the distinction between observation scales.  Taking advantage of this property, one can 

simply rescale the distance x y−  below the spatial measurement resolution ∆  with no 

consequence on results. By definition, coordinates ,x y  are indistinguishable from each 

other if and only if  

                                               ( ) ( ) 2y x y x x− − + = ≤ ∆                                               (38)                                               
 

Divide each term in (36) by an arbitrary large scale 1s �  such that 
 

                                                              
2 x

s
∆�                                                             (39)  

  
Using (5) and (6) leads to a local normalization condition, that is 
 

                                      
1

( , ) [ ( , ) ( , )]
2

x y x y x
s s s

ρ λ ρ λ ρ λ− +
= +                                     (40) 

 
whose outcome is 

   

                                 ( , ) ( ) ( , ) ( ) 1x xd x d xs sα αρ λ µ ρ λ µ
+∞ +∞

−∞ −∞
= =∫ ∫                               (41) 

  
8. PERTURBATIVE RENORMALIZATION ON FRACTAL SPACE-TIME  
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The concept of space-time endowed with non-integer metric can be used for perturbative 

renormalization of QFT. Here we follow [40] and reproduce a method for 

renormalization of low-order radiative corrections in quantum electrodynamics (QED) 

defined on fractal space-time. Consider the full momentum-space propagator S  of 

electron  

                                                    
0

1
( )

S
p m iγ ε

=
− −Σ +

                                                 (42) 

where 0m  stands for the bare electron mass and Σ  the proper self-energy. Replacing for  

Σ  its lowest-order contribution yields 

                                  12
2( ) [1 ( ) ( )]

( )
Z

S p Z p m p
p m i

γ σ
γ ε

−= + −
− +

                                (43) 

in which the physical electron mass m  and its renormalization constant are given by 

2 0m Z m=   
(44) 

2

3
1

2 (4 )
EMZ

D
α

π
= +

−
  

In (43) ( )pσ  is a function defined by (A1.5b) in [40], EMα is the fine-structure constant 

and it is assumed that the departure from four space-time dimensionality is small 

(4 1D− � ). Expanding the vacuum polarization 2( )qΠ  around the mass-shell 2 0q = , 

we obtain 

                                        2 2
3

2
( ) 1 ( 0) 1

(4 )
EMZ q

D
α

π
− = −Π = = +

−
                                     (45) 

                                  
2

20
0 3

2
( ) [1 ]

4 (4 )
EM

EM EM EM

e
Z

D
αα α α

π π
−= = = +

−
                                (46) 
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Here, 0( )EMα  represents the bare fine-structure constant and 3Z  the charge 

renormalization factor. It can be also shown that, based on the degree of divergence of 

QED diagrams, singular behavior of some radiative corrections tends to attenuate or 

vanish for 0 4D< ≤ . 

We close this section with the general observation that, embedding perturbative field 

theory on fractal space-time, helps reducing or eliminating divergence of momentum 

integrals. Place (9) on fractal space-time support characterized by the Hausdorff measure 

in momentum space ( )H Eµ and Hausdorff dimension D . According to definition (7b), 

singular behavior of the integrand ( )f q  can be dampened by choosing D α< < ∞  which 

automatically leads to a vanishing Hausdorff measure, that is, ( ) 0Hd Eµ = . 

9. GAUGE BOSONS AND FERMIONS ON FRACTALS 

This section explores the consequences of placing classical SM fields on fractal space-

time. This setting may be well-suited to describe conditions developing near or above the 

EW scale.  

9.1) Gauge fields on fractals 

One of the most counter-intuitive properties of fractal space-time is that it carries a 

topological form of internal energy. This contribution stems from the ability of fractal 

topology to polarize space-time and can be quantified in terms of continuous parameter 

(14). The net result is that fractal space-time can be modeled as an effective medium 

departing from the passive properties of classical vacuum. For instance, classical 

electrodynamics action on fractals can be built from effective field quantities and reads 

[28] 
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                                        4
, ,

1
( )
4eff eff eff eff effS d x F F J Aµν µ

µν µ= − +∫                                      (47)       

