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Abstract 

 

By examining the theory of relativity, as originally proposed by Lorentz, Poincare and 

Einstein, a fundamental theory of general motion is developed.  From this, the 

relationship between space-time and matter is discovered.  As a result, the geometrical 

theory of interaction is introduced. The corresponding geometrical theory of 

electrodynamics resolves the origin of electromagnetic interaction, as a vortex-like field, 

and clarifies some of the existing ambiguities. 

 

1.  Introduction 

 

Poincare’s theory of relativity explains the physical meaning of the Lorentz 

transformation among inertial systems by unification of space-time. Although it shows a 

relationship between pure Lorentz transformation and hyperbolic rotation, it does not 

specify what is rotating. This is the origin of most troubles in the theory of relativity and 

electrodynamics. For example, although the Maxwellian theory of electrodynamics is the 

most understood among the theories of fundamental forces, the electromagnetic 

interaction, called the Lorentz force, is not a direct consequence of Maxwell’s equations. 

It has to be postulated in an independent manner, which is the manifest of incompleteness 
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of the theory. Although it has been noted that the electromagnetic field strength tensor 

and Lorentz force are both a natural consequence of the geometric structure of 

Minkowskian space-time, its fundamental meaning has not been discovered. 

  

Another trouble is the magnetic monopole whose existence is apparently compatible with 

fully symmetrized Maxwell’s equations. It seems only modification of Maxwell’s 

equations suffice to allow magnetic charges in electrodynamics. However, no magnetic 

monopole has been found to this date.  

 

To resolve these and other difficulties, we develop a fundamental geometrical theory of 

motion and interaction, which shows that the Lorentz force and Maxwell’s equations are 

simple geometrical relations based on four-dimensional rotation. It is seen that this 

geometry is non-Euclidean with interesting consequences. This theory clarifies the 

relativity of space-time and its relationship with matter. It also revives the idea of the 

electromagnetic field as vortex motion in a universal entity.  

 

In the following section, we first present the theory of relative inertial systems and 

kinematics of particles in the framework of Poincare’s relativity. Subsequently, in 

Section 3, we develop the consistent theory of moving particles by exploring the relation 

between mass and space-time. This resolves the troubles in Poincare’s relativity by 

clarifying the origin of the governing non-Euclidean geometry. 

 

Afterwards, in Section 4, we develop the geometrical theory of fundamental interaction, 

which shows that a Lorentz-like force as a rotational effect is an essential character of 

every fundamental interaction. Therefore, every fundamental interaction is specified by a 

four-dimensional vortex-like field. Interestingly, this means a unification of all forces 

based on the geometrical theory of motion and interaction.  In section 5, we demonstrate 

all the details of this vortex theory for electromagnetic interaction. Therefore, 

electrodynamics is complete with electric charges and magnetic monopoles do not exist. 

The geometrical view also clarifies the spin dynamics of charged elementary particles.  

At the end, it is seen that the corresponding consistent theory of gravity is a generalized 
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Newtonian gravity. This analogous Maxwellian theory of gravity is also developed in 

detail in Section 6.  A summary and general conclusion is presented in Section 7. 

 

2. Poincare’s theory of  relative inertial systems 

 

As an inertial reference frame in the Minkowskian space-time, a four-dimensional 

coordinate system 4321 xxxx  is considered such that 321 xxx  is the usual space and 4x  the 

axis measuring time with imaginary values, such that ictx =4 . By considering the unit 

four-vector bases 

( )0,0,0,11 =e                                                

                                                             ( )0,0,1,02 =e                                                      (2.1) 

( )0,1,0,03 =e  

( )1,0,0,04 =e  

the space-time position four-vector can be represented by 

                                                               μμex x=                                                           (2.2) 

However, for simplicity we sometimes write 

                                                ( ) ),,,(,),( 4 ictzyxictx === xxx                                     (2.3) 

or even 

                                                               ),( 4xx x=μ                                                       (2.4) 

and also often use x  in place of x .  

 

With this convenient elementary notation, we do not need to use covariant and 

contravariant forms of four-tensors in metric notations. Importantly, it is seen that the 

non-Euclidean geometry governing motion and interaction is much clearer in this 

complex number notation. However, all developed theory can be easily presented in any 

other notation.  

 

The square length of position four-vector is  

                                22222222T tczyxtcxx −++=−===• xμμxxxx                     (2.5) 
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where we notice that the same symbol x  also represents the matrix form of x . 

 

A homogeneous Lorentz transformation 

                                                             νμνμ xΛx =′                                                         (2.6) 

is any transformation which leaves the length of the four-vectors invariant       

                                                           μμμμ xxxx =′′                                                         (2.7) 

 

This requires 

                                                      βαμβμαμμ xxΛΛxx =′′                                                  (2.8) 

which leads to the following orthogonality condition on Λ  

                                                            αβμβμα δ=ΛΛ                                                      (2.9) 

 

As will be seen, we use only first and second order three and four-dimensional tensors. 

Therefore, for convenience we use the matrix representation for these tensors with the 

same symbol.  Based on this convention, (2.9) can be written in more compact form 

                                                              1=ΛΛT                                                          (2.10) 

 

This shows that the Lorentz transformation is an orthogonal transformation in the 

specified four dimensional space-time. Conversely, any transformation, which satisfies 

this orthogonal condition, is a Lorentz transformation. All of these transformations form a 

group in the mathematical sense.  

 

What we have is the relation between coordinates of a point or event in two different 

four-dimensional coordinate systems 4321 xxxx  and 4321 xxxx ′′′′ . One expects that 

understanding the meaning of this relation is crucial in developing a theory of space-time 

and motion.  
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2.1.  Space rotation 

 

A familiar example of a Lorentz transformation is the relative space orientation of two 

coordinate systems with common origin, which is spatial rotation. In general, for this 

transformation, we have 

                                                            ⎥
⎦

⎤
⎢
⎣

⎡
=

1T0
0Q

Λ                                                     (2.11) 

where Q is a constant proper real orthogonal matrix specifying the space rotation of the 

new reference system relative to the original coordinate system. In this case, the 

transformation decomposes to 

                                                                   Qxx =′                                                      (2.12) 

  tt =′  

As an example, for rotation about the z-axis with angle φ , we have 

                                                   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

100
0cossin
0sincos

φφ
φφ

Q                                            (2.13) 

 

In general, for rotation about an arbitrary axis denoted by unit vector n  with angle φ , 

where 

                                                                nφ φ=                                                           (2.14) 

we have1) 

                                     ( )( )ijjimimjijij nnnQ δφφεδ −−+−= cos1sin                          (2.15) 

 

It is convenient to associate an anti-symmetric matrix wR defined by  

                                                 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

0
0

0

12

13

23

ww
ww

ww

wR                                          (2.16) 

to some axial vector ( )321 ,, www=w . If G  is an arbitrary vector, then 

                                                            GRGw w=×                                                   (2.17) 

which is a relation frequently used in this article. Therefore, (2.15) can be written as 
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                                           ( )( )1nnR1Q n −−+−= Tφφ cos1sin                                (2.18) 

 

In terms of elements  

        
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+−−+−
+−−+−−
−−+−−+

=

2
3132231

132
2

2321

231321
2

1

cos1cossincos1sincos1
sincos1cos1cossincos1
sincos1sincos1cos1cos

nnnnnnn
nnnnnnn
nnnnnnn

φφφφφφ
φφφφφφ
φφφφφφ

Q

 (2.19) 

 

By using Cayley-Hamilton theorem, it can be shown that 

                           

( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

=

0
0

0
exp

0
0

0
exp   

exp

12

13

23

12

13

23

φφ
φφ
φφ

φφ
φφ
φφ

nn
nn

nn
φRQ

                 (2.20) 

 

Based on the Euler theorem for the three-dimensional motion of a rigid body, every 

proper orthogonal matrix Q  is equivalent to a rotation about an axis [1]. This means that 

the form given here for Q  is a general form. In practice, the Euler angles are widely used 

to represent the rotation matrix Q  [1]. 

 

It should be noticed that the relations for base unit space three-vectors are 

                                                                jiji Q ee =′                                                       (2.21) 

                                                                jjii Q ee ′=                                                      (2.22) 

with  

                                                         1QQQQ == TT                                                  (2.23) 

It is obvious that for the four-dimensional base vectors we have 

                                                              νμνμ ee Λ=′                                                      (2.24) 

                                                              ννμμ ee ′= Λ                                                      (2.25) 

It should be noticed that  

                                                        )1,0,0,0(44 ==′ ee                                                (2.26) 
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which means the new time coordinate is the same as the old one. 

 

Let the real orthogonal matrix transforming from x  to x′  be designated by 1Q  

                                                               xQx 1=′                                                         (2.27) 

and the second orthogonal matrix from x′  to x ′′  be 2Q  

                                                              xQx ′=′′ 2                                                        (2.28) 

Hence the matrix of complete transformation Q  from x  to x ′′  

                                                                Qxx =′′                                                         (2.29) 

is 

                                                              12QQQ =                                                       (2.30) 

In general the rotations are not commutative. In other words, the rotation vectors 

111 nφ φ=  and 222 nφ φ=  do not follow the Euclidean vector summations. It can be 

shown that 

                                    21 nn •−=
2

sin
2

sin
2

cos
2

cos
2

cos 2121 φφφφφ                              (2.31) 

                211 nnnnn ×++=
2

sin
2

sin
2

cos
2

sin
2

cos
2

sin
2

sin 21
2

1221 φφφφφφφ               (2.32) 

These relations are more conveniently derived, if a quaternion representation of rotations 

or unimodular representation with Cayley-Klein parameters is used [1]. It is seen that the 

summation of half vector of rotations 12
1 φ  and 22

1 φ obey the rules of spherical 

geometry. The triangle representing these vectors can be considered as a spherical 

triangle on a unit sphere, with the angle opposite to elliptic vector φ
2
1  given by the angle 

between the two axes of rotation. Therefore, the vectorial representation of spatial 

rotation is governed by an elliptic type of non-Euclidean geometry. However, for 

infinitesimal rotations, this geometry reduces to Euclidean geometry, where the 

infinitesimal rotation vectors commute.  
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2.2. Boost 

 

The other important form of Lorentz transformation is a pure Lorentz transformation or 

boost specified with relative velocity v . The boost parameter or rapidity ξ  is defined by 

                                                             
c
v

=ξtanh                                                        (2.33) 

The inversion of this relation gives 

                ⋅⋅⋅+⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

+
=⎟

⎠
⎞

⎜
⎝
⎛= −

753
1

7
1

5
1

3
1

1

1
ln

2
1tanh

c
v

c
v

c
v

c
v

c
v
c
v

c
vξ             (2.34) 

 

The vector rapidity also can be considered as 

                                                                    teξ ξ=                                                       (2.35) 

where te  is the unit vector in the direction of v . Here, we emphasize the use of rapidity 

ξ  as an essential parameter. 

