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Abstract

The purpose of this paper is to illustrate a fundamental, multiple particle, system equation for
which the Klein-Gordon-Dirac-Schrödinger equations are single particle special cases. In the
same manner that eigenvalues of the Schrödinger equation represents energy levels of an
interacting atomic system, eigenvalues represent particle energies in an interacting system of
particles. An equation and a solution is proposed that treats all of the particles in the universe
as a single system. The proposed solution is a descriptor of a symmetric, light speed
expanding group of interacting particles having familiar constituents.

INTRODUCTION

The success and the accuracy of Quantum Mechanics has been the most oustanding
achievement in the history of science, bet it is limited in the scope of its application to
macroscopic systems. All of the parameters associated with the microscopic systems, spin
inetria, energy, physical constants, etc, are obviously induced by the universe at large. The
values associated with the physical constants that apply to the microscopic systems have to
be the result of the effect of the entire system. This paper is an attempt to define the entire
system as one integrated function. That one function having energy levels that are the
particles and their interactions with the other particles in the system.

The approach is somewhat unusual in that it postulates both a differential equation, and a
solution to the universe of particles. From there, with as few assumptions as possible, the
standard equations and rules of physical interactions are recovered, primarily illustrated are
those of QM and E &M. Presented is a system equation, and solutions termed a
“Systemfunction”, which in effect, can be considered a space, of eigensolutions for an
expanding system of point particles.

The primary features of this development is the inclusion in the particle function not only the
internal structure of the particle, but the external structure as well. Standard particle
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functions are separate from, and are acted on by external potentials and functions, whereas in
this development all of the external interactions are an integral part of the function itself.

Reviewing the standard QM equations in the current notation.
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Where 0r is the particle Compton radius 0 0r m c /  . Of the rest mass of a particle (For
general conventions, and notation, see appendix [II])

The system equation, being proposed, is a descriptor of a time expanding system of charged,
half spin particles. The inclusion of particles other than half-spin will be left for later.
Normal quantum mechanical expressions, (Klein-Gordon-Dirac-Schrödinger), represent
single particles systems, separated from the rest of the universe, interacting through a
coupling potential. The standard QM, coupling is by the insertion of a representation of the
potential through the correspondence relations, and is not part of the wavefunction, but is
action on the wavefunction. (See Appendix I, for a heuristic view of the issue.)

I. THE GENERAL EQUATION

The system equation being proposed for the Systemfunction will be.
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      

 (4)
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That is the derivative with respect to a virtual displacement of the square of the expansion of
the universe. 2 cT  expanding at ct, and X, Y, & Z are the coordinates of the expanding
sphere of the universe. A presumption is made that the time and spaces coordinates have s
separation constant such that:

       
2 2 2 2

2 2 2 22 2 2 2
K

X Y Z

           
      

   (5)

Thus:

 2
K


  

 
  (6)

Not the same K. From this  is seen to be a real scalar function, but is presumed to be the
product of a mixed real and imaginary function:

*   . (7)
We can then have:

   2 2
* 0

X X
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         
   
  

(8)

Inserting a unitary matrix *A A 1 into the function allows us to separate one of the
bracketed terms into two column matrix such that:

       2 2 2
* *

*
* 0

X X X
  



 

                
      
   

a a (9)

The left bracket of this expression is zero because of Eq. (4). Since the left and right are
identical then the right side must be zero also. We will presume that the two terms can
individually be independent and thus equal to a constant matrix. We then have.

  22
* * * *iK
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    

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The left bracket of this expression has two terms that are matrix functions having both real
and imaginary components. But from Eq.(4) the real portion is:

 2
real 0

X




    
  

, (12)

or:

  12
K


   

 
(13)

Where 2K is constant separation matrix between the space and time variables. Since the
universe is quite large and the radius   is slow changing we can change the expression
Eq.(10) , and Eq.(11) , into local coordinate differential. Details are shown in appendix XX.