Action (47) is invariant to local gauge transformations , ,eff effA Aµ µ µθ→ −∂  if and only if 

the fractional continuity equation holds true, that is, if 

                                                     ( ) 0effJ c Jµ µ
µ µ µ∂ = ∂ =                                                 (48)         

Here, cµ  are coefficients depending on fractal dimension, as listed in [28]. Using the 

language of effective quantities, Lagrangian of the free Maxwell fields on fractals can be 

presented as 

                          2 2 2 2
,

1 1 1
( ) ( )

4 2 2eff eff eff eff effL F F Lµν
µν= − = − = − + ∆E B E B                        (49)         

where 

                                                 1( , ) ( , ) ( , )eff t c tγ=E r r E r                                                 (50)     

                                                   2( , ) ( , ) ( , )eff t c d t=B r r B r                                              (51)       

                                                 
1

1
1

12 ( )2( , )
( )2

c
γ

γγ
γ

−
−Γ

=
Γ

r r                                                (52)  

                                                     
2

2
2

2
( , )

( )2

d
dc d

d

−
−=

Γ
r r                                                 (53)           

Hence the differential contribution of fractality to the Lagrangian is given by  

                              2 2 2 2
1 2

1
[( 1) ( 1) ]

2effL L L c c∆ = − = − − −E B                                           (54)      

(54) vanishes on smooth space-time 0ε =  however, near 1ε � , it may emerge in various 

forms: it can produce an excess of charges or currents, change the magnitude of the fine-

structure constant, generate new particles or make photons massive. The ability of fractal 
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space-time to impart mass to Maxwell fields follows from identification of (54) with the 

mass term of the Proca Lagrangian   

                                       2 2 0
0

1 1
( )

2 2
i

iL M A A M A A A Aµ
µ∆ = = +                                     (55)      

Since Proca Lagrangian describes dynamics of a spin-1 massive field, (54) and (55) lead 

to a novel mechanism of mass generation in the EW sector arising from polarization 

attributes of fractal space-time. Unlike Proca model which fails gauge invariance, (47)-

(49) lead to a gauge invariant theory containing massive gauge bosons.  

Using effective quantities, Maxwell’s equations on fractals can be cast in their traditional 

condensed form, 

                                            ( ) ( )eff effF Jµν ν
µ∂ = ,    �( ) 0effF µν

µ∂ =                                    (56)         

where [41] 

� 1
( ) ( )

2eff effF Fµν µνρσ
ρσε=  

(57) 
0( ) ( )i i

eff effF E= − ,   ( ) ( )ij ijk k
eff effF Bε= −   

Let us next generalize these findings and consider coupling of two-component massless 

Weyl fermions to Yang-Mills fields on fractals. We posit that, near 0ε ≈ , fermion field 

picks up infinitesimal corrections from fractal topology which convert massless states 

into nearly massless states, i.e. 

                                     
(1 )L

L
L

ψ ε
εψ
+ 

Ψ =  
 

,        
(1 )

R
R

R

εψ
ψ ε
 

Ψ =  + 
                                 (58)       

The interaction of Yang-Mills fields with a system of massless fermions in four-

dimensional space-time is represented by [42] 
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α µ α µν

µ µν
α

γ= Ψ Ψ −∑
1

[ ( ) ]
4

a aL i D F F                                      (59)       

Using again the language of effective quantities on fractals, we define effective chromo-

electric and chromo-magnetic fields as [43]  

                           0( ) ( )i i
eff a eff aE F= , 

1
( ) ( )

2
i jk

eff a ijk eff aB Fε= − ,    , , 1, 2,3i j k =                    (60)                              

The effective Yang-Mills Lagrangian assumes the form 

                               
1

( ) [( ) ( ) ( ) ( ) ]
2eff YM eff a eff a eff a eff a

a

L = ⋅ − ⋅∑ E E B B                              (61)                       

It is seen that (61) contains an extra term due to fractal corrections that can be formally 

attributed to the emergence of massive gauge fields 

                                    21
( ) ( )

2
a a

a YM eff YM YM
a

M A A L L Lµ
µ →∆ = −∑                                  (62)      

The coupling term between effective gauge field and Weyl fermions becomes [44] 

                                       int( ) ( ) [ ( ) ]a a
eff eff effL g A T

α µ β
µ αβγ= Ψ Ψ                                      (63)     

The difference in interaction terms may be attributed to the emergence of massive 

fermions, that is 

                                            int int int( )effm L L L− ΨΨ→∆ = −                                           (64)      

in which the scalar ΨΨ  is built from the nearly massless Weyl fields introduced in (58). 

