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Abstract

By examining the theory of relativity, as originally proposed by Lorentz, Poincare and
Einstein, a fundamental theory of general motion is developed. From this, the
relationship between space-time and matter is discovered. As a result, the geometrical
theory of interaction is introduced. The corresponding geometrical theory of
electrodynamics resolves the origin of electromagnetic interaction, as a vortex-like field,

and clarifies some of the existing ambiguities.

1. Introduction

Poincare’s theory of relativity explains the physical meaning of the Lorentz
transformation among inertial systems by unification of space-time. Although it shows a
relationship between pure Lorentz transformation and hyperbolic rotation, it does not
specify what is rotating. This is the origin of most troubles in the theory of relativity and
electrodynamics. For example, although the Maxwellian theory of electrodynamics is the
most understood among the theories of fundamental forces, the electromagnetic
interaction, called the Lorentz force, is not a direct consequence of Maxwell’s equations.

It has to be postulated in an independent manner, which is the manifest of incompleteness



of the theory. Although it has been noted that the electromagnetic field strength tensor
and Lorentz force are both a natural consequence of the geometric structure of

Minkowskian space-time, its fundamental meaning has not been discovered.

Another trouble is the magnetic monopole whose existence is apparently compatible with
fully symmetrized Maxwell’s equations. It seems only modification of Maxwell’s
equations suffice to allow magnetic charges in electrodynamics. However, no magnetic

monopole has been found to this date.

To resolve these and other difficulties, we develop a fundamental geometrical theory of
motion and interaction, which shows that the Lorentz force and Maxwell’s equations are
simple geometrical relations based on four-dimensional rotation. It is seen that this
geometry is non-Euclidean with interesting consequences. This theory clarifies the
relativity of space-time and its relationship with matter. It also revives the idea of the

electromagnetic field as vortex motion in a universal entity.

In the following section, we first present the theory of relative inertial systems and
kinematics of particles in the framework of Poincare’s relativity. Subsequently, in
Section 3, we develop the consistent theory of moving particles by exploring the relation
between mass and space-time. This resolves the troubles in Poincare’s relativity by

clarifying the origin of the governing non-Euclidean geometry.

Afterwards, in Section 4, we develop the geometrical theory of fundamental interaction,
which shows that a Lorentz-like force as a rotational effect is an essential character of
every fundamental interaction. Therefore, every fundamental interaction is specified by a
four-dimensional vortex-like field. Interestingly, this means a unification of all forces
based on the geometrical theory of motion and interaction. In section 5, we demonstrate
all the details of this vortex theory for electromagnetic interaction. Therefore,
electrodynamics is complete with electric charges and magnetic monopoles do not exist.
The geometrical view also clarifies the spin dynamics of charged elementary particles.

At the end, it is seen that the corresponding consistent theory of gravity is a generalized



Newtonian gravity. This analogous Maxwellian theory of gravity is also developed in

detail in Section 6. A summary and general conclusion is presented in Section 7.

2. Poincare’s theory of relative inertial systems

As an inertial reference frame in the Minkowskian space-time, a four-dimensional
coordinate system x,x,x,x, is considered such that x,x,x, is the usual space and x, the
axis measuring time with imaginary values, such that x, =icf. By considering the unit

four-vector bases

e, =(1,0,0,0)
e, =(0,1,0,0) (2.1)
e, =(0,0,1,0)
e, =(0,0,0,1)
the space-time position four-vector can be represented by
X=x,8, (2.2)
However, for simplicity we sometimes write
X =(x,x,) = (x,ict) = (x, y, z,ict) (2.3)
or even
x, =(X,x,) 2.4)

and also often use x in place of X .

With this convenient elementary notation, we do not need to use covariant and
contravariant forms of four-tensors in metric notations. Importantly, it is seen that the
non-Euclidean geometry governing motion and interaction is much clearer in this
complex number notation. However, all developed theory can be easily presented in any

other notation.

The square length of position four-vector is

X0X=XTX=xﬂxﬂ =x' -t =x"+y +z° =t (2.5)



where we notice that the same symbol X also represents the matrix form of X .

A homogeneous Lorentz transformation
x,=4,x, (2.6)
is any transformation which leaves the length of the four-vectors invariant

XX, =X,X (2.7)

This requires
X, X, = A A%, %, (2.8)
which leads to the following orthogonality condition on A

Ay =8, 2.9)

As will be seen, we use only first and second order three and four-dimensional tensors.
Therefore, for convenience we use the matrix representation for these tensors with the

same symbol. Based on this convention, (2.9) can be written in more compact form

ATA=1 (2.10)

This shows that the Lorentz transformation is an orthogonal transformation in the
specified four dimensional space-time. Conversely, any transformation, which satisfies
this orthogonal condition, is a Lorentz transformation. All of these transformations form a

group in the mathematical sense.

What we have is the relation between coordinates of a point or event in two different

rr . r !

four-dimensional coordinate systems x,x,x;x, and x/x;x;x; . One expects that

understanding the meaning of this relation is crucial in developing a theory of space-time

and motion.



2.1. Space rotation

A familiar example of a Lorentz transformation is the relative space orientation of two
coordinate systems with common origin, which is spatial rotation. In general, for this
transformation, we have
Q o
A:{OT J (2.11)
where Q is a constant proper real orthogonal matrix specifying the space rotation of the
new reference system relative to the original coordinate system. In this case, the

transformation decomposes to

x'=Qx (2.12)

As an example, for rotation about the z-axis with angle ¢, we have

cosg sing O
Q=|-sing cosg O (2.13)
0 0 1

In general, for rotation about an arbitrary axis denoted by unit vector n with angle ¢,

where

¢ =¢n (2.14)

we have"

O, =06, —&,,n, sin¢+(1—cos¢)(ninj —EU) (2.15)

It is convenient to associate an anti-symmetric matrix R  defined by

0 —-w w,
R, =| w, 0 -w (2.16)
-w, W 0

to some axial vector w = (w,,w,,w; ). If G is an arbitrary vector, then
wxG =R G (2.17)

which is a relation frequently used in this article. Therefore, (2.15) can be written as



Q=1-singR, +(I—cosg)nn’ 1) (2.18)

In terms of elements
Q =

cos¢g+ (l —COoS ¢)n12 nn, (1 —COos ¢)+ nysing nn, (1 —COoS ¢)— n, sin ¢

2.19
nlnz(l—cosqﬁ)—n3 sin ¢ cos¢+(1—cos¢)n22 n,n, (l—cos¢)+ n, sin ¢ @.19)
nn, (l—cos¢)+ n,sing n,n, (l—cos¢)—n1 sin ¢ cos¢5+(1—cos¢)n32

By using Cayley-Hamilton theorem, it can be shown that
Q= exp(R(p)
0 -4 ¢ 0 —n¢  n,¢ (2.20)
=exp| ¢, 0 —¢ |=cxp ny 0 —mg
-6 & 0 —m¢  ng 0

Based on the Euler theorem for the three-dimensional motion of a rigid body, every

proper orthogonal matrix Q is equivalent to a rotation about an axis [1]. This means that
the form given here for Q is a general form. In practice, the Euler angles are widely used

to represent the rotation matrix Q [1].

It should be noticed that the relations for base unit space three-vectors are

e;=0,e, (2.21)
e, =0,€ (2.22)
with
Q'Q=QQ" =1 (2.23)
It is obvious that for the four-dimensional base vectors we have
e, =4,8, (2.24)
e, =4,8, (2.25)
It should be noticed that
e, =&, =(0,0,0,1) (2.26)



which means the new time coordinate is the same as the old one.

Let the real orthogonal matrix transforming from x to x’ be designated by Q,

x'=Qx (2.27)
and the second orthogonal matrix from x’ to x” be Q,

x"=Q,x’ (2.28)
Hence the matrix of complete transformation Q from x to x”

x" = Qx (2.29)

is

Q=Q,Q, (2.30)
In general the rotations are not commutative. In other words, the rotation vectors

¢, =¢n, and ¢, =¢,n, do not follow the Euclidean vector summations. It can be

shown that
cosézcosﬁcosﬁ—sinﬁsin¢—2n1 n, (2.31)
2 2 2 2
singn = sinﬁcos¢—2n1 Jrsinﬁcosﬁn2 +sinﬁsin¢—2n1 Xn, (2.32)
2 2 2 2 2 2 2

These relations are more conveniently derived, if a quaternion representation of rotations

or unimodular representation with Cayley-Klein parameters is used [1]. It is seen that the
summation of half vector of rotations %q)1 and %(p , obey the rules of spherical
geometry. The triangle representing these vectors can be considered as a spherical
triangle on a unit sphere, with the angle opposite to elliptic vector %q) given by the angle

between the two axes of rotation. Therefore, the vectorial representation of spatial
rotation is governed by an elliptic type of non-Euclidean geometry. However, for
infinitesimal rotations, this geometry reduces to Euclidean geometry, where the

infinitesimal rotation vectors commute.



2.2. Boost

The other important form of Lorentz transformation is a pure Lorentz transformation or

boost specified with relative velocity v. The boost parameter or rapidity & is defined by

tanh & =~ (2.33)
c
The inversion of this relation gives
lerKvlelelv7
§=tanh_l[—J=—ln ¢ =—+—(—j +—(—j +—(—j +oe (2.34)
c) 2 |_Y| ¢ 3\c 5 e T\c
c

The vector rapidity also can be considered as
g=ce, (2.35)
where e, is the unit vector in the direction of v. Here, we emphasize the use of rapidity

& as an essential parameter.