  2
* * * *iK

2 x





    


a a (14)

  2iK
2 x






    


a a (15)

For simplicity and a foreknowledge of the development we will set:

2
0

1 2
0

m c1
K

r
     
   (16)

and:

2
0

1
K I

2 r
 

 (17)

and thus we have for our imaginary expression Eq. (11), in local coordinates:

  0

i
x r






    


a a (18)

Eq. (18),has the appearance of the Dirac expression, but not quite. It is a column matrix
equation, however and its connection to the Dirac equation will be explored in Appendix
XX.

There is a presumption that the Systemfunction,  being proposed, can be represented by a
sum of eigenfunctions.
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nc  


(19)

which we will designate as the systemmatrix and note that the real terms cancel:
 

 

 

1 2 11

1 2 22

1 2 nn

K iK 1
K iK

K iK

  
 

      
 

   





(20)

II. THE GENERAL SOLUTION

The Systemfunction

Our purpose now, is to design a Systemfunction that is a solution to our general equation.
We will assert it to be the space of eigensolutions, each of which is a solution for a particular
particle Eq. (20). The linear sum of these eigensolutions being the complete systemfunction.

Single Particle Action

We will propose that the systemfunction is somehow a product of the actions of the
individual particles in the system. The action for the m particle being the path integral over
all possible paths from the initiation of the universe, until the current time as observed at a
given point.

From standard QM the nominal wavefunction for a particle can be stated as:

 
L S

i dt i
x, t Ae Ae    (21)

And for the wavefunction of a collection of independent particles this is:
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 
1 2 n

n

iL L Si dt dt
x, t Ae Ae

  
 

   
  

(22)

In an analogy with this will presume the systemfunction to be defined by:

2T m n n
0 N N

L S Sdt

m Ae Ae
    (23)

Where we have a square of the sum of the actions of the individual particles. In this case it is
apparent that 2L does not represent the sum of non-interacting particles But the squares and
cross products of a collection of individual particle actions. Thus this is not a function
representing an isolated particle, but the collection of particles. It is to be shown that the
cross product of these properly defined actions represent the potentials and E & M
interactions between the particles. For a given eigenvalue the eigenfunction will represent
the entire particle, including its interactions with the rest of the system.

Particle Action, Half Spin particles

The action for a particle is taken to be the path integral of the Lagrangian from one point in
time to a second point in time, over all possible paths. In this case we will require the first
point to be the initiation point of the universe, and the final point, to the current time, as
observed at a point in the center of the system. An observer of the value of the function at
the center of the system, will observe this value in retarded time. Note that the evaluation
point of this action, which is at the center of the coordinate system, is not the same as the
observation point, which can be at a distance, and is observed in retarded time. (See
appendix III for further discussion.)

For Eq. (23), the action of a one half spin particle, from the start of the universe to its
present position, as evaluated at the coordinate origin, and observed at the a distance r from
origin is proposed to be:

 
m m

m
m m

1
i r m cV

2
m cr /

s
    


 

 



(24)

 is the radius of the universe at the origin of the coordinate system, r is the distance of an
observation point from the origin. mm is the relativistic mass of the m particle, mV


is the
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four-velocity, in Clifford matrix, and 


is a null vector associated with the spin of the
particle. mr is the distance from the origin of the coordinate system to the m particle. The
first  is associated with the particle charge and the second is associated with the spin null
vector.

Note that r is time dependent, and makes the action retarded with respect to the
observer and is dependent on the distance from the origin to the distance of the observation
point. A variation in r does not represent a change in the value of the function, but the delay
in the time the function is observed

Although the coordinates may be defined as linear, the general equation Eq. (4), defined
above, is not linear in the coordinates, so the position of the coordinates system affects the
value of the function. A change in the location of the origin with respect to the particle
changes the value of the action due to the m1/r dependence.

The Systemfunction can be evaluated at any point in the collection of particle actions, but is
always at the center of the system. Only at the locus of the action of a particle nr 0 Will it
have an eigensolution.

