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Abstract:  Gravitational collapse of diffuse material has been investigated using 

a new solution of Einstein’s equations of general relativity. This replaces the 

theory of black-hole formation developed for the standard vacuum solution of 

Schwarzschild. The bodies which now form have reasonable physical properties, 

such as nuclear hard core density in collapsed stars, or 104kg/l in galactic centres, 

and only 1kg/l in quasars. Accreting material converts to kinetic energy and 

radiation, so that a singularity cannot be produced.  
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1.  Introduction 

        A recent paper has revealed that the observed precession of planet 

Mercury’s orbit is no longer compatible with standard General Relativity theory, [1]. 

That is, the orthodox vacuum solution with its concomitant space-time curvature 

interpretation may not be physically meaningful. Consequently, black-holes cannot 

exist, so the end state of stellar evolution theory now needs to be reconsidered in the 

light of another solution of Einstein’s Equations. 
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Some years ago [2], Paper 1, it was shown how Einstein’s equations could be 

interpreted in straight-forward physical terms by explicit introduction of gravitational 

field energy as gravitons, analogous to the electromagnetic field. These gravitons of 

the field produce the gravitational force by direct interactions, all conducted in flat 

space-time. Metric tensor components then describe the variation in dimensions and 

time-rate or energy of particles in a field, not so-called continuum curvature. 

Agreement with the ideas found in Special Relativity theory and accelerated frames is 

thereby guaranteed, and gravity is no longer detached from other forces. The old 

problem of justifying the equality of space-time manifold curvature Rµν and physical 

matter Tµν is rendered obsolete. Consequently, mass particles and their field gravitons 

are expressions of the same material, (energy), existing in empty flat space-time. 

 

2.  Building a massive body from diffuse matter. 

In Paper 1, Einstein’s equations were solved for the exterior solution of the 

spherically-symmetric static field of energetic gravitons in polar coordinates. The line 

element was then found to be: 
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Logically, it was argued that the gravitational field induces mass particles to fall by 

converting their own mass (potential energy) into kinetic energy. Upon impact, the 

particle KE is radiated away, leaving the particle with reduced rest mass: 

      )rc/GM1(mm 2
or −=    .       (2) 

We can calculate how much free diffuse matter is required to build a body mass M up 

to its ultimate gravitational radius (R0 = GM0/c2). If the final density is to be nuclear 

hard-core density ρn throughout, then let M = (4/3)πρnr3. And for an originally diffuse 

mass element dm, only: 

      )rc/GM1(dmdM 2−=    ,       (3) 

is added to M. Upon eliminating r, this may be integrated to find the total amount of 

diffuse mass required to build a body of mass M: 
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Thus, it is impossible to build a body up to its gravitational radius because infalling 

matter is increasingly less effective at adding mass. Figure 1 illustrates the amount of 

diffuse matter necessary to build the body up to any particular mass M. 
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Figure 1  The total diffuse mass MT necessary to build a body from zero to  

   mass M, relative to the maximum possible body mass M0 . 

 

If during the building process the core material should collapse to a denser state, 

the mass to kinetic energy to radiation conversion will continue further and still 

prevent a singular surface from forming. This means that it is impossible to build the 

black-holes peculiar to the Schwarzschild solution. More energy is actually liberated 

by this process of accretion than that predicted by the Schwarzschild solution. 

Furthermore, in this theory, energetic γ-rays may be produced by total conversion of 

infalling matter, and these will subsequently leave the gravitational field without loss 

of energy. 

The bulk density of collapsed bodies must vary greatly, from that of quasars, 

galactic centres, through white dwarfs, neutron stars, and quark stars. For bodies 
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approaching their gravitational radius, their instantaneous masses may be related to 

their mean densities ρo by applying an approximate classical calculation, as follows. 

