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Abstract – This paper introduces the Dezert-
Smarandache (DSm) Field and Linear Algebra of
Refined Labels (FLARL) useful for dealing accurately
with qualitative information expressed in terms of
qualitative belief functions. This work extends substan-
tially our previous works done in DSmT framework
which were mainly based on approximate qualitative
operators. Here, new well justified accurate basic
operators on qualitative labels (addition, subtraction,
multiplication, division, root, power, etc) are presented.
The end of this paper is devoted to an exemples of
qualitative fusion rules based on this new FLARL
approach for decision-making support.

Keywords: DSmT, Refined label, 2-Tuples, Qualita-
tive information fusion, Decision-making.

1 Introduction
Efficient qualitative information processing methods for
reasoning under uncertainty are of crucial importance
for the Information Fusion community, specially for the
researchers and system designers working for the devel-
opment of sophisticated semi-automatic1 multi-source
systems for information retrieval, fusion and manage-
ment in defense, in robotics and so on. This is because
traditional methods based only on quantitative repre-
sentation and analysis are not able to adequately satisfy
the needs of the development of science and technol-
ogy that integrate at higher fusion levels human beliefs
and reports in complex systems. Therefore qualitative
knowledge representation and analysis becomes more
and more important and necessary in next generations
of decision-making support systems.

In the past, many mathematicians and researchers
did work on this exciting topic. For example, In 1954,
Polya was one of the pioneers to characterize formally
the qualitative human reports [9]. Then Zadeh [15–19]

1Such systems need to include human experts feedbacks in the
loop of processing for a better decision-making support.

made important contributions in this field in propos-
ing a fuzzy linguistic approach to model and to com-
bine qualitative/vague information expressed in nat-
ural language. However, since the combination pro-
cess highly depends on the fuzzy operators chosen, a
possible issue has been pointed out by Yager in [14].
Dubois and Prade proposed a Qualitative Possibility
Theory (QPT) in Decision Analysis (DA) for the rep-
resentation and the aggregation of preferences. QPT
was driven by the principle of minimal specificity [3].
They use refined linguistic quantifiers to represent ei-
ther the possibility distributions which encode a piece
of imprecise knowledge about a situation, or to rep-
resent the qualitative belief masses over the elements
in 2Θ. In most of previous works, the 1-Tuple label
representation label was the basis for the definition of
(approximate) qualitative operations on linguistic la-
bels. In 2000, Herrera-Mart́ınez have proposed a 2-
Tuple representation model for linguistic label in order
to keep preserving the precision in qualitative opera-
tions. Herrera-Mart́ınez 2-Tuple model can be inter-
preted as the standard 1-Tuple model of the label ex-
tended with a remainder [5]. Later, they proposed to
deal with unbalanced labels with Multi-granular Hier-
archical Linguistic Contexts in [6, 7], whose approach
seems too complex in our opinions. Very recently, Wang
and Hao [12, 13] have proposed another version of 2-
Tuple fuzzy linguistic representation model for com-
puting with words by considering a proportional fac-
tor as 2 order component, which can be transformed
to Herrera-Mart́ınez’ 2-Tuple linguistic representation
model. Obviously, These 2-Tuple models are complex
and in our opinion not sufficiently well justified, because
of the need of endless transformation in the course of
processing of linguistic labels through algebraic opera-
tions. In this paper, were propose a new refined label
model based of DSm Field and Linear Algebra of Re-
fined Labels (FLARL) to overcome the shortcomings of
previous 2-Tuple model approaches encountered in lit-
erature. The great advantage of our FLARL approach
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is its full theoretical justification, its simplicity and of
course its ability to preserve accuracy in any derivations
dealing with linguistic labels.

This paper is organized as follows: In section 2, we re-
view the ordinary labels and then we present the model
of refined labels. In section 3, we introduce the DSm
Field and Linear Algebra of Refined Labels (FLARL)
and we present new accurate operations on qualitative
labels. In section 4, the PCR52 fusion rule based on this
new model and on FLARL is directly extended in the
qualitative domain from its original quantitative ver-
sion. A simple interesting example for decision-making
support is presented in section 5 to show how to work
efficiently with these types of new qualitative operators.
Concluding remarks are finally given in section 6.

