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PREFACE

This book introduces several new classes of groupoid, like
polynomial groupoids, matrix groupoids, interval groupoids,
polynomial interval groupoids, matrix interval groupoids and
their neutrosophic analogues.

Interval groupoid happens to be the first non-associative
structure constructed using intervals built using Z,, or Z or Q or
RorZ U {0} or Q" U {0} and so on.

This book has five chapters. Chapter one is introductory in
nature. In chapter two new classes of groupoids and interval
groupoids are defined and described.

The analogous neutrosophic study is carried out in chapter
three. The applications of this new structure is given in chapter
four. The final chapter suggests more than 200 problems.

This book has given 77 new definitions, 426 examples of
these new notions and over 150 theorems.
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Chapter One

PRELIMINARY NOTIONS

In this chapter we just give the basic definition of the groupoid
which forms the first section. In section two we just recall the
properties associated with neutrosophy.

1.1 Groupoids

In this section we recall the definition of groupoid and give
some examples. For more about groupoids and its properties
please refer [17-20].

DEFINITION 1.1.1: Given an arbitrary set P a mapping of P x P
into P is called a binary operation on P. Given such a mapping
o: P x P — P we use it to define a product * in P by declaring
a*b=cifo(a b)=c.



DEFINITION 1.1.2: A non empty set of elements G is said to
form a groupoid if in G is defined a binary operation called the
product denoted by *such thata *b € G for all a, b € G.

It is important to mention here that the binary operation *
defined on the set G need not be associative that is (a * b) * ¢ #
a * (b * ¢) in general for all a, b, c € G, so we can say the
groupoid (G, *) is a set on which is defined a non associative
binary operation which is closed on G.

A groupoid G is said to be a commutative groupoid if for
every a, b € G we have a * b =b * a. A groupoid G is said to
have an identity elemente in Gifa*e=e*a=aforalla € G.

We call the order of the groupoid G to be the number of distinct
elements in it denoted by o(G) or |G|. If the number of elements
in G is finite we say the groupoid G is of finite order or a finite
groupoid otherwise we say G is an infinite groupoid.

DEFINITION 1.1.3: Let (G, #) be a groupoid a proper subset H
c G is a subgroupoid if (H, #) is itself a groupoid.

DEFINITION 1.1.4: A groupoid G is said to be a Moufang
groupoid if it satisfies the Moufang identity (xy) (zx) = (x(yz))x
forallx, y, zinG.

DEFINITION 1.1.5: 4 groupoid G is said to be a Bol groupoid if
G satisfies the Bol identity ((xy) z) y = x ((yz) y) for all x, y, z in
G.

DEFINITION 1.1.6: A groupoid G is said to be a P-groupoid if
(xy) x =x (yx) forallx, y € G.

DEFINITION 1.1.7: 4 groupoid G is said to be right alternative
if it satisfies the identity (xy) v = x (yy) for all x, y € G.
Similarly we define G to be left alternative if (xx) y = x (xy) for
allx,y € G.



DEFINITION 1.1.8: 4 groupoid G is alternative if it is both right
and left alternative, simultaneously.

DEFINITION 1.1.9: A4 groupoid G is said to be an idempotent
groupoid if x° = x for all x € G.

DEFINITION 1.1.10: Let G be a groupoid. P a non empty proper
subset of G, P is said to be a left ideal of the groupoid G if 1) P
is a subgroupoid of G and 2) For allx € Gand a € P, xa € P.

One can similarly define right ideal of the groupoid G. P is
called an ideal if P is simultaneously a left and a right ideal of
the groupoid G.

DEFINITION 1.1.11: Let G be a groupoid A subgroupoid V of G
is said to be a normal subgroupoid of G if

1. aV="Va
2. (Vx)y =V(xy)
3 yxV) =)V

forallx,y,a eV.

DEFINITION 1.1.12: 4 groupoid G is said to be simple if it
has no non trivial normal subgroupoids.

Example 1.1.1: The groupoid G given by the following table
is simple.

Ay | Ap | a4 | a1 | a5 | A2 | Qg | A3
ar (a3 | Ay | a4 | a1 | a5 | Az | A¢
Ay | Ag | A3 | Qo | A4 | A1 | A5 | A2
ds | Ay | dg | A3 | Ao | A4 | A1 as
dq | A5 | Ay | Q¢ | A3 | Ao | A4 | A1
ds Ay | as | Ay | Ag | A3 | Ao | A4
dg | A4 | Ay | as | A2 | Ag | A3 | Qo




It is left for the reader to verify (G, *) = {ao, ai, a, ... , ag,
*} has no normal subgroupoids. Hence, G is simple.

DEFINITION 1.1.13: 4 groupoid G is normal if

1. xG=0Gx
2. G(xy) = (Gx)y
3. yxG) = (x)G

forallx, y € G.

DEFINITION 1.1.14: A Smarandache groupoid G is a groupoid
which has a proper subset S, S < G such that S under the
operations of G is a semigroup.

DEFINITION 1.1.15: Let G be a Smarandache groupoid (SG) if
the number of elements in G is finite we say G is a finite SG,
otherwise G is said to be an infinite SG.

DEFINITION 1.1.16: Let G be a Smarandache groupoid. G is
said to be a Smarandache commutative groupoid if there is a
proper subset, which is a semigroup, is a commutative
semigroup.

For more about groupoids and Smarandache groupoids please
refer [20]

1.2 Introduction to Neutrosophic Algebraic Structures

In this section we just recall some basic neutrosophic algebraic
structures essential to make this book a self contained one. For
more refer [8-16].

In this section we assume fields to be of any desired
characteristic. We denote the indeterminacy by ‘I’, as i will
make a confusion, as it denotes the imaginary value, viz. i* = —1

thatis v—1 =i. The indeterminacy Iis such that 1. I=1°=1.
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Here we recall the notion of neutrosophic groups.
neutrosophic groups in general do not have group structure.

DEFINITION 1.2.1: Let (G, *) be any group, the neutrosophic
group is generated by I and G under * denoted by N(G) = {(G
ul)

Example 1.2.1: Let Z; = {0, 1, 2, ..., 6} be a group under
addition modulo 7. N(G) = {{Z; v I), “+> modulo 7} is a
neutrosophic group which is in fact a group. For N(G) = {a + bl
/ a, b € Z;} is a group under ‘+’ modulo 7. Thus this
neutrosophic group is also a group.

Example 1.2.2: Consider the set G = Zs \ {0}, G is a group
under multiplication modulo 5. N(G) = {{G U I), under the
binary operation, multiplication modulo 5}.

N(G) is called the neutrosophic group generated by G U L.
Clearly N(G) is not a group, for I’ = I and I is not the identity
but only an indeterminate, but N(G) is defined as the
neutrosophic group.

Thus based on this we have the following theorem:

THEOREM 1.2.1: Let (G, *) be a group, N(G) = {({G U 1), *} be
the neutrosophic group.

1. N(G) in general is not a group.

2. N(G) always contains a group.

Proof: To prove N(G) in general is not a group it is sufficient
we give an example; consider (Zs\ {0} U ) =G ={1,2,4, 3,1,
21,41, 31}; Gis not a group under multiplication modulo 5. In
fact {1, 2, 3, 4} is a group under multiplication modulo 5.N(G)
the neutrosophic group will always contain a group because we
generate the neutrosophic group N(G) using the group G and L.

So G < N(G); hence N(G) will always contain a group.

Now we proceed onto define the notion of neutrosophic
subgroup of a neutrosophic group.
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DEFINITION 1.2.2: Let N(G) = (G U 1) be a neutrosophic group
generated by G and I. A proper subset P(G) is said to be a
neutrosophic subgroup if P(G) is a neutrosophic group i.e. P(G)
must contain a (sub) group of G.

Example 1.2.3: Let N(Z,) = (Z, U I) be a neutrosophic group
under addition. N(Z,) = {0, 1, I, 1 + I}. Now we see {0, I} is a
group under + in fact a neutrosophic group {0, 1 + I} is a group
under ‘+’ but we call {0, I} or {0, 1 + I} only as pseudo
neutrosophic groups for they do not have a proper subset which
is a group. So {0, [} and {0, 1 + I} will be only called as pseudo
neutrosophic groups (subgroups).

We can thus define a pseudo neutrosophic group as a
neutrosophic group, which does not contain a proper subset
which is a group. Pseudo neutrosophic subgroups can be found
as a substructure of neutrosophic groups. Thus a pseudo
neutrosophic group though has a group structure is not a
neutrosophic group and a neutrosophic group cannot be a
pseudo neutrosophic group. Both the concepts are different.

Now we see a neutrosophic group can have substructures
which are pseudo neutrosophic groups which is evident from
the following example:

Example 1.2.4: Let N(Z,) = (Z4 U 1) be a neutrosophic group
under addition modulo 4.{Z, w 1)={0,1,2,3, 1,1 +1, 21, 31, 1
+2L 1+3L2+1,2+2,2+3,3+1,3+2I,3+3I}. o({Z4 U
) = 4%

Thus neutrosophic group has both neutrosophic subgroups
and pseudo neutrosophic subgroups. For T = {0, 2, 2 + 21, 21} is
a neutrosophic subgroup as {0 2} is a subgroup of Z, under
addition modulo 4. P = {0, 2I} is a pseudo neutrosophic group
under ‘+’” modulo 4.

DEFINITION 1.2.3: Let K be the field of reals. We call the field
generated by K U I to be the neutrosophic field for it involves
the indeterminacy factor in it.

12



Wedeﬁne[2 =LI1+1=2ie,l+..+1=nl andifk e K
then kI = kI, 0 = 0. We denote the neutrosophic field by K(I)
which is generated by K U I that is K(I) = K v1) K vl)
denotes the field generated by K and 1.

Example 1.2.5: Let R be the field of reals. The neutrosophic
field of reals is generated by R and I denoted by (R U I) i.e. R(I)
clearly Rc (R U I).