Let : 

3
o

2 R (4/3) M and ,GM/cR πρ=≈ ,        (5) 

then:  
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Thus, body mass must decrease with increasing density because infalling matter 

converts to free radiation more and more as it compacts. It follows that a body of 

large mass with relatively low density must be supported by radiation pressure at high 

temperature. As it burns-away, its mass will decrease and density increase. Collapse 

will only cease when the core material gas pressure is able to resist self-gravity, see 

Figure 2. A final body of nuclear density has a mass around 1.1MΘ, while another of 

quark density (say 1022kg/l ) has four times Jupiter's mass. Consequently, collapsing 

bodies can act like photon factories, unless they collapse violently and blast their 

material into space. 
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Figure 2  Variation of body mass (in Solar mass units) with density, for bodies 

    near to their gravitational radius. 
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3.  Interior properties of a massive body  

The interior properties of a collapsed body, near to its gravitational radius, may be 

calculated using the new solution of Einstein’s equations, (see Paper 1, Section 16). 

For example, a dense body of mass 3.6×106MΘ  but low luminosity has been 

predicted at the centre of our galaxy, see [3-5]. It could be named a ‘black-corps’, 

which may be near to its gravitational radius (R ≈ GM/c2 ≈ 5.3 x 106km), with 

average density around 1.1 x 104 kg/l. This density is very high and implies that the 

material would behave like a fluid in hydrostatic equilibrium. It is commonly believed 

that quasars contain black-holes of up to 108 MΘ , but these would be black-corps with 

lesser density around 10 kg/l . 

The line element for the interior of a spherically-symmetric static body consisting 

of a “perfect fluid” will be expressed in isotropic form as: 

    ( ) 22222222 dtedsinrdrdreds νµ +ϕθ+θ+−=    .    (7) 

For the energy-momentum tensor components we shall take the mechanical local 

hydrostatic pressure po and constant local mass density ρoo : 
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Solution of Einstein’s equations then yields the spatial metric tensor component: 

    3/8kfor),4/kr1(e oo
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and temporal metric tensor component: 
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where 2/meµ  pertains to the maximum radius rm at the surface. Both these equations 

automatically designate the centre of the fluid sphere as the coordinate reference 

frame of special relativity. We see that on going from the surface towards the centre of 

the body, a material element is compressed isotropically according to Eq.(9), and 

slows down internally according to Eq.(10), due to loss of potential energy (mass). 

The local (pressure/density) ratio increases, on going from the surface inwards: 
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Figure 3 illustrates the variation of central pressure of a body (where 1e 2/ =µ ), in 

terms of its actual size rm relative to its theoretical gravitational radius R0 . 

  

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1

R0 / rm

P
re

ss
ur

e 
/ D

en
si

ty

 

Figure 3  Pressure / density ratio at the centre of a massive body in hydrostatic 

   equilibrium. A body of mass M and maximum radius rm has a 

theoretical    gravitational radius R0 = GM / c2 . 

 

These results are interesting because the body material behaves sensibly, even if 

an exterior observer would lose sight of the ultimate black-corps. In the most extreme 

case, the time-rate at the surface may approach infinity relative to the centre time-rate, 

if according to Eq.(10) we have: 

     02e3 2/m =−µ   .           (12) 

After introducing Eq.(9) and practical units, this means: 
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so a test particle would lose all its mass on falling from the surface to the centre. This 
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equation is compatible with Eq.(5) although ρoo is the locally measured density, which 

corresponds with a reduced coordinate (real) density. Confirmation of this comes 

from considering the particle energy which decreases with eν/2 towards zero relative to 

the surface, whereas particle size can only decrease with e−µ/2  by a factor of 3/2. 

According to Eq.(11) the local pressure experienced by particles increases 

inwards and could cause them to rupture then collapse suddenly to a denser state. The 

release of radiation energy would probably cause some outer material to be blown 

away, while inner material would be compressed by the explosion, as predicted in a 

super-nova event. 

 

4.  Conclusion 

The new solution of Einstein’s equations has been employed to describe how 

gravitational collapse of diffuse material may produce very dense bodies of low 

luminosity. Mass converts to kinetic energy during the contraction, and is lost from 

the system as radiation upon impact with the stationary core. Black holes cannot exist 

so, at last after 75 years of wasted labour, the ''stellar buffoonery'' ridiculed by 

Eddington and Einstein has been hurled into the abyss for ''hideous fantasies''; freeing 

the lives of bright physicists to pursue inspired praiseworthy research, increasing true 

knowledge. 
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