Expanding the function With the first particle being the nth particle this would be:

N N
2

n n m n n m
m m

exp S S S S S
             

    
  

    
(25)

Notable here is that the first term 2
nS


is the square of the action for the single particle, and
will define the exponent of the free particle. The cross terms would be the Clifford products
of the interacting actions of the other particles in the system.

Letting the coordinate system be located coincident with the n th particle nr 0 , and mr 0
The actions of Eq. (24) become for the n and m particle.

m
n n n m m m

n m m

r r1 1 r
S i V , S i V

r 2 r 2 r
   

         
 

    
 (26)

The Free particle

The Systemfunction for the free particle is just:
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n

2
nSe


(27)

Putting in the moment for the nth particle evaluated at r 0 for 2
nS


gives the Systemfunction
representation of the free particle (See Appendix IV for details):

 
2

C S

n n n nn n
n n

r r
exp V i V

r r

      
      
   


  


  , (28)

Since this the function for the free particle. we can illustrate it explicitly in terms of mass and
velocities.

 
2 2 C S

n n
n n n2 n n

r m c r m cv
exp 1 i 1 v

c

       
          
    


   


(29)

Note that this is the combined real and imaginary function for the free Particle defined at the
particle center, and has an extremely small real value. For an electron exp( 75) ,

The real function From Eq.(13) is:

2
2n
2

n R

r M c v1
c

e

   
   
       


 






(30)

Which With Eq. (16), just returns the coordinate independent energy, momentum equation of
motion for a free particle.

 2
n2 2 2

0

1
exp S

r
 

    
 

 
 (31)

or

2 2 2
0 n

2

m c m c v
1

c
         

     



  (32)

Which is just the free particle relativistic equation of motion
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For the imaginary function of the free particle Eq. (18), where we note that 0 ct 
and 0i is just a constant phase factor that can be left out is:

   
C S C S0 n

n n n n nn n n n

ct r m c
1 v p m c ct r /

n I e e
  

      
 

    


(33)

or:

   
C S

n
n n

n n

M c
i ct r 1 v

n I e
   


 


(34)

The sign of the exponent is the product of the sign of the charge and spin. This results in
both the equation Eq.(18) , and the proposed solution, being similar in appearance to the
Dirac function, and its common solution, The corresponding Dirac Wavefunction is:

 
p

i p r Et /
u e


  

  
(35)

See appendix xx for the relation between the free particle systemfunction and the Dirac free
particle function.

Some of the features of Eq. (34), are easily determined. The velocity wavelength is:

0n
n

M1 1 p
V

2 h
 

 


 (36)

Which is the correct free particle deBroglie wavelengths for the velocity and the total energy.
The frequencies are.

2
0n 0n

d C

M cv M c
& ,   (37)

Which are the relativistic deBroglie kinetic frequency and the Compton free particle
frequency.

In Appendix VII, we show that the systemfunction for a free particle can be considered a
composition particle consisting of a Dirac type particle, and a half spin, zero rest mass, light
speed particle. The second particle having characteristics of a neutrino.
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Total Particle Function

The foregoing was just the free particle expression. To illustrate the real function
representing the particle is inclusive of the interactions, all the terms can be included in Eq.
(16) . This gives the rest of the expression including the electromagnetic interaction. (See
Appendix IV for details.)

 2
n n m m n2 2 2

0

1
exp S S S S S

r
 

      
 

     
  (38)

or

2 2 22 2C Cn m nn0 n n
2 2 2n m

m

m c m c mv Q v v
1 2 1

c r c c

                         
   , (39)

Which is the square of the Lagrangian for a moving charged particle in the presence of
another moving charged particle. Taking the square root and summing over a collection of
particles gives the familiar expression.

2 2
n m n2 2

n0 n 2
m m

1 v Q v v
m c m c 1 1

2 c r c c

      
        
    
    

  (40)

Which is just the Lagrangian for a particle in the presence of a collection of charged moving
particles.