2 The model of refined labels
Definitions of group, field, algebra, vector space, and
linear algebra used in this paper can be found in [1,4,8].
Let L1, L2, . . . , Lm be labels, where m ≥ 1 is an in-
teger. Let’s extend this set of labels with a minimum
label L0, and a maximum label Lm+1. In the case when
the labels are equidistant, i.e. the qualitative distance
between any two consecutive labels is the same, we get
an exact qualitative result, and a qualitative basic belief
assignment (bba) is considered normalized if the sum of
all its qualitative masses is equal to Lmax = Lm+1. If
the labels are not equidistant, we still can use all qual-
itative operators defined in the FLARL, but the qual-
itative result is approximate, and a qualitative bba is
considered quasi-normalized if the sum of all its masses
is equal to Lmax. We consider a relation of order defined
on these labels which can be ”smaller”, ”less in qual-
ity”, ”lower”, etc., L1 < L2 <, . . . , < Lm. Connecting
them to the classical interval [0, 1], we have:

Figure 1: Ordered set of labels in [0, 1].

So, 0 ≡ L0 < L1 < L2 < . . . < Li < . . . < Lm <
Lm+1 ≡ 1, and Li = i

m+1 for i ∈ {0, 1, 2, . . . , m, m+1}.

1. Ordinary labels: The set of labels L̃ ,

{L0, L1, L2, . . . , Li, . . . , Lm, Lm+1} whose indexes
are positive integers between 0 and m+1, is called
the set of 1-Tuple labels. We call a set of labels to
be equidistant labels , if the geometric distance be-
tween any two consecutive labels is the same, i.e.
Li+1 − Li = Constant for any i.

2i.e. the proportional conflict redistribution rule no. 5 intro-
duced in DSmT [11].

And, the opposite definition: a set of labels is of
non-equidistant labels if the distances between con-
secutive labels is not the same, i.e. there exists
i 6= j such that Li+1 − Li 6= Lj+1 − Lj .

For simplicity and symmetry of the calculations,
we further consider the case of equidistant labels.
But the same procedures can approximately work
for non-equidistant labels.

This set of 1-Tuple labels is isomorphic with the
numerical set { i

m+1 , i = 0, 1, . . . , m + 1} through

the isomorphism fL̃(Li) = i
m+1 .

2. Refined labels: We theoretically extend the set of
labels L̃ to the left and right sides of the interval
[0, 1] towards −∞ and respectively +∞. So, we
define:

LZ , { j

m + 1
, j ∈ Z}

where Z is the set of all positive and negative in-
tegers (zero included).

Thus:

LZ = {. . . , L−j, . . . , L−1, L0, L1, . . . , Lj, . . .}

= {Lj, j ∈ Z}, i.e. the set of extended labels with
positive and negative indexes.

Similarly, one defines LQ , {Lq, q ∈ Q} as the set
of labels whose indexes are fractions. LQ is isomor-
phic with Q through the isomorphism fQ(Lq) =

q
m+1 for any q ∈ Q.

Even more general, we can define:

LR , { r

m + 1
, r ∈ R}

where R is the set of all real numbers. LR is isomor-
phic with R through the isomorphism fR(Lr) =

r
m+1 for any r ∈ R.

3 DSm Field and Linear Algebra

of Refined labels (FLARL)
We will prove that (LR, +,×) is a field, where +

is the vector addition of labels, and × is the vector
multiplication of labels which is called the DSm field of
refined labels . Therefore, for the first time we introduce
decimal or refined labels, i.e. labels whose index is
decimal. For example: L 3

2
which is L1.5 means a label

in the middle of the label interval [L1, L2]. We also
theoretically introduce negative labels, L−i which is
equal to −Li, that occur in qualitative calculations.

Even more, (LR, +,×, ·), where · means scalar prod-
uct, is a commutative linear algebra over the field of
real numbers R, with unit element, and whose each
non-null element is invertible with respect to the mul-
tiplication of labels. This is called the DSm Field and
Linear Algebra of Refined labels (FLARL for short).
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3.1 Qualitative operators on FLARL

Let’s define the qualitative operators on this linear
algebra. Let a, b, c in R, and the labels La = a

m+1 ,

Lb = b
m+1 and Lc = c

m+1 . Let the scalars α, β in R.

