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Abstract: The interface shape function for the pure material directional solidification system with 

temperature disturbances on the heater and cooler is derived. It is approximately a fraction function 

including cosine terms in the denominator and the numerator. Calculation of the function shows the interface 

shape can respond to the temperature disturbance. When both the solidification rate V and the interface 

cooler distance  determined by the boundary temperatures are lower than critical value deteimined by a 

formula, the interface shape changes from sinusoidal wave to figures pattern with the increase of the rate or 

the distance. Once the rate or the distance reaches the critical value, the interface branches at the bottom of 

the grooves between figures and then the branches expand along the sidewall of the figures with further 

increase of the rate or the distance. According to that, we conclude that the sinusoidal interface shape 

assumption always used by the interface instability analyses is not always valid and the interface shape in 

Hele-Shaw solidification experiments in fact maybe is not planar but a cellular interface with quite small 

amplitude, and the role of temperature disturbance should be considered in experiments studying 

solidification interface stability.  
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1. Introduction 

A large number of experiments have indicated that a solidification interface shows planar, cellular, 

dendritic, cellular and planar patterns in turn with increase of the solidification rate1-3. These patterns bear 

direct relationship with casting microstructures and determine the properties of a material4, so the evolution 

of solidification interface shape has been of tremendous interest for both academic researches and industrial 

applications. In the past several decades, much work has been done to understand this phenomenon. 

However, they do not obtain the final knowledge even if an prevail accepted theory of it up to now since it is 

a complicated three dimensional Stefan problem5 with obviously nonlinear effects and affected by 

multi-factors.  

Survey the previous work, they almost focused on the solidification interface shape evolution of alloy 



especially binary alloys. Before the rising of simulation method for example phase filed algorithm, the 

experimental and theoretical methods were alternately employed. J. W. Rutter maybe firstly discovered 

cellular pattern during the directional solidification of 99.9860% purity "Chempur" tin melt6. This discover 

then excited the attention of W.A. Tiller who with his co-workers put forward the famous “Constitutional 

supercooling” theory to explain the emergence of the cellular pattern7. However, this theory just considered 

the effect of the temperature gradient and the solute redistribution on the interface shape but did not realize 

the role of the surface tension and the perturbation8. About ten years later, W. W. Mullins and R. F. Sekerka 

published a series of papers which introduced the basal theory, always called MS criterion, for analyzing 

solidification interface stability9-13. MS criterion points out that surface tension plays a positive role in 

stabilization of the planar interface, but negative temperature gradient and solute redistribution play negative 

roles. The latter has been clarified by the constitutional supercooling theory. The more important is that MS 

creterion foreshows a neutral instability of a planar interface when the amplitude of perturbation does not 

change in time that is to say a planar interface is instable just when it is disturbed by a perturbation with 

wavelength in a middle band. MS theory started the time of analyzing solidification interface instability 

using perturbation method with which many later scientists prompted the analysis of solidification interface 

instability to nonlinear models14-23. These nonlinear models mainly considered the nonlinear effect of the 

interface temperature determined by the Gibbs-Thomson relation through different mathematic methods or 

under different particular conditions. Their results made the neutral instability wavelength band accurater 

and discovered the nature of the branch and the selection of preferred wave number and pattern, which has 

been discussed by Davis in detail in his excellent monograph ‘theory of solidification’ 24.  

Just like that Kerszberg have said ‘it is not an easy task to solve the basic equations the only way in which 

the difficult problem of directional solidification can be studied theoretically’25 since explicit tracking of the 

free interface by accurately calculating the basic equations is quite difficult26, the linear and nonlinear 

instability models rarely depicted a concrete interface shape beside supposed the interface is sinusoidal or 

sine series shape with infinitesimal amplitude. In many directional solidification experiments, the nearly 

sinusoidal interfaces were observed when the solidification rate or the temperature gradient was small. When 

the solidification rate or the temperature gradient was increased, the interface gradually changed into 

fingered cellular array; further increasing, dendritic structure formed. Moreover, the depth of the grooves 

increased with the increase of the solidification rate or the temperature gradient27-30. These patterns also were 

seen in the computer simulation through phase field models31-35. 