A simple example of a boost is the boost along the x-axis, for which

coshé 0 0 isinhé

0 1 0 0
A= (2.36)
0 0 1 0
—isinhé 0 0 coshé
which is usually written as
y 0 0 ify
0 1 0
A= (2.37)
0 0 1
—-ify 0 0 vy
with f=v/c and y =(1-p*)""?, where
y =cosh& (2.38)
Py =sinh & (2.39)



The structure of this transformation tensor is reminiscent of a rotation tensor, but with

hyperbolic functions instead of circular. Interestingly, we can define

y =i¢

where

siny =isinh¢&

cosy =coshé

Therefore, the transformation matrix can be written as

cosy O
0 1
A =
0 0
—siny 0

0

0
1
0

sin
0
0

cosy

(2.40)

(2.41)
(2.42)

(2.43)

One can realize this is a rotation with imaginary angle w =i& representing the deviation

of plane x x, relative to plane x,x,. Analogous to the spatial rotation, the base four-

vectors of the new system are

e = (Cosh £,0,0,isinh §)

e, =(0,1,0,0)
e, =(0,0,1,0)

e, = (— isinh £,0,0,cosh r:)

Therefore, we have

cos(!,8, )= cosh & = cosy

cos(e],

)2151nh§—51nw

4
cos(e},8, )= —isinh & = —siny

cos(e},®, )= cosh & = cosy

Relations (2.45) show that these imaginary and complex angles are

(@;,@1)=l‘§=l//

(2.44)

(2.45)



(@i,@4)=—i§+%=—w+§

(€,.e)=if+Z =y +2 (2.46)
2 2
(@:t ,6y ) =ig
For a general boost, which is not parallel to any of coordinate axes, we have

A |1 Ccoshe - 13e,e? isinh ge, (2.47)
—isinh e, coshé&

By using the Cayley-Hamilton theorem, we can show

0 i 0 ile,
A= exp{_ " 0} = exp[_ i’ 0 } =

(2.48)
=1+sinh & 0 e +(cosh& -1 ee 0
- —ie/ 0 0" 1
In terms of the elements we have
1+ (cosh &— l)eﬂ2 (cosh &— l)eﬂe,2 (cosh &— l)elle,3 ie,sinh &
(cosh &— l)etze,1 1+ (cosh &— l)etz2 (cosh &— l)etze,3 ie,sinh& (2.49)

(cosh &— l)eﬂet1 (cosh &— l)eﬂet2 1+ (cosh &— l)e,32 ie,sinh &
—ie, sinh & —ie,sinh & —ie,sinh & coshé

Therefore, we expect the base four-vectors of the new system in terms of old ones to be
L= (1 +(cosh&—1)e,”, (cosh&—1)e,e,,, (coshé —1)e,e,, isinh feﬂ)
= ((cosh &= )e,e,, 1+ (coshE—T)e,,%, (cosh&—Dee,, isinhe, ) (2.50)
# = ((cosh &= Dege,, 1+ (cosh& —1)e,e,, 1+(cosh &~ )e,®, isinh Ze,,)

, = (~isinh &, ,~isinh &,,,~isinh &

= (— isinh &e,, cosh f)

cosh&)

t3°

10



It is seen that the angles among new and old axes can be obtained easily. For example,
from

cos(@g,@4)=cosh§ (2.51)
we obtain

©,.e,)=i&=w (2.52)
This shows the angle between the time axes is specified by rapidity, which is expected.
2.3. General Lorentz transformations

Every homogeneous Lorentz transformation in general can be decomposed into a pure
Lorentz transformation A, (boost) and a spatial rotation A, (in either order) [1]. For

the case where a Lorentz transformation is represented as the product of a boost

A, - 1+(cosl.1§—13etef isinh Ze, (2.53)
—isinh e, cosh&
from the old system x,x,x,x, to the intermediate system y,y,y,y,, where
y,u = AB,uvxv (254)
followed by a spatial rotation
QO
A, = 2.55
R {0 { (2.55)
from y,y,y,y, to the new system x,x;x;x;,
x/'l = Apu, (2.56)
we have the total homogeneous Lorentz transformation
A=A A, (2.57)
which is
A Q O 1+(cosh&—1)ee] isinhce,
0 1 —isinh &/ cosh &
(2.58)

| Q+(cosh&—1)Qe, e/ isinhQe,
—isinh &/ cosh &

11



It is obvious the transformations A, and A, are not generally commutative. This is
because the vectors § and ¢ are non-Euclidean and therefore their addition does not

follow the rules of Euclidean geometry.

Now we demonstrate the important property of a pure Lorentz transformation or boost
which follows the hyperbolic type of non-Euclidean geometry. Let the pure Lorentz

transformation from x, to x|, be designated by A,

X, =4,,,% (2.59)

Luv™v

and a second Lorentz transformation from x/, to x be A,

X, =4,,,%, (2.60)

2,uv v

Hence the matrix of complete transformation A from x, to x7,

x, =4,,x (2.61)

v Xy
is
A=A A, (2.62)

where

A=

_[1+(cosh&, ~1ye, e, isinh §2et2}{1+(cosh§1 ~1)e e’ isinhie,| (2.63)

—isinh &,e] cosh &, —isinh &el, cosh &,

It is seen that the complete transformation is not in general a pure Lorentz transformation.

This transformation is in general form (2.58), where

cosh& =cosh &, cosh &, +sinh & sinh e, o€, (2.64)

This result is the indication of hyperbolic geometry governing the velocity addition law.
This has been noticed and developed extensively by early investigators of relativity such
as Varicak [2-4]. It is seen that this non-Euclidean geometry is the origin of the famous

Thomas-Wigner rotation, which has been explained by Borel [5]. An account of these

12



investigations can be found in the article by Walter [6]. One can realize that for
infinitesimal rapidity vectors, the hyperbolic geometry reduces to Euclidean geometry,

where the rapidity or velocity vectors commute.

If the transformations A, and A, are general Lorentz transformations, it is seen that

A=
Q, +(cosh&, —1)Q,e e’ isinh&Q,e, }{Ql +(cosh& ~1)Q,e, e’ isinhEQpe,
—isinh & e), cosh &, —isinh &e], cosh &,
(2.65)
where
cosh & = cosh & cosh &, +sinh & sinh &e/,Q,e,, (2.66)

It will be shown that this relation can be further generalized to accelerating systems.

We can see that the inertial systems are oriented from each other by a four-dimensional
rotation. The homogeneous Lorentz transformation just specifies this rotation relative to a
fixed inertial system as reference frame. This transformation in general can be
decomposed into a pure Lorentz transformation (boost) and a spatial rotation. In a

geometrical view, the Lorentz transformation can be specified by a hyperbolic vector §
representing the hyperbolic angle associated with the boost and an elliptic vector @

representing the space angle rotation. The geometry governing these vectors is non-

Fuclidean as was demonstrated.

In general, the base unit four-vectors of two inertial systems are related by
6, =4,8, (2.67)
or

8 =A ¢ (2.68)

Y7 Vi v
Therefore, the angles among these directions are such that

cos(@' e, ) =4

M

(2.69)

uv

13



cos(@ﬂ,@'v)= Y| (2.70)

v

It would be interesting to present a simple general Lorentz transformation. Let this
transformation be the product of a boost in the x-direction followed by a spatial rotation

around a z-axis

cos¢ sing 0 isinh¢&

—sing cos¢ 0 0
0 0 1

0

0 0

A= (2.71)

0
cosh &

S = O O

which can be written as

cosgcoshé  sing O icos@gsinh&
—singcoshé cosg 0 —isingsinh&
1
0

2.72
0 0 0 (272)

—isinh & 0 cosh&

The base unit four-vectors of the new system are
€| = (cosgcosh &, sing, 0, icosg@sinh &)
e, = (~singcosh &, cosg, 0, -isin@sinh &) (2.73)
e, =(0, 0, 1, 0)
e, =(~isinh &, 0, 0, coshé)

It is noticed that
cos(e!,e,) =@, e@, = cosgcosh&
cos(e],e, ) =sing (2.74)
cos(e!,,)=0

cos(e],@, ) =icos@sinh &

It is seen that these relations are the result of the addition of non-commutative non-

Euclidean vectors § and ¢ .

14



What we have demonstrated is the very important character of the set of four-dimensional
systems with three real coordinates and one imaginary coordinate. It is seen that these
systems are oriented from each other, in a manner which can be represented by a
combination of circular and hyperbolic angles. It can be realized that this set is the set of
all inertial systems in Poincare’s relativity. In this theory, space and time are no longer
separated as in Galilean relativity and motion is nothing but rotation. However,
Poincare’s relativity does not specify what is rotating. Our aim in the following sections

is to resolve this fundamental question.

Although we have been using the concept of four-vector and four-tensor repeatedly, we
have not given their rigorous definition. Therefore, for future reference, the definition of

a four-tensor is provided here. A four-tensor G of order n is defined as a mathematical

object with 7 indices which has 4" components G, , ., in a given inertial system and

My
transforms via

G =A, A, A, G, .

iy, vt vy

(2.75)

to a new inertial system. The most important four-tensors are those involved in the theory
of electrodynamics, which will be discussed later. For simplicity, we have been using the
same symbols such as x, e, Q, X, @ and A to represent the matrix form of their

corresponding three and four tensors.

3. Fundamental theory of motion

In this section, we develop the theory of accelerating particles, which shows the
fundamental relation between space-time and matter. It clarifies the relativity of space-
time and shows how an inertial system transforms to other inertial systems. This is
nothing but the geometrical theory of interaction. It is seen that the relative motion is the
result of the four-dimensional rotation of these systems relative to each other. We start
with classical particle kinematics and develop the fundamental theory of motion. The

theory of interaction will be discussed in the next section.

15



3.1. Kinematics of a particle

Let us specify the inertial system x,x,x,x, as an inertial reference frame. Consider a
particle with mass m moving relative to this inertial frame. At any position, the motion
may be considered as taking place in the plane that contains the path at this position. This
plane is often called the osculating plane. The velocity vector v is tangent to the path
curve in this plane. The acceleration of the particle
. dv

= 3.1)

lies also in this plane. We can consider a local coordinate system by defining the unit
vector e, tangent to the curve at this position, the unit vector e, in the direction of
principal normal to the curve in the osculating plane, and the bi-normal unit vector e,
which is normal to the osculating plane at the point. The relation

e, =e xe, (3.2)

among these vectors holds. In this local (tangential, normal, bi-normal) coordinate system

we have
vV =ve, (3.3)
with
ds
y=—>= 34
% (3.4

where ds_ is the length of the infinitesimal displacement of the particle on the space

curve in time interval dt . For acceleration, we have

a=Pe 1y (3.5)
dt dt
For the second term, we apply the concept of curvature in the form
de 1
L=—=¢e 3.6
I RS (3.6)

s A

where R is the radius of curvature at the particle position point. Therefore, the
acceleration in terms of tangential and normal components a, and a, is

a=a +a, (3.7)

16



where

dv
a =—age =—¢e 3.8
t 't dt t ( )
2
%
a =age =—e 3.9
n n-n R n ( )

It seems the differential geometry governing the kinematics of the particle is more
complete if we introduce the concept of torsion of the curve defined by

de, __ 1o (3.10)
ds, R

tor

where R, is the radius of torsion of the curve. It can be easily shown that

fg" = —Rien +Rie,, (3.11)

N s tor

Therefore, the equations for curvature of curve might be written as

el o L o
dsg R ‘et
de, \_|_ Lo _Lie (3.12)
dsS Rs Rtor e
L€
de, 0 - 1 0
L dSS _ L Rtor _

This relation is called the Frenet-Serret formula in differential geometry. The anti-
symmetric tensor on the right hand side possesses the whole information about the
curvature and twist of the curve at the point under consideration. However, an interesting
interpretation of this relation can be given as follows. The principal directions e, —e, —e,
specify a local orthogonal reference system attached to the particle. This reference system
rotates as the particle moves on the curve path. It is obvious this relation shows the
gradual rotation of this local system with respect to any inertial system. If we write the

relation as

17



de,

dt
de

dt
de,

L dt |

v 0|
Rs et
O L erl
Rtor
€,
vk

(3.13)

the anti-symmetric tensor is the angular velocity tensor of the rotating local system

e, —e, —e,. By considering the angular velocity vector

t n

we obtain the relation

de,

dt
de,

dt
de,

L dt |

(3.14)

(3.15)

It is interesting to note that there is no angular velocity component in the e, direction.