9.2)  Fermions on fractals 

We now turn to a model building strategy that highlights how conserved quantities arise 

on fractals. To this end, consider one of the many fractional generalizations of the free 

Dirac equation, namely [45] 
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                                 ( ) ( , ) 0t xA B t xα∂ + ∂ Ψ = ,    
( , )

( , )
( , )

L

R

t x
t x

t x

ψ
ψ
 

Ψ =  
 

                             (65)      

Here, 0 1α< < , I  stands for the identity operator and A  and B are 2 2×  matrices 

obeying Pauli’s algebra 

                                   2A I= ,   2B I= − ,   { }, 0A B AB BA= + =                                  (66)      

Both components of the Dirac field satisfy the fractional evolution equation 

                                              2
, ,( , ) ( , ) 0t L R xx L Rt x t xαψ ψ∂ − ∂ =                                           (67)      

Lagrangian of the free Dirac field corresponds to 1α =  and is given by 

                                                   D t xL A B= Ψ ∂ Ψ +Ψ ∂ Ψ                                                 (68)      

or by its equivalent conventional form  

                                                        ( )DL i µ
µγ= Ψ ∂ Ψ                                                     (69)      

Dirac Lagrangian is invariant under parity transformation since the parity operator turns 

Lψ  into Rψ , x∂  into x−∂  and 
µ

µσ ∂  into µ
µσ ∂ , in which 

                                                 (1, )iµσ σ= ,   (1, )i
µ

σ σ= −                                            (70)       

Here, iσ  represent Pauli matrices. Despite the non-local nature of the fractional time 

operator t
α∂ , it can be shown that (68) leads to a conserved analogue of the Dirac 

Hamiltonian defined as 

                                             ( , ) ( )T
xH t x AB dxα

+∞

−∞
= − Ψ ∂ Ψ∫                                            (71) 

10. BREAKING OF DISCRETE SYMMETRIES  

Non-local properties of fractal operators prevent invariance under discrete symmetries: in 

general, fractional Dirac equation (67) is not invariant under space-time transformations 



 29

[29]. This property is consistent with the well-known breaking of P  and CP  symmetries 

in weak interactions [1-3]. 

Consider for simplicity the Galileian transformation of space-time coordinates 

                                                        't t= ,   ' vx x t= +                                                    (72) 

This transformation can be explicitly formulated as  

                                                   � ( , ') [ , ( ', )]t x W t x x tΨ = Ψ                                               (73) 

where W  is a 2 2×  operator, 

                                                        11 12

21 22

w w
w w

W
 

=  
 

                                                     (74) 

Invariance of (67) to (72) is preserved if and only if [45] 

                                             22

21

w
( , ) ( ) ( , ) ( )

wL Rt x t x c tψ ψ=− +                                           (75) 

in which ( )c t  represents a constant function of x .                                                     

As it is known, the free Dirac equation for massive fermions is given by [1-3] 

                                                       ( ) 0p mµ
µγ − Ψ =                                                      (76)      

or, in terms of chiral components 

                                              0R

L

m E p

E p m

ψσ
ψσ

 − + ⋅  
=   − ⋅ −   

ur ur

ur ur                                         (77)       

(77) implies that the mass parameter m  induces a linear mixing between left and right 

spinors and a corresponding violation of chiral symmetry, that is, 

                                                    R L

E p
m
σψ ψ

 + ⋅
=  
 

ur ur

                                                  (78a)     

                                                     L R

E p
m
σψ ψ

 − ⋅
=  
 

ur ur

                                                 (78b)       
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Comparing (78b) with (75) for the trivial case ( ) 0c t =  leads to the identification 

                                                        22

21

w
w

E p
m
σ− ⋅

= −

ur ur

                                                    (79)      

We conclude from (75) to (79) that, imposing Galileian invariance of Dirac equation on 

fractal space-time (67), yields a massive Dirac equation in standard space-time. This 

finding is consistent with (62) and (64) which show that massivation is a direct 

consequence of placing massless field theories on fractal space-time. As stated, the 

underlying cause of massivation is that fractals tend to polarize classical space-time 

vacuum and convert it into an effective medium. 