Phase field models has achieved considerable importance for simulating the temporal evolution of 

complex interface shapes associated with realistic features of the solidification 36. However, its solution 

quality is significantly dependent on the prescribed interface thickness that is required to be sufficiently 

small for accurate simulations37. On the other hand, simulation can not directly show the mathematic relation 

between the interface shape and the solidification conditions. It is, therefore, yet human hope to accurately 

predict the evolution of solidification interface shape by solving the basical equations in theory so interpret 

the observations in experiments and simulation. It is should noted that M. Kerszberg has attempted that work 

in 198325. He developed a complicated series function of interface shape based on the one-side assumption14, 

23 and numerically depicted the fingered pattern. Then also based on the one-side assumption, L.H Ungar and 

R.A Brown constructed a cosine series shape function of solidification interface38, G.B McFadden and S.R 

Coriell39 directly numerically simulated the field equations of a directional solidification system. They also 

predicted the cellular pattern. However like that Kerszberg has realized, the truth maybe drastically different 



from the results they obtained because the one-side assumption is too limited 25. Later in 1989, D.A Kessler 

and H Levine solved the solute diffusion equation at constant solidification rate and fixed interface 

temperature gradients using Newton’s method to solve a discretized version of the integro-differential 

equation for the solid liquid boundary. They successfully obtained cellular interface and shew the appearance 

of deep cell grooves with the increase of solidification rate40. However obviously, its solving conditions are 

not the solidification conditions actual solidification courses always meet.  

It can be seen from above that even the solidification interface pattern of alloy has been studied on a 

large scale, it is still far from fully solving this problem. On the other hand, the study, especially 

experimental study, of directional solidification interface pattern of pure materials is nearly absente. 

However, in our opinion, the interface pattern and stability of pure materials are very important for 

understanding the interface pattern and stability of alloy since the heat diffusion is still a controlling 

mechanism of the solidification of alloy, the solution redistribution effects solidification still by effecting the 

temperature field, thus, the stability caused by the heat diffusion would still contribute to the total stability of 

interface of alloy, which could be seen partly from the experiment carried by X.W. Qian etc, where a 

growing crystalline dendrite would response to a brief localized heat pulse near its tip and the induced 

deformation could grow rapidly form unobserved small to sidebranch feature. S. Agarwal etc recently have 

pointed out that the depths of the phases and the width of the container influence the interface patterns of a 

pure material directional solidification system and there is a third critical stability point appearance at small 

disturbance wave number and independent on the surface tension41, which means the instability of a pure 

material solidification interface is also very complicate. This paper aimed to explore if there exists a 

mathematic interface shape function when a pure material directional solidification system is disturbed by 

temperature perturbation on the finite away boundary wall, which is important for understanding the 

interface instability. Two reasons inspire us to chose that physical model: (1) The diffusion is nearly two 

dimensional when the interface is curved during the directional solidification most met in the previous 

Hele-Shaw experiments and in actual applications; (2) Pure material directional solidification system is also 

frequently applied in actual producing and maybe an ideal model for studying the solidification interface 

shape since the solving just needs to consider the heat diffusion the course easiest to be disturbed so arousing 

the interface instability in actual solidification. We firstly solve the two dimensional heat conduction 

equations without presupposing the form of the interface function and then analyze the interface shape 

evolution when the solidification conditions vary through numerical calculating the interface shape function 

with fractional form we derived. 

2. Model description  

The directional solidification model is shown in Fig.1, a non-planar solid liquid interface moves toward 

the liquid at a constant rate V. We supposed that 1) the material is pure; 2) the liquid and solid phases are 

isotropic and homogenous; 3) the physical characteristics of the liquid and solid phases are constant and 

independent of temperature; 4) the system is stationary; 5) the pressure is constant and equal to normal 

atmospheric pressure and 6) the crucible is adiabatic. 