The Frenet—Serret formulas can be generalized to higher dimensional Euclidean spaces

by defining generalized curvatures. It can be shown that in the principal local coordinate

system, which is called the Frenet—Serret frame, the anti-symmetric curvature tensor is

tri-diagonal [7]. An important analogy will be seen in developing the relativistic theory of

motion.

18



3.2. Relativistic kinematics of a particle

In a relativistic study, the velocity and acceleration of the particle must be defined as
four-vectors. However, it is seen that the vectors v and a are still useful in this

development.

The position of a particle in the inertial reference frame describes a path known as the
world line. By considering two neighboring events on the world line of the particle with

coordinates x, and x, +dx, , we have
dx,, = (dx,icdt) = (v,ic)dt (3.16)

The square length of this infinitesimal four-vector
2
ds® = duedy = dx dx, = dx* - dt* = —czdtz[l —V—zj (3.17)
c

is the scalar invariant under all Lorentz transformation. It is seen that the imaginary

2
ds =icdt,|1 -2 (3.18)
c
The proper time between the events d7 is defined by

2
dr=di|1-2 =dify (3.19)
C

length on the world line is

Therefore,
ds =icdt (3.20)
By using the concept of rapidity
v
tanh & = — (2.33)
c
we notice
dt = ydt =drcosh& (3.21)

19



The unit four-vector tangent to the world line ©, is defined as

dn  dx,
2 _ 322
"ds ds ” (3-22)
where
B, o€ =1 (3.23)

The four-vector velocity U=u @, is defined as the rate of change of the position vector

of particle X with respect to its proper time

dx
U=— 3.24
i (3.24)
The space and time components of U
u,=(uu,) (3.25)
are
\4 )
u=)v=—~———=csinhde, (3.26)
1 v2/02
and
. ic :
u, =iyc=—=————=iccoshé (3.27)
12/
A% C
Therefore
U= c(sinh &e,, icosh&) (3.28)
which can be written as
U=ice, (3.29)
with
8, = (~isinh &e,, cosh¢) (3.30)

The length of the four-vector velocity is a constant since
2
MOM:uﬂuH:u2+u4 =—c’ (3.31)

and it is thus time-like. It is seen

20



de
L=0 3.32
s (3.32)

B e

t

@t

ds

which means is normal to the world line. By considering the unit four-vector €, in

this normal direction called the first normal and using the concept of curvature, we have

@ __1lg (3.33)
ds R

where R is the world line radius of curvature at the point under consideration. The minus

sign is for convenience and it will be justified shortly. It is seen that

de, de, 1
Rt APt A 3.34
ds ds R? ( )
The four-acceleration b = b .8, is defined as
I
h="2= 3.35
dr dr* ( )
which is always perpendicular to the four-vector velocity where,
Ue ﬂ =0 (3.36)
dr

It can be easily shown that

E@:{y2a+7/4(vza]v,i7/4(v.aﬂ (3.37)
c c

The length of four-vector acceleration can be found to be

2
b =b,b, =y'a* + y"(V;aj (3.38)

Since b,b, is positive, the four-acceleration is space-like. However, it is more appealing

to consider the four-acceleration relative to the world line. By using (3.33), we obtain

2
b=ic fz@t :%@n (3.39)
T
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which shows the four acceleration is in direction of first-normal of world line and its

value is

2
C
Ib| = = (3.40)

Now we study the relative motion of a particle 4 in different inertial systems. Let us
consider the inertial systems x,x,x,x, and x/x,x;x;, which are related by the Lorentz
transformation

x, =4,,x (2.6)

where

A {Q O}{l +(cosh&—T)e,e”  isinh é‘e,}

0 1 —isinh &e! cosh &
(2.58)
| Q+(cosh&—-1)Qe, e/  isinhQe,
—isinh &e! cosh &

Assume particle 4 moves in the first inertial system with x , = x ,(¢) and its four-vector
velocity is
U= (u,,u,,)=c(sinh e, icoshé,) (3.41)

where
Vi
tanh&, =4 (3.42)
C
This particle also moves in the second inertial system with x, = x/,(¢'), such that
u' =, u,)=c(sinh &, icosh &) (3.43)

where

/

tanh &, = Ya (3.44)
c

These four-vector velocities are also related by the tensor transformation
u,u = Aﬂvuv (3.45)

Therefore,
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v, = [Q + (cosh' £—-1)Qe,e’ isinh &Qe, }[c‘sinh §Aetﬂ (3.46)
—isinh &e! coshé | iccoshé,
which gives the relations
sinh &¢',,= Q[1+ (cosh & —1)e, e/ ]sinh & e,,—sinh & cosh &, Qe, (3.47)
cosh’, =cosh&coshé, —sinh Esinh &€ e, o€, (3.48)

The relation (3.48) shows that the velocity addition law is valid even when one of the
velocities is not constant. We investigate shortly the validity of this law when all particles

are accelerating.
3.3. Motion of particle as a four-dimensional rotation

After reviewing kinematics of a particle, we develop the important character of its motion
as a four-dimensional rotation. To show this we consider the motion of the particle as the
transformation of its four-velocity vector U in the inertial reference frame system. Let

U, be the initial four-vector velocity at position X, , such that u(x,)=U,. We can
consider the transformation

u, (%)=L, (x,x,)u,(x,) (3.49)
where the transformation tensor L, (x, xo) depends on the current position of the particle.

This relation can be written as

u(x) = L(x, x,)u, (3.50)

Since the length of the four-vector velocity is constant, we have
u#(x)u#(x)=u#(x0)uﬂ(xo)=—02 (351)
Therefore,

(L0 (%, %)L, (%, X)) — 5aﬂ Ju, (x0)u 4 (x,) =0 (3.52)

This requires the orthogonality condition

L;ta (xa xO)Lluﬂ(x7 xo) = 5ap (353)
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It is seen that although L(x,xo)looks similar to a Lorentz transformation among inertial

systems, it varies with motion of the particle.

Meanwhile, the inverse relation is
0y ) =L (26, 3 u(x) (3.54)
which in terms of components is

u#(xo)= L, (x, xo)uv(x) (3.55)

This gives the orthogonality condition in the form
LCx, x)L" (x,x,) =1 (3.56)
or

L, (x,x,)L,, (x,x,) = 5#V (3.57)

By taking the derivative of (3.57) with respect to the proper time of the particle, we

obtain
dL, (x,
Ba5%0) e L, () L) g (3.58)
dr
Now by defining the four-tensor
dL, (x,
0,0 =L B0 ) ) (3.59)
dr
we can see that the relation (3.58) becomes
Q,0)+Q,(x)=0 (3.60)
or
Q(x)+ Q" (x)=0 (3.61)

which shows Q (x) is an anti-symmetric four-tensor. In compact form, we have

Q(x)= dL%XO)U (x,%,) (3.62)
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By multipling the relation (3.59) with L ,(x,x,) and using the orthogonality condition,

we obtain
dL , (x,
Enli0) g (), (3.63)
dr
This may readily be written as
L) o)) (3.64)
T

Now the acceleration from the original transformation relation
t, ()= L, (65, ), () (3.49)
is

duy ()C) — dL,uv (xa xO) u

3.65
dr dr (x) (3.65)
By substituting from (3.63), we have
dudL(X) = Q,ua (x)Lav (x’ xO )uv (XO) (366)
T
which reduces to the relation
d
,{x) _ Q,., (¥, () (3.67)
dr
u,(x

This is the relation between four acceleration and four-velocity at each point on

dt
the world line. It should be noticed that the relation (3.67) is actually (3.35) and (3.37)

written as a transformation.

It is also noticed that the relation (3.67) is similar to the non-relativistic relation for rate

of change of a constant length vector G attached to a rotating system

—=0xG 3.68
% (3.68)
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where @ = (a)1 ,a)z,a)3) is the angular velocity of that rotating system. It is remembered

that the components @,, @, and w, are the angular velocities of the body system in the

vz, zx and xy planes of an inertial frame. Because of the importance of (3.68), it is

advantageous to demonstrate the mathematical details of its derivation. Let the prime

system to be the body system. Then the components of this vector G’ are constant in this

system. Therefore, we have

G'=Q()G()

where Q(¢) is the orthogonal rotation matrix. This relation can be written as

G(r)=Q"(1)G'

The rate of change of the vector G(¢) relative to the fixed reference frame is

dG _dQ" (t) .

dt dt
After eliminating G’ by using (3.69), we obtain

G _dQ’
dt dt
Now by defining the tensor
dQ”
W =
dt Q
we have
dt
which in the index notation can be written as
dG,
@

Now by differentiating the orthogonality condition
Q'Q=1

with respect to the time, we obtain
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(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)



dQ’ r dQ
+Q" —=0 3.77
7 Q+Q g (3.77)
which may readily be written as
W+W' =0 (3.78)

This relation shows that the tensor W is anti-symmetric. This tensor is the known
angular velocity tensor of the rotating system relative to the inertial system. In terms of

elements, this tensor is

0 -0, o
W=R, =| o, 0 -o (3.79)
-0, O 0

Therefore, the relation (3.74) is the other form of (3.68)

—=0xG 3.68
7 (3.68)

It should be noticed that the Frenet-Serret formula (3.15) is the application of this

equation for fundamental base unit vectors.

Now, we have a remarkable analogy for

d
du, ) _ 2, (), (x) (3.67)
dr
with
dG,
“=WG, (3.75)

Uy,
dr

It is seen that the four-vector acceleration is the result of continuous rotation of the

four-vector velocity u, in a four-dimensional sense. Therefore, it seems u, is attached to
a four-dimensional system x/x,x;x; in the x; =ict’ direction, where

u’ =10,0,0,ic 3.80
L= ) (3.80)
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and this system is rotating with four-dimensional angular velocity Q,  relative to the

inertial system, such that
dL,,(x,x,) _

Q,,(x)L,, (x,x,) (3.63)
dr

Therefore, we have discovered that there is a fundamental relation between space-time

and matter. A massive particle specifies a local four-dimensional orthogonal system with

rr . r !

three real axes and one imaginary axis. Within this local x,x,x;x, space-time system, the

particle has attached four-velocity with magnitude ¢ in the time direction. The rotation of
this space-time or four-dimensional system generates motion of the particle relative to the
inertial system. This rotation is represented by the four-tensor angular velocity

Q=0 &6, inthe inertial reference frame. The nature of this four-dimensional angular

velocity is explored very shortly.

As was mentioned above, at any point on the world line, we have the transformation
ul, = A, (), (x) (3.81)
where the varying tensor transformation 4, (x) looks like a Lorentz transformation.