We close this section by recalling that breaking of parity and chiral symmetry violation 

are related to each other [46]. Consider the operation of parity in ordinary three-

dimensional space, 

                                                   ( , ) ( ,Px t x t= → = −x x)                                                 (80)                                 

Parity violation is seen to be closely related to breaking of chiral symmetry since 

                                             1 0
, , , ( )L R L R R L PP P xψ ψ γ ψ−→ =                                           (81) 

11. EFFECTIVE CHARGES ON FRACTALS AND ANOMALOUS PROPERTIES 

Section (9) has built upon the idea that all physical quantities become effective on fractal 

space-time. This includes not only the electric charge but also (2)SU  and (3)SU  charges 

associated with gauge field theories. The conserved fermion current on fractals can be 

written as [28] 

                                                ( , ) ( , )effj D c Dµ µ µψγ ψ=r r                                               (82)      

where 

                              0
3( , ( , )c D c D=r) r ,   2( , ) ( , )ic D c D=r r ,  1,2,3i =                           (83)       
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(82) leads to a conserved charge 

                                            3 0
3( , ) ( , )effg D d xc D ψ γ ψ= ∫r r                                           (84)      

Effective charge (84) has a different magnitude than its value on ordinary space-time 

( 4)D = . Since the square of gauge charge gives the probability for emission or 

absorption of virtual particles, it follows that 2
effg  may be able to explain, at least in 

principle, the excess of observed leptons, photons, jets that are anticipated to surface in 

some combination at LHC and other detector sites.  

(84) may be also able to account for the source of anomalous magnetic moment of 

massive leptons (AMM). It is known that the magnetic moment µ  of a particle with mass 

m  and charge e  is related to the particle spin S  by the gyro-magnetic ratio g  [12]: 

                                                               ( )
2
e

g
m

=µ S                                                      (85)        

At the tree level, QED predicts the result 2g =  for all elementary fermions. Quantum 

effects produced by QED loop diagrams, from strong and weak interactions or from 

contributions arising above the electroweak scale lead to a deviation 

                                                            
1
( 2)

2
a g= −                                                         (86)              

which measures the magnitude of AMM. Loop corrections from heavy particles with 

mass M are generally suppressed by a factor 2( )m
M . Therefore the effect of quantum 

corrections to AMM scales quadratically with the mass of charged leptons. The SM 

prediction for the muon anomaly, for example, is typically factored into a QED, EW and 

hadronic (leading and higher order) contributions [47] 

                                            ( )SM QED EW HLO HHOa a a a aµ µ µ µ µ= + + +                                        (87) 
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The difference between SMaµ computed with (87) and the most updated experimental value 

amounts to 11302(88) 10aµ
−∆ = + × , which is on the order of 3, 4 standard deviations with 

all errors added in the quadrature. This numerical discrepancy can be attributed to two 

main sources: an erroneous determination of leading-order hadronic contributions ( HLOaµ ) 

or possible corrections induced by physics beyond SM. It is plausible, in this context, that 

the effective charge (84) may provide an appealing explanation for the muon anomaly.  

Along the same line of arguments, (84) may alter conventional cross sections and favor 

new phase transitions beyond SM predictions. It appears likely that this scenario plays an 

important role in the phenomenology of QGP and color condensate (GLASMA), the 

multi-muon CDF anomaly, PAMELA excess of positrons, formation of hadronic and 

leptonic jets in relativistic proton-proton ( pp ) collisions, deviation from charge form-

factors in studies of muonic hydrogen [48], deviations from branching ratios of B-mesons 

[49], excess of soft photons in hadronic Z  decays [67], anomalous CP-violation inputs of 

the CKM matrix [68], enhanced charge asymmetry in top-antitop channels3 [71] and so 

on.  