It is obvious that the heat will diffuse along X and Z direction because of the non-planar solid liquid 

interface in this model. We can describe this problem using the classical two-dimensional heat conduction 

equation in a rest frame fixed on the crucible42. Similar to that has been applied to analyze the mass diffusion 

in directional solidification by W. A. Tiller in the literature 7, if the solid-liquid interface is considered as the 

origin, and freezing is represented by moving the liquid distribution past it at the rate V, the differential 



equation (1) can be transformed as Eq.2 under the assumption four in the frame moving with the interface. 
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This differential equation can be solved through separation of variables43. Let T(x, z)=X(x)Z(z) and take it 

into Eq.2, we have     
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Introduce a separation constant λ, the equations below are satisfied   

                          
2

2

D d Z V dZ

Z Z dzdz
                            (4) 

                          
2

2

D d X

X dx
                                (5) 

According to the separation constant λ, Eq.2 has five solutions (see Appendix) and the solution 

corresponding to λ=0 and λ>0 as follow satisfy the boundary condition that the crucible is adiabatic.  

0 0 0 exp 0S S S
S

V
T a b z

D


 
     

 
                                      (6) 

0 0 0 exp 0L L L
L

V
T a b z

D


 
     

 
                                      (7) 

2 2
,

2

4 4
exp exp cos

2 2

1, 2,3

k k k
S S S Sk k k k c kS

S S S S S
S S S

k
S S

V V D V V D
T c a z b z x T

D D D

k
D k

h

  



                    
           

     
 



  (8) 

2 2
,

2

4 4
exp exp cos

2 2

1, 2,3

k k k
L L L Lk k k k c kL

L L L L L
L L L

k
L L

V V D V V D
T c a z b z x T

D D D

k
D k

h

  



                    
           

     
 



  (9) 

where a, b, c, d and Tc are undetermined constants, D is thermal diffusivity . The subscript S and L denote the 

solid phase and the liquid phase. Thus, according to the theory of the solution of differential equations, we 

can get the solution of Eq.2 as follow, where the same order constants have been combined.  
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From the past researches, we have known that the first part in Eq.10 and Eq.11 is right the solution of the 

temperature distribution of a directional solidification system with a planar solid liquid interface11, 44 and the 

second part in the summation symbol expresses a disturbance 9, 43. Adopting the infinite boundary condition 

that the disturbance is zero introduced in Ref 9, we can obtain  
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  . This result means that the disturbance parts of the 

temperature fields of a directional solidification under two dimensional heat diffusion condition are Fourier 

series. Thus, k
SA  and k

LB  in Eq.11 and Eq.12 can be determined using the Fourier series transformation of 

boundary conditions. For a actual directional solidification system, the temperature fields are configured by 

a cooler and a heater located from the interface finite distance. In this study, it is supposed that boundary 

condition corresponding to the cooler is z=α(x), T=Tα(x) and the boundary condition corresponding to the 

heater is z=β(x), T=Tβ(x), where Tα(x) and Tβ(x) are functions which can be transformed as Fourier series. 

According to the Fourier series transformation43, we have  
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Substitute them into Eq.12 and Eq.13, the temperature field in the solid phase and liquid phase can be 

obtained as follow. 
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At the interface z=f(x), the energy conservation equation    2S S L LK T K T n H V n     
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 24, where KS and KL are respectively the thermal 

conductivity coefficients of solid phase and liquid phase, n


 is the normal vector of interface, H is latent 

heat of solidification,  is the kinetic undercooled coefficient and  is the mean curvature of interface, 
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solving it. 
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3. Shape under k-wave disturbance  

3.1 shape function  

Let us firstly predict the interface shape when the cooler and heater are planar walls and their 

temperature is suffered wave disturbances with spatial angle velocity k . This disturbance always appears 

and be used in theoretical analyses. Corresponding boundary condition is expressed as z=α, 

Tα(x)=ψ+δkcos(kx) and z=β, Tβ(x)=φ+ζkcos(kx), where α, , ψ, φ, δk and ζk are constant, δk≈0 and ζk≈0. 