 

A simple example of a boost is the boost along the x-axis, for which 

                                             

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

=

ξξ

ξξ

cosh00sinh
0100
0010

sinh00cosh

i

i

Λ                                     (2.36)   

which is usually written as  

                                               

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

=

γβγ

βγγ

00
0100
0010

00

i

i

Λ                                              (2.37) 

with cv /=β  and 2/12 )1( −−= βγ , where 

                                                              ξγ cosh=                                                       (2.38) 

                                                             ξβγ sinh=                                                      (2.39) 
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The structure of this transformation tensor is reminiscent of a rotation tensor, but with 

hyperbolic functions instead of circular. Interestingly, we can define 

                                                               ξψ i=                                                            (2.40) 

where 

                                                         ξψ sinhsin i=                                                     (2.41) 

                                                         ξψ coshcos =                                                      (2.42) 

Therefore, the transformation matrix can be written as 

                                                 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

=

ψψ

ψψ

cos00sin
0100
0010

sin00cos

Λ                                       (2.43) 

 

One can realize this is a rotation with imaginary angle ξψ i=  representing the deviation 

of plane 41xx ′′  relative to plane 41xx .  Analogous to the spatial rotation, the base four-

vectors of the new system are 

( )ξξ sinh,0,0,cosh1 i=′e  

( )0,0,1,02 =′e  

                                                            ( )0,1,0,03 =′e                                                     (2.44) 

( )ξξ cosh,0,0,sinh4 i−=′e  

 

Therefore, we have 

( ) ψξ coscosh,cos 11 ==′ ee  

( ) ψξ sinsinh,cos 41 ==′ iee  

                                                ( ) ψξ sinsinh,cos 14 −=−=′ iee                                     (2.45) 

( ) ψξ coscosh,cos 44 ==′ ee  

 

Relations (2.45) show that these imaginary and complex angles are 

( ) ψξ ==′ i11 ,ee  
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( )
22

, 41
πψπξ +−=+−=′ iee  

                                                  ( )
22

, 14
πψπξ +=+=′ iee                                            (2.46) 

( ) ξi=′ 44 ,ee  

 

For a general boost, which is not parallel to any of coordinate axes, we have 

                                       ⎥
⎦

⎤
⎢
⎣

⎡

−
−+

=
ξξ
ξξ

coshsinh
sinh)1(cosh

T
t

t
T
tt

i
i

e
eee1

Λ                                     (2.47) 

 

By using the Cayley-Hamilton theorem, we can show 

                                 
( ) ⎥

⎦

⎤
⎢
⎣

⎡
−+⎥

⎦

⎤
⎢
⎣

⎡
−

+=

=⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
−

=

1
1cosh

0
sinh

0
exp

0
exp

T

T
tt

T
t

t

T
t

t
T

i
i

i
i

i
i

0
0ee

e
e0

1

e
e0

ξ
ξ0

Λ

ξξ

ξ
ξ

                          (2.48) 

 

In terms of the elements we have 

      

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−+−−

−−+−
−−−+

=

ξξξξ
ξξξξ
ξξξξ
ξξξξ

coshsinhsinhsinh
sinh1cosh11cosh1cosh
sinh1cosh1cosh11cosh
sinh1cosh1cosh1cosh1

321

3
2

32313

232
2

212

13121
2

1

ttt

tttttt

tttttt

tttttt

ieieie
ieeeeee
ieeeeee
ieeeeee

Λ         (2.49) 

 

Therefore, we expect the base four-vectors of the new system in terms of old ones to be 

( )13121
2

11 sinh  ,)1(cosh  ,)1(cosh  ,)1(cosh1 tttttt eieeeee ξξξξ −−−+=′e  

                ( )232
2

2122 sinh  ,)1(cosh  ,)1(cosh1  ,)1(cosh tttttt eieeeee ξξξξ −−+−=′e       (2.50) 

( )3
2

323133 sinh  ,)1(cosh1  ,)1(cosh1  ,)1(cosh tttttt eieeeee ξξξξ −+−+−=′e  

( )
( )ξξ

ξξξξ
cosh  ,sinh     

cosh,sinh,sinh,sinh 3214

t

ttt

i
eieiei

e−=
−−−=′e
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It is seen that the angles among new and old axes can be obtained easily. For example, 

from 

                                                        ( ) ξcosh,cos 44 =′ ee                                              (2.51) 

we obtain 

                                                           ( ) ψξ ==′ i44 ,ee                                                 (2.52) 

 

This shows the angle between the time axes is specified by rapidity, which is expected. 

 

2.3. General Lorentz transformations 

 

Every homogeneous Lorentz transformation in general can be decomposed into a pure 

Lorentz transformation BΛ  (boost) and a spatial rotation  RΛ  (in either order) [1]. For 

the case where a Lorentz transformation is represented as the product of a boost  

                                            ⎥
⎦

⎤
⎢
⎣

⎡

−
−+

=
ξξ
ξξ

coshsinh
sinh)1(cosh

T
t

t
T
tt

B i
i

e
eee1

Λ                              (2.53) 

from the old system 4321 xxxx  to the intermediate system 4321 yyyy , where 

                                                               νμνμ xΛy B=                                                   (2.54) 

followed by a spatial rotation  

                                                              ⎥
⎦

⎤
⎢
⎣

⎡
=

10
0Q

Λ R                                                  (2.55) 

from 4321 yyyy  to the new system 4321 xxxx ′′′′   

                                                              νμνμ yΛx R=′                                                    (2.56) 

we have the total homogeneous Lorentz transformation 

                                                              BRΛΛΛ =                                                      (2.57) 

which is 

                                   

⎥
⎦

⎤
⎢
⎣

⎡

−
−+

=

⎥
⎦

⎤
⎢
⎣

⎡

−
−+

⎥
⎦

⎤
⎢
⎣

⎡
=

ξξ
ξξ

ξξ
ξξ

coshsinh
sinh)1(cosh

         

coshsinh
sinh)1(cosh

10
0

T
t

t
T
tt

T
t

t
T
tt

i
i

i
i

e
QeeQeQ

e
eee1Q

Λ
                             (2.58) 
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It is obvious the transformations RΛ  and BΛ  are not generally commutative. This is 

because the vectors ξ  and φ  are non-Euclidean and therefore their addition does not 

follow the rules of Euclidean geometry.  

 

Now we demonstrate the important property of a pure Lorentz transformation or boost 

which follows the hyperbolic type of non-Euclidean geometry. Let the pure Lorentz 

transformation from μx  to μx′  be designated by 1Λ  

                                                               νμνμ xΛx 1=′                                                    (2.59) 

 

and a second Lorentz transformation from μx′  to μx ′′  be 2Λ  

                                                              νμνμ xΛx ′=′′ 2                                                    (2.60) 

 

Hence the matrix of complete transformation Λ  from μx  to μx ′′   

                                                              νμνμ xΛx =′′                                                      (2.61) 

is 

                                                               12ΛΛΛ =                                                      (2.62) 

where 

              
⎥
⎦

⎤
⎢
⎣

⎡

−
−+

⎥
⎦

⎤
⎢
⎣

⎡

−
−+

=

=

111

11111

222

22222

coshsinh
sinh)1(cosh

coshsinh
sinh)1(cosh

ξξ
ξξ

ξξ
ξξ

T
t

t
T
tt

T
t

t
T
tt

i
i

i
i

e
eee1

e
eee1

Λ

     (2.63) 

It is seen that the complete transformation is not in general a pure Lorentz transformation. 

This transformation is in general form (2.58), where 

                                  212121 sinhsinhcoshcoshcosh tt ee •+= ξξξξξ                            (2.64) 

 

This result is the indication of hyperbolic geometry governing the velocity addition law. 

This has been noticed and developed extensively by early investigators of relativity such 

as Varičak [2-4]. It is seen that this non-Euclidean geometry is the origin of the famous 

Thomas-Wigner rotation, which has been explained by Borel [5]. An account of these 
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investigations can be found in the article by Walter [6].  One can realize that for 

infinitesimal rapidity vectors, the hyperbolic geometry reduces to Euclidean geometry, 

where the rapidity or velocity vectors commute.  

 

If the transformations 1Λ  and 2Λ  are general Lorentz transformations, it is seen that  

   
⎥
⎦

⎤
⎢
⎣

⎡

−
−+

⎥
⎦

⎤
⎢
⎣

⎡

−
−+

=

111

11111111

222

22222222

coshsinh
sinh)1(cosh

coshsinh
sinh)1(cosh

ξξ
ξξ

ξξ
ξξ

T
t

t
T

tt
T
t

t
T

tt

i
i

i
i

e
eQeeQQ

e
eQeeQQ

Λ

 

                                                                                                                                      (2.65) 

where 

                                  1122121 sinhsinhcoshcoshcosh t
T
t eQeξξξξξ +=                          (2.66) 

 

It will be shown that this relation can be further generalized to accelerating systems.  

 

We can see that the inertial systems are oriented from each other by a four-dimensional 

rotation. The homogeneous Lorentz transformation just specifies this rotation relative to a 

fixed inertial system as reference frame. This transformation in general can be 

decomposed into a pure Lorentz transformation (boost) and a spatial rotation. In a 

geometrical view, the Lorentz transformation can be specified by a hyperbolic vector ξ  

representing the hyperbolic angle associated with the boost and an elliptic vector φ  

representing the space angle rotation. The geometry governing these vectors is non-

Euclidean as was demonstrated. 

 

In general, the base unit four-vectors of two inertial systems are related by  

                                                              νμνμ ee Λ=′                                                      (2.67) 

or 

                                                            ννμμ ee ′= Λ                                                         (2.68) 

Therefore, the angles among these directions are such that 

                                                       ( ) μννμ Λ=′ ee ,cos                                                    (2.69) 
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                                                       ( ) νμνμ Λ=′ee ,cos                                                    (2.70) 

 

It would be interesting to present a simple general Lorentz transformation. Let this 

transformation be the product of a boost in the x-direction followed by a spatial rotation 

around a z-axis 

                           

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

ξξ

ξξ
φφ
φφ

cosh00sinh
0100
0010

sinh00cosh

1000
0100
00cossin
00sincos

i

i

Λ                  (2.71) 

which can be written as 

                                   

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−
=

ξξ

ξφφξφ
ξφφξφ

cosh00sinh
0100

sinhsin0coscoshsin
sinhcos0sincoshcos

i

i
i

Λ                        (2.72) 

 

The base unit four-vectors of the new system are 

( )ξφφξφ sinhcos  ,0  ,sin  ,coshcos1 i=′e  

                                    ( )ξφφξφ sinhsin-  ,0  ,cos  ,coshsin2 i−=′e                            (2.73) 

( )0  ,1  ,0  ,03 =′e  

( )ξξ cosh  ,0  ,0  ,sinh4 i−=′e  

 

It is noticed that 

( ) ξφ coshcos,cos 1111 =•′=′ eeee  

                                                          ( ) φsin,cos 21 =′ ee                                                (2.74) 

( ) 0,cos 31 =′ ee  

( ) ξφ sinhcos,cos 41 i=′ ee  

 

It is seen that these relations are the result of the addition of non-commutative non-

Euclidean vectors ξ  and φ .   
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What we have demonstrated is the very important character of the set of four-dimensional 

systems with three real coordinates and one imaginary coordinate. It is seen that these 

systems are oriented from each other, in a manner which can be represented by a 

combination of circular and hyperbolic angles. It can be realized that this set is the set of 

all inertial systems in Poincare’s relativity. In this theory, space and time are no longer 

separated as in Galilean relativity and motion is nothing but rotation. However, 

Poincare’s relativity does not specify what is rotating. Our aim in the following sections 

is to resolve this fundamental question. 

 

Although we have been using the concept of four-vector and four-tensor repeatedly, we 

have not given their rigorous definition.  Therefore, for future reference, the definition of 

a four-tensor is provided here. A four-tensor G   of order n is defined as a mathematical 

object with n indices which has n4  components 
n

G μμμ L21
  in a given inertial system and 

transforms via 

                                        
nnnn

GG ννννμνμνμμμμ LL L
21221121

ΛΛΛ=′                                    (2.75) 

to a new inertial system. The most important four-tensors are those involved in the theory 

of electrodynamics, which will be discussed later. For simplicity, we have been using the 

same symbols such as x , e , Q , x , e  and Λ  to represent the matrix form of their 

corresponding three and four tensors. 