12. GENERATION STRUCTURE OF SM PARAMETERS 

Consider the nonlinear RG flow equations (25a) and (25b). They define trajectories of 

fermion masses and Yang-Mills couplings in the space generated by 4 Dε = − . Suppose 

the flow depends on a single and generic control parameter λ . For example, λ  may 

                                                 
3 At leading order in QCD the distributions of top and anti-top quarks are identical. But due to higher order 
quantum corrections a charge asymmetry is generated at 3( )sO α  in qq events, and top quarks become 

more abundant in the direction of the incoming light quarks.    
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embody the perturbing effect of heavy fields near or above the characteristic scale of the 

system (Λ ) [50]. Flow equations for masses and effective couplings become 

( , )m

dm
m

d
β λ

ε
=  

(88a) 

 ( , )eff
g eff

dg
g

d
β λ

ε
=  

or, in condensed form, 

                                             ( , )
d
d σ
σ β σ λ
ε
= ,  { , }effm gσ =                                          (88b)                      

We study the behavior of (88) using the following set of assumptions  

• The analysis of (88) is carried out near the EW scale and in the neighborhood of 

4D = , 0ε = .  

• m  and effg  are considered independent parameters. As a result, (88) represents a 

system of autonomous and independent ODE equations. 

• Gauge coupling effg  is a vector whose components ( )eff rg  3,2,1r =  reflect the 

(3) (2) (1)SU SU U× ×  group structure of SM.   

• Up to a first order approximation we take ( )eff r rg g≈  close to 0ε = . 

• All functions are analytic inλ . 

• System (88) has at least one limit cycle solution 0 ( , )σ ε λ .  

• The limit cycle 0 ( , )σ ε λ  is stable for 0λ <  and it becomes unstable at 0λ =  

after a period-doubling bifurcation created as a result of crossing the imaginary 

axis by one of the Floquet exponents.  
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Note that, since vector boson masses M depend on effg , no independent flow equation 

for M is considered in (88). According to [50-51], the first stage of the transition to chaos 

driven by the continuous variation of 0λ >  represents a Feigenbaum cascade of period-

doubling bifurcations for 0 ( , )σ ε λ . Numerous examples of this scenario [51] show that 

the sequence of critical values nλ , Nn∈ , leading to the onset of super-stable orbits, 

satisfies the geometric progression 

                                                      
n

n Kλ λ δ
−

∞− ≈                                                          (89) 

Here, K  is a multiplicative factor and δ  a scaling constant that is, in general, different 

than the standard 4.669...δ = for quadratic maps. Expanding 0 ( , )σ ε λ around the critical 

value λ λ∞=  corresponding to the onset of fully developed chaos leads to  

               
22

0 0
0 0 2

( , ) ( , )( )
( , ) ( , ) ( ) ...

2

n
n

n
n nλ λ

σ ε λ σ ε λδσ ε λ σ ε λ δ
λ λ

∞ ∞

−
−

∞

∂ ∂
= + + +

∂ ∂
               (90)  

For 2 pn = , 0p ≥  the ratio of two consecutive terms in (90) is given by  

                          0, 0 0
( 1)

0, 1 0 1 0

[ ]( , ) ( , )
( , ) ( , ) [ ]

n k
kn n k

n k
n n kk

c K

c K

δσ σ ε λ σ ε λ
σ σ ε λ σ ε λ δ

−

∞
− +

+ + ∞

∆ −
= =

∆ −
∑
∑

                           (91) 

Under the assumption 1 0c ≠  and ( )
n

Oδ ε
−
∝  for 1p � , we obtain  

                                                        
1 (2 )0,2

0,2

pp

p

σ
δ

σ
+ −∆
≈

∆
                                                     (92) 

The table shown below contains a side-by-side comparison of estimated versus actual 

mass ratios for charged leptons and quarks, massive gauge bosons and ratios of 

interaction strengths [37, 50]. All masses are reported in MeV  and evaluated at the 
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energy scale set by the top quark mass ( tm ). Using recent results issued by the Particle 