Substituting Tα(x) and Tβ(x) into Eq.16 and Eq.17 we can obtain the corresponding temperature fileds from 

which the constant c
ST  and c

LT  can be deduced. 
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In a previous paper we have gave out the temperature field of a one-dimensional heat conduction 

directional solidification system with structure similar to Fig.1 but the cooler and heater are planar and with 

uniform temperature 44. Thus, hen the amplitudes of harmonic wave disturbances, δk and ζk , are converged to 

zero under which Tα(x)=ψ and Tβ(x)=φ, Eq.19 and Eq.20 should be equal to the temperature fields deduced in 

Ref 44.  
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According to above equations and considering TS =TL on the interface z=f(x), we can get a express of f below 

from Eq.19 and 20, where we have used an approximation e y≈1+y when y≈0 for we believe that f is quite 

small.  
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   Now we check if Eq.18 can be satisfied when the shape of interface is Eq.26. Firstly we 

define S L
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Consequently, Eq.18 a) can be rewritten as follow under the approximation e y≈1+y when y≈0 and keeping 

the small terms up to the first order. This approximation is reasonable for we have supposed that the 

solidification system is stationary an assumption always is valid in an actual solidification system where 

SD V  and 
LD V

9.  

    2 2 2 2M Mcos 0
1 1

S L

s s

L
S k S L k L k S S S L L L km m

S

T D T
K e K e x K m K m m D H V f

e D e
   

 

        

  
         

         

(30)

 

This equation could be established when  
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Next, we check if Eq.18 b) can be satisfied. According to Eq.23 to Eq.30 and keeping the small terms up 

to the first order, Eq.18 b) can be approximated into the following equation. 
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Thus if only Eq.33 was established, the Eq. 18 b) can be satisfied. Under this condition, the Eq. 18 c) also 

can be satisfied since the f is obtain according to a equation group combined the Eq. 19 and the Eq.20 which 

are corresponding to the Eq.18 b) and c).  

3.2 Simulation  

During actual directional solidifications，the solidification course is controled by the cooler temperature 

and the heater temperature, so the solidification rate V is always varing with the interface advacing. 

Simulation of the interface shape evolution during a actual directional solidification under a k order 

harmonic temperature disturbance and using parameters ψ=243K, TM=273K, h=10cm, DS=200cm2·s-1, 

DL=100cm2·s-1, KS=2cal·K-1·s-1·cm-1, KL=1cal·K-1·s-1·cm-1
 and ΔH=10000cal·cm-3 indicates the interface 

shape is near undeformed cosine wave when |α| is enough small. When decreasing α, three deforming 

behaviors gradually appear on the cosine wave: (1) the amplitude gradually increases; (2) the wave was 

gradually elongated toward the negative direction of z axis since its vales’ amplitude increases much faster 

than its peaks’ amplitudes, which cause the formation of deep grooves a characteristic morphology always 



was observed in the directional solidification experiments in a Hele-Shaw cell27, 29, 45, 46. In these experiments, 

the grooves always are so deep that their bottom can not be observed, this also is shown in Fig.2b where the 

depth of grooves are obviously larger than |α| so the bottoms would actually not exist when the distance of 

the average position of interface to the cooler is larger than a critical value; (3) the peaks of the wave 

gradually widen, contrary, the vales gradually narrow (Fig.2 α=-3cm to α=-12cm). As a result, the interface 

shape gradually becomes similar to the shape of cellular structure (Fig.2 α=-11.5cm to α=-12cm) 27, 29, 47. 

Keep on decreasing α to a critical value, branch occurs, which cause the interface to be split into 7 bunches, 

one group of bunches is corresponding to the wave peaks and does not shift, another group is corresponding 

to the wave vales and shift large distance towards the positive direction of z axis (Fig.2c). Further decrease α, 

the branch point shift towards to the wave peaks bunches so that the wave peaks bunches become narrower 

and narrower and the width of the vales bunches increase, moreover, the tips of the bunches become blunter 

and blunter (Fig.2 α=-12.2cm to α=-14cm). When α decreases to an enough large value, the interface 

degenerates into nearly even.  