 

3. Fundamental theory of motion 

 

In this section, we develop the theory of accelerating particles, which shows the 

fundamental relation between space-time and matter. It clarifies the relativity of space-

time and shows how an inertial system transforms to other inertial systems. This is 

nothing but the geometrical theory of interaction. It is seen that the relative motion is the 

result of the four-dimensional rotation of these systems relative to each other. We start 

with classical particle kinematics and develop the fundamental theory of motion. The 

theory of interaction will be discussed in the next section. 
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3.1. Kinematics of a particle 

 

Let us specify the inertial system 4321 xxxx  as an inertial reference frame. Consider a 

particle with mass m  moving relative to this inertial frame. At any position, the motion 

may be considered as taking place in the plane that contains the path at this position. This 

plane is often called the osculating plane. The velocity vector v  is tangent to the path 

curve in this plane. The acceleration of the particle  

                                                                  
dt
dva =                                                           (3.1) 

lies also in this plane. We can consider a local coordinate system by defining the unit 

vector te  tangent to the curve at this position, the unit vector ne  in the direction of 

principal normal to the curve in the osculating plane, and the bi-normal unit vector be , 

which is normal to the osculating plane at the point. The relation  

                                                                ntb eee ×=                                                       (3.2) 

among these vectors holds. In this local (tangential, normal, bi-normal) coordinate system 

we have 

                                                                  tvev =                                                           (3.3) 

with 

                                                                 
dt
dsv s=                                                           (3.4) 

where sds  is the length of the infinitesimal displacement of the particle on the space 

curve in time interval dt . For acceleration, we have  

                                                         
dt
dv

dt
dv t

t
eea +=                                                     (3.5) 

For the second term, we apply the concept of curvature in the form 

                                                            n
ss

t

Rds
d ee 1

=                                                          (3.6) 

where sR  is the  radius of curvature at the particle position point. Therefore, the 

acceleration in terms of tangential and normal components ta  and na  is 

                                                             nt aaa +=                                                          (3.7) 
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where 

                                                         tttt dt
dva eea ==                                                      (3.8) 

                                                        n
s

nnn R
va eea

2

==                                                     (3.9) 

 

It seems the differential geometry governing the kinematics of the particle is more 

complete if we introduce the concept of torsion of the curve defined by 

                                                        n
tors

b

Rds
d ee 1

−=                                                       (3.10) 

where torR  is the radius of torsion of the curve. It can be easily shown that 

                                                     b
tor

n
ss

n

RRds
d eee 11

+−=                                              (3.11) 

 

Therefore, the equations for curvature of curve might be written as 

                                               
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

b

n

t

tor

tors

s

S

b

S

n

S

t

R

RR

R

ds
d
ds
d
ds
d

e
e
e

e

e

e

010

101

010

                               (3.12) 

This relation is called the Frenet-Serret formula in differential geometry. The anti-

symmetric tensor on the right hand side possesses the whole information about the 

curvature and twist of the curve at the point under consideration. However, an interesting 

interpretation of this relation can be given as follows. The principal directions bnt eee −−  

specify a local orthogonal reference system attached to the particle. This reference system 

rotates as the particle moves on the curve path. It is obvious this relation shows the 

gradual rotation of this local system with respect to any inertial system. If we write the 

relation as 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
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⎣

⎡

−

−=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

b

n

t

tor

tors

s

b

n

t

R
v

R
v

R
v

R
v

dt
d
dt

d
dt
d

e
e
e

e

e

e

00

0

00

                                   (3.13) 

 

the anti-symmetric tensor is the angular velocity tensor of the rotating local system 

bnt eee −− . By considering the angular velocity vector 

                                                                

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

s

tor

R
v

R
v

0ω                                                  (3.14) 

we obtain the relation 

                                                          
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

b

n

t

b

n

t

dt
d
dt

d
dt
d

e
e
e

ω

e

e

e

                                                (3.15) 

It is interesting to note that there is no angular velocity component in the ne  direction. 

The Frenet–Serret formulas can be generalized to higher dimensional Euclidean spaces 

by defining generalized curvatures. It can be shown that in the principal local coordinate 

system, which is called the Frenet–Serret frame, the anti-symmetric curvature tensor is 

tri-diagonal [7]. An important analogy will be seen in developing the relativistic theory of 

motion. 
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3.2. Relativistic kinematics of a particle 

 

In a relativistic study, the velocity and acceleration of the particle must be defined as 

four-vectors. However, it is seen that the vectors v  and a  are still useful in this 

development. 

 

The position of a particle in the inertial reference frame describes a path known as the 

world line. By considering two neighboring events on the world line of the particle with 

coordinates μx  and μμ dxx + , we have  

                                                  ( ) ( )dticicdtddx ,, vx ==μ                                           (3.16) 

The square length of this infinitesimal four-vector 

                        ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=−==•= 2

2
222222 1

c
vdtcdtcddxdxddds xμμxx                     (3.17) 

is the scalar invariant under all Lorentz transformation. It is seen that the imaginary 

length on the world line is  

                                                            2

2

1
c
vicdtds −=                                                (3.18) 

 

The proper time between the events τd  is defined by 

                                                       γτ dt
c
vdtd =−= 2

2

1                                           (3.19) 

Therefore, 

                                                                τicdds =                                                       (3.20) 

 

By using the concept of rapidity  

                                                               
c
v

=ξtanh                                                      (2.33) 

we notice 

                                                        ξττγ coshdddt ==                                             (3.21) 
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The unit four-vector tangent to the world line te  is defined as 

                                                         μ
μ e

x
e

ds
dx

ds
d

t ==                                                  (3.22) 

where 

                                                             1=• tt ee                                                          (3.23) 

 

The four-vector velocity μμeu u=  is defined as the rate of change of the position vector 

of particle x with respect to its proper time 

                                                                    
τd

dx
u =                                                       (3.24) 

The space and time components of u  

                                                                ( )4,uu u=μ                                                     (3.25) 

are 

                                                        tc
cv

evvu ξγ sinh
221
=

−
==                            (3.26) 

and 

                                                     ξγ cosh
221

4 ic
cv

icciu =
−

==                           (3.27) 

 

Therefore 

                                                          ( )ξξ coshi  ,sinh tc e=u                                       (3.28) 

which can be written as 

                                                                     ticeu =                                                     (3.29) 

with 

                                                       ( )ξξ cosh  ,sinh tt i e−=e                                        (3.30) 

 

The length of the four-vector velocity is a constant since 

                                                  22
4

2 cuuu −=+==• uμμuu                                     (3.31) 

and it is thus time-like. It is seen                
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                                                               0 =•
ds
d t

t
e

e                                                     (3.32) 

which means
ds
d te  is normal to the world line. By considering the unit four-vector ne  in 

this normal direction called the first normal and using the concept of curvature, we have 

                                                            n
t

Rds
d

e
e 1

−=                                                      (3.33) 

where R  is the world line radius of curvature at the point under consideration. The minus 

sign is for convenience and it will be justified shortly.  It is seen that 

                                                              2
1

Rds
d

ds
d tt =•

ee                                                (3.34) 

 

The four-acceleration μμeb b=  is defined as 

                                                              2

2

ττ d
d

d
d xu

b ==                                                  (3.35) 

which is always perpendicular to the four-vector velocity where,  

                                                               0=•
τd

du
u                                                       (3.36) 

 

It can be easily shown that 

                                              ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ •

⎟
⎠
⎞

⎜
⎝
⎛ •

+=
c

i
c

avvava 4
2

42 , γγγb                               (3.37) 

 

The length of four-vector acceleration can be found to be 

                                                    
2

6242
⎟
⎠
⎞

⎜
⎝
⎛ •

+==
c

abb avγγμμb                                  (3.38) 

 

Since μμbb  is positive, the four-acceleration is space-like. However, it is more appealing 

to consider the four-acceleration relative to the world line. By using (3.33), we obtain 

                                                           n
t

R
c

d
dic e
e

b
2

==
τ

                                              (3.39) 
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which shows the four acceleration is in direction of first-normal of world line and its 

value is  

                                                                             
R
c2

=b                                                           (3.40) 

 

Now we study the relative motion of a particle A in different inertial systems.  Let us 

consider the inertial systems 4321 xxxx  and 4321 xxxx ′′′′ , which are related by the Lorentz 

transformation    

                                                                νμνμ xΛx =′                                                      (2.6) 

where 

                                      

⎥
⎦

⎤
⎢
⎣

⎡

−
−+

=

⎥
⎦

⎤
⎢
⎣

⎡

−
−+

⎥
⎦

⎤
⎢
⎣

⎡
=

ξξ
ξξ

ξξ
ξξ

coshsinh
sinh)1(cosh

         

coshsinh
sinh)1(cosh

10
0

T
t

t
T
tt

T
t

t
T
tt

i
i

i
i

e
QeeQeQ

e
eee1Q

Λ
                          (2.58) 

 

Assume particle A moves in the first inertial system with ( )tAA xx =  and its four-vector 

velocity is 

                                          ( ) ( )AtAAAAA icuu ξξμ cosh,sinh, 4 eu ==                               (3.41) 

where 

                                                            
c
vA

A =ξtanh                                                      (3.42) 

This particle also moves in the second inertial system with ( )tAA ′′=′ xx , such that 

                                     ( ) ( )AtAAAAA icuu ξξμ ′′′=′′=′ cosh,sinh, 4 eu                                   (3.43) 

where 

                                                           
c
vA

A
′

=′ξtanh                                                       (3.44) 

These four-vector velocities are also related by the tensor transformation 

                                                            νμνμ uΛu =′                                                         (3.45) 

Therefore, 
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                            ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

−
−+

=′
A

tAA
T
t

t
T
tt

A ic
c

i
i

ξ
ξ

ξξ
ξξ

cosh
sinh

coshsinh
sinh)1(cosh e

e
QeeQeQ

u                    (3.46) 

which gives the relations 

                          tAtAA
T
tttAA Qeeee1Qe ξξξξξ coshsinhsinh])1(cosh[sinh −−+=′′             (3.47) 

                                   tAtAAA ee •−=′ ξξξξξ sinhsinhcoshcoshcosh                           (3.48) 

 

The relation (3.48) shows that the velocity addition law is valid even when one of the 

velocities is not constant. We investigate shortly the validity of this law when all particles 

are accelerating.  

 

3.3. Motion of particle as a four-dimensional rotation 

 

After reviewing kinematics of a particle, we develop the important character of its motion 

as a four-dimensional rotation.  To show this we consider the motion of the particle as the 

transformation of its four-velocity vector u  in the inertial reference frame system.  Let 

0u  be the initial four-vector velocity at position 0x , such that 00 )( uxu = . We can 

consider the transformation 

                                                    )(),()( 00 xuxxLxu νμνμ =                                           (3.49) 

where the transformation tensor ( )0, xxLμν  depends on the current position of the particle. 

This relation can be written as  

                                                         ( ) 00 ),( uLu xxx =                                                    (3.50) 

 

Since the length of the four-vector velocity is constant, we have 

                                                2
00 )()()()( cxuxuxuxu −== μμμμ                                  (3.51) 

Therefore, 

                                       0 )()(]),(),([ 0000 =− xuxuxxLxxL βααβμβμα δ                      (3.52) 

 

This requires the orthogonality condition 

                                                    αβμβμα δ=),(),( 00 xxLxxL                                         (3.53) 
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It is seen that although ( )0, xxL looks similar to a Lorentz transformation among inertial 

systems, it varies with motion of the particle. 

 

Meanwhile, the inverse relation is 

                                                          ( ) ( )xxxx T uLu ),( 00 =                                            (3.54) 

which in terms of components is 

                                                        ( ) ( )xuxxLu ννμμ ),( 00 =x                                       (3.55) 

 

This gives the orthogonality condition in the form 

                                                        1LL =),(),( 00 xxxx T                                               (3.56) 

or 

                                                    μνναμα δ=),(),( 00 xxLxxL                                         (3.57) 

 

By taking the derivative of (3.57) with respect to the proper time of the particle, we 

obtain 

                                   0),(),(),(
),( 0

00
0 =+

ττ
να

μανα
μα

d
xxdLxxLxxL

d
xxdL

                    (3.58) 

 

Now by defining the four-tensor 

                                                  ),(
),(

)( 0
0 xxL

d
xxdL

xΩ να
μα

μν τ
=                                  (3.59) 

we can see that the relation (3.58) becomes 

                                                           0)()( =+ xΩxΩ νμμν                                           (3.60) 

or 

                                                                   0ΩΩ =+ )()( xx T                                                 (3.61) 

which shows ( )xΩμν  is an anti-symmetric four-tensor.  In compact form, we have   

                                                     ( ) ),(),(
0

0 xx
d

xxdx TL
L

τ
=Ω                                        (3.62) 
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By multipling the relation (3.59) with ),( 0xxLνβ  and using the orthogonality condition, 

we obtain 

                                                  ( ) ),(
),(

0
0 xxLxΩ

d
xxdL

ανμα
μν

τ
=                                   (3.63) 

          

This may readily be written as   

                                                      ( ) ),(),(
0

0 xxx
d

xxd
L

L
Ω=

τ
                                         (3.64) 

 

Now the acceleration from the original transformation relation 

                                                     ( ) ( )00 ),( xuxxLxu νμνμ =                                          (3.49) 

is  

                                                 
( ) ( )0

0 ),(
xu

d
xxdL

d
xdu

ν
μνμ

ττ
=                                        (3.65) 

By substituting from (3.63), we have 

                                            
( ) ( ) ( )00 ),( xuxxLxΩ

d
xdu

νανμα
μ

τ
=                                     (3.66) 

which reduces to the relation 

                                                   
( ) ( ) ( )xuxΩ

d
xdu

αμα
μ

τ
=                                               (3.67) 

 

This is the relation between four acceleration 
( )
τ
μ

d
xdu

 and four-velocity at each point on 

the world line. It should be noticed that the relation (3.67) is actually (3.35) and (3.37) 

written as a transformation.  