Therefore, there must be a relation between tensors 4, (x) and L » (x). For a particle at

an initial point x,, we have

u, = A, (x, ), (x,) (3.82)

Therefore

A, (), (6) = 4, (5 Ju, (x,) (3.83)

By substituting for u,(x) from (3.49), we obtain

A ()L, (6, X, (x0) = A, (g, () (3.84)

This shows the relation
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A,uv (x)Lva (x’ xO) = A,ua ('XO) (385)
which can be written as

Alx)L(x,x,) = Alx,) (3.86)

Therefore

L(x,x,) = AT (x)A(x,) (3.87)

It should be noticed that although A(x) 1s not constant any more, it follows the general

form of Lorentz transformation (2.58)

A {QP 0}{1 +(coshé—1)e, e, isinh cfPetP}

0 1 —isinh &, cosh&, (3.88)

| Qp+(coshS, —DQe,, e, isinh&,Que,
—isinh &e, cosh&,

where the physical meaning of the parameters in &, and Q, has not been specified.

However, we can explore their relation with the motion of the particle in the course of

our development. By using the relation (3.81), we obtain

u, = (csinh&pe,p,iccosh &, ) (3.89)

This shows the vector &, is actually the rapidity vector & of the particle. Therefore,

A [QP O}{l +(cosh&—1)e,e’  isinh §e,}

0 1 —isinh &/ cosh &
(3.90)
| Qp+(coshé-1)Q,e,e; isinh&Q,e,
—isinh &/ cosh &

It is seen that the position vector x = x(t) of the particle does not specify its relative
position in the reference inertial frame completely. It is also necessary to specify its body

frame orientation A = A(t) relative to this frame. However, the rapidity vector é(t) = Ze,

. . . dx i

is obtained from the velocity vector v(r)= e Therefore, the position vector x = x(¢)
t

and orthogonal matrix Q, =Q P(t) completely specify the particle position.
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Now, we investigate the character of the anti-symmetric tensor Q =Q @ €, . The initial

four-vector velocity is

U, = c(sinh &e,q, icosh&,) (3.91)

For simplicity we take the space coordinates of the initial body frame to be parallel to the

stationary inertial frame, where Q ,(¢,)=1. Therefore,

AO — 1 + (COS]? §0 - 1)TetOetTO ZSIHh éOeIO (3 92)
—isinh e, cosh &,
By taking the derivative with respect to the proper time 7 in the equation
L(x,x,) = AT (x)A(x, ) (3.87)
we obtain
T
dL(x,x,) _ dA"(x) A, (3.93)
dt dt
Therefore, the relation
Q(x)= AL X)) r x,) (3.94)
dr
becomes
dA" (x
Q(x)= dT( A A" (5)A ) (3.95)
and finally we have
T
Q(x)= d‘; () A(x) (3.96)
T

For A’(x) from (3.90)
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AT = 1+(co§h§—i)e,ef —isinhée, [ Q," 0 (3.97)
isinh &e, cosh& 0 1
By taking the derivative with respect to the proper time, we obtain
. dé de de’ . dé .. _de
sinh &e e/ —+(cosh& —1) — e’ +e,—- | —icosh&e, —= —isinh & —*
dAT= 68”dr ( d )(dt ' 'dt) : ég'dr l éEdr {QPT 0}
d T
’ icosh fefﬁﬂ'sinh fdi sinh fﬁ 0 1
dr dr dr
T
L[1+(coshé—De,e] —isinh &, a@Q,
isinh &e] cosh & dOT 0
(3.98)
Therefore, for Q(x)in (3.96), we have
Q=
. .dE de, ;  de’ ( dé . dej
sinhé —=e,e, +(coshé —1)] —Le, +e,—~| —i| coshde,—+sinh&—~
£ 75 e] +(cosh¢ )[dw Ca) Tl GG )
T
i cosh &e” 95 1 sinh 298 sinh £ 9%
dr dr dr
y 1+(cosl'1§—13etef isinh Ze, (3.99)
—isinh e, cosh&
T
J{1+(cosh§—l)e,elr —isinhfet} dQp 0,
.. T dr
isinh e, cosh& 0 0
y Q, 0|1+ (coshé—1)eel isinh e,
0 1 —isinh &e! cosh&
Now by using the relation
T
R, = aQ, Q, (3.100)
: dr

where ®, is an angular velocity vector in a mathematical sense, we obtain
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T
R, +(cosh&é—1) e, de, _ &ef - z(ﬁ e, +sinh & 9 _inh (R, e,j
B i dt dt dr dt r (3.101)
- T
i(ﬁ ¢ +sinh & %L _ginh g R” J 0
dr dt g
This relation can be written in the form
R, -—i l11
Q= ¢ (3.102)
Aoy
i—n 0
c
where
de! de
R, =R_ +(coshé—1) e, —-——Lte’ 3.103
u,.,,,J(eg)(tdt dtt] (3.103)
ln:ﬁe,—ksinhé{&—Rm elj (3.104)
c dr dr 4
One can see these relations can also be written as
o =0, +(coshe—1) % e (3.105)
dr
Ln=% e isinhe ®_g xe, (3.106)
c dr dr
These relations can be simplified further by using the relations
de, v
—L =—cosh¢e 3.107
dr R, e, ( )
and
e, =e xe, (3.2)
The four-tensor ©(x) in terms of elements in the inertial reference frame is
0 -—o, o, -injc
o, 0 —w, —in,/c
Q= i (3.108)
-0, o 0 —in/c

i771/c i772/c i773/c 0
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This is the general form of an anti-symmetric four-tensor angular velocity €, . It should

be noticed that the elements Q,, =—-Q,, =in,/c are imaginary. It is observed that the

angular velocities @,, @, and @, in xy, yz and zx planes generate space rotation of the
o . i i
body frame; the imaginary angular velocities —7,, —77, and —n, in xt, yt and zt
c c c

planes generate boost of the body frame. Therefore, the space-time body frame system

rotates relative to the inertial system with angular velocity tensor €2, , which is a

combination of elliptic and hyperbolic angular velocities ® and ll] .

c
Returning to the equation for four-acceleration
du (x
W) () 667
dr
we have the space and time components of four-vector acceleration as
d—uz(y)xu—inm (3.109)
dr c
LTI (3.110)
dt c

These relations can also be written in the form

Al ¥ |t exy (3.111)
dt\ \1-v*/¢? dt

d c ldu, 1

R = — =—neu 3.112
dt[qll_VZ/CZ] i dt cn ( )

To demonstrate the physical meaning of the four-tensor angular velocity Q, , we

consider the case where the particle starts moving from rest at £ = 0. This requires & =0
in (3.106) and (3.107). Therefore, at this moment,
0=0, (3.113)
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1 d
—-n=—>e,=—ae

= 3.114
c dr ' ¢ ' ( )

These mean ® and l1] = la are the circular and hyperbolic angular velocity of the body
c c

frame relative to the inertial frame. We notice that at this instant dz = d¢ and

n=a =a (3.115)

and therefore
do =odr (3.116)
dv=adr=adr (3.117)

The infinitesimal anti-symmetric four-dimensional rotation tensor d® is defined

dd = Qdr (3.118)
which can be written as
R, —i lafv
dd = | ¢ (3.119)
i—dv’ 0
c
This tensor in terms of elements is
0 —-d¢, d¢, —idv/c
d 0 —-d —id
io=| 9 b —idv/e (3.120)

—-d¢,  dg, 0 —idv,/c
idv,[c idv,[c idv,/c 0

This explanation can be used for the special case where the inertial system is coincident
with the body frame instantly, which is often called a commoving inertial frame system.

For this case, we have Q’, =1 and the relation

L, \x) (x) =9 (x)L,, (x) (3.121)
dr’
becomes
dL;, (x) _ Q' (%) (3.122)
dr’ v
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where

R, —iln’ R, —ila;
o = 1 c |- | c (3.123)
i-n" 0 i—-a" 0
C
It is seen that
o' =0, (3.124)
l11'=la; =la' (3.125)
c c c
and at this instant dz’ = d¢' and we have
do'=o'dr (3.126)
av' =aldr =a'dr (3.127)

It is seen that ®' and ln' = la' are the circular and hyperbolic angular velocity of the
c c

body frame relative to the commoving inertial frame system. The infinitesimal four-

dimensional rotation d®' of the body frame relative to the commoving inertial frame

system is
qu)r _ildV’
dd' = 1 ¢ (3.128)
i—dv'” 0
c

It is obvious the four-tensor angular velocity tensor €, is the representation of € on

the commoving frame and we have

Qe =0Q 66 (3.129)

v usv v usv
From this, it is expected that
Q,, =N N2, (3.130)

up
This tensor transformation can also be written as

Q,=L,L,8, (3.131)

ua = up
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Although we still use the notations @ and in and call them angular velocities, these
c

. . i
vectors cannot be taken as a proper angular velocity vectors like vectors @' and —1'.
c

This is the result of the non-Euclidean geometry governing the four-dimensional

. o . . . , 1, .
rotations. A combination of the circular and hyperbolic angular velocities ®" and —n" in
c

the relation (3.131) gives the vectors ® andln. The famous Thomas precession for
c

accelerating particles is manifest of the governing hyperbolic geometry. Now it is clear
why we denoted subscript P in the orthogonal tensor Q,, which specifies ®,. The
orthogonal tensor Q specifies @ through the relation

_dQ’
®dt

Q (3.132)

Although Q and @ are essential mathematical entities, they cannot be demonstrated
geometrically as directly as Q, or ®,. However, we must be careful when we consider

o as a circular angular velocity. We might drop the subscript P cautiously. Therefore,
we have learned that the motion of a particle in the classical sense is the result of the
hyperbolic part of rotation of its body frame. The space rotation is also part of the motion,
which is the origin of spin precession of an electron in a magnetic field. This will be

discussed in more detail shortly.

It is realized that the non-Euclidean geometry is the result of transforming four-tensors
and four-vectors among different space-time body frames. Through this important
physical reality, one appreciates the work of those who considered the possibility of non-
Euclidean geometry. The non-Euclidean aspect of the velocity addition law for uniform
motion has been studied by Robb, Varicak, Lewis, Wilson and Borel [6]. However, these
discoveries have not been appreciated enough by later investigators. Fortunately, there
have been some advocates of reviving this important issue recently [8]. Now we

appreciate that this path resolves inconsistencies and paradoxes in relativity. It also
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explains the geometrical mechanism behind motion and interaction, which will be

developed in the next section.

We have also noticed an important issue regarding the four-vector velocity of a particle.

It has been shown that the four-vector velocity is attached to its body frame such that

u, = A, (x)u,(x) (3.81)

This has been shown symbolically in Fig. 1 by considering a two dimensional space and

one time direction. It should be noticed that the inertial reference frame and body frame

of the particle both have attached four vector-velocities U* and u” in their space-time
frames, respectively. However, the Lorentz transformation (3.81) relates the components

of four-vector velocity u), of particle P in its frame and its components of four-vector
velocity u, (x) in the inertial reference frame of particle R. It should be noticed that the
four-vector velocity components u; = (0,0,0,ic) and u u (x)=c(sinh &e,,icosh &) are

representations of U” in body frame of particle and inertial reference frame, respectively.

Inertial reference frame Body frame of particle

X5

Xy

Fig. 1. Inertial reference frame and body frame.