The above results were obtained under varying interface advancing velocity V , a condition not 

applicable in many experimental directional solidification systems for detecting the interface instability 

where the interface advancing velocity V is always artificially kept constant during single experiment 

through pulling the solidification cell with the demand velocity48. Obviously, it is valuable to compare the 

results obtained through our model with the observations during those experimental directional solidification 

through they all are for alloys. Fig.3a shows that the amplitude of the interface will also increase with the 

interface advancing ahead (corresponding to decreasing  ) when the interface advancing velocity is fixed. 

Also deep grooves gradually appear. This is in agreement with the observations in Ref 47 where the cell 

amplitude gradually increased and deep cell grooves gradually appeared accompanying with the extending 

of directional solidification time of the succinonitrile acetone alloy or pivalic acid ethanol system at fixed 

solidification rates. On the other hand, Fig.3a indicates the cell wavelength is decrease with the progress of 

solidification, this is consistent with the observation in Refs 27, 49  and is the famous wavelength selection 

problem about which there is a prevail answer that the cell wavelength decreases with the solidification rate6, 

29, 50. Further study shows that results agree with the answer can be obtained through the Eq.32. We will 

detaily discuss it in another paper.   

Comparing with the condition of Fig.3, we consider a group of Hele-Shaw solidification experiments 

with increased solidification rates. Fig.4 shows similar interface shape evolution with that shown in Fig.2 

when the solidification rates was increased, which means if the interface is controlled to be located at a same 

position (represented by same ) for the group experiments by decreasing the temperature gradient so 

make the solidification rate for single experiment is increased one by one, it would be shown that the 

interface of higher rate experiment bears larger wave amplitude and smaller wavelength as well as smaller 

tip curvature. Fig.5 shows that surface tension plays an important role in determination the interface shape. 

The amplitude of the interface wave increases, the wave was gradually elongated toward the negative 

direction of z axis, the peaks of the wave gradually widen and the vales gradually narrow when minishing 

surface tension. This is similar to the evolution when decreasing the α.     

4. Discussion 

The results before have shown that there exists a shape function, even a approximate solution, for its 

interface when a pure material directional solidification system is disturbed by cosine-like temperature 

perturbations on the finite away boundary walls. However the function is not a simple sine or cosine function 



but is a fraction with both numerator and denominator including cosine function (see Eq.26). This function 

can be approximately simplified as simple cosine function so the interface bears a cosine-like shape when 

the distance the interface to the cooler and the solidification rate V are small. With increase of |α| or V, the 

interface gradually change into finger shape with tip curvature gradually decrease. This finger interface and 

the cosine like interface here are both called cellular interface. When |α| or V increases to a critical value, the 

cellular interface would branch. After branch adjacent cells of the interface extend a part of their sides and 

form two branches which penetrate into melt. In theory, these branches obviously can not survive during a 

without undercooled solidification but may survive during a undercooled solidification. But unfortunately, as 

we know, they are never observed in experiments except the sidebranching at the cellular-dentrite transition46. 

Some differences are that the branch here firstly occurs at the bottoms of the grooves but the sidebranching 

of alloy solidification interface always firstly occurs at the sides of cell tips46, 50 and that there are only two 

brunches of every adjacent cells, however there are always many sidebranches so form dentrite during the 

the sidebranching of alloy solidification interface46, 50. Fig.2 indicates f(x) will became very large when the 

branch occurs, which means the denominator of Eq.26 will near zero when the branch occurs. Considering 

the Eq.31and the branch firstly occurs at the bottoms of the grooves, thus the critical value for the branch 

occurring can be obtained by   
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, a critical line of V- can be numerically calculated since it is 

impossible to obtain a explicit relation function between V and  through Eq.34. If we set the left hand of 

Eq.34 as a function C(V, ), then C>0 means the interface is cellular; C≤0 means that interface branch 

occurs. 

Actually, cellular shape is considered as a stable pattern of solidification interface through it has 

destroyed the MS stability 23, therefore, C>0 means the interface is stable and C≤0 means the interface is 

instable. But a point should be noted is that this cellular-branch transition is not a instability dealt by the past 

instability analyses through perturbation method which answered a question that how the perturbation of a 

planar interface would evolve under an assumption that the solidification conditions, such as the temperature 

field and the concentration field, corresponding to the interface evolution could be automatically satisfied. 