• Vector Addition (addition of labels):

La + Lb = La+b (1)

since a
m+1 + b

m+1 = a+b
m+1 .

• Vector Subtraction (subtraction of labels):

La − Lb = La−b (2)

since a
m+1 − b

m+1 = a−b
m+1 .

• Vector Multiplication (multiplication of la-
bels):

La × Lb = L(ab)/(m+1) (3)

since a
m+1 · b

m+1 = (ab)/(m+1)
m+1 .

• Scalar Multiplication (number times label):

α · La = La · α = Lαa (4)

since α · a
m+1 = αa

m+1 .

As a particular case, for α = −1, we get: −La =
L−a.

Also, La

β = La ÷ β = 1
β · La = L a

β
.

• Vector Division (division of labels):

La ÷ Lb = L(a/b)(m+1) (5)

since a
m+1 ÷ b

m+1 = a
b = (a/b)(m+1)

m+1 .

• Scalar Power:

(La)
p

= Lap/(m+1)p−1 (6)

since ( a
m+1 )

p
= ap/(m+1)p−1

m+1 , ∀p ∈ R.

• Scalar Root:

k
√

La = (La)
1
k = L

a
1
k /(m+1)

1
k

−1 (7)

which results from replacing p = 1
k in the power

formula (6), ∀k integer ≥ 2.

3.2 The DSm field of refined labels

Since (LR, +,×) is isomorphic with the set of real
numbers (R, +,×), it results that (LR, +,×) is a field,
called DSm field of refined labels. The field isomor-
phism: fR : LR → R, fR(Lr) = r

m+1 satisfies the ax-
ioms:

Axiom A1:

fR(La + Lb) = fR(La) + fR(Lb) (8)

since fR(La+Lb) = fR(La+b) = a+b
m+1 and fR(La)+

fR(Lb) = a
m+1 + b

m+1 = a+b
m+1 .

Axiom A2:

fR(La × Lb) = fR(La) · fR(Lb) (9)

since fR(La × Lb) = fR(L(ab)/(m+1)) = ab
m+1 and

fR(La) · fR(Lb) = a
m+1 · b

m+1 = ab
(m+1)2 .

(LR, +, ·) is a vector space of refined labels over the
field of real numbers R, since (LR, +) is a commuta-
tive group, and the scalar multiplication (which is an
external operation) verifies the axioms:

Axiom B1:

1 · La = L1·a = La (10)

Axiom B2:

(α · β) · La = α · (β · La) (11)

since both, left and right sides, are equal to Lαβa

Axiom B3:

α · (La + Lb) = α · La + α · Lb (12)

since α· (La+Lb) = α·La+b = Lα(a+b) = Lαa+αb =
Lαa + Lαb = α · La + α · Lb.

Axiom B4:

(α + β) · La = α · La + β · La (13)

since (α + β) · La = L(α+β)a = Lαa+βa = Lαa +
Lβa = α · La + β · La.

(LR, +,×, ·) is a a Linear Algebra of Refined Labels
over the field R of real numbers, called DSm Linear Al-
gebra of Refined Labels (DSm-LARL for short), which
is commutative, with identity element (which is Lm+1)
for vector multiplication, and whose non-null elements
(labels) are invertible with respect to the vector multi-
plication. This occurs since (LR, +, ·) is a vector space,
(LR,×) is a commutative group, the set of scalars R is
well-known as a field, and also one has:

• The vector multiplication is associative:

Axiom C1 (Associativity of vector mul-
tiplication):

La × (Lb × Lc) = (La × Lb) × Lc (14)

since La × (Lb × Lc) = La × L(b·c)/(m+1) =
L(a·b·c)/(m+1)2 while (La × Lb) × Lc =
L(ab)/(m+1) × Lc = L(a·b·c)/(m+1)2 as well.
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• The vector multiplication is distributive with re-
spect to addition:

Axiom C2:

La × (Lb + Lc) = La × Lb + La × Lc (15)

since La × (Lb + Lc) = La × Lb+c =
L(a·(b+c))/(m+1) and La × Lb + La × Lc =
L(ab)/(m+1) + L(ac)/(m+1) = L(ab+ac)/(m+1) =
L(a(b+c))/(m+1).