 

It is also noticed that the relation (3.67) is similar to the non-relativistic relation for rate 

of change of a constant length vector G attached to a rotating system 

                                                              GωG
×=

dt
d                                                    (3.68) 
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where ( )321 ,, ωωω=ω  is the angular velocity of that rotating system. It is remembered 

that the components 1ω , 2ω  and 3ω  are the angular velocities of the body system in the 

yz , zx  and xy  planes of an inertial frame.  Because of the importance of (3.68), it is 

advantageous to demonstrate the mathematical details of its derivation. Let the prime 

system to be the body system. Then the components of this vector G′  are constant in this 

system. Therefore, we have 

                                                              ( ) ( )tt GQG =′                                                  (3.69) 

where ( )tQ  is the orthogonal rotation matrix. This relation can be written as 

                                                             ( ) ( )GQG ′= tt T                                                (3.70) 

 

The rate of change of the vector ( )tG  relative to the fixed reference frame is  

                                                            ( )GQG ′=
dt

td
dt
d T

                                              (3.71) 

After eliminatingG′  by using (3.69), we obtain 

                                                           QGQG
dt

d
dt
d T

=                                                  (3.72) 

Now by defining the tensor  

                                                             QQW
dt

d T

=                                                     (3.73) 

we have 

                                                             WGG
=

dt
d                                                       (3.74) 

which in the index notation can be written as 

                                                            jij
i GW

dt
dG

=                                                       (3.75) 

 

Now by differentiating the orthogonality condition 

                                                                 1QQ =T                                                       (3.76) 

with respect to the time, we obtain 
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                                                         0QQQQ
=+

dt
d

dt
d T

T

                                          (3.77) 

which may readily be written as 

                                                              0WW =+ T                                                   (3.78) 

 

This relation shows that the tensor W  is anti-symmetric. This tensor is the known 

angular velocity tensor of the rotating system relative to the inertial system. In terms of 

elements, this tensor is 
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==
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ωω
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ωRW                                       (3.79) 

 

Therefore, the relation (3.74) is the other form of (3.68) 

                                                         GωG
×=

dt
d                                                     (3.68) 

 

It should be noticed that the Frenet-Serret formula (3.15) is the application of this 

equation for fundamental base unit vectors. 

 

Now, we have a remarkable analogy for                                        

                                                     
( ) ( ) ( )xuxΩ

d
xdu

αμα
μ

τ
=                                             (3.67) 

with 

                                                           jij
i GW

dt
dG

=                                                       (3.75) 

 

It is seen that the four-vector acceleration 
τ
μ

d
du

 is the result of continuous rotation of the 

four-vector velocity μu  in a four-dimensional sense. Therefore, it seems μu  is attached to 

a four-dimensional system 4321 xxxx ′′′′  in the ticx ′=′4  direction, where 

                                                          ( )icu ,0,0,0=′μ                                                     (3.80) 
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and this system is rotating with four-dimensional angular velocity  μνΩ  relative to the 

inertial system, such that  

                                                     ( ) ),(
),(

0
0 xxLxΩ

d
xxdL

ανμα
μν

τ
=                                (3.63) 

 

Therefore, we have discovered that there is a fundamental relation between space-time 

and matter. A massive particle specifies a local four-dimensional orthogonal system with 

three real axes and one imaginary axis. Within this local 4321 xxxx ′′′′  space-time system, the 

particle has attached four-velocity with magnitude c in the time direction. The rotation of 

this space-time or four-dimensional system generates motion of the particle relative to the 

inertial system. This rotation is represented by the four-tensor angular velocity 

νμμν eeΩ=Ω  in the inertial reference frame. The nature of this four-dimensional angular 

velocity is explored very shortly.   

 

As was mentioned above, at any point on the world line, we have the transformation 

                                                       ( ) ( )xuxΛu νμνμ =′                                                   (3.81) 

where the varying tensor transformation ( )xΛμν  looks like a Lorentz transformation. 

Therefore, there must be a relation between tensors ( )xΛμν  and ( )xLμν . For a particle at 

an initial point 0x , we have 

                                                         ( ) ( )00 xuxΛu νμνμ =′                                               (3.82) 

 

Therefore 

                                                 ( ) ( ) ( ) ( )00 xuxΛxuxΛ νμννμν =                                        (3.83) 

 

By substituting for ( )xuν  from (3.49), we obtain 

                                       ( ) ( ) ( ) ( )0000 ),( xuxΛxuxxLxΛ αμααναμν =                               (3.84) 

 

This shows the relation  
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                                                ( ) ( )00 ),( xΛxxLxΛ μαναμν =                                           (3.85) 

which can be written as 

                                                       ( ) ( )00 ),( xxxx ΛΛ =L                                             (3.86) 

 

Therefore 

                                                      ( ) ( )00 ),( xxxx T ΛΛ=L                                             (3.87) 

 

It should be noticed that although ( )xΛ  is not constant any more, it follows the general 

form of Lorentz transformation (2.58)  
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where the physical meaning of the parameters in Pξ  and PQ  has not been specified. 

However, we can explore their relation with the motion of the particle in the course of 

our development. By using the relation (3.81), we obtain 

                                              ( )PtPP iccu ξξμ cosh,sinh e=                                           (3.89) 

 

This shows the vector Pξ  is actually the rapidity vector ξ  of the particle. Therefore,  
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                         (3.90) 

 
It is seen that the position vector ( )txx =  of the particle does not specify its relative 

position in the reference inertial frame completely. It is also necessary to specify its body 

frame orientation  ( )tΛΛ =  relative to this frame. However, the rapidity vector ( ) tt eξ ξ=  

is obtained from the velocity vector ( )
dt
dt xv = . Therefore, the position vector ( )txx =  

and orthogonal matrix ( )tPP QQ =  completely specify the particle position. 
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Now, we investigate the character of the anti-symmetric tensor νμμν eeΩ=Ω . The initial 

four-vector velocity is 

                                                   ( )0000 coshi  ,sinh ξξ tc e=u                                         (3.91) 

 

For simplicity we take the space coordinates of the initial body frame to be parallel to the 

stationary inertial frame, where ( ) 1Q =0tP . Therefore, 
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By taking the derivative with respect to the proper time τ  in the equation 

                                                      ( ) ( )00 ),( xxxx T ΛΛ=L                                             (3.87) 

we obtain 

                                                    ( ) ( )0
0 ),( x

d
xd

d
xxd T

ΛΛ
ττ

=
L                                         (3.93) 

 

Therefore, the relation 

                                                 ( ) ),(),(
0

0 xx
d

xxdx TL
L

τ
=Ω                                            (3.94) 

becomes 

                                           ( ) ( ) ( ) ( ) ( )xxx
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and finally we have 
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=                                                   (3.96) 

 

For  ( )xTΛ  from (3.90)  
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By taking the derivative with respect to the proper time, we obtain 
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Therefore, for ( )xΩ in (3.96), we have 
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Now by using the relation 

                                                           P

T
P

d
d

P
QQRω τ

=                                               (3.100)                               

where Pω  is an angular velocity vector in a mathematical sense, we obtain 
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This relation can be written in the form 
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where 
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One can see these relations can also be written as 
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These relations can be simplified further by using the relations 
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The four-tensor ( )xΩ  in terms of elements in the inertial reference frame is 
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This is the general form of an anti-symmetric four-tensor angular velocity μνΩ . It should 

be noticed that the elements ciΩΩ iii η=−= 44  are imaginary. It is observed that the 

angular velocities 1ω , 2ω  and 3ω  in xy , yz  and zx  planes generate space rotation of the 

body frame; the imaginary angular velocities 1ηc
i , 2ηc

i  and 3ηc
i  in xt , yt  and zt  

planes generate boost of the body frame. Therefore, the space-time body frame system 

rotates relative to the inertial system with angular velocity tensor μνΩ , which is a 

combination of elliptic and hyperbolic angular velocities ω  and η
c
1 .   

 

Returning to the equation for four-acceleration  

                                                       
( ) ( ) ( )xuxΩ

d
xdu

αμα
μ

τ
=                                           (3.67) 

we have the space and time components of four-vector acceleration as 
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These relations can also be written in the form 
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To demonstrate the physical meaning of the four-tensor angular velocity μνΩ , we 

consider the case where the particle starts moving from rest at 0=t . This requires 0=ξ  

in (3.106) and (3.107). Therefore, at this moment, 

                                                                   Pωω =                                                     (3.113) 
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These mean ω  and aη
cc
11

=  are the circular and hyperbolic angular velocity of the body 

frame relative to the inertial frame.  We notice that at this instant dtd =τ  and 

                                                                aaη == t                                                    (3.115) 

and therefore                               

                                                               τdd ωφ =                                                     (3.116) 

                                                          ττ ddd t aav ==                                                (3.117) 

The infinitesimal anti-symmetric four-dimensional rotation tensor Φd  is defined 

                                                            dτd ΩΦ =                                                        (3.118) 

which can be written as 
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This tensor in terms of elements is 
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This explanation can be used for the special case where the inertial system is coincident 

with the body frame instantly, which is often called a commoving inertial frame system. 

For this case, we have 1Q =′P  and the relation 
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It is seen that 

                                                                  Pωω ′=′                                                     (3.124) 

                                                             aaη ′=′=′
ccc t
111                                            (3.125) 

and at this instant tdd ′=′τ  and we have 

                                                                τdd ωφ ′=′                                                  (3.126) 

                                                          ττ ddd t aav ′=′=′                                              (3.127) 

It is seen that ω′  and aη ′=′
cc
11  are the circular and hyperbolic angular velocity of the 

body frame relative to the commoving inertial frame system. The infinitesimal four-

dimensional rotation Φ′d  of the body frame relative to the commoving inertial frame 

system is 
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It is obvious the four-tensor angular velocity tensor μνΩ′  is the representation of  Ω  on 

the commoving frame and we have  

                                                       νμμννμμν eeee ΩΩ =′′′                                             (3.129) 

From this, it is expected that  

                                                         αβμν ΩΩ μβμαΛΛ=′                                              (3.130) 

This tensor transformation can also be written as 

                                                         αβμν ΩLLΩ μβμα ′=                                               (3.131) 
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Although we still use the notations ω  and η
c
i  and call them angular velocities, these 

vectors cannot be taken as a proper angular velocity vectors like vectors ω′  and η′
c
i . 

This is the result of the non-Euclidean geometry governing the four-dimensional 

rotations.  A combination of the circular and hyperbolic angular velocities ω′  and η′
c
1  in 

the relation (3.131) gives the vectors ω  and η
c
1 . The famous Thomas precession for 

accelerating particles is manifest of the governing hyperbolic geometry.  Now it is clear 

why we denoted subscript P  in the orthogonal tensor PQ , which specifies Pω . The 

orthogonal tensor Q  specifies ω  through the relation  

                                                             QQRω dt
d T

=                                                 (3.132) 

 

Although Q and ω  are essential mathematical entities, they cannot be demonstrated      

geometrically as directly as PQ  or Pω . However, we must be careful when we consider 

ω  as a circular angular velocity. We might drop the subscript P  cautiously. Therefore, 

we have learned that the motion of a particle in the classical sense is the result of the 

hyperbolic part of rotation of its body frame. The space rotation is also part of the motion, 

which is the origin of spin precession of an electron in a magnetic field. This will be 

discussed in more detail shortly. 

 

It is realized that the non-Euclidean geometry is the result of transforming four-tensors 

and four-vectors among different space-time body frames. Through this important 

physical reality, one appreciates the work of those who considered the possibility of non-

Euclidean geometry. The non-Euclidean aspect of the velocity addition law for uniform 

motion has been studied by Robb, Varičak, Lewis, Wilson and Borel [6]. However, these 

discoveries have not been appreciated enough by later investigators. Fortunately, there 

have been some advocates of reviving this important issue recently [8]. Now we 

appreciate that this path resolves inconsistencies and paradoxes in relativity. It also 
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explains the geometrical mechanism behind motion and interaction, which will be 

developed in the next section.  

 

We have also noticed an important issue regarding the four-vector velocity of a particle. 