Example 1.2.6: Let Q be the field of rationals. The neutrosophic
field of rationals is generated by Q and I denoted by Q(I).

DEFINITION 1.2.4: Let K(I) be a neutrosophic field we say K(I)
is a prime neutrosophic field if K(I) has no proper subfield,
which is a neutrosophic field.

Example 1.2.7: Q() is a prime neutrosophic field where as R(I)
is not a prime neutrosophic field for Q(I) < R(I).

DEFINITION 1.2.5: Let K(I) be a neutrosophic field, P < K(I) is
a neutrosophic subfield of P if P itself is a neutrosophic field.
K() will also be called as the extension neutrosophic field of
the neutrosophic field P.

We can also define neutrosophic fields of prime characteristic p
(p is a prime).

DEFINITION 1.2.6: Let Z, = {0,1, 2, ..., p — 1} be the prime field
of characteristic p. (Z, U 1) is defined to be the neutrosophic
field of characteristic p. Infact (Z, U 1) is generated by Z, and 1
and (Z, U1) is a prime neutrosophic field of characteristic p.

Example 1.2.8: 7, = {0, 1, 2, 3, ..., 6} be the prime field of
characteristic 7. (Z;, v )= {0, 1,2, ...,6,,2I, ..., 6, 1 + [, 1 +
21, ..., 6+ 61 } is the prime field of characteristic 7.

DEFINITION 1.2.7: Let G(1) by an additive abelian neutrosophic

group and K any field. If G(I) is a vector space over K then we
call G(I) a neutrosophic vector space over K.

13



Elements of these neutrosophic fields will also be known as
neutrosophic numbers. For more about neutrosophy please refer
[8-15]. We see Z,1 = {al | a € Z,} is a neutrosophic field called
pure neutrosophic field. Likewise QI, RI and Z,I are
neutrosophic fields where p is a prime. Thus ZsI = {0, I, 2I, 31,
41} is a pure neutrosophic field.

Pure neutrosophic structures as QI or RI or Z,I cannot
contain any real numbers. However 0.1 = 0, so 0 belongs to
them.
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Chapter Two

NEW CLASSES OF GROUPOIDS

This chapter introduces seven new classes of groupoids and has
seven sections. Section one introduces the new class of matrix
groupoids using Z, or Z or Q or R or C. Polynomial groupoids
of five levels are introduced in section two. Special interval
groupoids are introduced in section three. Polynomial interval
groupoids are introduced in section four. Section five introduces
interval matrix groupoids. Smarandache interval groupoids are
introduced in section six and in the final section we give the
new classes of groupoids built using intervals.

2.1 New Classes of Matrix Groupoids
In this section we introduce a new class of matrix groupoids and
neutrosophic matrix groupoids and analyse a few of their

properties. Throughout this book (xi, Xa, ..., X,) represents a row
matrix with entries x; € Z, or any ring or field; 1 <1i < n. This
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row matrix will be known as usual or real row matrix. If x; €
Z,1 or N(Z,) or QI or ZI or RI or N(Q) or N(Z) or N(R) then we
call the row matrix (xy, ..., X,) to be a neutrosophic row matrix.
Likewise we define

Y
Ym

if y; € Z, or Q or R or Z to be a usual column matrix and if y; €
Z,] or QI or RI or N(Z,) or N(Q) or N(R) as column
neutrosophic matrix 1 <i<m.

A matrix My, = (m;j) with m;; in Z, or Q or R or Z will be
known as the real matrix and if they belong to N(Z,) or ZI or Z,I
or N(Z) or N(Q) or QI or N(R) or RI will be known as the
neutrosophic matrix. With this understanding we proceed onto
describe and define some new classes of groupoids.

DEFINITION 2.1.1: Let G = {(x;, ..., x,) | xi € Z,;, ] i <n}m >
3 be a collection of 1 x n row matrices with entries from the
modulo integer Z,,. Define * a binary operation on G as follows
(X1, wees Xo) X1y ooy Vi)

HX1, oo X)) YUy, ..., Vo)

= (tx; T uy;(mod m), tx; + uy(mod m), ..., (tx, + uy,)

(mod m))
where t, u € Z,\ {0}, t Zu and (t, u) = 1 for all (x;, x3, ..., Xp),
1, V2, -, Vo) € G. We define (G, * (t, u)) to be a row matrix
groupoid using Z,.

We will illustrate this situation by some simple examples.

Example 2.1.1: Let G = {(x1, X2, X3) | X; € Z4; 1 £1<3}. Define
*on G by (X1, X2, X3) * (Y1, Y2, ¥3) = 2 (X1, X2, X3) + 3(¥1, Y2, ¥3)
where 2,3 € Z4\ {0} and (2, 3) = 1.

Take

(3,2,1)*(1,0,3) = 2(3,2,1)+3(1,0,3)
202)+@(301)
(103).
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Consider 32 1) *[(103)*(022)]and [(32 1) * (1 03)] * (0
2 2). We see

[B21D)*(103)]*(022) = (103)*(022)
= (202)+(022)
= (220) (D
BG2D)*[(103)*(022)] = (B21D)*[202)+(022)]

(321)*(220)
(202)+(220)
= (022) (2)

(22 0)# (02 2). Thus the operation * is non associative. Thus
(G, *, (2, 3)) is a 1 x 3 row matrix groupoids built using Zj.
We see 1 x 3 row matrix groupoids using Z, with (t, u) = (1,
2)or(2,1)or(1,3)or (3, 1)or(2,3)or(3,?2).
Thus we have 6 distinct 1 x 3 row matrix groupoids built
using Z,.

Example 2.1.2: Let G = {(X1, X2, X3, X4, X5, X) | X; € Z7; 1 <1 <
6}. Take (t, u) =5, 6); (G, *, (t, u)) = (G, (5, 6), ¥)isa 1 x 6 row
matrix groupoid built using Z;. We have 22 distinct 1 x 6 row
matrix groupoids built using Z,. It is left for the reader to find
the number of 1 x m matrix groupoids built using Z,,.

We can in the definition 2.1.1 replace Z, by Z or Q or R. In
these cases we will get infinite number of row matrix groupoids
of infinite order. By order of a groupoid G we mean the number
of distinct elements in G. If G has finite number of elements we
call G a finite groupoid and if G has infinite number of elements
then we call G to be an infinite groupoid. We will just illustrate
them by some simple examples.

Example 2.1.3: Let G = {(x, X3, ..., X12) | X; € Z, 1 £1<12};
take (t, u) = (15, —16) {G, * (15, -16)} is a 1 x 12 row matrix
groupoid constructed using Z. We see the order of G is infinite.
Further we have infinite number of pairs (t, u) with t,u € Z, (t #
u, (t, u) = 1). Thus there are infinite number of 1 x 12 row
matrix groupoids built using Z. It is left for the reader to check
whether G is associative.

17



Example 2.1.4: Let G = {(X, X2, ..., X7) / X, € R; 1 <1< 7},
Take (t,u) = (0.7, - 1.52) e Rx R. {G, *, (t,u)} isa 1 x 7 row
matrix groupoid built using reals R.

Clearly cardinality of G is infinite and we can construct
infinite number of 1 x 7 row matrix groupoids using R.

Next we proceed on to build a new class of column matrix
groupoids using Z, or R or Q or Z.

DEFINITION 2.1.2: Let G = {(x}, X3, ..., X)) | x; € Zy; I <i <n}
be the collection of all n x 1 column matrices with entries from
Zn. Choose t, u € Z,,\ {0}; t #u, (t, u) = 1. For (x,, ..., x,)' and
01, ..., Vi)' € G. Define

X Vi Ix, uy,
Ot e X)) X ) =8 |* =] |+
X, | LYn Ix, uy,
ix, +uy,(mod m) z,
= : =|:]| e
x, +uy, (modm) z,

Thus (G, (t, u), *) is a groupoid. This groupoid will be known as
the n x I column matrix groupoid built using Z,,.

We will illustrate this situation by some examples.

Example 2.1.5: Let

G=1|x;||x,€Z,;1<1<5

18



be the collection of all 5 x 1 column matrices with entries from
Z1. Chooset=2andu=3; (t,u)=1. (G, (2, 3), ¥)isa5x 1
column matrix groupoid. Select

[10] 1
2 0
a=|0|,b=]|11|andc=|9| € G.
0 2
1] 1 0| 10
To prove (a *b) *c=a * (b *c).
Consider
[10] [37]) [1]
2 0
(@a*b)*c =||0 [*11]||*9
0 0 2
1] 10]) 0]
(8] [9]) [1] [5] [1]
4 6 0 10| |0
=[10|+[9][*I9]=1]9 |*9
0 0 2 0 2
2] [0]) [0] [2] (0]
[10] [3] [1]
8 0 8
=|6|+|3|=|9 (1
0 6 6
4] [0] [4]

Now a* (b*c)

19



10 (3] [1 [10] ([6] [3
2 0 2 41 |0
=[O0 [*[|11[*[9]|=]0 [*/[10|+]|3
0 0|2 0 0| |6
L1 (\o]|o]) [1]\lo] [O]
[10] [9] [8] [3] [11]
2| 14| [4] |0 4
=10 |*1|=|0[*3]| =|3 )
0| (6] |0] |6 6
1] [o] [2] |o] |2]
Clearly
(1] [11]
8| |4
9|#|3
6| |6
_4_ _2_

Hence (G, *, (2, 3)) is a groupoid as the operation * in general is
non associative.

Example 2.1.6: Let
X
G=14]x, |x,€Z,1<1<3
X3

be the collection of all 3 x 1 column matrices with entries from
Z19. Choose (t, u) = (8, 9). It is easily verified (G, *, (8,9))isa 3
x 1 column matrix groupoid built using Z,, integers modulo 19.
However in the definition 2.1.2 we can replace Z, by Q or Z or
R and still (G, *, (t, u)) will be the m x 1 column matrix
groupoid. The only difference will be those built using Z, will

20



be column matrix groupoids of finite order where as the
groupoids built using Z or R or Q will be infinite groupoids.