Axiom C3:

(La + Lb) × Lc = La × Lc + Lb × Lc (16)

since (La + Lb) × Lc = La+b × Lc =
L((a+b)c))/(m+1) = L(ac+bc)/(m+1) =
L(ac)/(m+1)+(bc)/(m+1) = L(ac)/(m+1) +
L(bc)/(m+1) = La × Lc + Lb × Lc.

Axiom C4:

α·(La×Lb) = (α·La)×Lb = La×(α·Lb) (17)

since α · (La × Lb) = α · L(ab)/(m+1) =
L(αab)/(m+1) = L((αa)b)/(m+1) = Lαa ×
Lb = (α · La) × Lb; but also L(αab)/(m+1) =
L(a(αb))/(m+1) = La × Lαb = La × (α · Lb).

• The Unitary Element for vector multiplication is
Lm+1, since

Axiom D1:

∀a ∈ R,

La × Lm+1 = Lm+1 × La

= L(a(m+1))/(m+1) = La (18)

• All La 6= L0 are invertible with respect to vector
multiplication and the inverse of La is (La)−1 with:

Axiom E1:

(La)−1 = L(m+1)2/a =
1

La
(19)

since La × (La)−1 = La × L(m+1)2/a =
L(a·(m+1)2/a)/(m+1) = Lm+1.

Therefore the DSm linear algebra is a Division Alge-
bra. DSm Linear Algebra is also a trivial Lie Algebra
since we can define a law:

(La, Lb) → [La, Lb] = La × Lb − Lb × La = L0

such that
[La, La] = L0 (20)

and Jacobi identity is satisfied:

[La, [Lb, Lc]] + [Lb, [Lc, La]] + [Lc, [La, Lb]] = L0 (21)

Actually (LR, +,×, ·) is a field, and therefore
in particular a ring, and any ring with the law:
[x, y] = xy − yx is a Lie Algebra.

We can extend the field isomorphism fR to a linear
algebra isomorphism by defining3: fR : R · LR → R ·
R with fR(α · Lr1) = α · fR(Lr1) since fR(α · Lr1) =
fR(L(α·r1)) = α · r1/(m + 1) = α · r1

m+1 = α · fR(Lr1).
Since (R, +, ·) is a trivial linear algebra over the field
of reals R, and because (LR, +, ·) is isomorphic with
it through the above fR linear algebra isomorphism, it
results that (LR, +, ·) is also a linear algebra which is
associative and commutative.

3.3 More operators

Let’s now define more new operators, such as
scalar-vector (mixed) addition, scalar-vector (mixed)
subtraction, scalar-vector (mixed) division, vector
power, and vector root.

They might be surprising since such strange hybrid
operators have not been already defined, but for DSm
Linear Algebra they make perfect sense since (LR, +,×)
is isomorphic to (R, +,×) and a label is equivalent to a
real number, since for a fixed m ≥ 1 we have:

∀La ∈ LR, ∃!r ∈ R, r =
a

m + 1
such that La = r

and reciprocally

∀r ∈ R, ∃!La ∈ LR, La = Lr(m+1) such that r = La

In consequence, we can substitute a real number by a
label, and reciprocally.

• Scalar-vector (mixed) addition:

La + α = α + La = La+α(m+1) (22)

since La + α = La + α(m+1)
(m+1) = La + Lα(m+1) =

La+α(m+1).

• Scalar-vector (mixed) subtractions:

La − α = La−α(m+1) (23)

since La − α = La − α(m+1)
(m+1) = La − Lα(m+1) =

La−α(m+1).

α − La = Lα(m+1)−a (24)

since α − La = α(m+1)
(m+1) − La = Lα(m+1) − La =

Lα(m+1)−a.

3where · denotes the scalar multiplication.
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• Scalar-vector (mixed) divisions:

La ÷ α =
La

α
=

1

α
· La = L a

α
, for α 6= 0, (25)

which is equivalent to the scalar multiplication ( 1
α )·

La where 1
α ∈ R.