Data Group [52], we take 

um  = 2.12,    dm  = 4.22,   sm  = 80.9  

  cm = 630,    bm = 2847,    tm = 170,800 

Coupling strengths are evaluated at the scale set by the mass of the “ Z ” boson, namely  

2

EM
e 1α =4π 128=  ,    

2

0.03384
w

W
gα π= =  ,     

2
3 0.1234s

gα π= =  

Here, u, d, s, c, b and t stand for the six quark flavors, e ,µ  and τ  represent the three 

flavors of charged leptons, W and Z  the two flavors of EW gauge bosons and  EMα , Wα , 

sα  the coupling strengths associated with the electromagnetic, weak and strong 

interactions, respectively. Gauge bosons are spin-one self-interacting objects and the 

contribution of self-interacting energy needs to be accounted for when computing their 

masses [37]. Following the rationale of [53], the mass of the gauge boson scales as 

reciprocal of its coupling strength. In general, for two consecutive flavors of gauge 

bosons we expect 

                                                          21

1

( )
M g

M g
κ κ

κ κ

+

+

=                                                       (93) 

where  1,2,3...κ = . Since W  carries both weak isospin and electric charges whereas Z  is 

neutral, the first ratio in (93) corresponds to the EW sector and leads to [37, 53, 59] 

                                                 2

2

2

1 1
( ) 1

1 ( )

W

Z

M
eM
g

δ
≈ ≈ −

+
                                             (94) 
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Tab 1: Actual versus predicted ratios of SM parameters 

Two points are worth mentioning at the end of this section, namely, 

• A scaling law similar to (92) was recently linked to the infrared limit of QCD 

and the spectrum of hadron masses [64]. 

• (92) along with Tab. 1 can naturally recover Koide’s mass formula  

                                     23( ) 2( )e em m m m m mµ τ µ τ+ + = + +                                  (95)       

 
Parameter 

ratio 
 

 
Behavior 

 
Actual 

 
Predicted 

u

c

m
m  

 

4−
δ  33.365 10−×  34.323 10−×  

c

t

m
m  4−

δ  33.689 10−×  34.323 10−×  

d

s

m
m  2−

δ  0.052  0.066 

s

b

m
m  2−

δ  0.028  0.066 

em
mµ

 4−
δ  34.745 10−×  34.323 10−×  

m
m

µ

τ
 2−

δ  0.061  0.066 

W

Z

M
M  

1
21

(1 )−
δ  0.8823 0.8623 

2EM

W
( )α

α  2−
δ  0.053  0.066 

2EM

s
( )α

α  4−
δ  34.034 10−×  34.323 10−×  
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Indeed, replacing 
4

em mµδ
−

=  and 
2

m mµ τ δ
−

= in (95) leads to the polynomial equation 

                                            
2 6 1 3 4

(1 ) 4( )δ δ δ δ δ
− − − − −

+ + = + +                                       (96)       

(96) is solved by a Feigenbaum “delta” whose value matches closely the constant 

attributed to hydrodynamic flows ( 3.9δ ≈ ). 

13. GRAVITATION AS ANALOG OF FIELD THEORY ON FRACTALS 

Besides its self-polarization property discussed in section 9, fractal space-time bears an 

intriguing resemblance to non-Euclidean geometry of classical gravitation [54]. We 

briefly review this connection below. 

Consider the fractional analog of a free non-relativistic Hamiltonian system [54] 

                                    2 2( , ) ( ) ( )
2( )

H p p
α β α β

µ ν
µν

αα β η
α β

+ +

=
+

                                (97)                                          

A typical embodiment of (97) is the Hamiltonian describing the dynamics of classical 

free Dirac or Yang-Mills fields on fractal space-time. The case 1β α= =  recovers the 

familiar expression for kinetic energy density, namely,  

                                                             1,1

1
2

T p pµ ν=                                                        (98)                                                  

Hamiltonian (97) may be cast in the equivalent form 

                                                �( , ) ( , )H g p pµ ν
µνα β α β=                                               (99)      

in which 

                                    �
1 1

2 2( , ) ( ) ( )
2( )

g p p
α β α β

µ ν
µν

αα β
α β

+ +
− −

=
+

                                 (100) 