Further the number of n x 1 column matrix groupoids using
7., (for a fixed n and m) will be finite where as the number of n
x 1 column matrix groupoids built using Z or Q or R will be
infinite in number.

Just we will give only examples of a column matrix
groupoid of infinite cardinality before we proceed onto define
the notion of m x n matrix groupoids m= 1,n# 1 (m=norm#
n can occur).

Example 2.1.7: Let

G= 2llx, ez;1<i<4

be the collection of all 4 x 1 column matrices with entries from
the set Z. Choose (t, u) = (5, —12). Clearly (G, (5, -12), *)isa 4
x 1 column matrix groupoid of infinite order.

The reader is left with the task of verifying * on G is non
associative in general.

Example 2.1.8: Let

G= “llx, eQ;1<i<8

be the collection of all 8 x 1 column matrices with entries from
Q. Define * using (t, u) = (-7/8, 5/19) € Q x Q. Clearly (G, *,

21



(=7/8, 5/19)) is a 8 x 1 column matrix groupoid. It is easily
verified that (G, *, (-7/8, 5/19)) is a groupoid of infinite
cardinality.

Now we proceed onto define substructures in these
groupoids.

DEFINITION 2.1.3: Let (G, * (t, u)) be a row (column) matrix
groupoid H < G (H be a proper subset of G); we call (H, (t,u),
*) to be a row (column) matrix subgroupoid of G if (H, (t, u), *)
is itself a row (column) matrix groupoid of G.

We will illustrate this be examples.

Example 2.1.9: Let G = {(X1, X2, X3, X4, X5, Xg) | X; € Zp, ] £1 <
6} be the collection of all 1 x 6 row matrices. Choose (t, u) = (5,
8) € Z1» x Z12. (G, (t, u), *) is a row matrix groupoid built using
Zp. Take H = {(x, X, X, X, X, X) / x € Z;5} = G; {H, *, (5, 8)} is
a row matrix subgroupoid of {G, *, (5, 8)}.

Example 2.1.10: Let G = {(X1, X3, X3,X4) | X; € Q, 1 £1<4} be a
1 x 4 row matrices with entries from Q. Take (t, u) = (7/2, - 5);
(G, (7/2, -5), *) is a 1 x 4 row matrix subgroupoid. Take H =
{x,0,y,2)|x,y,21 € Q} <G; {H, * (7/2,-5)} isa 1l x4 row
matrix subgroupoid of {G, *, (7/2, - 5}.

Example 2.1.11: Let

G= a,€Z,,;1<1<6

be the collection of all 6 x 1 column matrices with entries from
Z17. {G, *, (9, 8)} is a 6 x 1 column matrix groupoid built using
Zl7- Take

22



S O O

H= a,€Z,;1<i1<3; <G

&

{H, *, (9, 8)} is a 6 x 1 column matrix subgroupoid of G.

Example 2.1.12: Let

G=14|a, ||]a,eR;1<i<5

be the collection of all 5 x 1 column matrices with entries from
R. (G, (—x/i,x/ﬁ ), ¥) is a 5 x 1 column matrix groupoid built
using R. Take

aeR}; cG.

[ I R )

0
H, —v2,417), *) (G, (-v2,17), *) isa 5 x 1 column

matrix subgroupoid of G built using R.

DEFINITION 2.1.4: Let G = My, = {(my); 1 <i <n, I<j <m be
a n x m matrix with entries from Z, or R or Q or Z}. Choose t, u
€ Z,or Ror Q or Z such that t #u, (t, u) = 1. Define * on G;
Sor two matrices M = (my) and N = (ny) as

M*N = (my *(ny)
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(tm;; + uny)
P.
Pis an xm matrix in G. Thus (G, (t, u), *) isan xm
matrix groupoid built using Z, (or R or Q or Z).

We will illustrate this situation by examples.

Example 2.1.13: Let

a b e
G =
{[c d f }
be the collection of all 2 x 3 matrices with entries from Z,. Take

(t, u) = (5, 6); we see {G, *, (5, 6)} is a 2 x 3 matrix is a
groupoid with entries from Z.

a,b,c,d,e,fezg}

Example 2.1.14: Let

al a2

a, a, )
G= a,e€Q;1<i<8

a’S a6

a; A

be the collection of all 4 x 2 matrices with entries from Q. Take
(u, v) = (7, -3/2) from Q x Q. (G, (u, v), *) is a 4 x 2 matrix
groupoid with entries from Q.

Example 2.1.15: Let G = {All 9 x 9 upper triangular matrices
with entries from R}. Choose (t, u) = (\/5 ,—ﬁ /2). It is easily

verified (G, (7/3,—V7/2), *)is a 9 x 9 matrix groupoid with
entries from R.

Example 2.1.16: Let

o 7]

aieZ3;1£iS3}.
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Choose (t, u) = (2, 1), (G, *, (2,1)} is a 2 x 2 matrix groupoid.
The operation carried out in G is in general non associative.

Let
(21
0 1
1 2
B:
o 1)

and

in G.

S N
oS =
—
/—\
\_/

/_\\
(e}
S N
VR
S N
[\ RN\
~—

0 1
=( ()

5 20 3

0 1
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0 1 2 2
# .
0 2 0 0
Thus the operation * defined in G in general is non
associative.

As in case of row (and column) matrix groupoids we can
define the notion of matrix subgroupoids. We will only give one

example of a matrix subgroupoid.

Example 2.1.17: Let

a b g
G=4|c d hj||ab,gc,dhef,icZ;.
e f

i

{G, *, (3, -2)} is a matrix groupoid built over Z.

Let
a a a
H=<la a al|laeZ; CG;
a a a

{H, *, (3,-2)} is a matrix subgroupoid of {G, *, (3,-2)}.

We see all matrix groupoids built using Z,, (n < o) modulo
integers are finite where as all matrix groupoids built using Z or
R or Q are nZ are of infinite order.

We as in case of general groupoids say a matrix groupoid G
is a matrix P-groupoid if (AB)A = A (BA), forall A, B € G.

We say a matrix groupoid G is said to be right alternative if
(AB)B =A(BB) forall A, B € G.

We will call a matrix groupoid G to be an idempotent
groupoid if A>= A forall A € G.

As in case of general groupoids we in case of matrix

groupoids also define the notion of right ideal, left ideal and
ideal.
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We also call a matrix subgroupoid V of G to be a normal
subgroupoid if
aV=Va
(Vx) y = V(xy)
y(xV)=@yx)V
forallx,y,a e V.
A matrix groupoid G is normal if
xG = Gx
G (xy) = (Gx)y
y (xG) = (yx)G
forallx,y € G.
Now we define yet another class of matrix groupoids.

DEFINITION 2.1.5: Let G = {row matrix or column matrix or a
m x n matrix with entries from Z, or Q or Z or R} ‘or’ is used in
a mutually exclusive sense.

Now choose t, u € Z, (or Z or Q or R) such that t #u but (t,
u) #1. Then if for x, y € G define x *y = tx + uy then (G, (1, u),
*) is a matrix groupoid of type I which is different from those
defined earlier.

We illustrate it by some examples.
Example 2.1.18: Let G = {all 2 x 2 upper triangular matrices
with entries from Zg}. Choose (t, u) = (2, 4); 2, 4 € Zs. Now {G,

*,(2,4)} is a matrix groupoid.
We will just show how * is defined.

Take
35 2 3
A= and B = e G.
0 1 0 7
35 2 3
A*B=2 +4
0 1 0o 7
6 2 0 4 6 6
= + = e G.
0 2 0 4 0 6
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We see (G, (2, 4), *) is a finite groupoid. If we do not
permit (t, u) = 1 we see this class of matrix groupoids i.e.,
matrix groupoids of type I form a disjoint class from the matrix
groupoids in which (t, u) = 1.

Now as in case of the other matrix groupoids of type I we in
case of these groupoids also define all the properties without
any modifications.

Example 2.1.19: Let

G=1|x,||x,€%1=123,4,5

choose (t, u) = (5, 10); 5, 10 € Z. {G, *, (5, 10)} is a matrix
groupoid of type I of infinite order.

Now we proceed onto define matrix groupoids of type 1.

DEFINITION 2.1.6: Let G = {collection of all row matrices or
column matrices or m x n matrices with entries by Z, or Q or Z
or R} ‘or’is used in a mutually exclusive sense.

Now choose t, u such that u = t. Then (G, * (t, t)) is another
new class of matrix groupoids which we choose to call as
matrix groupoids of type Il. Clearly class of type I matrix
groupoids are disjoint from the class of type Il groupoids.
Further they are also disjoint from the usual class of matrix
groupoids.

We will give some examples and discuss a few properties about
them.

Example 2.1.20: Let G = {(x1, X2, X3, X4, X5, X¢, X7) / Xj € Z11, 1
<i<7} be 1 x 7 row matrix built using Z,;.

Take t = 8; {G, *, (8, 8)} is a row matrix groupoid of type
II.
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Z=(1,1,3,2,2,01),(3,2,01,20,18,7) =X and Y = (I,
20,4,0,7,17,3) € G.

Z* (X *Y)
= Z*[(3,2,0,1,20,18,7) *(1,20,4,0,7, 17, 3)]
= 7*(3,16,0,8, 13,18, 14) + (8, 13, 3,0, 14, 10, 3)]
= (1,1,3,2,2,0,1)*(11,8,3,8,6,7,17)
- (8,8,3,16,16,0,8)+(11,3,3, 3,6, 14, 10)

(19, 11,6, 19, 1, 14, 18) (1)
(Z*X) * Y
= {(1,1,3,2,2,0,1)*(3,20,1,20, 18, 7)} *
(1,20,4,0,7,17,3)
= [(8,8,3,16,16,0,8)+ (316 08 13 18 14)] *
(1,20,4,0,7, 17, 3)
= (11,3,3,3,8,18, 1)+ (8, 13, 11,0, 14, 10, 3)
= (19,16,14,3,1,7,4) )

Wesee (19, 11,6, 19, 1, 14, 18) # (19, 16, 14,3, 1,7, 4). Thus *
is non associative.