α ÷ La = L α(m+1)2

a

(26)

since α ÷ La = α(m+1)
m+1 ÷ La = Lα(m+1) ÷ La =

Lα(m+1)/a)·(m+1) = L α(m+1)2

a

.

• Vector power:

(La)Lb = L
a

b
m+1 /(m+1)

b−m−1
m+1

(27)

since (La)Lb = (La)
b

m+1 = L
a

b
m+1 /(m+1)

b
m+1

−1 =

L
a

b
m+1 /(m+1)

b−m−1
m+1

where we replaced p = b
m+1 in

the scalar product formula.

• Vector root:

Lb

√

La = L
a

m+1
b /(m+1)

m−b+1
b

(28)

since Lb
√

La = (La)
1

Lb = (La)
1

b/(m+1) = (La)
m+1

b =
L

a
m+1

b /(m+1)
m+1

b
−1 = L

a
m+1

b /(m+1)
m−b+1

b
.

LR endowed with all these scalar and vector (addi-
tion, subtraction, multiplication, division, power, and
root) operators becomes a powerful mathematical tool
in the DSm field and simultaneously linear algebra of
refined labels.

Therefore, if we want to work with only 1-Tuple la-
bels (ordinary labels), in all these operators we set
the restrictions that indexes are integers belonging to
{0, 1, 2, . . . , m, m + 1}; if an index is less than 0 then
we force it to be 0, and if greater than m + 1 we force
it to m + 1.

For 2-Tuple labels defined by Herrera and Martinez
[5], that have the form (Li, σ

h
i ) where i is an integer

and σh
i is a remainder

σh
i ∈ [− 0.5

m + 1
,

0.5

m + 1
)

we use the scalar addition (when σh
i ≥ 0) or scalar sub-

traction (when σh
i < 0) as defined previously in order to

transform a 2-Tuple label into a refined label and then
use all previous twelve operators defined in DSm Lin-
ear Algebra. Actually, (Li, σ

h
i ) = Li+σh

i and it doesn’t
matter if σh

i is positive, zero, or negative. Of course,
other 2-Tuple models such those defined by Wang and
Hao can also be represented by our refined labels model,
because there is a linear relation between both 2-Tuple
models. That is, our refined label model is a generalized
accurate model for 1-Tuple and 2-Tuple models.

4 Qualitative DSm fusion rules
From the refined label model of qualitative beliefs

and the previous operators, we are able to extend the
DSm classic (DSmC) and the PCR5 numerical fusion
rules proposed in Dezert-Smarandache Theory (DSmT)
[10, 11] and all other numerical fusion rules from any
fusion theory (DST, TBM, etc.) in the qualitative do-
main. We will not go in deep presentation of these rules
since they have been already widely presented in the
literature, tutorials and conferences. The qualitative
belief mass/assignment (qba) qrm(·) based on Refined
labels representation is defined as qm(·): GΘ → Lr

such that qm(∅) = L0 and
∑

A∈GΘ qm(A) = Lm+1.
The q-extensions of DSmC and PCR5 fusion rules for
two sources4 on a frame Θ based on the Refined label
operators are then given by (the extension for N > 2
sources is possible):

• q-extension of DSmC fusion rule (qDSmC):
qmDSmC(∅) = L0 and ∀X ∈ GΘ \ {∅}

qmDSmC(X) =

∑

X1,X2,··· ,Xk∈DΘ

X1∩X2,··· ,∩Xk=X

k
∏

i=1

qmi(Xi) (29)

• q-extension of PCR5 fusion rule (qPCR5):
qmPCR5(∅) = L0 and ∀X ∈ GΘ \ {∅}

qmPCR5(X) = qm12(X)+

∑

Y ∈GΘ\{X}
X∩Y =∅

[
qm1(X)2qm2(Y )

qm1(X) + qm2(Y )
+

qm2(X)2qm1(Y )

qm2(X) + qm1(Y )
] (30)

where qm12(X) corresponds to the qualitative q-
extension of the conjunctive consensus and GΘ is the
generic notation for the fusion space on which the
masses of beliefs have been defined. More precisely,
GΘ = 2Θ when working with Shafer’s model for the
frame Θ (i.e. all elements of Θ are truly exclusive),
GΘ = DΘ when working with a free DSm model (i.e.
none of elements of Θ are disjoint), GΘ = SΘ when
working with a minimal refinement of Θ when the re-
finement is possible and makes sense, or GΘ can be any
subsets of DΘ or of SΘ if some integrity constraints
must be taken into account (see [11] for details, discus-
sions and examples of power-set 2Θ, hyper-power set
DΘ and super-power set SΘ).