For the imaginary function that includes the other particles in the system is )See Appendix
XX for details ),we have, from Eq. (18),

 

C S S C C S
n

n n m n n m
n n n m n mn m m

m
i V i V V
r r m

n
0

i
e I

2 x 2 r

  
        

 




   

 
a a

       
 (41)

Since we have already noted the free particle aspects, we will let the velocity of the n particle
be zero and evaluate the energy aspects of the interactions.
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This leaves only the time differential in Eq. (18).

 
C S S C C S

n
n n m n n m nn n n m n m

0 n m mn

1 m
i V i V V V 1

r ct r r m

    
              

         , (42)

or:

 
C S

0n n
mn n

m m

m c mc m
i i i V

r m

  
       

  

   (43)

or
2 2 2

0n n
m

m m

m c mc Q m
V

r m

  
    

  

    (44)

since we know m mQV / r


is the potential of a moving charge,

2 m

m

V
Q

r


 
(45)

Is the spin energy of a ½ spin particle with a 2 g spin factor in the field of a moving point
charged particle. The n mm / m term is just the center of mass correction term to the
potential.

This same potential energy is derived in the Dirac expression by adding the potential to the
differential via the correspondence relations, and in that case is not a part of the
wavefunction.

Similarities and contrasts with the Dirac functions:

I




Value of point function at the location of the
particle. Observable in retarded time at
distance r c t 

Location probability amplitude through time
and space for point particle.

Phase velocity is c Velocity not apparent, but has eigenvalue c
Velocity wave is a plane wave in a direction
of the spin axis, having deBroglie
wavelength. Compton wave is spherical.

Velocity wave is a plane wave along he
direction of travel, with wavelength equal
deBroglie wavelength. No Compton space
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wavelength apparent.
Frequency: both deBroglie and Compton. ie
Zitterbewegung

Frequency: Compton. Only. ie
Zitterbewegung

Correct spin, particle interaction energy Correct spin, particle interaction energy

CONCLUSION

A multiple particle system equation for the universe, and its connection to quantum
mechanics has been demonstrated. If viable it is clear that it represents a new approach to
particle dynamics, and perhaps opens a window into the relation between the particles, and
the expanding universe. A point to note is, that by considering only the relativistic dynamics,
and property of particles, interactions can be defined without the necessity of defining fields.
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The current base equations for QM are the Relativistic Schrödinger equation or the Klein-
Gordon and the Dirac equation with the potential incorporated by use of the “correspondence
relation” . This method asserts that the total momentum of a charged particle in an external
field is modified as such that.

q
p p A

c
  (1.1)

q
i A

x x c 
 

  
     

(1.2)

The Schrödinger equation with fields included is:

2 2 2

2 2 2

2
i 0

x y z ct r
                   r

(1.3)

And the field included Dirac expression becomes:

1 x 2 y 3 z 4
q q q q 1

A A A i
x c y c z c ct c r

                                          
(1.4)

Before this modification, that is for the free field solution, the Klein-Gordon, and the Dirac
equations are identical, in that the Dirac equation is a factorization of the KG equation using
the Dirac matrix. Once the modification has been included via the correspondence
substitution, the equations, are not equivalent, not even in interpretation [1]. The KG
describes electromagnetic spin one particles in a potential, and the Dirac is a probability
distribution of half spin particles.

It is asserted that including the potential, via the correspondence relation is the fundamental
error plaguing QM, in explaining physical phenomena. The insertion of an infinite potential
has to be considered an approximation and only accurate to the extent that the approximation
of the inverse square potential is an accurate representation.

Appendix II

Definitions, Notation, and Conventions

The radius of the universe 0cT ct    
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Four velocity of m particle
m

v
V

c




   
 



Three velocity of m particle  k
mmk

v v 


Null vector  k
k 4r r / r  


Mass m

Rest mass 0m

Compton radius r
mc




Compton radius rest mass 0
0

r
m c




Sign of m particle charge
C

m


Sign of m particle spin
S

m


The Dirac matrix convention used in this development is

1 2 3 0

1 i 1 1
1 i 1 1

1 i 1 1
1 i 1 1

        
                     
        
               

 (2.1)

,

and

1 3 4

2 2 2 2
21, 1, 1, 1           .