Now we derive some properties of these matrix groupoids
of type L.

THEOREM 2.1.1: The matrix groupoids (G, *, (1, t)) are matrix
P-groupoids. G is the collection of row (or column or m x n
matrix) with entries from Z,.

Proof: Let A = (mjj) and B = (n;j) be row (or column or m x n)
matrices with entries from Z,. Let t € Z,. To prove G is a P-
matrix groupoid, we have to prove (A * B) * A=A * (B * A),

Now
A*B)*A = (my)*(ny) * (my)
= (tmij) + (tnij) * (mij)
= (f'my) + ('ny) + (tmy) (1)
Consider
A * (B*A) = (my) * (tny) + (tmy)
= tmy+ tznij + thij )
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We see
A *(B*¥*A)=(A*B) * A
Thus (G, (t, t), *) is a matrix P-groupoid of type II.

COROLLARY 2.1.1: We see if G = {(my) / my € Z or Q or R} {G,
* (1, 1) is a matrix P-groupoid of type II.

Proof is left as an exercise to the reader.

THEOREM 2.1.2: {G, * (¢, ¢)}; G is row (or column or m x n)
matrix with entries from Z,, p a prime. {G, * (1, 1); 1<t <n}is
not an alternative matrix groupoid.

Proof: To show {G, *, (t, t); 1 <t <n} is not an alternative
matrix groupoid we have to show (x * y) * y # x (y * y) for
some X, y € G. (x = (m;) and y = (n;}). Consider

x*y)*y = ((my) * (ny)) * (ny)

(t (my) +t (ny)) * (ny)

£ (my) + £ (ny) + t (ny)

= £ (my) + (€ +1) (ny) D

Xx*(y*y) = (my) * (tn; + tny)
tm;; + t n; + t n;j
= trnij + 2t2 (Ilij) (II)

Now I and II are identical if and only if * = t (mod p). But
this is impossible as p is a prime. Hence I and II are never
identical for 1 <t <n.

Thus (G, * (t, t,)) is not a matrix alternative groupoid of

type II.

THEOREM 2.1.3: Let (G, * (1, t)) be a matrix groupoid of type
two built using Z, (G, *, (t, t)) is an alternative groupoid if and
only if =t (mod n).

Proof: Let A = (m;) and B = (n;;) be any two matrices in G
entries of A and B are from Z,.
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(A*B)*B [(my) * (ng)] * (ny)

(tmy; + tny) x (n;)

(tz mj; +t Ilij) + tnij)

= (tm; + tn; + t ny) as t* =t (mod p)

A*B*B) = (my)*(n*ny)
(myj) * (tng + tng)
tm; + t2 n;; + t° ny;
2
= tm; +tn; +tn (ast” =t (mod p)).

Thus A * (B * B) = (A * B) * B. Hence (G, (t, t), *) is an
alternative matrix groupoid of type II. Also all matrix groupoids
of type Il are commutative.

Next we proceed onto define the notion of matrix groupoids
of type 111

DEFINITION 2.1.7: Let G = {set of all column matrices or row
matrices or m x n matrices with entries from the field Q or ring
Zor R or Z,) ‘or’ is in the mutually exclusive sense. We define
forany A, B € G (4, B can be a row matrix or column matrix or
a m x n matrix with entries for Z, or Q or Z or R) ‘or’ used in
both the places only in the mutually exclusively sense. A * B =
tA + uB where u or tis zero u, t € Z, (or Z or R or Q) we define
(G, * (t, u); u =0, ort=0) to a matrix groupoid of type 1I1.

We will illustrate this by the following examples.

Example 2.1.21: Let G = {(a, ay, a3, 84,85, ag) | 8, € Zg; 1 <i <
6} be the set of all 1 x 6 row matrices with entries from Zs.
Define * on G as follows choose (3, 0) = (t, u) and for A, B €
G.

Define A * B = 3A + 0B then (G, (3,0), *) is a matrix
groupoid of type III. We see for (5, 3,2, 1,6,7)=A and B=(1,
0,6,5,3,2)

A*B = 3(53,2,1,6,7)+0(106532)
(7,1,6,3,2,5) € G.

Take C=(2,1,0, 7,5, 3); now
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(A*B)*C = 3(7,1,6,3,2,5)+0(,1,0,7,5,3)
= (53,2,1,6,7). I
Consider
A*B*C) = A*3(106532)+0(2,1,0,7,5,3))
= (53,2,1,6,7)%(3,0,2,7,1,6)
= (7,1,6,3,2,5) II

A*(B*C)= (A *B) * C evident from I and II. Thus (G, *, (3,
0)) is a matrix groupoid of type IIL.

THEOREM 2.1.4: (G, * (0, t)) where G is row (column or m xn
matrix) matrix with entries from Z,; n is not a prime. Then (G,
* (0, 1)) is a matrix P-groupoid of type III if and only if ¥ =
t(mod n)

Proof: Consider A, B € G

A * (B * B)

(my) * [(ny) * ()]

(m;) * (t.n;;) (where A = (m;;) and B = (ny)))
tz ny

= tn; if and only if t* = t (mod n).

Consider
(A*B)*B

(0 +1B)*B
0tB+tB=tB
= iy

Thus A * (B * B) = (A * B) * B if and only if t* = t (mod n).
Hence (G, *, (0, t)) is a matrix P-groupoid of type II1.

THEOREM 2.1.5: Let {G, (t, u), *} be the matrix groupoid with
(t, u) = 1 with entries from Z, This matrix groupoid is a
semigroup if and only if ¥ =t (mod n) and u* =u (mod n); t, u €
Z,\ {0} and (t, u) = 1.

Proof: Given G = {all m x n matrices, | <m<owand  <n<ow
with entries from Z,}.
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Choose t, u € Z, \ {0}; * =t (mod n), u” = u (mod ) and (t,
u) = 1. To show (G, (t, u), *) is a matrix semigroup.

Let A = (a;j), B = (bj)) and C = (c;)) be three matrices in G.
Now

A*B)*C = ((ay * (by) * (cy)
= ((ztaij) + (uby)) * (cy)
= (1" ay) + (tu by) + (ucy)
, (mod ): ta; + (tubij) + ug;j I
ast” =t (mod n).
Consider
A*B*C) = (ay) * ((by) * (cy)
= (ay) * ((tby) * (ucy))
= (tay) + (tuby) + (u’cyj) (v’ = u (mod n))
= (tay) + (tuby) + (ucy) 1

I and II are the same. Hence (G, *, (t, u)) is a semigroup.

Note: If n is a prime (G, *, (t, u)) is never a semigroup as u> = u
(mod n) and £ = t (mod n) can never occur.

THEOREM 2.1.6: The matrix groupoid (G, * (t, u)) is an
idempotent matrix groupoid if and only if t + u =1 (mod n) (G
is the set of all m x n matrices; 1 <m < coand 1<n < oo with
entries from Z,)}.

Proof: Given (G, *, (t, u)) is matrix groupoid row or column or
m x n matrix; or in the mutually exclusive sense from Z,. Let A

= (aij) eG

A*A = (ay) * (ay)
= ta;t+ ua;
= (t+u)(ay).

Now A * A = A implies (a;) = ((t + u) (a;)). That is ((t +u—1)
(ai))) = (0). This is possible if and only if t + u=1 (mod n).
Hence the claim.

It is left as exercises for the reader to prove that zero
matrix is not an ideal of the matrix groupoid (G, *, (t, u)). G is

33



the collection of matrices with entries from Z, and theorem
2.1.7.

THEOREM 2.1.7: Let (G, * (t, u)) and (G, * (u, t)) be a matrix
groupoids with entries from Z,. P is a left ideal of (G, *, (t, u)) if
and only if P is a right ideal of (G, *, (u, t)).

Recall a matrix groupoid (G, *, (t, u)) is simple if and only
if (G, * (t, u) has no normal subgroupoids.

It is left as an exercise for the reader to prove the following two
theorems.

THEOREM 2.1.8: Let (G, * (¢, u)) be a matrix groupoid with
entries from Z,. If n = t + u where both t and u are primes then
(G, * (t, u)) is a simple matrix groupoid.

THEOREM 2.1.9: Let (G, * (t, u)) be a matrix groupoid with
entries from Z,, n even and t + u = n with (t, u) = t. Then (G, *,
(t, u)) has only one matrix subgroupoid of order n / t and it is a
normal matrix subgroupoid of (G, *, (t, u)).

From the above theorem the following conclusion is obvious.

THEOREM 2.1.10: Let (G, * (t, u)) be a matrix groupoid with
entries from Z,, n even with (t, u) =t and t + u = n. Then (G, *
(t, u)) is not a simple matrix groupoid.

We say as in case of usual groupoid a matrix groupoid (G,
* (1, u) is a Smarandache matrix groupoid if (G, *, (t, u)) has a
matrix subgroupoid (H, *, (t, u)) which is a matrix semigroup.

Example 2.1.22: Let G = {(X, X2, X3) | X; € Zjp; 1 £1<3} be a
collection of row matrices with entries from Z.

Define * on G by (a;) * (bjj) = (a;j) + (5.bjj)) (mod n) for all
(a;), (bij) € G. (G, *, (1, 5)) 1s a matrix groupoid built using Z.
H={000),(555)} * (1, 5)) is a matrix semigroup. Hence
(G, *, (1, 5)) is a Smarandache matrix groupoids.