4The extension of these fusion rules for the fusion of s > 2
sources can be found in [11].
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5 Examples of decision-making
5.1 A Bayesian example

Let’s consider an investment corporation which must
choose one of three projects in Θ = {θ1, θ2, θ3} (as-
sume here that Shafer’s model holds for simplicity)
to invest through two consulting departments. A set
of qualitative values are used to describe the opin-
ions of two consulting companies, i.e. I 7→ Impossible,
EU 7→ Extremely-Unlikely, VLC 7→ Very-Low-Chance,
LLC 7→ Little-Low-Chance, SC 7→ Small-Chance, IM
7→ IT-May, MC 7→ Meanful-Chance, LBC 7→ Little-
Big-Chance, BC 7→ Big-Chance, ML 7→ Most-likely, C
7→ Certain. So, we consider the set of ordered linguis-
tic labels L = {L0 ≡ I, L1 ≡ EU, L2 ≡ V LC, L3 ≡
LLC, L4 ≡ SC, L5 ≡ IM, L6 ≡ MC, L7 ≡ LBC, L8 ≡
BC, L9 ≡ ML, L10 ≡ C} and in this example m = 9.
The opinions of the two consulting companies/sources
are given in Table 1 according to Refined label model.

qm(·) θ1 θ2 θ3

Source no 1 L4.3 L2.7 L3

Source no 2 L5 L2.1 L2.9

Table 1: Qualitative bba’s to combine.

When working in Shafer model, according to the
qDSmC combinational rule (29), the fusion of the two
qualitative sources of evidences gives:

qmDSmC(θ1) = L( 4.3×5.0
10 ) = L2.15

qmDSmC(θ2) = L( 2.7×2.1
10 ) = L0.567

qmDSmC(θ3) = L( 3.0×2.9
10 ) = L0.87

qmDSmC(θ1 ∩ θ2) = L( 4.3×2.1
10 + 5.0×2.7

10 ) = L2.253

qmDSmC(θ1 ∩ θ3) = L( 4.3×2.9
10 + 5.0×3.0

10 ) = L2.747

qmDSmC(θ2 ∩ θ3) = L( 2.7×2.9
10 + 2.1×3.0

10 ) = L1.413

Note that qmDSmC(.) is normalized since L2.15 +
L0.567 + L0.87 + L2.253 + L2.747 + L1.413 = Lm+1 = L10

(here m = 9 interior labels).
Based on qPCR5, the masses of the partial conflicts

θ1 ∩ θ2, θ1 ∩ θ3 and θ2 ∩ θ3 are redistributed to those
belief masses involved in these conflicts according to
(30). One gets:

qmxA1(θ1) =
L4.3 × L0.903

L6.4
≈ L0.607

qmyA1(θ2) =
L2.1 × L0.903

L6.4
≈ L0.704

qmxB1(θ1) =
L5 × L1.35

L7.7
≈ L0.877

qmyB1(θ2) =
L2.7 × L1.35

L7.7
≈ L0.473

qmxA2(θ1) =
L4.3 × L1.247

L7.02
≈ L0.745

qmyA2(θ3) =
L2.9 × L1.247

L7.02
≈ L0.502

and similarly, one has qmxB2(θ1) ≈ L0.938,
qmyB2(θ3) ≈ L0.563, qmxA3(θ2) ≈ L0.377, qmyA3(θ3) ≈
L0.405, qmxB3(θ2) ≈ L0.259 and qmyB3(θ3) ≈ L0.370.
Thus, one finally gets:

qmPCR5(θ1) = qm12(θ1) + qmxA1(θ1) + qmxB1(θ1)

+ qmxA2(θ1) + qmxB2(θ1) ≈ L5.315

qmPCR5(θ2) = qm12(θ2) + qmyA1(θ2) + qmyB1(θ2)

+ qmxA3(θ2) + qmxB3(θ2) ≈ L1.974

qmPCR5(θ3) = qm12(θ3) + qmyA2(θ3) + qmyB2(θ3)

+ qmyA3(θ3) + qmyB3(θ3) ≈ L2.711

One can easily verified that qmPCR5(.) is also nor-
malized since L5.315 + L1.974 + L2.711 = Lm+1 = L10.