The product of the space coordinates is termed the spin matrix:

1 2 3 3 2 1 4

i
i

i
i

 
               
 
 
 

(2.2)
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The square is:
2 21 1    

The product of 2 with the coordinate vectors:
1,2,3 1.2,3  

4 4   

n 2 3 1 3 1 2, ,         (2.3)

Which are the elements of the spin vector:

1 2 3 2 3 1 3 2 1            (2.4)

The vector four velocity:

 1 3 4x 2 y zV= v v v c / c      


(2.5)

Commutation relation with V and S

 
 

 
 

1 x 2 y 3 z 4

1 x 2 y 3 z 4

1 x 2 y 3 z

x y z2 3 1 3 1 2

V = v v v c / c

V = v v v c / c

V V 2 S v v v / c

2 / c

2 V

v v v

        

        

        



 

       




 



(2.6)

       
       

       

2
m n

2
m n n m

n n n n4 4 4 4

n m n m4 4 4 4

n n n n4 4 4 4

v c v c v c v c

v c v c v c v c

v c v c v c v c

v v c

2v v 2c 2V V







      

      

       

 

 

 

  

    
    

      

 

   

(2.7)

:
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The product of two four velocities:

  1 3 1 3

2
n m xn 2 yn zn 4 xm 2 ym zm 4V V = v v v c v v v c / c             
 

(2.8)

or
  2

n m n m n m 4 m nV V V V v v c v v / c        
         (2.9)

The inner product :

n m m n n mV V V V 2V V 
     

 (2.10)

The outer product:
  2

n m m n n m 4 m nV V V V 2 v v 2 c v v / c        
        (2.11)

Appendix III

Discussion of the action vector

The action for a particle is taken to be the path integral of the Lagrangian from one point in
time to a second point in time, over all possible paths. In this case we will require the first
point to be the initiation point of the universe, and the final point, to the current time, as
observed at a point in the center of the system. An observer of the value of the function at
the center of the system, will observe this value in retarded time. Note that the evaluation
point of this action, which is at the center of the coordinate system, is not the same as the
observation point, which can be at a distance, and is observed in retarded time.

For Eq. (23), the action of a one half spin particle, from the start of the universe to its
present position, as evaluated at the coordinate origin, and observed at the a distance r from
origin is proposed to be:

 
m m

m
m m

1
i r m cV

2
m cr /

s
    


 

 



(3.1)

 is the radius of the universe at the origin of the coordinate system, r is the distance to an
observation point from the origin. mm is the relativistic mass of the m particle, mV


is the
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four-velocity, in Clifford matrix, and 


is a null vector associated with the spin of the
particle. mr is the distance from the evaluation point at the origin of the coordinate system to
the m particle. The first  is associated with the particle charge and the second is associated
with the spin null vector.

If the velocity and mr are set to zero the function becomes:

4
mcs 

  


(3.2)

Since  is the radius of the universe this is the “maximum” action a particle existing at that
location in the universe, can have, Note that at the Compton radius mr r  the function
becomes infinite. But this is an evaluation point, and has no physical significance.

Focusing on the denominator and presuming mMcr   and the velocity is zero we have:

2 2
m

42
m m

i mV 1 Q i 1 Q
mc r c r

s     
     

   



 


(3.3)

Which makes it the action of the electric energy potential of that particle, as evaluated at the
origin.

The action vector function for a particle has a maximum value when r 0 and the minimum
when r  . At the origin the action for a particle is diminished by / r , making its
contribution to the complete function proportional to its observed cosmic age.

Appendix IV

Action Product Details

This is the details of the products of the actions of the individual particles for Eq.(25).