As in case of groupoids we can define in case of
Smarandache matrix groupoid (G, *, (t, u)) Smarandache matrix
subgroupoid (H, *, (t, u) if (H, *, (t, u)) is a matrix subgroupoid
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of (G, *, (t, u)) and H has a proper subset (K, *, (t, u)) such that
(K, *, (t, u)) is a matrix semigroup.

The following theorem can be proved by any interested reader.

THEOREM 2.1.11: Every matrix subgroupoid of a matrix
groupoid (G, * (t, u)) need not in general be a Smarandache
subgroupoid of (G, *, (t, u)).

The reader is expected construct examples of the above claim.

Almost all properties enjoyed by groupoids can be derived
in case of matrix groupoids more so the Smarandache
properties.

Also these matrix groupoids are both finite and infinite. We
can also study about properties like isomorphism and
homomorphism of matrix groupoids. Interested reader is
expected to do this regular exercise. However the final chapter
contains problems for the reader.

2.2 Polynomial Groupoids

In this section we introduce for the first time, the notion of
polynomial groupoids built using Z,[x], n < o, or Z[x] or R[x]
or Q[x].

Some operation is defined on these sets so that the set
together with the operation becomes a groupoid which we call
as polynomial groupoids.

We follow the notation if a, + a;x + ... + a,x" is a
polynomial of degree n then it is represented by the n + 1 tuple
(ap,ay, ...,ay),a € ZyorRorQorZ,0<i<n ‘or’ used in the
mutually exclusive sense. (0, 0, ..., 0) denotes the zero
polynomial 0 + 0x + ... + 0x". Thus x> + x + 1 is represented by
(1101).x°+2x+1is represented by (1, 2, 0, 0, 0, 0, 1) and so
on. Now we proceed onto define polynomial groupoids using
7.

DEFINITION 2.2.1: Let f(x) = ay + ... + a,x, and by + ... + b,x,
= g(x) be two polynomials in Z [x], where Z [x] denotes the
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collection of all polynomials of degree less than or equal to n
with coefficients from Z,, (m < ooy n < o).

We define f (x) * g (x) as follows f{x) = (ay, ay, ..., a,) and
g(x) = (by, by, ..., by)

fx) *g(x) = (ap ay ..., ay) *(by, by, ..., by)
= (apb;, ab; ..., a,.;b,, a,)
= ayb; +abyx+ .. +a,; bnx" +a,x"

h(x) € Z) [x] (multiplication of a;b; is modulo

m).

Thus the coefficients are reshuffled in this way. (Z) [x], *)
is defined as the polynomial groupoid of degree n with entries
from Z,. If

gx)=apt+a;x+ .. +a,x"
h(x) =by+b;x+ ... + b, x"
tx)=ty+t;x+ ... +1t,x"
a;, b,‘, t; EZm,' 1 <i<n.

(g(x) *h(x) *t(x) = (apa;...a,) *(by ..., b)) *(ty, ..., 1)
= (a() b] Cl]bg... a,.] b,,, Cln) * (t(), 1, ..., tn)
= (Clo b]f], agbzlg, ey Apog b t,, Cln) 1

g(x)*hx) *tx) = gx)[(by by ..., b)) * (1o, 1, ..., 1))
(Clo, ap, ..., an)* (b() t], b] fz, veey b,,.] ln, bn)
= (a() b[ b, a; bg 13, ..., Qyg bn, Cl,,) 17

Clearly the polynomials given by I and II are different. Thus
the operation * in general is non associative.
We will first illustrate this by some simple examples.

Example 2.2.1: Let G = {(x, X2, X3, X4,X5) / Xj € Zs, 1<i<5} all
polynomials of degree less than or equal to four with
coefficients from Zs. Define * on G as follows.
Let
fx)=3x"+4x+1=(1,4,3,0,0)
and
g(x)=4x'+x’+4=(4,0,0,1,4)
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fx)*g(x) = (1,4,3,0,0)*(4,0,0,1,4)
3,0

0)
(Oa Oa 5 ’0)
2

gx)*flx) = (40014)*(14300)
(10004)
= 1+4%

We see in the first place in general f(x) * g(x) # g(x) * f(x).
Now we show “*’ is non associative .

Choose

h(x) = 3x'+28+x*+4x+1

(1,4,1,2,3).
Now
(fx) *gx)) * (h(x)) = (00300)*(14123)
= (00100
X2

[f(x) * g0l *h(x) = I

Consider

f(x) * [g(x) * h(x)] fX)[(A0014)*(14123)]
f£(x) *[1003 4]
(14300)(10034)
(00400)

= 45> IT

We see I and II are different.

It is important to mention here that one need not restrain
one’s study to polynomials with coefficients from Z,, (m < o
modulo integers). We can define polynomial groupoids using Z
or Q or R. It is pertinent to record here that authors have solved
the open problem proposed in [20] that we can have an infinite
class of groupoids which are Smarandache groupoids and the
cardinality of these polynomial matrix groupoids are infinite
when built over Z or Q or R.

The following example answers the open problem.

Example 2.2.2: Let G = {all polynomials of degree less than or
equal to n} (G, *) is a polynomial groupoid. Take P = {mx" | m
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€ Z or R or Q}. (P, *) is a semigroup. Hence (G, *) is a
polynomial Smarandache groupoid. Take p(x) = 20x", q(x) =
4x" and r(x) = -5x".

(p(x) *qx) *r(x)) = [, ..., 0, 20) * (0, 0, ..., 0, 4)] *
o, ...,0,-5
= (0,0,...,0,20) * (0,0, ...,-5)
= (0,0,...,20)
= pXx).
p(x) * [qx) *r(x)] = [(O, ..., 0, 20) * (0,0, ..., 0, 4)] *
o, ...,0,-5)
= (0,0,...,0,20) *(0,0,...,0,4)
= (0,0,...,20)
= p(x)

Thus * on P is associative. Hence (P, *) is a semigroup in
(G, *). Thus (G, *) is a polynomial Smarandache groupoid
which is of infinite order.

Now we have mainly constructed this class of polynomials
to show that a solution to the open problem in [20] exists.

Before we proceed onto define classes of polynomial
groupoids in a very usual way similar to the one done in matrix
groupoids, we extend the notion of polynomial groupoids to any
polynomial ring which has polynomials of all degrees.

Thus if

i=0

G= {iaixi

aieZ;OSiSoo}

all polynomials of any degree with coefficients from Z in the
variable x. Any polynomial

p(x) = Zaixi = (ap, a1, ..., 4x);
i=0
aeZ If
q(x) = Y_b;x' = (b, by, ..., by),
i=0

p(x) * q(x) = (ag b1, a; by, a3 b, ..., a,).
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Thus (G, *) is again an infinite groupoid.
Now we proceed onto define a different type of operation on G.

DEFINITION 2.2.2: Let G = {all polynomials in the variable x
with coefficients form Z,, m < oo of degree say less than or
equal to n}. Define for any p(x) = py + p; x + ... + p, X" and
q(x) =qo t q;x *+ .... + g, X" a binary operation * as follows

P(x) *q(x) = (tpo + uqo) + (1p; +uqy) x + ... + (ip, + ugy)x"
wheret, u € Z,\{0} (t, u) =1 andt zu; p;, q; € Z,,;, 0 <i<n. It
is easily verified (G, * (t, u)) is a groupoid. This groupoid is
defined as polynomial groupoid of type 1.

We will illustrate this situation by some examples.

Example 2.2.3: Let

G= {iaixi

i=0

a, € Z,;0<1<5 x an indeterminate}.

(G, *, (3, 2)) is a polynomial groupoid of finite order of type L.

Example 2.2.4: Let

G= {Zn:aixi

i=0

aieZ;n<oo,0SiSn}

all polynomial of degree less than or equal to n with coefficients
from Z. Choose (22, —81) = (t, u). It is easily verified (G, *, (22
—81)) is polynomial groupoid of infinite order and is type I.

If we consider polynomials P of the form

Zaixi;a e’Z;

i=0
{P, * (22, —-81)} is a polynomial subgroupoid of {G, *, (22,
-81)}.

The reader is given the task to prove or disprove (P, *, (22,
—81) is a semigroup.
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Example 2.2.5: Let

G= {iaixi

i=0

aieZ3;0Si£3}

all polynomials in the variable x of degree less than or equal to
3 with coefficients from Zs.

We see we have only two polynomial groupoids of type I
constructed in this way. They are {G, *, (2, 1)} and {G, *, (1,
2)}. Here it is important to note that we can have infinite
number of polynomial groupoids built using Z;. This is done by
varying the degree of the polynomials from 1 to n; n < oo.
However for each degree fixed as m; m < o we can have only
two distinct polynomial groupoids of type I built using Z;.

We consider the following examples to give subgroupoids of
type L.

Example 2.2.6: Let

G= {iaixi

i=0

a, eZlO;OSiSZ’)}

be all polynomials in the variable x with coefficients from Z;, of
degree less than or equal to two. (G, *, (1, 5)) is a polynomial
groupoid of type I built using Z,,.

Consider

P= {iaixi

i=0

a=0or 5} ;
(P, *, (1, 5)) is a polynomial subgroupoid of G.
Now we proceed onto define type Il polynomial groupoids.

DEFINITION 2.2.3: Let

G= {i ax'

i=0

a, eZn;OSiSn}
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be all polynomials in the variable x with coefficients from Z, of
all possible degrees including infinity. Define a binary
operation * on G as follows.

I
P9 = Y px and g9 = ¥ g,x
then - -
PO * g9 = i(zpf +ug, ¥

“+’ modulo n where (t,u) € Z, \{0} but (t,u) = 1. Then (G,* (t, u))
is defined as the polynomial groupoid of type Il built using Z,.

Note: Z, can be replaced by Q or Z or R and still polynomial
groupoid will continue to be of type II groupoid.

We will illustrate this situation by some examples.

