A complete graph model of the Schwarzschild black hole in R3
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Where h = ¢ = G = 1, the following components will be used to model a Schwarzschild black hole of rest
mass-energy E in R3:

1. A 2-sphere (event horizon) Sy at coordinate distance Ry = 2F, upon which lies Ny = E uniformly distributed
vertices Vj.

2. A complete graph’s worth of edges Ey generated by Vj.
3. An exterior volume at R > Ry, upon which lies a countable number of vertices Voyt.

4. A countable number of (non-complete) graph edges Eqoyt generated by the Delaunay tetrahedralization of Vj
and Veyt.

The following presumptions are made:
1. Neither the event horizon nor the black hole centre at R = 0 are singular in any way.
2. The complete graph edges E define a universal edge coordinate length of

1
L= VI-Ro/R’ o

where R is the coordinate distance between an edge’s midpoint and the black hole centre. Accordingly, edge
proper length is L? (e.g., light travels across an edge at coordinate speed 1/L).

3. The complete graph edges Fy define a universal minimum edge coordinate length of L = 1 (e.g., the Planck
length).

The following steps are used to construct the model’s components:

1. With regard to the 2-sphere Sy, numerically solve for the coordinate radial distance R; > Ry of a second
2-sphere S;. Using the formula for the height of a regular tetrahedron

Hyet = L/2/3 (2)

as a guide:
Ry = Ry + Hy, (3)
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2. Calculate the number of vertices N; that lie upon S;. Using the formulas for the area of a regular triangle

Api = L*(1/4)V3 (5)
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and the Euler characteristic of a closed convex polyhedron

N+ F,—FE1 =2, Fy,=2N,—4 (6)
as a guide:
1
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3. Numerically solve for Hj:
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4. Repeat steps 2 and 3 for each subsequent 2-sphere S>s:
R>o = R>1 + H>q, (11)
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5. Generate the vertices V that lie upon Sy. Use Coulomb repulsion on Sy to make the vertex distribution
roughly uniform.

6. Obtain the complete graph edges Ey generated by V.

7. Generate the vertices V> that lie along each 2-sphere S>;. Use Coulomb repulsion on each 2-sphere to make
its vertex distribution roughly uniform, if desired.

8. Obtain the (non-complete) graph edges generated by the Delaunay tetrahedralization of all vertices V>g.

Depending on how well the vertices Voyt are uniformly distributed along their respective shells, one will have
to multiply H>o and N>; by some small constant values (e.g., roughly on the order of 1) in order to meet the edge
coordinate length requirement given in Eq. 1 with accuracy.

See Ref. [1] for a public domain C++ code that generates this model’s vertices and edges. Edge analysis code
is included. The default configuration produces an edge coordinate length accuracy of ~ 0.99. See Fig. 1 for an
example manifold. As with all discretization models [2], edge coordinate length accuracy is based on an average.

Unlike most other discretization models, this model does not allow one to arbitrarily choose the scale of the
tetrahedra (e.g., da*dx” =1 here). As such, the manifold is geodesically complete by definition, not by choice.

Thank you to P. Gibbs for his work on complete graphs [3].
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Figure 1: One half of the edges for 2-spheres Sy through S1o, where Ny = 10. The manifold is geodesically complete,
since it does not contain any infinitely small or large edges, or “dead end” paths. Edge coordinate length decreases as
r increases. The figure was rendered using OpenGL / Microsoft Visual C++ Express 2010, and was post-processed
using Rick Brewster’s Paint. NET. Space kitten is generally nonplussed by .