Starting with the particle action:
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 
m

1
i r McV

2S
Mcr /

    


 

 
 (4.1)

We evaluate the center of the coordinate system at the locus of the n particle and at a
distance for all the other m particles.

 
C S C S

m
n n n n m m m mn n m m

n m m

r r1 1 r
S i V , r 0 S i V , Mcr /

2 r 2 rr
       

              
   

      (4.2)

The square of (n) particle action is:

C S C S2
n n n n nn n n n

n n

r r1 1
S i V i V

2 2r r
      

        
  

   
  (4.3)

or:
C C S S2

n n n n nn n n n
n n

r r 1 1
S i V i V

2 2r r
  

    
    

 
C S C S

n n n nn n n n
n n

r r1 1
i V i V

2 2r r
   

    
 

  
  (4.4)

Which is also the square of the action for the free particle:

2
C S2

n n n n n nn n
n n

r r1
S V i V V

2r r

      
               

    
  (4.5)

Note the sign of the imaginary term is a product of the charge, and spin signs.
C S

n n

   
 

2
C S2

n n n nn n
n n

r r
S V i V

r r
    
         

     (4.6)

Note that the sum of the product of the four velocity and the null vector is just the inner dot
product, and is a scalar.

An eigenfunction for a free particle from Eq., and Eq. (23) would then be:

 
2 C S

n n n2 n nn nn

r r
V i V

r rS

n Ae Ae

         
    

   
(4.7)
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The imaginary free particle function is then:

 
C S

n n
n n n

r
i V

r
nI e

  
  

 
 

(4.8)

And the real free particle function is:

2

n
n

r
V

r
nR Ae

  
  
 




(4.9)

Now we take the products of the m and n particle

C S C S
m

n m n n m mn n m m
n m m

1 1
S S i V i V

2 r 2 r
r

r
     

            
    

    
 (4.10)

C C S C C S S S
m m

n m n m n m n m n mn m n m n m n m
n m m n m m

1 1 1 1
S S i V i V i V i V

r 2 r 2 r 2 2 r
r r

r r
    

         
 

         
  (4.11)

Recollecting terms.

2C C S S S C C S
m m

n m n m n m n m n mn m n m n m n m
n m m m n

1 1
S S V V i V V

r 4 r 2 r
r r

r r
     

              
    

         
  (4.12)

Now the reverse order:

2C C S S S C C S
m m

m n m n m n m n m nn m n m n m n m
n m m m n

1 1
S S V V i V V

r 4 r 2 r
r r

r r
     

              
    

         
  (4.13)

Thus the sum is:
2C C S S

m
m n m nn m n m

n m m
n m m n

S C C S
n

m n n mn m n m
m m

1
2 V V

r 2 r
S S S S

m
i V V
r m

r
r

 
      

      
       

   

       
   




(4.14)
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Note the anti-symmetric terms cancel leaving the inner dot products, as in the n square terms.

The sum of all the terms is then for an interacting particle is then:

2 2C C S S
m

n m n m nn m n m
2 n n m m

n n m m n
C S S C C S

n
n n m n n mn n n m n m

n m m

2
V V V

r 2 r
S S S S S

m
i V i V V

r m

r
r r

r

    
        
      

                

         
      


 



(4.15)

From Eq. and Eq.(23) the real part of the function for the n particle is:

2 2C C S S
m

n m n m nn n n m n mn n m mN N R

r2
V V VS S

r r r 2 r

nR Ae e

                         
 

  

       
(4.16)

From Eq. and Eq.(23) the imaginary eigenfunction for the n particle

C S S C C S
n

n n n n m n n m
n n n m n mn m mN N I I

mS S i V i V V
r r m

nI Ae Ae

                        
 

  

      
(4.17)

Taking the real part of this and putting into Eq. (6), and differentiating We can arrive at the
actual square of the Lagrangian for a particle in the potential of a second particle.