The action of a minimally coupled classical field in curved space-time is defined as  

                                                   41
2

S g d x g p pµν µ ν= −∫                                            (101)       
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Direct comparison of (97-100) to (101) yields the straightforward identification 

                                                   �( ) 2 ( , )g g g
µνµν α β− →                                            (102)    

Same results can be obtained by unveiling the formal analogy between Hausdorff 

measure and non-Euclidean metric in the action functional (101) [36]. It is instructive to 

point out that (102) may be interpreted as an extension in fractal space-time (D= non-

integer) of the AdS/CFT conjecture applied to conventional space-time (D = integer) 

[60]. 

14. EXOTIC PHASES OF MATTER 

A key hypothesis of sections 1 and 5 is that, at high energies, decoherence sets in and 

triggers the unavoidable transition from quantum to classical behavior of fields. There 

may be exceptions to this scenario provided, for example, by QGP near the transition 

temperature [55]. Fast thermalization occurs there since, the larger the temperature and 

collision frequency, the faster equilibration process is. This section explores what 

happens when decoherence is inhibited and fields preserve their quantum nature. We hold 

onto the assumption that non-perturbative effects become predominant and fractal 

operators are justified near full scale invariance, that is, near 0ε ≈  (according to (14)).   

Start from (3b) and consider for simplicity a free space-independent scalar field ( )tϕ .  Its  

classical Lagrangian in four space-time dimensions reads     

                                                    2 2L mµ
µϕ ϕ ϕ= ∂ ∂ −                                                    (103) 

and yields the following expression for the field momentum  

                                                    
( )

L
t

t

ϕπ
ϕ

∂ ∂
= =

∂ ∂∂
∂

                                                       (104) 
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It is known that the standard technique of canonical quantization promotes a classical 

field theory to a quantum field theory by converting field and momentum variables into 

operators. To gain full physical insight with minimal complications in formalism, we 

work below in 0 + 1 dimensions. Ignoring the left/right labels, we define the field and 

momentum operators as 

$ϕ ϕ ϕ→ =    
                                                                                                                                       (105)                                 

� i iD
αα α
απ π

ϕ
∂

→ = − ≡ −
∂

 

Without loss of generality, we set 1m =  in (103). The Hamiltonian becomes 

                                 � � 22 2 21 1 1
( )

2 2 2
H H D

α αα ϕ π ϕ→ = − + = +                                    (106)                                                          

By analogy with the standard treatment of harmonic oscillator in quantum mechanics, it 

is convenient to work with the destruction and creation operators defined through    

$ $ �1
[ ]

2
a i

αα
ϕ π+�  

                                                                                                                                       (107)                                 
$ $ �1

[ ]
2

a i
αα

ϕ π
+

−�    

Straightforward algebra shows that the following commutation rules are satisfied 

$ $ $ $[ , ] [ , ] 0a a a a
α α+ +

= =  
                                                                                                                                       (108)                                                         

$ $ $ � � ( 1)
[ , ] [ , ]a a i

α αα α
ϕ π α π

−+
= = −  

The second relation in (108) leads to  

                                             � $ $ � ( 1)1
2

H a a
α αα α

απ
−+

= +                                                    (109)              

The limit 1α =  recovers the quantum mechanics of harmonic oscillator, namely 
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                                                       � $ $ 1
2

H a a
+

= +                                                            (110)  

It was shown in [36, 56] that the fractional Hamiltonian (110) yields a continuous 

spectrum of states having non-integer numbers of quanta per state. These bizarre flavors 

of particles and antiparticles emerging as fractional objects were named “complexons”. 

Similar conclusions have surfaced in a number of recent papers, where the possibility of a 

scale-invariant “hidden” sector of particle physics extending beyond SM has been 

investigated. A direct consequence of this setting is a continuous spectrum of massless 

fields having non-integral scaling dimensions called ‘unparticles’. The reader is directed 

to [56] for a brief discussion of ‘unparticle’ and “unmatter’ physics. 