Therefore, we can consider a new type of four-vector @ called an attached four-vector

and defined as a four-vector attached to the body frame of a particle, such that
G,=A,G, (3.133)

no matter whether the body frame is inertial or accelerating. For this four-vector
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dG

£ = Q IVGV
dr g
This can be written as
dGg 1
L= _ivaGv
ds c
or in compact form
dt _ _Log
ds c

Using this relation for unit base tangential four-vector €,, we have

(3.134)

(3.135)

(3.136)

(3.137)

(3.138)

de, __I Qe

ds c
By comparing this relation with the relation (3.33) for the world line radius of curvature,
we obtain

1e _ige

R c

It is seen that the world line radius of curvature satisfies

1

1 ro2
RSN

where the symmetric tensor Q° is

{ :
oo’ —o’'1+—1q’ —Loxn
0’ = C C
: -

—i(‘”xﬂ)T —n
C C

It is also seen that the fundamental equation (3.63) can be written as

ﬂg_gﬂ:_gg,m@)mx)

or in the compact form

dl(x) _ ~Lo(x)(x)

ds c
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For the base four-vectors of body frame @’,, we have

4 GH
) i @,
—| 7 |=-=Qlx)e| (3.143)
ds | @, c 5
e, e,
which can be written as
_d_@;_
dcg 0 -0, o -in/c|e
272 . '
ds __ @ A (3.144)
de; cl-o, o 0 —iny/c| e
dSr i771/c i772/c i773/c 0 ®)
s,
L ds |

One realizes that this equation is actually a Frenet-Serret-like formula for orientation of
the local body frame relative to the inertial system. However, it should be noticed that
this orientation is in terms of generalized curvatures of the world line but not generally in

principal directions. The tangent to the world line specified by @, =@ is a principal

direction, but the perpendicular directions to the tangent are not usually principal
directions. It should be also mentioned that Synge has already studied the Minkowskian
Frenet-Serret moving frame [9]. What we have shown is that this frame is a

representation of the fundamental body frame of a particle.

In this section, it has been demonstrated that there is a relationship between Minkowskian
space-time and massive particles. The particle specifies its space-time body frame
relative to the inertial reference frame. Now the natural question concerns the very
existence of these space-time systems. It is seen that we are compelled to admit the
existence of a universal entity, which has nothing to do with any special space-time. It is
in this universal entity in which particles and their corresponding space-time body frame

exist. Later we will investigate more about this universal entity.
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3.4. General relative motion and velocity addition law

Now we develop the theory of relative motion for general accelerating particles. It is seen
that the governing relations and velocity addition law in Poincare’s relativity are still

valid for this general case.

Consider two particles 4 and B moving with velocities v, =v ,(t)and v, = v,(¢)
relative to an inertial system. The four-vector velocities U, and U, are attached four-
vectors, where we have
(w,), =AU, (3.145)
(Uy), = Azuy (3.146)
(u,), and (v, ), are representing these four-vectors on their corresponding body frame

where

(u,), =(u,), =(0,0,0,ic) (3.147)

The transformations A , = A ,(¢) and A, = A ,(¢) represent the orientation of these body

frames relative to the inertial frame. For these transformations, we explicitly have

A(0)- Q, +(coshg, —1)?Ae,Ae; isinh&,Q e, (3.148)
I —isinh & e, cosh¢,
and
A, ()= Q,+ (cosh'fB —l)gllgeu,gef;g isinh £,Q ze (3.149)
i —isinh&ye cosh ¢,

By using (3.147) and combining (3.145) and (3.146), we obtain
u,=A"AU, (3.150)

Relative orientation of the body frame B relative to 4 at time # is denoted by A, , and is
defined such that

Ay =A,A,, (3.151)
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This relation shows

AB/A = AZAB
Therefore, (3.150) becomes
u,= AB/AMB
which can also be written as
Uy = A;/AUJ]A

(3.152)

(3.153)

(3.154)

It should be noticed that A, is the relative Lorentz transformation from body frame A

to body frame B measured by our inertial reference frame at time ¢. Therefore all the

relations are relative to this observer at time ¢. However, we should derive similar

relations relative to the observer attached to the body frame 4. For this we notice that the

velocity of B relative to A measured by an observer in the body frame of 4 is

([LUB)A = (MB/A )A =AU,

By substituting for U, from (3.146), we obtain

(UB)A = (MB/A )A = AAAE (Mlb’ )B

We also have the obvious relation

which can be written as

By comparing (3.156) and (3.157) and using (3.155) we obtain the relation
(AB/A )Z = AAAg
which can be written as

(AB/A )A = ABAZ
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(3.158)
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Interestingly, it is seen that
(AB/A)A :AAAB/AAZ (3.161)
which looks like the transformation for tensor A, , from inertial reference frame to the

body frame A. What we have is the development of the general theory of relative motion.

Explicitly from (3.155), we have
(ﬂﬂ ) _|Q,+(coshg, —1)Q e, e, isinhgQ e, }[c sinh gye
BlA); =

—isinh & e, cosh &, iccosh &,

} (3.162)

From this, we obtain the relations
(inh &, e,5,), = —sinh &, cosh &,Q e, +Q ,[1+ (cosh &, — e, e, Isinh & e, (3.163)

(cosh S/ )A =cosh&, cosh&, —sinh &, sinh £,e 0, (3.164)

These relations are the manifest of hyperbolic geometry governing the velocity addition
law even for accelerating particles. This property holds for all attached four-vectors and
four tensors. Inertial observers relate components of attached four-vectors and four-
tensors by Lorentz transformations. This is the origin of non-Euclidean geometry
governing the three vector and three tensors. As we saw the addition of three vector

velocities follow hyperbolic geometry.
It should be noticed that these relations hold despite the fact that the transformation

x, =4,,x, (3.165)

is not valid among accelerating systems. What we have here is the completion of the

Poincare’s relativity for accelerating systems.
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4. Fundamental interaction

After developing the theory of accelerating motion, we are ready to develop the theory of
fundamental interaction. The equation of motion for a particle in an inertial reference
frame system is given by

du

m—~=F, (4.1)

where F B is the four-vector Minkowski force. This force is the result of interaction of the

particle with a field, such as an electromagnetic field. We are looking to explore the
geometrical character of this field. By substituting for four-acceleration from (3.67) in
the relation (4.1), we obtain
F,=mQ u, (4.2)
for the Minkowski force. Since @ is anti-symmetric, we have
Fu,=mQ, uu, =0 (4.3)
which means the four-vector Minkowski force F, is perpendicular to the four-vector
velocity u,, . The relation (4.2) shows that this force depends on four-vector velocity u,
and four-tensor angular velocity ©,, at the position of the particle X . As a result, the
field strength must depend on the four-tensor angular velocity €2,,. It is seen that the

simplest admissible field is characterized by a field strength four-tensor © ,, (x) such that

at the position of the particle
mQ,, =0, (%) (4.4)

Scalar « is a property of the particle and depends on the type of interaction. This quantity
can be recognized as electric charge in electromagnetic interaction. Therefore, we can
consider a fundamental interaction to be an interaction characterized by an anti-

symmetric strength tensor field © ,, (x), such that at the position of the particle ¥

Q,=-0,(%) (4.5)
m
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Although © W()Nc) is independent of the particle, the Minkowski force depends on the
particle through « and four vector velocity u ,, such that

F‘u = a®/jvuv (4.2)

Therefore, the equation of motion becomes
du

md—; =a®,, (¥, (4.6)

One can see that the anti-symmetric strength tensor © W(x) looks like a four-dimensional

vorticity field analogous to the three-dimensional vorticity in rotational fluid flow.

Therefore, we can consider a four-vector velocity-like field I/ =V @, induced to the

space-time of the inertial reference frame, such that its four dimensional curl is the

vorticity-like strength tensor

®,(x)=0,v,-07, 4.7)

viou

From our familiarity with electrodynamics, it is obvious that electromagnetic interaction
is completely compatible with this geometrical theory of interaction. Therefore, in the
next section, we present the covariant theory of electromagnetics and explore its
geometrical aspects based on the four-dimensional vorticity theory. It is seen that this
geometrical theory resolves some ambiguities in the traditional theory of
electromagnetics. More importantly, one realizes that this theory is a model for any other
fundamental interaction. Therefore, the corresponding gravitational theory is also

developed in detail in Section 6.
We should remember that the theory of relativity has its origin in the theory of

electrodynamics. Now we can see that the theory of interaction also has its origin in this

theory.
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5. Geometrical theory of electromagnetic interaction

In the theory of electrodynamics [10], in an inertial reference frame, the force on a
charged particle can be expressed in terms of two vector fields, an electric field E(x, t)
and a magnetic field B(x, t). In terms of these fields, the force on a particle with charge ¢
moving with velocity v is given by

F=¢g(E+vxB)

=gq(E-Bxv) G-D

This is known as the Lorentz force in SI units. It is noticed that the vector B is actually an

axial or pseudo-vector. Therefore, there is a corresponding anti-symmetric tensor

0 -B, B,
R,=| B, 0 =B, (5.2)
-B, B, 0

such that the Lorentz force in matrix form is

F=¢(E-R,v) (5.3)

In the covariant theory of electrodynamics, the corresponding four-vector Minkowski

force is
F,=qF, (X, (54)
where the electromagnetic strength field F,, is

0 B, -B, -iEJc |
. T
c_|"B 0 B -iBe|_ ~Ry —iCk 55
| B, -B 0 -iE/c| |;1g '

iE\[c iE,[c iE;/c 0 ¢

Therefore, the equation of motion of this particle is given by

du

m—*=qF, (%), (5.6)
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It is obvious that the equation (5.6) has the form of the equation (4.6), which was
obtained based on the kinematical considerations. It is seen that

a—q (5.7)
0, >F, (5.8)

Therefore, the space-time body frame of the particle rotates with four-tensor angular

velocity
o =1F (%) (5.9)

relative to the inertial frame. It is seen that the hyperbolic and circular angular velocities

of the body frame are

N_ 9 g) (5.10)
C mc
and
o=-1LpB() (5.11)
m

respectively. Now we realize that the electromagnetic strength field tensor and Lorentz
force vector are both a natural consequence of the geometric structure of relative space
time. Based on our experience with continuum mechanics, as we mentioned before, the

strength tensor F,, field seems like a four-dimensional vorticity field. This

electromagnetic vorticity four-tensor field is a combination of hyperbolic electromagnetic

vorticity —E and circular electromagnetic vorticity —B . It is seen that the scalar 49

c m

maps the vorticity field F,, at the position of the particle to the four-tensor angular
velocity Q, of its body frame. Therefore, the effect of electromagnetic interaction on a

charged particle is nothing but the instantaneous four-dimensional rotation of its body

frame. The equations (3.111) and (3.112) for the particle can be written as

M xnt—— (5.12)

n
dr V1-v?/c?
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i[;J =11]0u (5.13)
dr\\1-v?/c* ) ¢

These equations are equivalent to the space and time components of equation (5.6) for

electromagnetic interaction as

du d mv
m—=—|——|=¢g(E+vxB 5.14
" dt( l—l—vz/ch q( ) (5.14)
d me*

_—:quV (5.15)

dt \J1-v?*/c?