2
C C

n m nn2 n m
n0 n n m

1 1 2
V V V

r rr r
  

     
 

  
  (4.18)

2 2 2C C
n0 n n

n m n2n m
m

2 2 22 2C Cn m nn0 n n
2 2 2n m

m

m c m c m Q
V 2 V V

r

or :

m c m c mv Q v v
1 2 1

c r c c

  

         
  

                       

  
  

  

(4.19)

Taking the square root:
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2 2 2C C C C
2 2n0 n n

n m n n m n2 2n m n m
n m n m

m c m c 2 Q m c 2 Q
V V V V V V

m c r m c r
           

   

     
   

(4.20)
or:

2 2C Cn m nn0 n
2 2n m

n m

m c m c v 1 Q v v
1 2 1

c M c r c c

      
       
   

    

  (4.21)

or:
2 2

n m n2 2
n0 n 2

m

1 v Q v v
m c m c 1 1

2 c r c c

      
       
   

    

 (4.22)

Thus we have arrived at the Lagrangian for the eigenvalue from its eigenfunction without
appealing to an external potential.

Appendix VI

The Change to Local Co-ordinates

Noting that Eq.(8), is the change in the function with respect to a displacement of the
expanding light cone at the edge of the universe, we can make an approximation, and convert
to differentials of the function with respect to local coordinates. Since in a spherical universe,
X,Y,Z are just the maximum value of the x, y, & z coordinates, and from the center, equal to
the radius,  , and X is the same as a change in a local frame X x   , we can have:

 
 
 
   

2

2

2

2

X 2X x 2 x

Y 2Y y 2 y

Z 2Z z 2 z

2 x 2 ct

     

     

     

     

, (6.1)
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And thus arrive at a normal Clifford expression for the matrix function.

 1 2 3 4 K
2 x 2 y 2 z 2 ct

    
          

    
, (6.2)

or:

 2
K

x





   


(6.3)

Appendix VII

A. Connection to Dirac Expression

The purpose of this section is to show the connection of the imaginary portion of the free
particle systemfunction to the Dirac free particle.

Although the interpretations of the functions are different, there are structural similarities.
The most notable structural difference is the phase velocity of the systemfunction  c t r/ c ,
whereas the Dirac function has no constant phase velocity Et p r   .
In this section we intend to show that the function for the free particle systemfunction can be
separated into a product of functions, one of which is equivalent to the Dirac particle. The
other a massless particle, having velocity equal to c.

From Eq. 30. We have for the imaginary function from our systemfunction expression for a
free particle :

   
C S

n
n n

n n

M c
i ct r 1 v

n I e
   


 




(7.1)

And from Eq. 31 we have the Dirac function for the free particle to be.

 
p

i Et p r /
u e


  

  
(7.2)
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Both expressions would appear to be a solution to the Klein Gordon expression, however
the systemfunction does not appear be a solution to the Dirac expression.

Our imaginary portion of the systemfunction Eq. , is:

  22
iK

x





    


(7.3)

And is a solution to the matrix equation:

  0

i
I

x 2 r





   

  (7.4)

A judicious factoring of  can yield a product that one factor is functionally equivalent to
the Dirac free particle function, and another term which is a time space compliment function,
ie:

n n n n
n n

m c p m c p
ct r r ct

1 2 e e
            
       

      


(7.5)

By applying a transform consisting of a unit matrix *A A the function can be converted into a
sum of equations one functionally equivalent to the Dirac equation and and another
complimentary equation.

1 2
*   a a


(7.6)

Where:

 

1

2
1 2 3 4

3

4

**

a
a

a a a a I
a
a

 
 
  
 
 
  

a a (7.7)

If we separate the 2K matrix such that  0
2 a b

m cK fk k    we then have:
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     1 2 a b2 2
1 2

* i k k
x x

  
       
   

a a
 

 (7.8)

and we set:

  1 a 12
* ik

x





   


a


(7.9)

  2 b 22
ik

x





   


a
 

(7.10)

This is in effect, dividing the function into two particles, each of which can be shown to be
solution to the Dirac equation. The problem sets in when the evaluating ak and bk , which
are functions of the rest mass. If they are set equal, or apportioned, the particle modes have
unusual characteristics having unequal up and down values. The approach that seems to be
most appropriate is to set a 2 0k K m c/   and bk 0 . This result in the first being
identical to the dirac particle, and the other a massless light speed particle.