It has been shown that the four-vector velocity is attached to its body frame such that 

                                                           ( ) ( )xuxΛu νμνμ =′                                                (3.81) 

 

This has been shown symbolically in Fig. 1 by considering a two dimensional space and 

one time direction. It should be noticed that the inertial reference frame and body frame 

of the particle both have attached four vector-velocities Ru  and Pu  in their space-time 

frames, respectively. However, the Lorentz transformation (3.81) relates the components 

of four-vector velocity μu′  of particle P in its frame and its components of four-vector 

velocity ( )xuμ  in the inertial reference frame of particle R.  It should be noticed that the 

four-vector velocity components ( )icu ,0,0,0=′μ  and ( ) ( )ξξμ cosh,sinh icxu te=  are 

representations of  Pu  in body frame of particle and inertial reference frame, respectively. 

       

 
           Inertial reference frame                                         Body frame of particle 

 

 

 

 

 

 
Fig. 1. Inertial reference frame and body frame. 

 

Therefore, we can consider a new type of four-vector G   called an attached four-vector 

and defined as a four-vector attached to the body frame of a particle, such that 

                                                                            νμνμ GG Λ=′                                                           (3.133) 

no matter whether the body frame is inertial or accelerating. For this four-vector  

1x

2x

4x′

1x′
2x′

( )icu ,0,0,0=′μ
4x

Pu

Ru

( ) ( )ξξμ cosh,sinh icxu te=
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This can be written as 
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or in compact form 
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Using this relation for unit base tangential four-vector te , we have 
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By comparing this relation with the relation (3.33) for the world line radius of curvature, 

we obtain 
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It is seen that the world line radius of curvature satisfies 
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where the symmetric tensor 2Ω  is 
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It is also seen that the fundamental equation (3.63) can be written as  

                                                   
( ) ( ) ( )xLxΩ

c
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or in the compact form  
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For the base four-vectors of body frame μe′ , we have  
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which can be written as 
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One realizes that this equation is actually a Frenet-Serret-like formula for orientation of 

the local body frame relative to the inertial system. However, it should be noticed that 

this orientation is in terms of generalized curvatures of the world line but not generally in 

principal directions. The tangent to the world line specified by 4ee ′=T  is a principal 

direction, but the perpendicular directions to the tangent are not usually principal 

directions. It should be also mentioned that Synge has already studied the Minkowskian 

Frenet-Serret moving frame [9]. What we have shown is that this frame is a 

representation of the fundamental body frame of a particle. 

In this section, it has been demonstrated that there is a relationship between Minkowskian 

space-time and massive particles. The particle specifies its space-time body frame 

relative to the inertial reference frame. Now the natural question concerns the very 

existence of these space-time systems. It is seen that we are compelled to admit the 

existence of a universal entity, which has nothing to do with any special space-time. It is 

in this universal entity in which particles and their corresponding space-time body frame 

exist. Later we will investigate more about this universal entity.  
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3.4. General relative motion and velocity addition law  

 

Now we develop the theory of relative motion for general accelerating particles. It is seen 

that the governing relations and velocity addition law in Poincare’s relativity are still 

valid for this general case. 

 

Consider two particles A and B moving with velocities ( )tAA vv = and ( )tBB vv =  

relative to an inertial system. The four-vector velocities Au  and Bu  are attached four-

vectors, where we have 

                                                             ( ) AAAA uu Λ=                                                 (3.145) 

                                                             ( ) BBBB uu Λ=                                                 (3.146) 

( )AAu  and ( )BBu  are representing these four-vectors on their corresponding body frame 

where 

                                                             ( ) ( ) ( )icBBAA ,0,0,0== uu                                                 (3.147) 

 

The transformations ( )tAA ΛΛ =  and ( )tBB ΛΛ =  represent the orientation of these body 

frames relative to the inertial frame. For these transformations, we explicitly have 
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and 
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By using (3.147) and combining (3.145) and (3.146), we obtain  

                                                                BB
T
AA uu ΛΛ=                                              (3.150) 

 

Relative orientation of the body frame B relative to A at time t is denoted by ABΛ  and is 

defined such that  

                                                               ABAB ΛΛΛ =                                               (3.151) 
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This relation shows 

                                                              B
T
AAB ΛΛΛ =                                                (3.152) 

 

Therefore, (3.150) becomes 

                                                               BABA uu Λ=                                                 (3.153) 

which can also be written as 

                                                               A
T

ABB uu Λ=                                                 (3.154) 

 

It should be noticed that ABΛ  is the relative Lorentz transformation from body frame A 

to body frame B measured by our inertial reference frame at time t. Therefore all the 

relations are relative to this observer at time t. However, we should derive similar 

relations relative to the observer attached to the body frame A. For this we notice that the 

velocity of B relative to A measured by an observer in the body frame of A is 

                                                   ( ) ( ) BAAABAB uuu Λ==                                            (3.155) 

 

By substituting for Bu  from (3.146), we obtain 

                                                  ( ) ( ) ( )BB
T
BAAABAB uuu ΛΛ==                                   (3.156) 

 

We also have the obvious relation 

                                                       ( ) ( ) ( )
AABAABAA uu Λ=                                          (3.157) 

which can be written as 

                                                       ( ) ( ) ( )AA
T
AABAAB uu Λ=                                          (3.158) 

 

By comparing (3.156) and (3.157) and using (3.155) we obtain the relation 

                                                          ( ) T
BA

T
AAB ΛΛΛ =                                               (3.159) 

which can be written as 

                                                                     ( ) T
ABAAB ΛΛΛ =                                                         (3.160) 
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Interestingly, it is seen that 

                                                     ( ) T
AABAAAB ΛΛΛΛ =                                            (3.161) 

which looks like the transformation for tensor ABΛ  from inertial reference frame to the 

body frame A. What we have is the development of the general theory of relative motion.  

 

Explicitly from (3.155), we have            
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From this, we obtain the relations 

       ( ) tBB
T
tAtAAAtAABAAABtAB eee1QeQe ξξξξξ sinh])1(cosh[coshsinhsinh / −++−=  (3.163) 

                               ( ) tBtABABAAAB ee •−= ξξξξξ sinhsinhcoshcoshcosh                  (3.164) 

 

These relations are the manifest of hyperbolic geometry governing the velocity addition 

law even for accelerating particles. This property holds for all attached four-vectors and 

four tensors. Inertial observers relate components of attached four-vectors and four-

tensors by Lorentz transformations. This is the origin of non-Euclidean geometry 

governing the three vector and three tensors.  As we saw the addition of three vector 

velocities follow hyperbolic geometry. 

 

It should be noticed that these relations hold despite the fact that the transformation  

 

                                                               νμνμ xΛx =′                                                   (3.165) 

is not valid among accelerating systems. What we have here is the completion of the 

Poincare’s relativity for accelerating systems. 
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4.  Fundamental interaction 

 

After developing the theory of accelerating motion, we are ready to develop the theory of 

fundamental interaction. The equation of motion for a particle in an inertial reference 

frame system is given by                                                

                                                               μ
μ

τ
F

d
du

m =                                                      (4.1) 

where μF  is the four-vector Minkowski force. This force is the result of interaction of the 

particle with a field, such as an electromagnetic field. We are looking to explore the 

geometrical character of this field.  By substituting for four-acceleration from (3.67) in 

the relation (4.1), we obtain  

                                                           νμνμ umΩF =                                                         (4.2) 

for the Minkowski force. Since μνΩ is anti-symmetric, we have 

                                                    0== νμμνμμ uumΩuF                                                 (4.3) 

which means the four-vector Minkowski force μF  is perpendicular to the four-vector        

velocity μu . The relation (4.2) shows that this force depends on four-vector velocity μu  

and four-tensor angular velocity μνΩ  at the position of the particle x~  . As a result, the 

field strength must depend on the four-tensor angular velocity μνΩ . It is seen that the 

simplest admissible field is characterized by a field strength four-tensor ( )xμνΘ  such that 

at the position of the particle 

                                                           ( )xmΩ ~
μνμν αΘ=                                                  (4.4) 

 

Scalar α is a property of the particle and depends on the type of interaction. This quantity 

can be recognized as electric charge in electromagnetic interaction. Therefore, we can 

consider a fundamental interaction to be an interaction characterized by an anti-

symmetric strength tensor field ( )xμνΘ , such that at the position of the particle x~  

                                                           ( )x
m

Ω ~
μνμν

α
Θ=                                                   (4.5) 
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Although ( )x~μνΘ  is independent of the particle, the Minkowski force depends on the 

particle through α  and four vector velocity μu , such that 

                                                            νμνμ α uF Θ=                                                        (4.2) 

 

Therefore, the equation of motion becomes 

                                                          ( ) νμν
μ α
τ

ux
d
du

m ~Θ=                                               (4.6) 

 

One can see that the anti-symmetric strength tensor ( )xμνΘ  looks like a four-dimensional 

vorticity field analogous to the three-dimensional vorticity in rotational fluid flow. 

Therefore, we can consider a four-vector velocity-like field μμeV V=  induced to the 

space-time of the inertial reference frame, such that its four dimensional curl is the 

vorticity-like strength tensor  

                                                      ( ) νμμνμν VVx ∂−∂=Θ                                                (4.7) 

 

From our familiarity with electrodynamics, it is obvious that electromagnetic interaction 

is completely compatible with this geometrical theory of interaction. Therefore, in the 

next section, we present the covariant theory of electromagnetics and explore its 

geometrical aspects based on the four-dimensional vorticity theory. It is seen that this 

geometrical theory resolves some ambiguities in the traditional theory of 

electromagnetics. More importantly, one realizes that this theory is a model for any other 

fundamental interaction. Therefore, the corresponding gravitational theory is also 

developed in detail in Section 6. 

 

We should remember that the theory of relativity has its origin in the theory of 

electrodynamics. Now we can see that the theory of interaction also has its origin in this 

theory.  
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5.  Geometrical theory of electromagnetic interaction 

 

In the theory of electrodynamics [10], in an inertial reference frame, the force on a 

charged particle can be expressed in terms of two vector fields, an electric field E(x, t) 

and a magnetic field B(x, t). In terms of these fields, the force on a particle with charge q 

moving with velocity v is given by 

                                                                
)(    
)(

vBE
BvEF
×−=
×+=

q
q

                                            (5.1) 

 

This is known as the Lorentz force in SI units. It is noticed that the vector B is actually an 

axial or pseudo-vector. Therefore, there is a corresponding anti-symmetric tensor 

                                                   
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−
=

0
0
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23

BB
BB

BB

BR                                          (5.2) 

such that the Lorentz force in matrix form is 

                                                         )( vREF B−= q                                                   (5.3) 

 

In the covariant theory of electrodynamics, the corresponding four-vector Minkowski 

force is 

                                                                        ( ) νμνμ uxqFF ~=                                                           (5.4) 

where the electromagnetic strength field μνF is 

                            
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

=
01

1

0
0

0
0

321

312

213

123

E

ER

c
i

c
i
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T
B

F              (5.5) 

 

Therefore, the equation of motion of this particle is given by  

                                                          ( ) νμν
μ

τ
uxqF

d
du

m ~=                                               (5.6) 
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It is obvious that the equation (5.6) has the form of the equation (4.6), which was 

obtained based on the kinematical considerations. It is seen that  

                                                                q→α                                                             (5.7) 

                                                                          μνμν F→Θ                                                                    (5.8) 

 

Therefore, the space-time body frame of the particle rotates with four-tensor angular 

velocity  

                                                           ( )xF
m
qΩ ~

μνμν =                                                   (5.9) 

relative to the inertial frame. It is seen that the hyperbolic and circular angular velocities 

of the body frame are  

                                                            ( )x
mc
q

c
~Eη

=                                                     (5.10) 

and 

                                                           ( )x
m
q ~Bω −=                                                     (5.11) 

respectively. Now we realize that the electromagnetic strength field tensor and Lorentz 

force vector are both a natural consequence of the geometric structure of relative space 

time. Based on our experience with continuum mechanics, as we mentioned before, the 

strength tensor μνF  field seems like a four-dimensional vorticity field. This 

electromagnetic vorticity four-tensor field is a combination of hyperbolic electromagnetic 

vorticity E
c
1  and circular electromagnetic vorticity B− . It is seen that the scalar 

m
q  

maps the vorticity field μνF  at the position of the particle to the four-tensor angular 

velocity μνΩ of its body frame. Therefore, the effect of electromagnetic interaction on a 

charged particle is nothing but the instantaneous four-dimensional rotation of its body 

frame. The equations (3.111) and (3.112) for the particle can be written as 

                                                  ηuωu
22 /1

1
cvd

d
−

+×=
τ

                                        (5.12) 
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                                                  uη•=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

− ccv
c

d
d 1

/1 22τ
                                        (5.13) 

 

These equations are equivalent to the space and time components of equation (5.6) for 

electromagnetic interaction as 

                                        ( )BvEvu
×+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−
= q

cv
m

dt
d

dt
dm

22 /1
                              (5.14) 

                                                      vE •=
−

q
cv

mc
dt
d

22

2

/1
                                         (5.15) 

 

As we know, the first equation is the equation of motion, where its right hand side is the 

familiar Lorentz force. The second equation is the rate at which the electromagnetic field 

does work on the particle and changes its energy. 