As we know, the first equation is the equation of motion, where its right hand side is the
familiar Lorentz force. The second equation is the rate at which the electromagnetic field

does work on the particle and changes its energy.

In covariant electromagnetic theory, the four-vector electric current density
ey =) =T pippe) = pp(vic) (5.16)

satisfying the continuity equation

J

Ep,u

op
=VeJ +L£=0 5.17
et (5.17)
generates the electromagnetic four-vector potential A, where
A=4p,=(A4,) (5.18)

in space-time corresponding to the inertial reference frame. The space component A is

the magnetic vector potential and the time component 4, is related to the electric scalar

potential ¢ as

A, =i—¢ (5.19)
c
The four-dimensional curl of 4, gives the electromagnetic field strength tensor £,

F, =0,4,-0,4, (5.20)
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Therefore, the fields E and B are expressed in terms of these potentials as

0A
E=-"_V 5.21
Py ¢ (5.21)
B=VxA (5.22)

It should be noticed that the four-vector V' corresponds to the negative of A

V,—>-4, (5.23)
and can be considered as an electromagnetic velocity field induced in four-dimensional
space-time relative to the inertial frame.  As was mentioned previously, its four-

dimensional curl is the electromagnetic vorticity four-tensor F

uv

0, —>F, (5.24)

The covariant form of the governing equation for strength or vorticity tensor £, due to

)34

the electric current density is

47K
6VFW :C—ZJE# (525)
which is the compact form of Maxwell’s inhomogeneous equations
VeE =47Kp, (5.26)
1 cE 47K
VxB=——+—-1 5.27
o o F (5-27)

Equation (5.26) is Gauss’s law and equation (5.27) is Ampere’s law with Maxwell’s

correction. In these equations, the constant K is the electrostatic or Coulomb constant

that usually is written as K = , where g, is the permittivity of free space. There is

4re,

also the relation ¢ = , where constant g, is called the permeability of free space

Ho&y
. 4AnK . .
and the relation—— = g, holds. Therefore, the equation (5.25) can be written as
c

0,F,, = toJ s, (5.28)
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and also the Gauss and Ampere’s laws (4.26) and (4.27) become

VeE=p,/¢, (5.29)
1 CE
VxB :?E“r ﬂOJE (530)

The compatibility equation for F,, is
o,F, +0,F,+0,F, =0 (5.31)

ut vo

This is the necessary condition to obtain the electromagnetic velocity 4, from vorticity
field F,, . It simply checks if a given electromagnetic vorticity field is acceptable or not.

This equation is the covariant form of Maxwell’s homogeneous equations
VeB=0 (5.32)

vxE+ZB Z0 (5.33)
ot

As we know, the equation (5.32) is Gauss’s law for magnetism and the equation (5.33) is
Faraday’s law of induction. The set of equations (5.29)-(5.30) and (5.32)-(5.33) are
Maxwell’s equations in SI units. They simply show the relations governing the
electromagnetic vorticity induced to space-time. It is seen that the geometrical theory of
electromagnetic interaction is very clear in SI units. Interestingly, it is realized that the
electromagnetic theory would have been much more compatible with the geometrical

theory if the scalar and vector potentials ¢ and A, and magnetic field B had been

defined as the negative of their present form.

The four-vector potential field 4, is not uniquely determined from compatible strength
four-tensor F,, due to the gauge freedom. Indeed, the new field

A,—>4,+0,4 (5.34)
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does not change the field strength tensor £, . Such transformation is called a gauge

transformation in which the function A is a function of coordinate x . This gauge
freedom allows us to have the Lorentz gauge constraint

16¢
¢’ ot

0,4, =VeA+—52=0 (5.35)

Therefore, A is not that arbitrary. It must satisfy the wave equation

0,0,A=V z—ia—)“ 0 (5.36)

c* ot

This wave equation can be considered as representing the inertial electromagnetic waves.
Using the Lorentz gauge in (5.28) produces the manifestly covariant wave equation

8,0,4, =t s, (5.37)

a“a*u

What we have shown is that Maxwell’s equations are equations governing the hyperbolic

. . 1 .
and circular angular electromagnetic vorticities —E and — B . The equation
c

8,F,, +0,F, +8,F, =0 (5.31)

o’ uv u- vo
is nothing but a kinematic compatibility for these electromagnetic vorticities. The non-
homogeneous equation

avF/jv = /’lOJE,u (528)

is the relation among these vorticities and electric four-vector density current. An analogy
with continuum mechanics suggests this relation is the equation of motion for

electromagnetic vorticities.

Maxwell’s equations are covariant, which means they are invariant under Lorentz
transformations among inertial systems. Therefore, the four-vector A, and four-tensor [
are fundamental fields independent of any specific space-time induced in the universal
entity mentioned before. It is the inertial observer who specifies a space-time in this

universal entity and measures components for these four-vector and four-tensor, for
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example F,, for F. The components of this four-tensor transform under Lorentz

transformation among inertial systems as

F,u’v = A,uaAvﬂFaﬁ (538)

The non-Euclidean character of electromagnetic field tensors is obvious from these

transformations. Interestingly, the scalars

1

F,F, =28 —c—zEz) (5.39)

detF = —iZ(EoB)2 (5.40)
C

are the invariants of the four-tensor ,, under the Lorentz transformations. They show

. 2

i .. )
that the scalar {B + —E) is invariant.

c

It is obvious that the non-inertial observers are not qualified to use (5.38), because the
transformation

x'' =4 x (2.6)

does not hold among them. We demonstrate this fact by a simple example. Consider the
electromagnetic vorticity field generated by a free charged particle. Its body frame is an
inertial frame and has a uniform motion relative to other inertial observers. The particle

generates the electric field in its inertial body frame, such that

E = 4;;0#2 7 (5.41)
Therefore, it is seen that

4, = (0,0,0,é¢’) (5.42)
where
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is parallel to the four-vector velocity u; =(0,0,0,ic). Relative to the reference inertial

frame, we have

x, =4 x (5.44)

and

A =4 A (5.45)

It seems as if the four-vector field 4;, were attached to the body frame rigidly in the time

direction, such that it looks rotated relative to the fixed inertial system. However, this
rigid like character and covariant relations are not valid when the particle is accelerating.
It seems the space-time body frame of an accelerating particle does not look rigid in this
sense to any observer. Therefore, the position four-vector X , four-vector potential A and
four-tensor [F field do not transform under a uniform hyperbolic rotation. This non-rigid
character can be considered as the geometrical origin of electromagnetic radiation. The
radiation of an accelerating particle can be analyzed by using the general equation

0,0,4, =—uJ (5.37)

Eu

in the context of Liénard-Wiechert potential [10].

What is the consequence of the non-rigidity of the space-time body frame of an
accelerating particle? As we saw, the four-acceleration of a charged particle

du# q ~
—+-dF 4
=L (E, (5.46)

is the result of rigid-like instantaneous rotation of its body frame. However, we now
realize that the global rigid-like character of the body frame is not a requirement for this
geometrical derivation. It is only necessary to consider the instantaneous rotation of the

body frame in the neighborhood of the particle. Therefore, we define Q W(J? ) as the four-

dimensional angular velocity of the body frame at the position of the particle

v

Q,, (%)= %F (%) (5.47)
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Interestingly, with this development we can examine the character of particles in
quantum theory to explain the wave-particle duality of matter. It is in classical mechanics
where we specify position of a particle, for example, at the origin of its space body frame.
In quantum mechanics, a free elementary particle with specified momentum does not
have a specified position in its space-time and can be anywhere in its body or inertial
reference frame. One can suggest that the wave function of the particle represents the
trace of its space-time body frame on the inertial reference frame. Therefore, it is
necessary to understand the Dirac spinor wave function in the framework of the present
space-time theory. This new view looks very promising if we remember that the wave
function of an interacting particle is localized and is different from the wave function of a
free particle. It is seen that this is nothing but the manifestation of a deformation-like
character of the space-time body frame of an interacting particle. Interestingly, we realize
that the creation and annihilation of particles can be explained as the result of constraints
in the time direction. It is clear that we may expect to resolve ambiguities in the quantum
world and other branches of modern physics with our new view of space-time. Here, we
should mention that the affinity of the Lorentz transformation with electromagnetic
strength field tensor and Lorentz force has been realized before. For example, Buitrago
has stated that the electromagnetic strength field tensor and Lorentz force are both a
natural consequence of the geometric structure of Minkowskian space time, which
indicates a fundamental meaning in physics [11]. Obviously, what we have here is

development of this fundamental meaning.

Now it is time to explore more about the universal fundamental entity in which particles
create their space-time and interact through vorticity fields. It turns out that the review of
electromagnetic energy-momentum tensor and Maxwell stress tensor is useful.

5.1. Electromagnetic energy-momentum tensor

Relative to the space-time inertial reference frame, the Lorentz force per unit volume on a

medium with a charge density p, and current density J, is given by

f=p,E+J, xB (5.48)
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The generalization of this force in covariant electrodynamics is
fo=F. I, (5.49)

where f, = (f, £, ) is the force-density four vector with

f,=LJ3,0E (5.50)
c
We note that
ow
—=J .E 5.51
5 e (5.51)

is the work done per unit time per unit volume by the electric field on moving charges.

Therefore

i Ow
=—— 5.52
/s c Ot ( )

By substituting J,, from the equations of motion of the electromagnetic field

a\/F:uv = IUOJE;: (530)
and some tensor algebra, we obtain
fu=0,T,, (5.53)

where T, is the electromagnetic energy-momentum tensor defined by

1 1
T :—(F Fpy+ O F, Faﬁj (5.54)

uv uo” ov uv: ap
Hy

The explicit form of the components of this four-tensor in terms of E and B are
1 1

1
T,=¢,(EE, ——EFEO?,)+— (BB, ——B,B,J5;) (5.55)
2 H 2

called the Maxwell stress tensor, and
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T,=u= %[EOEZ +—sz (5.56)

the electromagnetic energy density, and

I, =T,= _éluL(EXB)i = _éSi (3.57)
0

where the Poynting vector S is defined by
S = LE xB (5.58)
Hy

Therefore, the symmetric four-tensor 7, can be written in schematic matrix form as

Tij _LS
T=| | ¢ (5.59)
——S u
c

The traction or force exerted by this field on a unit area of a surface in space with unit

normal vector #, is
T, =T1" (5.60)
Through this similarity with continuum mechanics, we can take 7, as a four-stress

tensor. The time-space components of the equation (5.53) are

5T 1 oS,
= i 5.61
fi= xj c? ot ( )
AY 614
—icf, =——~2 5.62
e T a (562)

J
Integrating these relations over a volume V bounded by surface 4, and using the

divergence theorem, we obtain

jfdm deV an dA (5.63)

gy

—ic[ f,dV + % [udv +[Snda=0 (5.64)
Vv A

14
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These equations show that the electromagnetic field has energy and carries momentum.
The Poynting vector S represents the energy per unit time, per unit area, transported by
the fields in space. It is also seen that the electromagnetic field carries momentum, such
that