Example 2.2.7: Let

12 _
G= {Z ax'

i=0

a, eZlg;OSi£12};

all polynomials in the variable x with coefficients from Z;s of
degree less than or equal to 12. Define * on G as follows

p(x) * q(x) = Z(tpi +ugq, )(mod18)x’

where (t, u) = (4, 6) ; 4, 6 € Z;5 (G, *, (4, 6)) is a polynomial
groupoid of type II built using Z;s.

We have a very large class of polynomial groupoids of type
II. We will give some properties enjoyed by them once we
define two more types of polynomial groupoids.

DEFINITION 2.2.4: Let

G= {Zn: ax'

i=0

a, eZm;OSiSn};
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all polynomials of degree less than or equal to n with
coefficients from Z,}. Define the operation * on G as follows:
for any polynomial

px) = _ip,-xi
and -

qfx) = iq,-xi :
Define -

p®) *q(x) = Y (1p; +uq;) (mod m) x'
i=0
where t, u € Z,\ {0} and t = u.

It is easily verified (G, *, (t, t)) is a polynomial groupoid and
this is defined as a polynomial groupoid of type II.
We will illustrate this by a few examples.

Example 2.2.8: Let

G= {iaixi

i=0

a, 6224;0Si37}

all polynomials in the variable x with coefficients from Z,4 of
degree less than or equal to 7.
Define * on G by

P() * q(x) = [Zpixij * [Zqixij

= 27:(413i +4q,) (mod 24) x'

i=0

It is easily verified (G, *, (4, 4)) is a polynomial groupoid of
type 111 using Z,4.

We show * in general in non associative.

Take p(x) = 5x° + 7x + 3, q(x) = 8x” + 4x” + 2x + 1 and r(x)
=x°+5x°+7x* + 13 in G.

Consider
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(p(X) q(x)) * 1(x)
= {(SX +7x+3) (8x° +4x* +2x + 1)} *
(x*+5x° + 7x* + 13)
= (20X’ +8x’ + 16+ 16x° + 12x) * (x° + 5x° + 7x* + 13)
(4x° + 4x° + 3% + + 20x7+20) I

Consider
(X) (), *1(x))
= (5x +7x+3) *[(8x+4x +2x + 1) *
(x®+5x° + 7x* + 13)]
(5x7 + 7x + 3)* [4x° + 8x + 8 + 20x” + 4x]
[16x° + 16x° + 20 + 12x + 8x* + 20x"]. 11

We see I and II are not the same polynomial so the
operation * in general is non associative. Thus (G, *, (4,4)) is a
polynomial groupoid of type III built using Z,,.

Example 2.2.9: Let

i=0

aieZ7;OSi£4}

all polynomials in the variable x of degree less than or equal to
4 with coefficients from Z,.
Define * on G by a * b=4a + 4b(mod 7) i.e. (G, *, (4, 4)) is
a polynomial groupoid of type III. Take
a=03x+2)
b=(@4x*+2x+5)

and
c=6x"+4x>+5x + 1.
(@a*b)*c = [(Bx+2)*@x>+2x+5)]*
(6x*+4x° +5x + 1)
= (6x+2x) * (6x' +4x’ +5x + 1)
= 3x*+4+2x+x2+2x° I
a*(b*c) = (Bx+2)*[(4x>+2x+5)*6x" +4x° + 5x + 1)]

(Bx +2) * [3x*+2x° + 2x* + 3]
= [5x+6+5x" +x*+x7] 11
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I and II are different. Hence (G, *, (4, 4)) is a polynomial
groupoid with entries from Z, of type III.

Now we proceed onto define type IV polynomial groupoids.

DEFINITION 2.2.5: Let G = {Zaix" ;0 <i<n; a € Z,} be all
i=0

polynomials with coefficients from Z,,. Define * on G as g(x) *
hx) = [tg(x) + 0 h(x)]; t € Z,. {G, * (t, 0)} is a polynomial
groupoid of type IV with entries from Z,,.

We will illustrate this situation by some examples.

Example 2.2.10: Let Zg = {0, 1, 2, ..., 7} ring of modulo
integers eight. Choose

2%
G= {Zaix'

i=0

aieZS;OSiS26};

all polynomials of degree less than or equal to 26 with
coefficients from Zg in the variable x.

Lett =5 e Zg. Define for any two polynomials g(x), h(x) in
G. g(x) * h(x) = tg(x) + 0 h(x). {G, *, (5, 0)} is a polynomial
groupoid of type IV with entries from Zs.

Example 2.2.11: Let

G= {iaixi

i=0

a, eZB;OSiSS}

be the collection of all polynomials with entries from Z,3, in the
variable x of degree less than or equal to 5. For p(x), q(x) € G
define p(x) * q(x) = 4p(x) + 0q(x) = (G, *, (4, 0)} is a
polynomial groupoid of type IV with entries from Zs.

Suppose Z,[x] contains polynomials in the variable x with
coefficients from Z,. Define operation * on Z,[x] by p(x) * q(x)
=tp(x) + 0q(x), p(x), q(x) € Zy[x] and t € Z, {Z,[x], *, (t, 0)} is
an infinite polynomial groupoid of type IV of infinite order.
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When t =1 we get (Z,[x], *, (1, 0)) to be a semigroup where
p is a prime if in Z,[x]; nis not a prime and 1 #t € Z,\ {0} is
such that t* = t(mod n) then we see [Z,[x], *, (t, 0)] is a
semigroup.

We will illustrate this situation by an example.

Example 2.2.12: Let Z¢[x] be a polynomial ring. Let [Z¢[x], *,
(3, 0)] be the polynomial groupoid of type IV. Take 3 € Zs we
see p(x) * q(x) = 3p(x).

Now
(p(x) *q(x)) *r(x) = (3Bp(x) +0) * r(x)

= 3p(x) *r(x)

= 3p(x) (- 3*=3(mod 6)).
p(x) * (q(x) *1(x)) = pXx) *[3q(x)]

= 3px)+0

= 3p(x).

Thus * on Z4[x] is associative whent = 3;t € Zg.

Motivated by this example we see we have for the class of
polynomial groupoids {Z,[x], *, (t, 0)} fort € Z,, we have some
of them to be polynomial semigroups, for if t = 1 {Z,[x], *, (1,
0)} is a polynomial semigroup. In view of this we define the
Smarandache special class of groupoids.

DEFINITION 2.2.6: Let G(S) = {Class of groupoids defined
using the same set S}. If G(S) has atleast one semigroup then we
call G(S) to be a Smarandache Special Class of groupoid. (SSC-
groupoids).

We will illustrate this by an example.

Example 2.2.13: Let G(Zg[x]) = {Z¢[X], *, (t, 0); t € Zs} be
class of polynomial groupoids built using Zs[x]. We see when n
=3, n=4and n = 1 we get polynomial semigroups; hence
G(Zg[x]) is a Smarandache Special Class of groupoid.

THEOREM 2.2.1: Let G(Z,[x]) = {Z,[x]; * (¢ 0); t € Z,} be a
class of polynomial groupoids. G(Z,[x]) is a SSC — groupoid.
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Proof: Since 1 € Z, we see {Z,[x], *, (1, 0)} € G(Z,[x]) is a
polynomial semigroup, hence G(Z[x]) is a SSC-groupoid.

Example 2.2.14: Let G(Z,[x]) be the class of groupoids built
using le[X]. Take H1 = {Z]z[X], *, (4, 0), 4 6212}, H2 = {Z]z[X],
*, (9, O)} and H3 = {le[X], *, (1, 0)} in G(le[X]) Hl, H2 and
H; are polynomial semigroups. Hence G(Z;,[x]) is a SSC-
groupoid.

Example 2.2.15: Let G(Z3o[x]) be the class of polynomial
groupoids built using Z3o[x]. Take H; = {Z3o[x], *, (15, 0)}, H,
= {Zslx], *, (1, 0)}, Hs = {Z30[x], *, (10, 0)} and Hy = {Z3[x],
* (6, 0)} are polynomial semigroups. So G (Z3[x]) is a SSC-
groupoid.

Now we will give classes of SSC-groupoid.

THEOREM 2.2.2: The class of groupoids Z(n) = {Z,, * (t, u)} n,
not a prime, is a SSC-groupoid.

Proof: We see Z(n) has semigroups. For if (t, u) =1 witht,u €
Z,\ {0} with * = t (mod n) and u® = u (mod n) then (Z,, *, (t,
u)} is a semigroup. Hence Z(n) is a SSC-groupoid.

We will illustrate this situation by an example.

Example 2.2.16: Take {Z», *, (4,9)} € Z(12). (Z12, *, (4,9)) is
a semigroup as 4° = 4 (mod 12) and 9° = 9 (mod 12).

Now we will construct a class of infinite groupoids.

DEFINITION 2.2.7: Let G = {Q[x], * (m, n) /m, n € Z'; (m, n)
= [} It is easily verified G is a groupoid of infinite order. This
groupoid will be known as polynomial groupoid with rational
coefficients.
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DEFINITION 2.2.8: Let G* = {Q[x], * (m,n) /m, n € Z', (m, n)
= d}. This groupoid is known as the polynomial groupoid with
rational coefficients (d = 1. If d =1 G = G*).

Example 2.2.17: Let G = {Q[x], *, (5, 7)} be a polynomial
groupoid with rational coefficients. Let

p(x)=x+1,
7 5
X)=3x"+ —x+ =
q(x) SXt 3
and r(x)=5x3—%x+9 e Q[x].

p(x) * (q(x) * 1 (x))
p(x) * [15 x* + %TXJr ? +35x%° — %x+63]

p(x) * [35x> + 15x* + 7x + (§+ 63)]

5(x + 1) + 35 x 75 + 105x% + 49x + [25“89) I

Consider

(P(x) * q(x)) * 1(x)

= S+ 21X+ 497"+35 3x

)EGK - = +9
3) ( 5 )
49x5 35%x5

Xt

49xs—%)x+(25+63+ 35X

= 25x+25+105x> +

35%° — %x +63

= 35¢°+105x*+ (25 + )

II

Clearly I and II are not equal so the operation * in general
defined on Q[x] is non associative.