 

In covariant electromagnetic theory, the four-vector electric current density 

                                        ( ) ( ) ),(,, 4 icciJJ EEEEEE vJJ ρρμ ===                               (5.16) 

satisfying the continuity equation 

                                               0, =
∂
∂

+•∇=
t

J E
EE

ρ
μμ J                                               (5.17) 

generates the electromagnetic four-vector potential A , where 

                                                        ),( 4AA A== μμeA                                               (5.18) 

in space-time corresponding to the inertial reference frame. The space component A  is 

the magnetic vector potential and the time component 4A  is related to the electric scalar 

potential φ  as 

                                                                φ
c

iA 1
4 =                                                      (5.19) 

 

The four-dimensional curl of μA  gives the electromagnetic field strength tensor μνF   

                                                          μννμμν AAF ∂−∂=                                             (5.20) 
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Therefore, the fields E and B  are expressed in terms of these potentials as  

                                                            φ∇−
∂
∂

−=
t
AE                                                  (5.21) 

                                                               AB ×∇=                                                       (5.22) 

 

It should be noticed that the four-vector V  corresponds to the negative of  A  

                                                               μμ AV −→                                                       (5.23) 

and can be considered as an electromagnetic velocity field induced in four-dimensional 

space-time relative to the inertial frame.   As was mentioned previously, its four-

dimensional curl is the electromagnetic vorticity four-tensor μνF   

                                                            μνμν F→Θ                                                        (5.24) 

 

The covariant form of the governing equation for strength or vorticity tensor μνF  due to 

the electric current density is 

                                                          μμνν
π

EJ
c

KF 2

4
=∂                                                (5.25) 

which is the compact form of Maxwell’s inhomogeneous equations  

                                                    EKρπ4=•∇ E                                                   (5.26) 

                                             Ec
K

tc
JEB 22

41 π
+

∂
∂

=×∇                                           (5.27) 

 

Equation (5.26) is Gauss’s law and equation (5.27) is Ampere’s law with Maxwell’s 

correction. In these equations, the constant K  is the electrostatic or Coulomb constant 

that usually is written as 
04

1
πε

=K , where 0ε  is the permittivity of free space. There is 

also the relation 
00

2 1
εμ

=c , where constant 0μ  is called the permeability of free space 

and the relation 02

4 μπ
=

c
K  holds. Therefore, the equation (5.25) can be written as 

                                                            μμνν μ EJF 0=∂                                                  (5.28) 
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and also the Gauss and Ampere’s laws (4.26) and (4.27) become  

                                                    0ερE=•∇ E                                                     (5.29) 

                                               Etc
JEB 02

1 μ+
∂
∂

=×∇                                              (5.30) 

 

The compatibility equation for μνF  is  

                                                   0=∂+∂+∂ σμννσμμνσ FFF                                       (5.31) 

 

This is the necessary condition to obtain the electromagnetic velocity μA  from vorticity 

field μνF . It simply checks if a given electromagnetic vorticity field is acceptable or not. 

This equation is the covariant form of Maxwell’s homogeneous equations 

                                                                0=•∇ B                                                       (5.32) 

                                                           0=
∂
∂

+×∇
t
BE                                                   (5.33) 

 

As we know, the equation (5.32) is Gauss’s law for magnetism and the equation (5.33) is 

Faraday’s law of induction. The set of equations (5.29)-(5.30) and (5.32)-(5.33) are 

Maxwell’s equations in SI units. They simply show the relations governing the 

electromagnetic vorticity induced to space-time. It is seen that the geometrical theory of 

electromagnetic interaction is very clear in SI units. Interestingly, it is realized that the 

electromagnetic theory would have been much more compatible with the geometrical 

theory if the scalar and vector potentials φ  and A, and magnetic field B  had been 

defined as the negative of their present form. 

 

The four-vector potential field μA   is not uniquely determined from compatible strength 

four-tensor μνF  due to the gauge freedom. Indeed, the new field  

                                                           λμμμ ∂+→ AA                                                 (5.34) 
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does not change the field strength tensor μνF . Such transformation is called a gauge 

transformation in which the function λ  is a function of coordinate x . This gauge 

freedom allows us to have the Lorentz gauge constraint 

                                                     01
2 =
∂
∂

+•∇=∂
tc

A φ
μμ A                                        (5.35) 

 

Therefore, λ  is not that arbitrary. It must satisfy the wave equation 

                                                   01
2

2

2
2 =

∂
∂

−∇=∂∂
tc
λλλμμ                                        (5.36) 

 

This wave equation can be considered as representing the inertial electromagnetic waves. 

Using the Lorentz gauge in (5.28) produces the manifestly covariant wave equation 

                                                          μμαα μ EJA 0−=∂∂                                               (5.37) 

 

What we have shown is that Maxwell’s equations are equations governing the hyperbolic 

and circular angular electromagnetic vorticities E
c
1  and B− . The equation 

                                                    0=∂+∂+∂ σμννσμμνσ FFF                                      (5.31) 

is nothing but a kinematic compatibility for these electromagnetic vorticities. The non-

homogeneous equation 

                                                             μμνν μ EJF 0=∂                                                 (5.28) 

is the relation among these vorticities and electric four-vector density current. An analogy 

with continuum mechanics suggests this relation is the equation of motion for 

electromagnetic vorticities.   

 

Maxwell’s equations are covariant, which means they are invariant under Lorentz 

transformations among inertial systems. Therefore, the four-vector A , and four-tensor F  

are fundamental fields independent of any specific space-time induced in the universal 

entity mentioned before. It is the inertial observer who specifies a space-time in this 

universal entity and measures components for these four-vector and four-tensor, for 
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example μνF  for F . The components of this four-tensor transform under Lorentz 

transformation among inertial systems as 

                                                           αβνβν FF μαμ Λ=′ Λ                                                (5.38) 

 

The non-Euclidean character of electromagnetic field tensors is obvious from these 

transformations. Interestingly, the scalars 

                                                      )1(2 2
2

2 E
c

BFF −=μνμν                                         (5.39) 

                                                        ( )22
1det BE•−=
c

F                                               (5.40) 

are the invariants of the four-tensor μνF  under the Lorentz transformations. They show 

that the scalar 
2

⎟
⎠
⎞

⎜
⎝
⎛ + EB

c
i  is invariant.  

 

It is obvious that the non-inertial observers are not qualified to use  (5.38), because the 

transformation 

                                                             νμνμ xΛx =′                                                         (2.6) 

does not hold among them. We demonstrate this fact by a simple example. Consider the 

electromagnetic vorticity field generated by a free charged particle. Its body frame is an 

inertial frame and has a uniform motion relative to other inertial observers. The particle 

generates the electric field in its inertial body frame, such that  

                                                            rE ˆ
4 2

0

′
′

=′
r

q
πε

                                                 (5.41) 

Therefore, it is seen that  

                                                           ),0,0,0( φμ ′=′
c
iA                                                (5.42) 

where 

                                                               
r

q
′

=′
04πε

φ                                                     (5.43) 
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is parallel to the four-vector velocity ),0,0,0( icu =′μ . Relative to the reference inertial 

frame, we have  

                                                             ννμμ xΛx ′=                                                        (5.44) 

and 

                                                           ννμμ AΛA ′=                                                         (5.45) 

 

It seems as if the four-vector field μA′  were attached to the body frame rigidly in the time 

direction, such that it looks rotated relative to the fixed inertial system. However, this 

rigid like character and covariant relations are not valid when the particle is accelerating. 

It seems the space-time body frame of an accelerating particle does not look rigid in this 

sense to any observer. Therefore, the position four-vector x , four-vector potential A  and 

four-tensor F  field do not transform under a uniform hyperbolic rotation. This non-rigid 

character can be considered as the geometrical origin of electromagnetic radiation. The 

radiation of an accelerating particle can be analyzed by using the general equation 

                                                          μμαα μ EJA 0−=∂∂                                               (5.37) 

in the context of Liénard-Wiechert potential [10]. 

 

What is the consequence of the non-rigidity of the space-time body frame of an 

accelerating particle?  As we saw, the four-acceleration of a charged particle  

                                                          ( ) νμν
μ

τ
uxF

m
q

d
du ~=                                              (5.46) 

is the result of rigid-like instantaneous rotation of its body frame.  However, we now 

realize that the global rigid-like character of the body frame is not a requirement for this 

geometrical derivation. It is only necessary to consider the instantaneous rotation of the 

body frame in the neighborhood of the particle. Therefore, we define ( )x~μνΩ  as the four-

dimensional angular velocity of the body frame at the position of the particle  

                                                         ( ) ( )xF
m
qx ~~

μνμν =Ω                                              (5.47) 
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Interestingly, with this development we can examine the character of particles in 

quantum theory to explain the wave-particle duality of matter. It is in classical mechanics 

where we specify position of a particle, for example, at the origin of its space body frame. 

In quantum mechanics, a free elementary particle with specified momentum does not 

have a specified position in its space-time and can be anywhere in its body or inertial 

reference frame. One can suggest that the wave function of the particle represents the 

trace of its space-time body frame on the inertial reference frame. Therefore, it is 

necessary to understand the Dirac spinor wave function in the framework of the present 

space-time theory. This new view looks very promising if we remember that the wave 

function of an interacting particle is localized and is different from the wave function of a 

free particle. It is seen that this is nothing but the manifestation of a deformation-like 

character of the space-time body frame of an interacting particle. Interestingly, we realize 

that the creation and annihilation of particles can be explained as the result of constraints 

in the time direction. It is clear that we may expect to resolve ambiguities in the quantum 

world and other branches of modern physics with our new view of space-time.  Here, we 

should mention that the affinity of the Lorentz transformation with electromagnetic 

strength field tensor and Lorentz force has been realized before. For example, Buitrago 

has stated that the electromagnetic strength field tensor and Lorentz force are both a 

natural consequence of the geometric structure of Minkowskian space time, which 

indicates a fundamental meaning in physics [11]. Obviously, what we have here is 

development of this fundamental meaning. 

 

Now it is time to explore more about the universal fundamental entity in which particles 

create their space-time and interact through vorticity fields. It turns out that the review of 

electromagnetic energy-momentum tensor and Maxwell stress tensor is useful. 

 

5.1. Electromagnetic energy-momentum tensor 

 

Relative to the space-time inertial reference frame, the Lorentz force per unit volume on a 

medium with a charge density Eρ  and current density EJ  is given by  

                                                            BJEf ×+= EEρ                                              (5.48) 
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The generalization of this force in covariant electrodynamics  is 

                                                                νμνμ EJFf =                                                  (5.49) 

where ( )4, ff f=μ  is the force-density four vector with  

                                                              EJ •= Ec
if4                                                  (5.50) 

 

We note that 

                                                             EJ •=
∂
∂

Et
w                                                     (5.51) 

 

is the work done per unit time per unit volume by the electric field on moving charges. 