G:LZSZSOEXB (5.65)
c

is the electromagnetic momentum density vector. By noticing

F, = J J.dV = total force acting on volume V' (5.66)
4
and
ow . o .
—= —ch- f.dV = work done per unit time by the electric
0 D (5.67)
field on moving chargesin V'
we obtain the equations (5.63) and (5.64) as
F + ﬁj Gdv = [T"d4 (5.68)
Ot s ’
W, 9 [udv + [ Smda =0 (5.69)
ot ) ’
It is seen that by considering
P
F, = al_mech (5.70)
ot
where
P, ..., = mechanical momentum of charges in volume V/ (5.71)
and
Piw= J G.dV = electromagnetic momentum in volume V' (5.72)
Vv
and
Usd = jud V' = electromagnetic energy in volume V (5.73)
Vv

we obtain the momentum and energy conservation laws
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ﬁ (Pz mech + Pz field ) = J-T;(n)dA (574)
ot y
0
— (W +U )+ [Snda=0 (5.75)
ot ’
These relations in vectorial form are
8 n
A, (P mech P ﬁeld) = .[T( )dA (576)
ot .
0
— (W +U g40)+ [Sendd =0 (5.77)
Ot v
In addition, note that the relation
1 1
]juv :ﬂ_(Euchav +15vaaﬂFaﬁj (554)
0

looks like a constitutive relation for four-stress tensor 7, in term of the four-tensor
electromagnetic vorticity F,, in the universal entity. In linear continuum mechanics, the

constitutve equations relate the stress tensor linearly to strain or strain rate, but the energy
density is a quadratic function of strain or strain rate tensor. However, what we have here
is four-dimensional analogous case in which the stress four-tensor T is a quadratic
function of vorticity four-tensor in the universal entity. Therefore, it is seen that the
universal entity behaves like a continuum in which charged particles create stresses and
electromagnetic vorticities. Interestingly, the point charged particles are singularites of
these vorticities and four stress tensors. Therefore, the Minkowski forces exerted on these
point particles are the Lorentz forces, which can be considered also as four-dimensional
lift forces. Although this conclusion looks very interesting, historical accounts show it is
not completely new. This development is similar to the efforts of investigators of ether
theory. Ether was the term used to describe a medium for the propagation of
electromagnetic waves. For example, it is very interesting to note that McCullaugh [12]
considered ether to be a new kind of medium in which the energy density depends only
on the rotation of the volume element of ether. The work of McCullough has been a base

for work of other proponents of ether theory such as Lord Kelvin, Maxwell, Kirchhoff,
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Lorentz and Larmor. Whitaker [13] gives a detailed account of these investigations in
which we learn that Maxwell agreed to a rotational character for magnetic field and a
translational character for electric field. We also learn that Larmor [14] considered that
the ether was separate from matter and that particles, such as electrons, serve as source of

vortices in ether.

What is surprising is that we have used similar ideas about stress and vorticity, but in a
four-dimensional context. In our development, the magnetic field has the same character
as circular rotation, but the electric field has the character of hyperbolic rotation. It is
seen that it is well justified to call our fundamental universal entity the historical ether out
of respect, which now is represented by four-dimensional space-time systems. Therefore,
in the new view, particles specify their space-time body frames in the ether and interact
with each other through four-vorticity and four-stress that they create in the ether. As we

mentioned, the Lorentz force
F, =qF,, (%), (54)
is analogous to the lift force in fluid dynamics. The lift on an airfoil is perpendicular to

the velocity of flow past the surface. This is the mechanical explanation of four-vector

electromagnetic Lorentz force.

It is obvious that understanding more about ether and space-time is an important step
toward understanding more about modern physics. However, the geometrical theory of
electromagnetic interaction resolves some difficulties even in this classical state. We

address two important cases.

5.2. Magnetic monopole does not exist

With the new view, the magnetic field B is the space electromagnetic vorticity induced
to the ether relative to the reference inertial frame. This is analogous to the vorticity field

in a rotational fluid flow. From non-relativistic fluid mechanics, we know that the

vorticity is the curl of the velocity field of the fluid and it is twice the angular velocity of
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the fluid element. Therefore, we see the same for the electromagnetic vorticity. The
magnetic field B is the curl of the electromagnetic velocity vector field A

B=VxA (5.22)

This definition requires

VeB=0 (5.32)
which is the kinematical compatibility equation. This is the necessary condition for the
existence of vector potential A for a given magnetic field B . Existence of a magnetic
monopole violates this trivial kinematical compatibility equation. We demonstrate this

further by contradiction as follows.

Let us assume, at the origin, there is a point magnetic monopole of strength ¢, .

Therefore, in SI units
VeB=1,q,6Y(x) (5.78)
and the static magnetic field is then given by

B- Z‘—;Z—gf (5.79)

However, the relation (5.78) contradicts the kinematical compatibility (5.32).
Interestingly, based on the Helmholtz decomposition theorem, this field can only be
represented by a scalar potential [15]

4, (x) = f—;qf (5.80)
where the magnetic field B is given by

B=-V¢

. (5.81)
But this is absurd because the electromagnetic vorticity vector field B has to be always
represented by curl of the electromagnetic velocity vector A . Therefore, magnetic
monopoles cannot exist. It is concluded that the magnetic field B is only generated by

moving electric charges.
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It has been long speculated that magnetic monopoles might not exist because there is no
complete symmetry between B and E . This is due to the fact that B is a pseudo-vector,
but E is a polar vector. What we have here is the confirmation of this correct speculation
that there is no duality between E and B in electrodynamics. We have shown that the
magnetic field B has the character of a circular vorticity field and is divergence free.
However, the electric field E has the character of a hyperbolic vorticity with electric
charges as its sources, where

VeE=p,/g, (5.29)
It is seen that this explanation is actually clarification of Larmor’s ether theory.

As mentioned previously, the electric charge g of a particle has the property of a
kinematical coupling, which maps the four-dimensional electromagnetic vorticity at the
position of the particle to the angular velocity of its body frame. We have shown that
electric charge is the only coupling present. Furthermore, there is no need for any other
coupling. It is naive to assume that a simplistic modification of Maxwell’s equations

suffice to allow the existence of magnetic charges in electrodynamics.
5.3. Spin dynamics and magnetic moment

It 1s known that every elementary particle, such as an electron, has an intrinsic angular
momentum called spin. The spin can be considered as a constant length four-vector

S, = (s,s4) such that relative to the particle body frame, the spin four-vector has only

space components. This means that it is normal to the particle’s four-vector velocity

relative to its frame and also the inertial reference frame

Ues=u,s, =0 (5.82)

If the electromagnetic fields are uniform, the equation for spin is given by the BMT

equation'”
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ds, _q|g 1(g
—H“ 2o F s +—|S—1|lus F,u 5.83
dr m{2 mey 02(2 oA ©.83)

where g is called the gyro-magnetic ratio. By using an analogy with orbital angular

momentum of systems of charged particles and the concept of magnetic dipole moment,

we can show g =1. However, experiments show it is a number very near 2. The Dirac
relativistic wave equation for an electron shows g =2 [10]. Therefore, the BMT

equation becomes

Zu_dp (5.84)

This is fantastic! It is seen that the value g =2 is compatible with the developed

geometrical-kinematical theory of electrodynamics. The spin four-vector is an attached

four-vector, which is rotating with

Q.=1F () (5.9)
m

—£=0Q s =+F_s (5.85)

It should be noticed that the spin four-vector has only space components in its body

frame, which is consistent with (5.82).

Interestingly, now we realize that the analogy to orbital angular momentum and using the

concept of magnetic dipole moment, which leads to g =1, is misleading.

6. Maxwellian theory of gravity
The Maxwellian theory of gravity generalizes the Newtonian theory of gravity to moving

masses. It is clear that this is the compatible theory with our geometrical theory of

interaction. The peculiarity of this theory, although classical theory offers no compelling
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reason behind it, is that the gravitational charge m, is proportional to the inertial mass
m , as far as we know. This is called the equivalence principle, which means in a proper

system of units, such as the SI system, these two masses are equal

mg=m (6.1)

However, it should be noticed that in the developed geometrical interaction theory, the
equivalence principle is not a fundamental necessity at all. If, in future, this principle is

invalidated in some range of masses, this theory will still remain valid.

In this theory, the gravitational mass (charge) induces the four-momentum per unit
gravitational mass or gravitational four-velocity U, where

U=U,e,=(,U,) (6.2)
to the ether relative to the space-time inertial observer. Because of the equivalence

principle, the gravitational four-velocity field U looks like the four-velocity U of the

particle. This explains why we use the symbol U to represent this velocity-like field.

By analogy to the electromagnetic theory, U, should be related to the scalar Newtonian

potential @ . It will be shortly shown that

U, -2 (6.3)
C

The anti-symmetric four-tensor gravitational intensity field is characterized by the curl
Q. =l0,U,-0,U,) (6.4)
which is the gravitational four-vorticity induced in the ether measured by an inertial

observer analogous to £, in electrodynamics. We have chosen the symbol €, to

emphasize the analogy of the space gravitational vorticity to vorticity in classical fluid

mechanics. In terms of components
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QG(x)_ 1
i—Mg 0
0 — g3 WG, —ing/c (6.5)
_| %e 0 —0g  —ing[c
— Wg, @5, 0 —iTgs/c

i77G1/C i7762/c i77G3/C 0

where ®, and n /c are gravitational circular and hyperbolic angular vorticitiy fields,

respectively. By decomposition of the vorticity tensor defined by (6.4), we obtain

1 10U .
o, =VxU (6.7)
G

The space vorticity @, is called the co-gravitational, magnetic gravity or gyro-

gravitation vector [16]. From the Newtonian theory of gravity, we see

Me =8 (6.8)
and therefore

U,=—i— (6.3)
and the relation (6.6) can be written as

g=1,=""-Vo (6.9)

Equation (4.6) represents the equation of motion for a particle in an arbitrary field, such
as the electromagnetic field. The corresponding equation of motion for a particle in a
general gravitational field becomes

du

md_’; = mGQGyV ()?)uv (610)

By using the equivalence principle (6.1), we obtain the geometrical equation of motion
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g (), 6.11)

dT — P®Guv

Therefore, the four-tensor angular velocity of the body frame is

Q,, =92, %) (6.12)

This equation for components gives
n=n,(%)=g() (6.13)
o =o,() (6.14)

Note that 1,(%¥) and o (%) are the gravitational vorticities of the field at the position
of the particle, while n and ® represent the angular velocities of the body frame of the

particle.

It is seen that the time and space components of the equations of motion are

ﬂ:;/g+coG><u (6.15)
dr
s _Tyay (6.16)
dr ¢
which can also be written as

du d mv

Mm—=— ——— |=mlg+o,. XV 6.17

dt dt[m] (g +0gxv) (6.17)
d me?