If the decision-making on elements of Θ is based on
the criterion of the maximum of qualitative belief usu-
ally adopted in the literature, one will decide θ1 since
one has in this Bayesian fusion result case:

(qBel(θ1) = qmPCR5(θ1)) > (qBel(θ2) = qmPCR5(θ2))

(qBel(θ1) = qmPCR5(θ1)) > (qBel(θ3) = qmPCR5(θ3))

Therefore, the investment corporation should normally
invest in the project θ1 based on the qualitative sources
of evidences available.

5.2 A non Bayesian example

Let’s consider a more general example with two non
Bayesian qualitative sources of evidences. As previ-
ously, we consider Θ = {θ1, θ2, θ3} and the set of lin-
guistic labels L = {L0, L1, . . . , L10} (m = 9 interior
labels). We consider the DSm hybrid model with the
exclusivity constraints θ1 ∩ θ3 = ∅ and θ2 ∩ θ3 = ∅. We
consider the following qualitative bba’s to combine:

qm(·) θ1 θ2 θ3

Source no 1 L2 L3 L1

Source no 2 L2 L1 L2

qm(·) θ2 ∪ θ3 θ1 ∪ θ2 ∪ θ3

Source no 1 L1 L3

Source no 2 L3 L2

Table 2: Qualitative bba’s to combine.

Using qualitative DSmC rule based on free DSm
model, one obtains5:

5The verification is left to the reader.
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qmDSmC(θ1) = L1.4

qmDSmC(θ2) = L2.2

qmDSmC(θ3) = L1.5

qmDSmC(θ2 ∪ θ3) = L1.4

qmDSmC(θ1 ∪ θ2 ∪ θ3) = L0.6

qmDSmC(θ1 ∩ θ2) = L0.8 + L0.8 = L1.6

qmDSmC(θ1 ∩ θ3) = L0.6

qmDSmC(θ2 ∩ θ3) = L0.7

Working now with the hybrid DSm model, one uses the
qualitative PCR5 rule to transfer the conflicting mass

qmDSmC(θ1 ∩ θ3) = qm1(θ1)qm2(θ3) + qm2(θ1)qm1(θ3)

= L0.4 + L0.2 = L0.6

to θ1 and θ3 according to:

xθ1

L2
=

zθ3

L2
=

L2 × L2

L2 + L2
=

L 2·2
10

L2+2
=

L0.4

L4
= L 0.4

4
·10 = L1

whence xθ1 = zθ3 = L2 × L1 = L 2·1
10

= L0.2.

Similarly, the partial conflicting qualitative mass
qm2(θ1)qm1(θ3) = L0.2 involved in qmDSmC(θ1 ∩ θ3)
is redistributed to θ1 and θ3 according to:

x′
θ1

L2
=

z′θ3

L1
=

L2 × L1

L2 + L1
=

L 2·1
10

L2+1
=

L0.2

L3
= L 0.2

3 ·10 = L 2
3

whence x′
θ1

= L2 × L 2
3

= L(2· 23 )/10 = L 4
30

≈ L0.13 and

z′θ3
= L1 × L 2

3
= L(1· 23 )/10 = L 20

30
≈ L0.07.

Using again PCR5 to transfer

qmDSmC(θ2 ∩ θ3) = qm1(θ2)qm2(θ3) + qm2(θ2)qm1(θ3)

= L0.6 + L0.1 = L0.7

to θ2 and θ3 according to:

yθ2

L3
=

z′′θ3

L2
=

L3 × L2

L3 + L2
=

L 3·2
10

L3+2
=

L0.6

L5
= L 0.6

5 ·10 = L1.2

whence yθ2 = L3 × L1.2 = L 3·1.2
10

= L0.36 and z′′θ3
=

L2 × L1.2 = L 2·1.2
10

= L0.24. Also,

y′
θ2

L1
=

z′′′θ3

L1
=

L1 × L1

L1 + L1
=

L 1·1
10

L1+1
=

L0.1

L2
= L 0.1

2 ·10 = L0.5

whence y′
θ2

= z′′′θ3
= L1 × L0.5 = L 1·0.5

10
= L0.05.