Therefore 

                                                               
t
w

c
if
∂
∂

=4                                                      (5.52) 

 

By substituting μEJ  from the equations of motion of the electromagnetic field 

                                                             μμνν μ EJF 0=∂                                                (5.30) 

and some tensor algebra, we obtain 

                                                                μννμ Tf ∂=                                                     (5.53) 

where μνT  is the electromagnetic energy-momentum tensor defined by 

                                              ⎟
⎠
⎞

⎜
⎝
⎛ += αβαβμνσνμσμν δ

μ
FFFFT

4
11

0

                                  (5.54) 

 

The explicit form of the components of this four-tensor in terms of E  and B  are 

 

                                   )
2
1(1)

2
1(

0
0 ijkkjiijkkjiij BBBBEEEET δ

μ
δε −+−=                  (5.55) 

 called the Maxwell stress tensor, and 
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the electromagnetic energy density, and 
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where the Poynting vector S  is defined by 

                                                                BES ×=
0

1
μ

                                                (5.58) 

 

Therefore, the symmetric four-tensor μνT  can be written in schematic matrix form as 
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The traction or force exerted by this field on a unit area of a surface in space with unit 

normal vector in  is 

                                                                   ( )n
ijij TnT =                                                  (5.60) 

Through this similarity with continuum mechanics, we can take μνT  as a four-stress 

tensor. The time-space components of the equation (5.53) are 

                                                          
t
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i ∂
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1                                               (5.61) 
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Integrating these relations over a volume V bounded by surface A , and using the 

divergence theorem, we obtain 
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These equations show that the electromagnetic field has energy and carries momentum. 

The Poynting vector S  represents the energy per unit time, per unit area, transported by 

the fields in space.  It is also seen that the electromagnetic field carries momentum, such 

that  

                                                         BESG ×== 02
1 ε
c

                                             (5.65) 

is the electromagnetic momentum density vector.  By noticing  

                                        VdVfF
V

ii   on volume acting force total== ∫                       (5.66) 

and 

                                
V
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V
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 electric by the unit timeper  donework 4 =−=
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we obtain the equations  (5.63) and (5.64) as 
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It is seen that by considering 

                                                              
t

PF i
i ∂

∂
= mech                                                     (5.70) 

where 

                             VPi   in volume charges of momentum mechanicalmech  =                (5.71) 

and 

                        VdVGP
V

ii   in volume momentum neticelectromagfield  == ∫                 (5.72) 

and 

                               VdVuU
V

  in volumeenergy  neticelectromagfield == ∫                    (5.73) 

we obtain the momentum and energy conservation laws 
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                                                   ( ) ( )dATPP
t A

n
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                                                   ( ) 0field  =++
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∫ dAnSUW
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These relations in vectorial form are 

                                                 ( ) ( )dA
t A

n∫=+
∂
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In addition, note that the relation 
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FFFFT
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                                          (5.54) 

looks like a constitutive relation for four-stress tensor μνT  in term of the four-tensor 

electromagnetic vorticity μνF  in the universal entity. In linear continuum mechanics, the 

constitutve equations relate the stress tensor linearly to strain or strain rate, but the energy 

density is a quadratic function of strain or strain rate tensor.  However, what we have here 

is four-dimensional analogous case in which the stress four-tensor T  is a quadratic 

function of vorticity four-tensor in the universal entity. Therefore, it is seen that the 

universal entity behaves like a continuum in which charged particles create stresses and 

electromagnetic vorticities. Interestingly, the point charged particles are singularites of 

these vorticities and four stress tensors. Therefore, the Minkowski forces exerted on these 

point particles are the Lorentz forces, which can be considered also as four-dimensional 

lift forces. Although this conclusion looks very interesting, historical accounts show it is 

not completely new. This development is similar to the efforts of investigators of ether 

theory. Ether was the term used to describe a medium for the propagation of 

electromagnetic waves. For example, it is very interesting to note that McCullaugh [12] 

considered ether to be a new kind of medium in which the energy density depends only 

on the rotation of the volume element of ether. The work of McCullough has been a base 

for work of other proponents of ether theory such as Lord Kelvin, Maxwell, Kirchhoff, 
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Lorentz and Larmor. Whitaker [13] gives a detailed account of these investigations in 

which we learn that Maxwell agreed to a rotational character for magnetic field and a 

translational character for electric field. We also learn that Larmor [14] considered that 

the ether was separate from matter and that particles, such as electrons, serve as source of 

vortices in ether.  

 

What is surprising is that we have used similar ideas about stress and vorticity, but in a 

four-dimensional context. In our development, the magnetic field has the same character 

as circular rotation, but the electric field has the character of hyperbolic rotation. It is 

seen that it is well justified to call our fundamental universal entity the historical ether out 

of respect, which now is represented by four-dimensional space-time systems. Therefore, 

in the new view, particles specify their space-time body frames in the ether and interact 

with each other through four-vorticity and four-stress that they create in the ether. As we 

mentioned, the Lorentz force  

                                                                        ( ) νμνμ uxqFF ~=                                                          (5.4) 

is analogous to the lift force in fluid dynamics. The lift on an airfoil is perpendicular to 

the velocity of flow past the surface. This is the mechanical explanation of four-vector 

electromagnetic Lorentz force. 

 

It is obvious that understanding more about ether and space-time is an important step 

toward understanding more about modern physics. However, the geometrical theory of 

electromagnetic interaction resolves some difficulties even in this classical state. We 

address two important cases.  

 

5.2. Magnetic monopole does not exist 

 

With the new view, the magnetic field B  is the space electromagnetic vorticity induced 

to the ether relative to the reference inertial frame. This is analogous to the vorticity field 

in a rotational fluid flow. From non-relativistic fluid mechanics, we know that the 

vorticity is the curl of the velocity field of the fluid and it is twice the angular velocity of 
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the fluid element. Therefore, we see the same for the electromagnetic vorticity. The 

magnetic field B  is the curl of the electromagnetic velocity vector field A   

                                                               AB ×∇=                                                      (5.22) 

 

This definition requires 

                                                                 0=•∇ B                                                      (5.32) 

which is the kinematical compatibility equation.  This is the necessary condition for the 

existence of vector potential A  for a given magnetic field B . Existence of a magnetic 

monopole violates this trivial kinematical compatibility equation. We demonstrate this 

further by contradiction as follows. 

 

Let us assume, at the origin, there is a point magnetic monopole of strength mq .  

Therefore, in SI units 

                                                         ( ) )(3
0 xB δμ mq=•∇                                             (5.78) 

and the static magnetic field is then given by 

  rB ˆ
4 2

0

r
qm

π
μ

=                                                    (5.79) 

 

However, the relation (5.78) contradicts the kinematical compatibility (5.32). 

Interestingly, based on the Helmholtz decomposition theorem, this field can only be 

represented by a scalar potential [15] 

                                                            
r

qm
m π

μ
φ

4
)( 0=x                                                 (5.80) 

where the  magnetic field B is given by 

                                                                mφ−∇=B                                                      (5.81) 

 

But this is absurd because the electromagnetic vorticity vector field B  has to be always 

represented by curl of the electromagnetic velocity vector A . Therefore, magnetic 

monopoles cannot exist. It is concluded that the magnetic field B  is only generated by 

moving electric charges.  
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It has been long speculated that magnetic monopoles might not exist because there is no 

complete symmetry between B  and E . This is due to the fact that B is a pseudo-vector, 

but E  is a polar vector. What we have here is the confirmation of this correct speculation 

that there is no duality between E  and B  in electrodynamics. We have shown that the 

magnetic field B has the character of a circular vorticity field and is divergence free. 

However, the electric field E has the character of a hyperbolic vorticity with electric 

charges as its sources, where 

                                                          0ερE=•∇ E                                                     (5.29) 

  

It is seen that this explanation is actually clarification of Larmor’s ether theory. 

 

As mentioned previously, the electric charge q  of a particle has the property of a 

kinematical coupling, which maps the four-dimensional electromagnetic vorticity at the 

position of the particle to the angular velocity of its body frame. We have shown that 

electric charge is the only coupling present. Furthermore, there is no need for any other 

coupling. It is naïve to assume that a simplistic modification of Maxwell’s equations 

suffice to allow the existence of magnetic charges in electrodynamics.  

 

5.3. Spin dynamics and magnetic moment 

 

It is known that every elementary particle, such as an electron, has an intrinsic angular 

momentum called spin. The spin can be considered as a constant length four-vector 

( )4, ss s=μ  such that relative to the particle body frame, the spin four-vector has only 

space components. This means that it is normal to the particle’s four-vector velocity 

relative to its frame and also the inertial reference frame 

                                                           0==• μμsusu                                                 (5.82) 

 

If the electromagnetic fields are uniform, the equation for spin is given by the BMT 

equation10) 
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where g  is called the gyro-magnetic ratio. By using an analogy with orbital angular 

momentum of systems of charged particles and the concept of magnetic dipole moment, 

we can show 1=g . However, experiments show it is a number very near 2. The Dirac  

relativistic wave equation for an electron shows 2=g  [10].  Therefore, the BMT 

equation becomes 

                                                           νμν
μ

τ
sF

m
q

d
ds

=                                                  (5.84) 

 

This is fantastic! It is seen that the value 2=g  is compatible with the developed 

geometrical-kinematical theory of electrodynamics. The spin four-vector is an attached 

four-vector, which is rotating with 

                                                           ( )xF
m
qΩ ~

μνμν =                                                    (5.9) 

 

Therefore, the constant length spin rotates with the body frame, such that 

                                                     νμννμν
μ

τ
sF

m
qsΩ

d
ds

==                                            (5.85) 

 

It should be noticed that the spin four-vector has only space components in its body 

frame, which is consistent with (5.82). 

  

Interestingly, now we realize that the analogy to orbital angular momentum and using the 

concept of magnetic dipole moment, which leads to 1=g , is misleading.  

 

6.  Maxwellian theory of gravity 

 

The Maxwellian theory of gravity generalizes the Newtonian theory of gravity to moving 

masses. It is clear that this is the compatible theory with our geometrical theory of 

interaction. The peculiarity of this theory, although classical theory offers no compelling 
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reason behind it, is that the gravitational charge Gm  is proportional to the inertial mass 

m , as far as we know. This is called the equivalence principle, which means in a proper 

system of units, such as the SI system, these two masses are equal 

                                                                 mmG =                                                           (6.1) 

 

However, it should be noticed that in the developed geometrical interaction theory, the 

equivalence principle is not a fundamental necessity at all. If, in future, this principle is 

invalidated in some range of masses, this theory will still remain valid.    

 

In this theory, the gravitational mass (charge) induces the four-momentum per unit 

gravitational mass or gravitational four-velocity U , where 

),( 4UU U== μμeU                                                   (6.2) 

to the ether relative to the space-time inertial observer. Because of the equivalence 

principle, the gravitational four-velocity field U  looks like the four-velocity u  of the 

particle. This explains why we use the symbol U  to represent this velocity-like field. 

 

By analogy to the electromagnetic theory, 4U  should be related to the scalar Newtonian 

potential Φ . It will be shortly shown that 

                                                              
c
ΦiU −=4                                                         (6.3) 

 

The anti-symmetric four-tensor gravitational intensity field is characterized by the curl 

                                                   ( )νμμνμν UUΩG ∂−∂=                                               (6.4) 

which is the gravitational four-vorticity induced in the ether measured by an inertial 

observer analogous to μνF in electrodynamics. We have chosen the symbol μνGΩ  to 

emphasize the analogy of the space gravitational vorticity to vorticity in classical fluid 

mechanics. In terms of components 
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where Gω  and cGη  are gravitational circular and hyperbolic angular vorticitiy fields, 

respectively. By decomposition of the vorticity tensor defined by (6.4), we obtain  

                                                       4
11 Ui

tcc G ∇−
∂
∂

=
Uη                                                (6.6) 

                                                            Uω ×∇=G                                                         (6.7) 

 

The space vorticity Gω  is called the co-gravitational, magnetic gravity or gyro-

gravitation vector [16]. From the Newtonian theory of gravity, we see 

                                                              gη =G                                                               (6.8) 

and therefore 

                                                          
c
ΦiU −=4                                                           (6.3) 

and the relation (6.6) can be written as 

Φ
tG ∇−
∂
∂

==
Uηg                                                  (6.9) 

 

Equation (4.6) represents the equation of motion for a particle in an arbitrary field, such 

as the electromagnetic field. The corresponding equation of motion for a particle in a 

general gravitational field becomes 

                                                   ( ) νμν
μ

τ
uxΩm

d
du

m GG
~=                                              (6.10) 

 

By using the equivalence principle (6.1), we obtain the geometrical equation of motion 



 64

                                                        ( ) νμν
μ

τ
uxΩ

d
du

G
~=                                               (6.11) 

 

Therefore, the four-tensor angular velocity of the body frame is 

                                                             ( )xΩΩ G
~

μνμν =                                                 (6.12) 

 

This equation for components gives 

                                                               ( ) ( )xxG
~~ gηη ==                                            (6.13) 

                                                                  ( )xG
~ωω =                                                   (6.14) 

 

Note that  ( )xG
~η  and  ( )xG

~ω   are the gravitational vorticities of the field at the position 

of the particle, while η  and ω  represent the angular velocities of the body frame of the 

particle. 