Next we proceed onto give an example in which (m, n) =d #1.
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Example 2.2.18: Let G* = {Q[x], *, (6, 3) =3} be a polynomial
groupoid. Take
px)=x"+1,
q(x) = 8"
and
r(x) =3x* + 5x + 1.

PE) *qx) *r(x) = [6 (X7 +1)+3 x 8X4] * (Elx2 +5x+1)
(6x"+6+24x"] * 3x*+ 5x + 1)

(36x" +36+ 14 4x*) + 9x* + 15x + 3

= 36x + 144x* +9x* + 15x + 39 I

p(x) * (q(x) * q(x)) = p(x) * [48 x* + 9x* + 15x + 3]
6x + 6+ 144x* +27x> + 45x + 9
= 6x + 144x* +27x* +45x + 15 I

I and II are not equal. Hence G* is a groupoid and is not a
semigroup.

DEFINITION 2.2.9: Let G** = {Q[x], * (1, 0) /t € Z" | {0}}.
G** is a polynomial groupoid with polynomials from Q[x].

We will illustrate this situation by an example.

Example 2.2.19: Let G** = {Q[x], *, (5, 0)} be a polynomial
groupoid. Take p(x) = 8x°, q(x) = 5x* + 1 and r(x) = x” in Q[x].

(Px) *qx) *r(x) = (40><33Jr 0) *r (x)

= 200x I
px)* (q(x) *r(x)) = 8 [25x°+5+0]

= 40x’ i

It is pertinent to mention here that we can build groupoids
using Z[x] or R[x] or C[x] in a similar way. We can derive
many interesting properties about these polynomial groupoids.
Infact all these groupoids are of infinite order. Interested reader
is expected to derive interesting properties about these
groupoids.
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2.3 Special Interval Groupoids

In this section we introduce yet another special class of
groupoids called interval groupoids. Here we construct several
interesting properties about them.

Notations: Let
Z; ={[a,b]|a,be Z" U {0},a< b}
Qi ={[a,b]|a,be Q U {0},a<b}
R} ={[a,b]|a,be R U {0},a<b}.
Clearly Z; < QI cR;. Consider Z! = {[0,1] |r € Z,} is
the set of intervals in Z,.

Now using these four classes of intervals we build classes of
groupoids.

DEFINITION 2.3.1: Let G * (Z!) = {[0, r], * (m,p) /v, m, p €
Z, with (m, p) = 1, m and p primes} where [0, r] * [0, s] = [0,
mr + ps (mod n)]. G * (Z') is a class of groupoids, defined as
modulo integer interval groupoids of level one.

Clearly G * (Z) has only finite number of elements.

We will illustrate this by some examples.

Example 2.3.1: Let G * (Z;,) = {[0, s], *,(5,7); 5, 7, s € Z12}
be a modulo integer interval groupoid of level one. G * (Z;,)
has 12 elements.

Example 2.3.2: G * (Z,,) = {[0, s], *, (11, 7), 11,7, s € Zo} is
a modulo integer interval groupoid of level one.

Now we proceed onto define interval groupoids of level one

with entries from Z" U {0} or Q" U {0} or R" U {0} or C" U

{0},
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DEFINITION 2.3.2: G(S) = {[0, a], * (p.q) =1, a,p,q € Z" U
{0}} (or C*, Q" or R") p and q primes} where * is defined as [0,
al * [0, b] = [0, pa + qb] € G(S) and S = C; or Z; or R;.
G(S) is a class of interval groupoids of level one.

Asp, g € Z"\ {0}, vary over Z" \ {0} we get infinite number
of interval groupoids. S can be R, C; or Q.

We will illustrate this by some examples.

Example 2.3.3: Let G*(Z; ) = {[0, a], *, (5, 19); a,5,19 € Z'}
be an interval integer groupoid of level one. It is easily verified
* in general is non associative. For take [0, 1], [0, 3] and [0, 2]
in G¥*(Z)).

[01]7*({03]*[02]) = [01]* ([0, 15]+ [0, 38])

[0 1] * [0, 53]

[0, 5] + [0, 53 x 19]

= [0,5+53x19] I

([0, 17* [0 3]) * [0 2] ([0, 51+ [0, 57]) * [0, 2]
[0, 62] * [0, 2]
[0, 310] + [0, 38]

[0, 348] I

Clearly I and II are not equal; hence G * (Z,) is a integer
interval groupoid of level one.

Example 2.3.4: Let G * (Q] ) = {[0, a], *, (2,3); a, 2,3, € Q"}
be the rational interval groupoid of level one.

Example 2.3.5: Let G* (R} ) = {[0, a], *, [3, 23], a,3,23 e R"}
be a real interval groupoid of level one.

Example 2.3.6: Let G* (C) = {[0, a], *,(3,2) | a,3,2 € ch
be a complex interval groupoid of level one.
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Example 2.3.7: Let G¥*(R|) = {[0, a], *, (29,53); a, 29, 53 €
R"} be a real interval groupoid of level one.

Now we proceed onto define the notion of real or complex or
integer or rational interval subgroupoid of level one.

DEFINITION 2.3.3: Let T € G * (S) be a real or complex or
integer or modulo integer or rational interval groupoid of level
one.

Let P < T (P a proper subset of T). If P itself is a real or
complex or integer or modulo integer or rational interval
groupoid of level one then we call P to be a real or complex or
integer or modulo integer or rational interval subgroupoid of T
of level one.

We will illustrate this situation by some examples.

Example 2.3.8: Let {[0, a], *, (3,2); 3,3,2 € Zp} € G *(Z},)
be a modulo integer groupoid of order 12 of level one. Take P =
{[0, 2], [0, 0], [0, 4], [0, 6], [0, 8] [0, 10], *, (3, 2)} < {[0, a], *,
(3,2),a,3,2,eZp} €eG* (Z;2 ); P is a modulo integer interval
subgroupoid of order 6.

Example 2.3.9: Let T = {[0, a], *, (5,3) | 5,3,a € Z;} be a
modulo integer interval groupoid of level one.

The reader is requested to find modulo integer interval
subgroupoids of level one.

Example 2.3.10: Let R = {[0, a], *, (3,2);a € Z" U {0}} be an
integer interval groupoid of level one.

Take P = {[0, a], *, (3, 2);a € 2Z" U {0}} cR. Pisa
integer interval subgroupoid of R of level one.

Example 2.3.11: Let T = {[0, a], *, (5,7) /ae R" U {0}} be a

real interval groupoid of level one. Take P = {[0, a], *, (5,7)/ a
€ Q" U {0}} c T. P is a real interval subgroupoid of level one.
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Remark: 1t is important and interesting to note that P is not a
real interval groupoid but only rational interval groupoid so how
much are we justified in calling it as a real interval subgroupod.
But by the rule of convention we call so.

Example 2.3.12: Let T = {[0, x], *,(7,3) /x,7,3 € Q" U {0}}
be a rational interval groupoid of level one. Take P = {[0, a], *,
(7,3) /a, 7,3 € Z" U {0}} < T; P is a rational interval
subgroupoid of T of level one.

Example 2.3.13: Let T = {[0, a], *, (17,2) /a, 17,2 € C" U
{0}} be a complex interval groupoid. Let S = {[0, a], *, (17, 2) /
a,17,2 € Z" U {0}} c T; S is a complex interval subgroupoid
of T of level one.

Now we proceed onto define interval groupoid of level two.

DEFINITION 2.3.4: Let G** (Z!) = {[0a], * (p, ¢) =1, a, p
and q are in Z,;} where [0, a] * [0, b] = [0, pa + gb (mod n)].
G** ( Zi ) is defined as the class of modulo integer interval

groupoid of level two.

Example 2.3.14: Let T = {[0, a], *, (5, 8), a, 5, 8 € Zy} < G**
(Z)) be the modulo integer interval groupoid of level two.

Example 2.3.15: Let P = {[0, a], *, (9, 10), a,9, 10 € Z;;} <
G** (Z;,) be the modulo integer interval groupoid of level two.

Like wise we can define class of integer interval groupoid
of level two; G**(Z! ) = G**((Z" U {0} Y, class of real interval

groupoid of level two; G**(R;) = G**((R" U {0, class of
rational interval groupoid of level two; G**(Q/) = G**(Q" U
{0}) ") and class of complex interval groupoid of level two G**
(C7)=G**((C"u {0}).

We make an assumption (C[) or Z; or Q; or R, contains

{01,
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Example 2.3.16: Let T = {[0, a], *, (8, 15), 15,8,a € Z" U {0}}
be an integer interval groupoid of level two.

Example 2.3.17: Let S = {[0, a], *, (19, 16),a € Z" U {0}} be
the integer interval groupoid of level two.

Example 2.3.18: Let P = {[0, a], *, (27, 64), a, 27, 64 € Q" U
{0}} be the rational interval groupoid of level two.

Example 2.3.19: Let T = {[0, x], *, (27, 43), x, 27,43 e R" U
{0}} be the real interval groupoid of level two.

Example 2.3.20: Let W = {[0, y], *, 43, 7);y, 7,43 € C" U
{0}} be the complex interval groupoid of level two.

It is both interesting and important to note the following.

The class of integer interval groupoids of level two < The class
of rational interval groupoids of level two < The class of real
interval groupoids of level two < The class of complex interval
groupoids of level two; that is G** (Z]) < G** (Q,) <
G**(R}) < G** (C)).

Same type of containment is true in case of interval
groupoids of level one.

Now we will call a level one interval groupoid to be simple
if it has no proper interval subgroupoids of level one.

We see G*(Z!.); when n is a prime is a simple modulo
integer interval groupoid of level one.

Example 2.3.21: Let T = {[0, a], a € Zs, *, (3, 2)} be a modulo
integer interval groupoid of level one. T = {[0, 0], [0, 1], [0, 2],
[0, 3], [0, 4], * (3, 2)}.