An example process, temperature disturbances suddenly occur at the heater and the cooler of a Hele-Shaw 

system and then cause a infinitesimal deformation of the interface (this is possible according to out analysis 

front). For this process, the past instability analyses told us the deformation extent of the interface would , 

for alloy, become grater and grater if the solidification conditions locate in the instability region of the 

system for example the solidification rate exceeds a critical value, orelse the interface would return planar. 

Now, a question is that how the interface would evolve if the temperature disturbances were held at all times 

so the constrained temperature field in the system would not be that calculated for the interface evolution 

through the instability analysis, a condition would always exist in practice?   

Our analyses front mean that for pure materials the interface could not return planar when temperature 

disturbances were held and if the solidification parameters (means V and ) lead C>0, the interface is 

cellular; if lead C≤0, the interface would branch. Moreover, the interface shape is a kind of topological 

response to the temperature disturbances, their wavenumber is same but the temperature amplitude is 

magnified much by the interface response amplitude. Besides, a combination of solidification parameters 



before the temperature disturbance occuring just can response to a temperature disturbance component with 

wavenumber determined through the Eq.32, thus there exists wavenumber selection for a temperature 

disturbance which always can be expressed as a Fourier series in practice. As a consequence, it is not needed 

to analysis the interface shape under complex wave temperature disturbance.  

Just as we have mentioned in section 1, a actual solidification is always directly controlled by 

temperature configuration, for a Hele-Shaw system adding a solidification rate controlling configuration. 

Therefore, the distance the interface to the cooler  should be corresponded to the directly controlled 

solidification parameters, which can be achieved through the Eq.25. Though a explicit function = (V, ψ,φ) 

unfortunately can not be obtained by accurately solving Eq.25, we can know a trend that  decreases with 

the decrease of the heater temperature (notice  is negative) when the solidification rate and the cooler 

temperature are constant44. That means for a Hele-Shaw system the distance between interface and the cooler 

would increase with temperature gradient decrease.  

5. Conclusion 

It is shown that the directional solidification interface of a pure material bears periodic curve shape 

once the cooler and the heater temperature are disturbed by wave disturbance. The periodic curve is nearly 

sinusoidal wave when both the distance the interface to the cooler and the solidification rate are smaller than 

a certain value or the surface tension of the melt is very large. We can conclude that, therefore, the sinusoidal 

shape assumption of solidification interface always used by the infinitesimal perturbation analysis of 

interface instability is valid only when the solidification rate is very small, or the temperature gradient is 

very large, or the melt is of quite large surface tension. When the distance the interface to the cooler and the 

solidification rate increase, the interface is cellular shape with wavelength decreasing but grooves depth 

increasing, especially the depth could become very large. If they exceed certain critical values, the interface 

will branch.  

These results imply that the interface shape in Hele-Shaw solidification experiments always used for 

studying alloy solidification interface stability in fact maybe is not planar but a cellular interface with quite 

small amplitude and the role of temperature disturbance should be considered since temperature disturbance 

is inevitable in actual experiments. If the temperature disturbance is overlooked, the interface instability 

threshold obtianed by experiment would be lower than that suggested by theory. 
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TABLE.Ⅰ Solutions of equation (2) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG.1 Directional solidification model with non-planar solid liquid interface 
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FIG.2 Evolution of interface shape with the increase of a. It was obtained through simulating the shape function, 

Eq.26, using parameters γ=0.001erg/cm2, k=3 and δ3=0.000001K. 
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FIG.3 Evolution of the interface shape with increase of   at a fixed solidification rate. It was obtained using 

parameters δk=0.000001K, γ=0.001erg/cm2 and V=0.001cm/s. 
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FIG.4 Evolution of the interface shape with increase of V. It was obtained using parameters =-4cm, 

δk=0.000001K and γ=0.001erg/cm2. 
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FIG.5 Evolution of the interface shape with increase of γ. It was obtained using parameters a=-5cm, k=6 and 

δ6=0.000001K 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