It can be shown that these exotic phases of matter, if they exist, display properties that 

substantially depart from SM [36, 56, 69, 72]. Aside from emerging as clusters of 

fractional objects, they may 

•  Show up as delocalized structures with long-range correlations in space-time, 

•  Show up as missing transverse energy in the deep inelastic regime of TeV  

collisions,  

• Span multiple observation scales, 

• Represent arbitrary mixtures of particles and antiparticles, 

• Represent arbitrary mixtures of Dirac and Majorana particles, 

• Carry indefinite spin in four-dimensional space-time, at variance with the spin-

statistics theorem of QFT.   

• Show up as electrically neutral and ultra-weakly states coupled to ordinary SM 

fields. In particular, they may be classified as sterile, by analogy with the “would-

be” sterile neutrinos, 
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• Surface as strongly-coupled fluids with anisotropic flow properties (analogous to 

QGP) 

It would be interesting to investigate if these speculative forms of Terascale matter are in 

fact manifestations of non-baryonic dark matter [36].  

15. CONCLUSION 

LHC has opened up an unprecedented opportunity to detect signatures of new physics 

above the EW scale and shed light on some of the key unresolved issues of SM. There are 

many mainstream models promoting various avenues towards physics beyond SM. Most 

theories expand SM in ways that do not alter the basis of QFT in any fundamental way.  

Inspired by the growing evidence for complex behavior in non-linear physical 

phenomena, we have explored here an alternative direction. Our preliminary inquiry has 

uncovered several tentative findings: 

• Dynamics of the Terascale region is likely to slide outside equilibrium. 

• As a result, fractional dynamics becomes an attractive tool for model building 

near the EW sector or beyond SM. 

• Fractional dynamics is tied to the underlying fractal topology of space-time or 

phase-space. 

• Fractal topology of space-time enables perturbative renormalization of field 

theories in a manner similar to dimensional regularization. 

• Fractal topology generates an intrinsic polarization of space-time which imparts 

mass to both gauge boson and fermion fields. 

• Fractal topology accounts naturally for breaking of discrete space-time 

symmetries. 
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• Fractal topology is able to account, at least in principle, for anomalous gauge 

charges, anomalous magnetic moment of massive leptons and enhanced cross-

sections. 

• Onset of fractal space-time near the EW scale explains the generation structure of 

SM parameters. 

• Classical gravity emerges as analog of field theory on fractal space-time.  

• Fractal operators in field theory lead to the potential for exotic phases of matter 

that may be dynamically related to the composition of non-baryonic dark matter. 

We conclude our report by listing a series of partially confirmed observations that may 

provide early evidence for fractional dynamics in high-energy physics. The reader is 

urged to keep in mind that published data are strictly preliminary and subject to further 

revisions. The fast pace of change on the theoretical front reflects our long-standing effort 

for understanding Nature beyond the boundaries of current models. 

 

Anticipated behavior Tentative evidence  

Non-locality 

- Long-range angular correlations in proton-proton 

collisions at the LHC [63] 

   Space-time asymmetries 

- Breaking of discrete symmetries in the physics of 

K and B mesons [3] 

- Chiral symmetry violation in EW interactions  

and massive QCD [3] 

- Elliptic flow of charged QGP particles [16]  

- Dijet asymmetry in heavy ion collisions [15]  
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Matter-antimatter asymmetry 

- Neutrino-antineutrino asymmetry in MiniBooNE  

data [14] 

- Reactor anti-neutrino anomaly [72] 

- Predominance of baryonic matter [33] 

- Top quark-antiquark asymmetry [17, 71]  

Replication of parameters 
- The fermion family problem of SM [2-3] 

- Hints for replication of EW gauge bosons [62] 

Anomalous properties 

- Anomalous magnetic moment of leptons [12] 

- Anomalous Lamb shift in muonic hydrogen [48] 

- The CDF muon anomaly [18] 

- The PAMELA positron anomaly [19] 

- Excess of soft photons in Z decays [67] 

- Anomalous CKM matrix [68] 

New structures ultra-weakly  

coupled to SM 

- Absence of heavy resonance-like structures in 

dijet states at the LHC [57] 

 
Tab 2: Tentative signatures for physics beyond SM  
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