 

It is seen that the time and space components of the equations of motion are 

                                                          uωgu
×+= Gd

d γ
τ

                                               (6.15) 
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d
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τ

4                                                  (6.16) 

which can also be written as 
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                                                          vg •=
−

m
cv
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dt
d

22

2

/1
                                     (6.18) 

similar to the electromagnetic interaction. The first of these is the equation of motion and 

its right hand side is the gravitational Lorentz force. The second equation defines the rate 

at which the gravitational field does work on the particle.  

 

In analogy with electromagnetic theory, the field equation is postulated to be 
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                                                        μμνν
π J
c

GΩG 2
4

−=∂                                               (6.19) 

where G is the gravitational constant in Newton’s theory of gravitation and 

                                              ( ) ( ) ),(,, 4 icciJJ vJJ ρρμ ===                                     (6.20) 

is the four-vector mass current density. It should be noticed that the negative sign in the 

right hand side of (6.19) is in agreement with the Newtonian gravity, where masses 

attract each other.  Equation (6.19) is the compact form of the inhomogeneous equations  

                                                    ρπG4−=•∇ g                                                   (6.21) 

                                           Jgω 22
41
c

G
tcG

π
+

∂
∂

−=×∇                                           (6.22) 

where equation (6.21) is Gauss’s law for the gravitation and equation (6.22) is the general 

Ampere’s law for this Maxwellian theory of gravity.  

 

Based on the definition of the vorticity field αβGΩ  in (6.4), we have the compatibility 

equation 

                                              0=∂+∂+∂ βαγ GαγGγβGβα ΩΩΩ                                       (6.23) 

which gives the  homogeneous equations 

                                                                 0=•∇ Gω                                                   (6.24) 

                                                             0=
∂
∂

−×∇
t
Gωg                                              (6.25) 

The first equation (6.24) is Gauss’s law for the gyro-gravitation vector, while the second 

equation (6.25) is Faraday’s law of induction for this Maxwellian theory of gravity. 

 

In analogy with electrodynamics, the induced four-vector velocity field μU   is not 

uniquely determined from μνGΩ . The new field  

                                                         χμμμμ ∂+=′→ UUU                                        (6.26) 

does not change the gravitational vorticity field μνGΩ . Here χ  is a scalar function of x . 

This gauge freedom allows us to impose the constraint 
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Therefore, the scalar χ  is not that arbitrary. It must satisfy the wave equation 

                                                  01
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2
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2 =

∂
∂

−∇=∂∂
tc
χχχμμ                                        (6.28) 

which can be considered as representing gravitational inertial waves. By considering the 

gauge invariance, we obtain the covariant wave equation  

                                                          μμαα
π J
c

GU 2
4

−=∂∂                                           (6.29) 

 

This equation relates the mass current density to the gravitational velocity field μU  

induced to the ether relative to the inertial reference frame. Here, the right hand side 

coefficient has been adjusted such that the Newtonian theory can be recovered for 

stationary masses. For this case  

                                                        ρπ
c
GiU 4

4
2 −=∇                                                  (6.30) 

 

Then by using 4U  from equation (6.3), we obtain  

                                                            ρπGΦ 42 =∇                                                     (6.31) 

which is the well known Poisson equation in Newtonian theory. In this theory, the 

gravitational field g  is obtained from the relation  

ΦG −∇== ηg                                                (6.32) 

which shows the gravitational hyperbolic vorticity g
c
1  is the result of only the time 

component of the gravitational velocity Φ
c
1

− . 

 

It should be noticed that a vortex theory describing gravity is not new. Descartes devised 

a theory of vortices which postulated that the space was entirely filled with a subtle 

matter, some kind of effluvium, not much different from the ether of later authors. He 
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postulated that the sun by its rotation causes this effluvium to be concentrated in space 

vortices that carry the planets around the sun on their orbits [17]. It is seen that this form 

of vortex theory resembles the co-gravitational part of the Maxwellian gravity. As we 

know now, this co-gravitational part does not have that much affect on planetary motions 

around the sun. Actually, this part can be considered as a small perturbation to the 

dominant Newtonian gravitation. 

 

Now we understand why Newton refuted a vortex theory to explain gravity. This is 

because he could not relate the vortex theory to his theory of gravitation. How could he 

have imagined his theory as a hyperbolic vortex theory with hyperbolic rotation instead 

of familiar circular rotation? He could not believe that his theory could be completed by 

adding circular vorticity as gyro-gravity part of gravity. Despite the extensive geometrical 

analysis in his work, Newton did not have any geometrical explanation for his theory of 

gravitation [18]. However, the vortex theory of Descartes was so appealing that it had 

many proponents such as Bernoulli who proposed that space is permeated with tiny 

whirlpools.13) It is this theory which Maxwell and other investigators used to explain the 

electromagnetic phenomenon as we discussed in Section 5. Now, we clearly know that 

this vortex theory only explains the magnetic part of the electromagnetic phenomenon. 

 

Based on historical records, the developed Maxwellian theory of gravity should be called 

the Newton-Heaviside theory of gravity [19]. Jefimenko [16] provides a collection of 

solved problems regarding moving and stationary bodies of different shapes, sizes and 

configurations. 

 

6.1. Gravitational four-stress tensor and mechanical view of  Lorentz force 

 

In the Maxwellian theory of gravity, massive particles are the source of the gravitational 

vorticity field four-tensor μνGΩ , where 

                                                          μμνν
π J
c

GΩG 2
4

−=∂                                             (6.19) 
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They are also the source of stress four-tensor μνT fields in the ether. To obtain the 

constitutive relation, we notice that the gravitational four-vector Lorentz force density 

relative to the space-time inertial reference frame is given by 

                                                            νμνμ Jf GΩ=                                                      (6.33) 

 

By substituting μJ  from the equation of gravitational vorticity (6.19) and some tensor 

algebra, we obtain 

                                                             μννμ Tf ∂=                                                        (6.34) 

 where the four-stress tensor is 
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The explicit form of the components of this four-tensor in terms of g  and Gω  are the 

gravitational Maxwell stress tensor 
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the gravitational energy density 
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where GS  is the gravitational Poynting vector  

                                                  GG G
c ωgS ×−=
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                                                     (6.39) 

 

Therefore, the schematic matrix form of the symmetric four-tensor μνT  is 
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What we notice is that the components of the four-stress tensor are the negative of their 

corresponding electromagnetic ones. This is the character of the gravitational interaction 

in Newtonian theory. As in electromagnetic interaction, massive particles interact via 

inducing four-stress and four-vorticity tensors in ether. Similarly, the point massive 

particles are singularities of these vorticities and four stress tensors. Therefore, the 

gravitational Lorentz forces exerting on these particles can also be considered as four-

dimensional lift forces. This is also the mechanical explanation of four-vector 

gravitational Lorentz force. 

 

7.  Conclusion and discussion 

 

We have seen that every massive particle specifies a Minkowskian space-time body 

frame in a universal entity, here referred to as ether. This aspect of space-time clarifies 

Poincare’s theory of relativity.  Inertial observers relate components of four-vectors and 

four-tensors by Lorentz transformation. This is the origin of non-Euclidean geometry 

governing the three vector and three tensor components. The hyperbolic geometry of the 

velocity addition law is the manifest of this fact. The space components of the four-vector 

velocity in the particle body frame are zero. However, its component in the space of a 

reference frame is the result of a hyperbolic angle deviation. Therefore, the three- 

velocity vector in the reference frame is a hyperbolic vector and geometry governing the 

three-velocity addition law in the reference frame is hyperbolic. 

 

The acceleration of a particle is the result of the instantaneous rotation of its body frame 

in the ether. This instantaneous rotation is specified by the four-dimensional angular 

velocity tensor in the inertial reference frame. The hyperbolic part of this rotation is 

actually what is known as accelerating motion. However, there is also circular space 

rotation, which is essential in understanding some phenomena, such as the spin 

precession of a stationary charged particle in a magnetic field.   
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Based on the theory of motion, the geometrical character of fundamental interaction has 

been developed. This theory shows that every fundamental interaction is represented by 

an anti-symmetric strength four-tensor field with characteristics of a vorticity field. 

Charged particles interact with each other through four-vorticity and four-stress that they 

induce in the ether. The four-vorticity tensor is a combination of three-vector circular and 

hyperbolic vorticities. It is seen that a Lorentz-like Minkowski force is an essential 

feature of every fundamental interaction. This vortex theory gives a clear geometrical 

explanation of electrodynamics, which is a model for any other interaction. Through this 

theory, we realize that the homogeneous Maxwell’s equations are actually necessary 

compatibility equations for electromagnetic vorticity vectors, and the inhomogeneous 

Maxwell’s equations are equations governing motion of these vorticities. It is seen that 

the energy-momentum four-tensor has the character of a four-stress tensor and its 

expression in terms of electromagnetic vorticities is a constitutive relation. This reveals 

the mechanical character of Lorentz force as a four-dimensional lift force perpendicular 

to four-vector velocity. This vortex theory shows why a magnetic monopole cannot exist. 

It also clarifies the spin dynamics of charged elementary particles in a classical view. 

 

In addition, the geometrical theory of interaction shows that a Maxwellian theory of 

gravity is inevitable. Interestingly, this is the reconciliation of the vortex theory of 

Descartes and Bernoulli with Newton’s theory of gravitation. This is more compelling 

when we notice that the other fundamental forces such as weak and strong forces are 

generalizations of the electromagnetic theory in non-Abelian gauge theory based on local 

symmetry groups SU(2) and SU(3). This is completely compatible with our unification of 

fundamental interactions based on the vortex theory. Therefore, it is necessary to develop 

the geometrical aspect of these quantum mechanical generalizations.  

 

Interestingly, the new theory of space-time has the potential to clarify the wave-particle 

duality of matter.  In this regard, the quantum mechanical wave function of a particle 

seems to be the trace of its space-time body frame on the observer’s reference frame. This 

is more promising when we realize the deformability of space-time of an interacting 

particle. Therefore, quantum theory has the same fate as electrodynamics theory and must 
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be presented based on the new theory of relative space-time in the ether.  However, we 

should notice the ambiguity in introducing ether. We used the term ether for the universal 

entity in which a massive observer specifies a space-time. How can we visualize ether 

when the concepts of where and when cannot be applied? It should be noticed that this 

ether is different from the ether conceived by earlier proponents of space vortex theory. 

They considered the ether some sort of matter filling the space. But our ether is 

something in which a particle specifies a four-dimensional orthogonal system with three 

real and one imaginary axis, which we call space-time. In other words, the space-time 

body frames of particles are different representations of ether.  

 

Although Lorentz, Poincare, Minkowski, Varičak, Borel and others have developed 

important aspects of the theory of relativity, the fundamental meaning of space-time and 

its relation with the ether have not been appreciated. It is realized that these are the origin 

of many inconsistencies in modern physics. Through the developed theory of motion and 

interaction, one appreciates the work of those who questioned the fifth postulate in 

Euclidean geometry about parallel lines and considered the possibility of non-Euclidean 

geometry by modifying this postulate. It is stunning to see that the rules of motion and 

interaction are governed by non-Euclidean geometry, because all motion is a four-

dimensional rotation. We realize that the theory of motion is a model for hyperbolic 

geometry. 

 

One can see that continuum mechanics has played an essential role in developing the 

present theory of motion and interaction.   Interestingly, Maxwell also used continuum 

mechanics in his development of electrodynamics. It is known that he generalized 

Ampere’s law (5.30) by adding displacement current to have a consistency with the 

electric charge continuity equation (5.17). Had Maxwell, Lord Kelvin or their 

contemporaries known about a four-dimensional space-time, Lorentz transformation and 

covariance of electrodynamics, could they not have developed this four-dimensional 

vortex theory? Answering is not difficult when one learns that they were already talking 

about vortices in ether, which they inherited from Descartes.    
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