Adding the masses of x’s to the mass of θ1, y’s to the
mass of θ2, and z’s to the mass of θ3 one finally gets:

qmPCR5(θ1) = L1.4 + L0.2 + L0.13 = L1.73

qmPCR5(θ2) = L2.2 + L0.36 + L0.05 = L2.61

qmPCR5(θ3) = L1.5 + L0.2 + L0.07 + L0.24 + L0.05 = L2.06

qmPCR5(θ2 ∪ θ3) = L1.4

qmPCR5(θ1 ∪ θ2 ∪ θ3) = L0.6

qmPCR5(θ1 ∩ θ2) = L1.6

• If the decision-making is based on the criteria of
the maximum of qualitative belief, one will de-
cide θ2 since qBel(θ2) = L4.21 takes the maximum
value. Indeed,

qBel(θ1) = qmPCR5(θ1) + qmPCR5(θ1 ∩ θ2)

= L1.73 + L1.6 = L3.33

qBel(θ2) = qmPCR5(θ2) + qmPCR5(θ1 ∩ θ2)

= L2.61 + L1.6 = L4.21

qBel(θ3) = qmPCR5(θ3) = L2.06

• If the decision-making is based on the criterion of
the maximum of qualitative subjective probability
defined by6 qDSmPǫ(∅) = L0 and ∀X ∈ GΘ \ {∅}
by:

qDSmPǫ(X) =

∑

Y ∈GΘ

∑

Z⊆X∩Y
C(Z)=1

qm(Z) + ǫ · C(X ∩ Y )

∑

Z⊆Y
C(Z)=1

qm(Z) + ǫ · C(Y )
qm(Y ) (31)

where ǫ ≥ 0 is a tuning parameter and GΘ corre-
sponds to the hyper-power set including eventually
all the integrity constraints (if any) of the frame;
C(X ∩ Y ) and C(Y ) denote the DSm cardinals of
the sets X ∩ Y and Y respectively. When at least
a mass of the subsets that we transfer to is zero,
we always take ǫ > 0 (which is the case in this
example).

Applying (31) (which involves FLARL operators)
with an arbirary small tuning parameter (here we
take ǫ = 0.01), one obtains (the verification is left
to the reader):

qDSmPǫ=0.01(θ1 ∩ θ2) = L6.55

qDSmPǫ=0.01(θ1) = L6.665

qDSmPǫ=0.01(θ2) = L6.745

qDSmPǫ=0.01(θ3) = L3.14

Therefore, one should decide θ2 since it has the
maximum of subjective probability. It is worth to
note that the difference between qDSmPǫ=0.01(θ1)
and qDSmPǫ=0.01(θ2) is very small. This indicates
a possible risk of error in deciding θ2 against θ1 if
this criterion is chosen. When the max of belief cri-
terion is used, one sees a larger difference between
qBel(θ1) and qBel(θ2) which makes the decision θ2

more obvious to take.

6This is a direct extension in the qualitative domain of the
quantitative DSmP formula presented in details with examples
in [2].
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6 Conclusions
In this paper we have introduced the DSm Field and

Linear Algebra of Refined Labels to palliate the lim-
itations (complexity and inherent approximations) of
the 2-Tuple models of representation of linguistic labels
proposed in the literature until very recently. Based on
our new theoretical approach, we are able to deal accu-
rately in derivations with linguistic labels and so main-
tain high precision in the results. The linguistic refined
labels model that we have proposed in this paper can be
seen as a generalization of 2-Tuple and 1-Tuple linguis-
tic labels generally used by people working in artificial
intelligence with fuzzy sets and dealing with qualita-
tive information. This work is very valuable to infor-
mation retrieval, fusion and management, especially to
decision-making support system from qualitative belief
functions coming from human experts reports.
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