=mgev (6.18)

dt J1-v*/¢?
similar to the electromagnetic interaction. The first of these is the equation of motion and

its right hand side is the gravitational Lorentz force. The second equation defines the rate

at which the gravitational field does work on the particle.

In analogy with electromagnetic theory, the field equation is postulated to be
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0.Q., =-"2J (6.19)

vE=Guv 2 Yu

where G is the gravitational constant in Newton’s theory of gravitation and
J,=3,7,)=J,ipc)= p(v,ic) (6.20)
is the four-vector mass current density. It should be noticed that the negative sign in the

right hand side of (6.19) is in agreement with the Newtonian gravity, where masses

attract each other. Equation (6.19) is the compact form of the inhomogeneous equations

Veg=—-41Gp (6.21)
1 0g 4nG
vaG=—c—Za—§+ o (6.22)

where equation (6.21) is Gauss’s law for the gravitation and equation (6.22) is the general

Ampere’s law for this Maxwellian theory of gravity.

Based on the definition of the vorticity field Q,, in (6.4), we have the compatibility

equation
aaQGﬂy + 8ﬂQGyo: + ay‘QGaﬂ =0 (6.23)
which gives the homogeneous equations
Ven; =0 (6.24)
om
Vxg-——=©=0 6.25

The first equation (6.24) is Gauss’s law for the gyro-gravitation vector, while the second

equation (6.25) is Faraday’s law of induction for this Maxwellian theory of gravity.

In analogy with electrodynamics, the induced four-vector velocity field U, is not

uniquely determined from Q. . The new field

Guv *
Uu,->U,=U,+0,x (6.26)
does not change the gravitational vorticity field €, . Here y is a scalar function of x.

This gauge freedom allows us to impose the constraint
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0.U, =—5"=0 (6.27)

Therefore, the scalar y is not that arbitrary. It must satisfy the wave equation

10°
8,0,x =V T 8; =0 (6.28)

which can be considered as representing gravitational inertial waves. By considering the

gauge invariance, we obtain the covariant wave equation

4;’2G J, (6.29)

0,0,U, =~

This equation relates the mass current density to the gravitational velocity field U,

induced to the ether relative to the inertial reference frame. Here, the right hand side
coefficient has been adjusted such that the Newtonian theory can be recovered for
stationary masses. For this case

4rG
c

VU, =—i P (6.30)
Then by using U, from equation (6.3), we obtain
V@ = 47Gp (6.31)

which is the well known Poisson equation in Newtonian theory. In this theory, the

gravitational field g is obtained from the relation

g=1n,=-V® (6.32)

which shows the gravitational hyperbolic vorticity lg is the result of only the time
c

e . 1
component of the gravitational velocity ——@®.
c

It should be noticed that a vortex theory describing gravity is not new. Descartes devised
a theory of vortices which postulated that the space was entirely filled with a subtle

matter, some kind of effluvium, not much different from the ether of later authors. He
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postulated that the sun by its rotation causes this effluvium to be concentrated in space
vortices that carry the planets around the sun on their orbits [17]. It is seen that this form
of vortex theory resembles the co-gravitational part of the Maxwellian gravity. As we
know now, this co-gravitational part does not have that much affect on planetary motions
around the sun. Actually, this part can be considered as a small perturbation to the

dominant Newtonian gravitation.

Now we understand why Newton refuted a vortex theory to explain gravity. This is
because he could not relate the vortex theory to his theory of gravitation. How could he
have imagined his theory as a hyperbolic vortex theory with hyperbolic rotation instead
of familiar circular rotation? He could not believe that his theory could be completed by
adding circular vorticity as gyro-gravity part of gravity. Despite the extensive geometrical
analysis in his work, Newton did not have any geometrical explanation for his theory of
gravitation [18]. However, the vortex theory of Descartes was so appealing that it had
many proponents such as Bernoulli who proposed that space is permeated with tiny
whirlpools.'? It is this theory which Maxwell and other investigators used to explain the
electromagnetic phenomenon as we discussed in Section 5. Now, we clearly know that

this vortex theory only explains the magnetic part of the electromagnetic phenomenon.

Based on historical records, the developed Maxwellian theory of gravity should be called
the Newton-Heaviside theory of gravity [19]. Jefimenko [16] provides a collection of
solved problems regarding moving and stationary bodies of different shapes, sizes and

configurations.
6.1. Gravitational four-stress tensor and mechanical view of Lorentz force

In the Maxwellian theory of gravity, massive particles are the source of the gravitational

vorticity field four-tensor Q where

Guv

0Q. =217 (6.19)

vEEGuy 2 Yu
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They are also the source of stress four-tensor 7, fields in the ether. To obtain the

constitutive relation, we notice that the gravitational four-vector Lorentz force density
relative to the space-time inertial reference frame is given by

Ju=Q6,,J, (6.33)

By substituting J, from the equation of gravitational vorticity (6.19) and some tensor

algebra, we obtain

fﬂ = 6VTW (6.34)
where the four-stress tensor is
__“(a o Ls o o
Tyv - _E Guo=“=Gov + Z 5;:1/ Gapf==Gap (635)

The explicit form of the components of this four-tensor in terms of g and o are the

gravitational Maxwell stress tensor

T, = —%(g,»g ;= %gkgké},-) - %(%iw@» —%wckwck@-j) (6.36)
the gravitational energy density
T, =ug = —%(g2 + o)) (6.37)
and
T,=T,=i- (gx0,) =-"5, (6.38)
4G c
where S is the gravitational Poynting vector
S, =———gxaw, (6.39)

472G

Therefore, the schematic matrix form of the symmetric four-tensor 7, is

7} _iSG
T#V = c (6.40)
-=S; Ug
C
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What we notice is that the components of the four-stress tensor are the negative of their
corresponding electromagnetic ones. This is the character of the gravitational interaction
in Newtonian theory. As in electromagnetic interaction, massive particles interact via
inducing four-stress and four-vorticity tensors in ether. Similarly, the point massive
particles are singularities of these vorticities and four stress tensors. Therefore, the
gravitational Lorentz forces exerting on these particles can also be considered as four-
dimensional lift forces. This is also the mechanical explanation of four-vector

gravitational Lorentz force.

7. Conclusion and discussion

We have seen that every massive particle specifies a Minkowskian space-time body
frame in a universal entity, here referred to as ether. This aspect of space-time clarifies
Poincare’s theory of relativity. Inertial observers relate components of four-vectors and
four-tensors by Lorentz transformation. This is the origin of non-Euclidean geometry
governing the three vector and three tensor components. The hyperbolic geometry of the
velocity addition law is the manifest of this fact. The space components of the four-vector
velocity in the particle body frame are zero. However, its component in the space of a
reference frame is the result of a hyperbolic angle deviation. Therefore, the three-
velocity vector in the reference frame is a hyperbolic vector and geometry governing the

three-velocity addition law in the reference frame is hyperbolic.

The acceleration of a particle is the result of the instantaneous rotation of its body frame
in the ether. This instantaneous rotation is specified by the four-dimensional angular
velocity tensor in the inertial reference frame. The hyperbolic part of this rotation is
actually what is known as accelerating motion. However, there is also circular space
rotation, which is essential in understanding some phenomena, such as the spin

precession of a stationary charged particle in a magnetic field.
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Based on the theory of motion, the geometrical character of fundamental interaction has
been developed. This theory shows that every fundamental interaction is represented by
an anti-symmetric strength four-tensor field with characteristics of a vorticity field.
Charged particles interact with each other through four-vorticity and four-stress that they
induce in the ether. The four-vorticity tensor is a combination of three-vector circular and
hyperbolic vorticities. It is seen that a Lorentz-like Minkowski force is an essential
feature of every fundamental interaction. This vortex theory gives a clear geometrical
explanation of electrodynamics, which is a model for any other interaction. Through this
theory, we realize that the homogeneous Maxwell’s equations are actually necessary
compatibility equations for electromagnetic vorticity vectors, and the inhomogeneous
Maxwell’s equations are equations governing motion of these vorticities. It is seen that
the energy-momentum four-tensor has the character of a four-stress tensor and its
expression in terms of electromagnetic vorticities is a constitutive relation. This reveals
the mechanical character of Lorentz force as a four-dimensional lift force perpendicular
to four-vector velocity. This vortex theory shows why a magnetic monopole cannot exist.

It also clarifies the spin dynamics of charged elementary particles in a classical view.

In addition, the geometrical theory of interaction shows that a Maxwellian theory of
gravity is inevitable. Interestingly, this is the reconciliation of the vortex theory of
Descartes and Bernoulli with Newton’s theory of gravitation. This is more compelling
when we notice that the other fundamental forces such as weak and strong forces are
generalizations of the electromagnetic theory in non-Abelian gauge theory based on local
symmetry groups SU(2) and SU(3). This is completely compatible with our unification of
fundamental interactions based on the vortex theory. Therefore, it is necessary to develop

the geometrical aspect of these quantum mechanical generalizations.

Interestingly, the new theory of space-time has the potential to clarify the wave-particle
duality of matter. In this regard, the quantum mechanical wave function of a particle
seems to be the trace of its space-time body frame on the observer’s reference frame. This
is more promising when we realize the deformability of space-time of an interacting

particle. Therefore, quantum theory has the same fate as electrodynamics theory and must
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be presented based on the new theory of relative space-time in the ether. However, we
should notice the ambiguity in introducing ether. We used the term ether for the universal
entity in which a massive observer specifies a space-time. How can we visualize ether
when the concepts of where and when cannot be applied? It should be noticed that this
ether is different from the ether conceived by earlier proponents of space vortex theory.
They considered the ether some sort of matter filling the space. But our ether is
something in which a particle specifies a four-dimensional orthogonal system with three
real and one imaginary axis, which we call space-time. In other words, the space-time

body frames of particles are different representations of ether.

Although Lorentz, Poincare, Minkowski, Varicak, Borel and others have developed
important aspects of the theory of relativity, the fundamental meaning of space-time and
its relation with the ether have not been appreciated. It is realized that these are the origin
of many inconsistencies in modern physics. Through the developed theory of motion and
interaction, one appreciates the work of those who questioned the fifth postulate in
Euclidean geometry about parallel lines and considered the possibility of non-Euclidean
geometry by modifying this postulate. It is stunning to see that the rules of motion and
interaction are governed by non-Euclidean geometry, because all motion is a four-
dimensional rotation. We realize that the theory of motion is a model for hyperbolic

geometry.

One can see that continuum mechanics has played an essential role in developing the
present theory of motion and interaction. Interestingly, Maxwell also used continuum
mechanics in his development of electrodynamics. It is known that he generalized
Ampere’s law (5.30) by adding displacement current to have a consistency with the
electric charge continuity equation (5.17). Had Maxwell, Lord Kelvin or their
contemporaries known about a four-dimensional space-time, Lorentz transformation and
covariance of electrodynamics, could they not have developed this four-dimensional
vortex theory? Answering is not difficult when one learns that they were already talking

about vortices in ether, which they inherited from Descartes.
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