For the first Eq. ,Which is identical in form to the linear Dirac equation:

 
n n

n
m c p

i ct r
n

0 1 x 2 y 3 z 1

m c
e i p p p

x

     



              

     
 (7.11)

We have:
n

0 1 x 2 y 3 z a
*m c

p p p A k         
 

  


(7.12)

Using a common set of Dirac matrix.

1 2 3 0

1 i 1 1
1 i 1 1

, , ,
1 i 1 1

1 i 1 1

        
                  
        
               

    (7.13)
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Setting a2K k and bk 0 The 1st expression is just the normal dirac equation.

0n
z x y

0n
x y z

a
n 0

z x y

n 0
x y z

*

m cm c
p p ip

m cm c
p ip p

A k
m c m c

p p ip

m c m c
p ip p

       
  
       

   
   
  
  

          

  


  
 

  
 
  

 

(7.14)

Now for simplicity we set the velocity to be along the z axis, and *A To be a column matrix
of constants,

1

2

3

4

*

a
a
a
a

 
 
 
 
 
  

a (7.15)

we have the normal four simultaneous equations in.

0 n
1 z 3

0 n
2 z 4

0n
z 1 3

0n
z 2 4

m c m c
a p a

m c m c
a p a

m cm c
p a a

m cm c
p a a

0
0
0
0

       
         

    
               
        


 


 


 


 

(7.16)

Solving for the a’s
0 0

1 z 3 3 z 1

m c m cmc mc
a p a , or a p a         

   

 
   

(7.17)

We can then have:
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z zz
1

03
z z

0 z z
1

3
z z z

mc mcmc p pp
a

m ca mc mc
p p

mc mcm c p p
a

mca mc mcp p p

                     
         
     
         

     
                     

 
 

 
  

 
 

  
  

(7.18)

Similarly:

nn0 zz
0n 2

z 2 4
n n4 n

z z z

n n
z z

0n 2
z 4 2

0 n4
z

m cm cm c pp
m cm c 1 a

p a a
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m c m c
p p
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m c m c2 a p

                                         
                     

 


 

   
  

 
  

 
 

n
z

n
z

m c
p

m c
p

    
  

        







(7.19)

If we set a bk k one can still arrive at a solution, but the magnitudes of the modes have
inequivalent up and down components. The modes and options are:
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   (7.20)

Where the ' s and ' s are arbitrary constants

The second expression Eq. , it does have similar solutions to the first Eq. ,

Now looking at the second equation, we have:
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  
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  
(7.21)

or:
1 2 3n n

0 n b

x y zm c p
k

r
             

  

   (7.22)

Explicitly if 2 bK k :
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 
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(7.23)

Where 1 2 3 4A a ' ,a ' ,a ' ,a ' ,

Now if we take the system to be such that the spin is aligned with the momentum along the z
axis and multiply the components of A, We have:
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Solving for the a’s

n z n z n z n
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(7.25)

Which are satisfied if:
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(7.26)

Since the a’s are not zero because * 1a a = the particles momentum times c is the total energy.
Since the modes have to be the compliment to the Dirac particle, the spin is one half, and the
rest mass is zero. The particle thus has the characteristics of a neutrino.
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The modes are somewhat more restrictive than in the case of Eq, (7.20),
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From the modes of the two functions if we require *a a to be 1 thus putting the rest of the
constants and matching modes, we have:
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Picking the matching for *A modes, we have for the *A A :
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The second particle, has zero rest mass, a velocity of c, and a spin of ½ since it is a solution
to the homogeneous Dirac equation. These are the characteristics of the neutrino, and thus
one could suggest that the systemfunction free particle is a composition particle consisting of
a Dirac type particle and a neutrino.


