
A complete graph model of the Schwarzschild black hole in R3

S. Halayka∗

November 19, 2010

Where h̄ = c = G = 1, the following components will be used to model a Schwarzschild black hole of rest
mass-energy E in R3:

1. A 2-sphere (event horizon) S0 at coordinate distance R0 = 2E, upon which lies N0 = E uniformly distributed
vertices V0.

2. A complete graph’s worth of edges E0 generated by V0.

3. An exterior volume at R > R0, upon which lies a countable number of vertices Vext.

4. A countable number of (non-complete) graph edges Eext generated by the Delaunay tetrahedralization of V0

and Vext.

The following presumptions are made:

1. Neither the event horizon nor the black hole centre at R = 0 are singular in any way.

2. The complete graph edges E0 define a universal edge coordinate length of

L =
1√

1−R0/R
, (1)

where R is the coordinate distance between an edge’s midpoint and the black hole centre. Accordingly, edge
proper length is L2 (e.g., light travels across an edge at coordinate speed 1/L).

3. The complete graph edges E0 define a universal minimum edge coordinate length of L = 1 (e.g., the Planck
length).

The following steps are used to construct the model’s components:

1. With regard to the 2-sphere S0, numerically solve for the coordinate radial distance R1 > R0 of a second
2-sphere S1. Using the formula for the height of a regular tetrahedron

Htet = L
√
2/3 (2)

as a guide:
R1 = R0 +H0, (3)

H0√
2/3

≈ 1√
1− R0

R0+H0/2

. (4)

2. Calculate the number of vertices N1 that lie upon S1. Using the formulas for the area of a regular triangle

Atri = L2(1/4)
√
3 (5)

∗shalayka@gmail.com

1



and the Euler characteristic of a closed convex polyhedron

N1 + F1 − E1 = 2, F1 = 2N1 − 4 (6)

as a guide:

L1 =
1√

1−R0/R1

, (7)

F1 =
4πR2

1

L2
1

4√
3
, (8)

N1 =
4 + F1

2
. (9)

3. Numerically solve for H1:
H1√
2/3

≈ 1√
1− R0

R1+H1/2

. (10)

4. Repeat steps 2 and 3 for each subsequent 2-sphere S≥2:

R≥2 = R≥1 +H≥1, (11)

N≥2 = 2 +
8πR≥2(R≥2 −R0)√

3
, (12)

H≥2 ≈ 1√
3
2 − 3R0

2R≥2+H≥2

. (13)

5. Generate the vertices V0 that lie upon S0. Use Coulomb repulsion on S0 to make the vertex distribution
roughly uniform.

6. Obtain the complete graph edges E0 generated by V0.

7. Generate the vertices V≥1 that lie along each 2-sphere S≥1. Use Coulomb repulsion on each 2-sphere to make
its vertex distribution roughly uniform, if desired.

8. Obtain the (non-complete) graph edges generated by the Delaunay tetrahedralization of all vertices V≥0.

Depending on how well the vertices Vext are uniformly distributed along their respective shells, one will have
to multiply H≥0 and N≥1 by some small constant values (e.g., roughly on the order of 1) in order to meet the edge
coordinate length requirement given in Eq. 1 with accuracy.

See Ref. [1] for a public domain C++ code that generates this model’s vertices and edges. Edge analysis code
is included. The default configuration produces an edge coordinate length accuracy of ∼ 0.99. See Fig. 1 for an
example manifold. As with all discretization models [2], edge coordinate length accuracy is based on an average.

Unlike most other discretization models, this model does not allow one to arbitrarily choose the scale of the
tetrahedra (e.g., dxµdxν ≡ 1 here). As such, the manifold is geodesically complete by definition, not by choice.

Thank you to P. Gibbs for his work on complete graphs [3].

References

[1] Google Code. (2010) http://code.google.com/p/cgmetric/downloads/list

[2] McDonald JR, Miller WA. A Discrete Representation of Einsteins Geometric Theory of Gravitation: The
Fundamental Role of Dual Tessellations in Regge Calculus. (2008) arXiv:0804.0279v1 [gr-qc]

[3] Gibbs PE. Event-Symmetric Space-Time. (1998) viXra:0911.0042

2



Figure 1: One half of the edges for 2-spheres S0 through S10, where N0 = 10. The manifold is geodesically complete,
since it does not contain any infinitely small or large edges, or “dead end” paths. Edge coordinate length decreases as
r increases. The figure was rendered using OpenGL / Microsoft Visual C++ Express 2010, and was post-processed
using Rick Brewster’s Paint.NET. Space kitten is generally nonplussed by π.

3