We assume [0, 0] is not an interval groupoid as [0, 0] = [0]
the degenerate interval. Now T is a simple modulo integer
interval groupoid of level one. Thus we have a class of simple
modulo integer interval groupoids of level one.

Now we can define interval subgroupoids of level two.
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DEFINITION 2.3.5: Let T = {[0, a], * (p, q), a, p, q € Z,} be a
modulo integer interval groupoid of level two. If P < T is such
that P = {[0, a], * (p, q)} < T is a proper subset of T and P
itself is a modulo integer interval groupoid of level two, then we
call P to be a modulo integer interval subgroupoid of level two
of T. When T has no interval subgroupoid of level two; then we
call T to be a simple modulo integer interval groupoid of level
two.

We will illustrate both the situation by some examples.

Example 2.3.22: Let T = {[0, a], *, (3, 8), a, 3,8 € Q" U {0}}
be a rational interval groupoid of level two. Take P = {[0, a], *,
(3,8),3,8 aeZ U {0} cT; P is a rational interval
subgroupoid of level two.

Example 2.3.23: Let T=10, a], *, (9, 8),9,8,a € R" U {0}} be
a real interval groupoid of level two. Take P = {[0, a], *, (9, 8),
a,9,8 € Q U {0}} T, P is a real interval subgroupoid of
level two.

Example 2.3.24: Let T = {[0, a]; *, (15, 8); 15,8,a € Z3y} be a
modulo integer interval groupoid of level two. Take P = {[0, 0],
[0, 10], [0, 20], *, (15, 8), 15, 8 € Z3} < T. P is a modulo
integer interval subgroupoid of level two of T.

Example 2.3.25: Let S = {[0, a], *, (9, 8); a,9, 8 € Z;,} be a
modulo integer interval groupoid of level two.

Clearly S has no modulo integer interval subgroupoid of
level two. Hence S is a simple modulo integer interval groupoid.

The following theorem is left as an exercise for the reader to
prove.

THEOREM 2.3.1: Let G**( Zf, ) be the collection of modulo

integer interval groupoids of level two. Every modulo integer
interval groupoid in G**(Z 11, ) is simple; p a prime.
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Now we proceed onto define interval groupoids of level
three.

DEFINITION 2.3.6: Let G**(Z!) = {[0, a]; * (p, q) = d = I}
where * is such that [0, a] * [0, b] = [0, pa+qb (mod n)] we
define G***(Z!) to be the class of modulo integer interval
groupoid of level three.

If we replace Z! by Z; we call G¥**(Z; ) to be the class
of integer interval groupoid of level three.

If Z! in the definition is replaced by Q; we call G***(Q} )
to be the class of rational interval groupoids of level three. If
Z! in the definition is replaced by R, we call G¥**(R; ) to be
the class of real interval groupoids of level three. If in the
definition Z! is replaced by C; we call G***(C; ) to be the
class of complex interval groupoid of level three.

We will illustrate each of the situation by some examples.

Example 2.3.26: Let T = {[0, a], *, (8,24); a, 8,24 € Z3} be a
modulo integer interval groupoid of level three.

Example 2.3.27: Let T = {[0, a], *, (9, 3);a,9,3 € Z;;} be a
modulo integer interval groupoid of level three.

Example 2.3.28: Let P = {[0, a], *, (27, 30); a, 27,30 € Z" U
{0}} be the integer interval groupoid of level three.

Example 2.3.29: Let P = {[0, a], *, (11, 66); a, 11, 66 € Z" U
{0}} be the integer interval groupoid of level three.

Example 2.3.30: Let T = {[0, a], *, (12, 26); a, 12,26 € Q" U
{0} } be a rational interval groupoid of level three.

Example 2.3.31: Let F = {[0, a], *, (28, 35); a, 28,35 e R" U
{0}} be the real interval groupoid of level three.
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Example 2.3.32: Let E = {[0, b], *, (7, 497); b, 7,497 € C" U
{0}} be the complex interval groupoid of level three.

Now we proceed onto define the notion of interval subgroupoid
of level three.

DEFINITION 2.3.7: Let T = {[0, a], *, (p, q) =d =1 p, q,d a €
Z,} be a modulo integer interval groupoid of level three. Let P
< T; if P is a modulo integer interval groupoid of level three
and P is a proper subset of T we call P to be the modulo integer
interval subgroupoid of T of level three.

If T has no proper modulo integer interval subgroupoid
then we call T to be a simple modulo integer interval groupoid.

Analogous definitions hold good in case of integer or real or
rational or complex interval groupoid of level three.
We will illustrate this situation by some simple examples.

Example 2.3.33: Let T = {[0, a], *, [15, 10], a, 10, 15, € Z¢} be
a modulo integer interval groupoid of level three.

Let P = {[0, a], [0, 5], [0, 10], [0, 15], [0, 20], [0, 25], [O,
30], [0, 35], [0, 40], [0, 45], [0, 50], [0, 55], *, (15, 10)} = T be
the modulo integer interval subgroupoid of T of level three.

Example 2.3.34: Let T = {[0, a], *, (8, 24), a,8,24 € Z" U {0}}
be the integer interval groupoid of level three. Take P = {[0, 2a],
* 2a, 8, 24 € Z' U {0}} < T, P is an integer interval
subgroupoid of T of level three.

Example 2.3.35: Let T = {[0, a], *, (27, 18), a, 27,18 € Q" U
{0} } be a rational interval groupoid of level three. Take P = {[0,
al, *, (27, 18), a, 27, 18 € Z" U {0}} < T. P is a rational
subgroupoid of level three.

Example 2.3.36: Let X = {[0, a], *, (20, 22), a, 20,22 € R" U
{0}} be a real interval groupoid of level three.

Take P = {[0, a], *, (20,22),a € Q" U {0}} = X, P is a real
interval subgroupoid of level three of X.
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Example 2.3.37: Let Y = {[0, x], *, (28, 42), x, 28,42 € C" U
{0}} be a complex interval groupoid of level three. X = {[0, x],
* (28, 42), x € R" U {0}} < Y, is the complex interval
subgroupoid of level three.

Example 2.3.38: Let B = {[0, a], *, (8, 12),a,8,12 € Q" U Z;3}
be a modulo integer interval groupoid of level three. B is a
simple modulo integer interval groupoid of level three.

The reader is expected to answer the following problem.
Let X = {[0, a], *, (r,s) =t# 1,a,1,s,t € Z,; p is a prime}
be a modulo interval groupoid of level three. Is X simple?

Before we proceed onto describe more properties about these
interval groupoid we give the definition of level four interval
groupoids.

DEFINITION 2.3.8: Let G **** (7' ) = {0, a], * (p, 0), 0 #p, a

€ Z,} where [0, a] * [0, b] = [0, pa + 0b (mod n)] = [0, pa
(mod n)]; be a modulo integer interval groupoid defined as the
modulo integer interval groupoid of level four.

we replace In the detinition 2.3. we get the
If place (Z!) in the definition 2.3.8 by Z] get th

integer interval groupoid of level four. By replacing Z, by Q;
in the definition 2.3.8 we get the rational interval groupoid of
level four. If Z! is replaced by R; in definition 2.3.8 we get
the real interval groupoid of level four and is denoted by
G**#**(R). Similarly by replacing Z, by C; in definition
2.3.8 we get the complex interval groupoid of level four and is
denoted by G****(C[). We see

We will illustrate this situation by some examples.

Example 2.3.39: Let B = {[0, a], *, (5, 0), a, 5 € Z5} be a
modulo integer interval groupoid of level four.
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Example 2.3.40: Let C = {[0, x], *, (6, 0), x, 6 € Z;o} be a
modulo integer interval groupoid of level four.

Example 2.3.41: Let D = {[0, b], *, (8, 0), b, 8 € Z,;} be a
integer interval groupoid of level four.

Example 2.3.42: Let X = {[0, a], *, (7,0),a,7 € Q;} be a
rational interval groupoid of level four.

Example 2.3.43: Let Y = {[0, b], *, (141, 0),b, 141 € R; } be a
real interval groupoid of level four.

Example 2.3.44: Let P = {[0, t], *, (15, 0),t, 15 € C,} be a
complex interval groupoid of level four.

We will now proceed onto define interval subgroupoids of
level one.

DEFINITION 2.3.9: Let S = {/0, a], * (p, 0), a, p € Z,} be a
modular integer interval groupoid of level four. T = {[0, af, *
(, 0), a e X cZ,} <S8 be amodulo integer interval groupoid of
level four; then we call T to be a modulo integer interval
subgroupoid of level four.

If S has no proper modulo integer interval subgroupoids

then we call S to be a simple modulo integer interval groupoid
of level four.

We can analogously define these concepts in case of other
interval groupoids of level four.
We will illustrate this by some examples.

Example 2.3.45: Let X = {[0, a], *, (8, 0), a, 8 € Z»} be a
modulo integer interval groupoid of level four. Choose Y = {[0,
01, [0, 21, [0, 4], [0 6], [0, 8], [0, 10], *, (8, 0)} < X, Y is a
modulo integer interval subgroupoid of level four of X.
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Example 2.3.46: Let W = {[0, a], *, (5, 0); a, 5 € Z;} be a
modulo integer interval groupoid of level four. We see W is a
simple modulo integer interval groupoid of level four.

In view of this we have the following theorem.

THEOREM 2.3.2: Let P = {[0, a], *, (t, 0), a, t € Z,, p a prime}
be a modulo integer interval groupoid of level four. P is simple.

The proof of the theorem is left as an exercise for the reader.

Example 2.3.47: Let T = {[0, a], *, (9, 0),a,9 € Z" U {0}} be
an integer interval groupoid of level four. Take W = {[0, a], *,
(9,0),a € 82" U {0}} < T is an integer interval subgroupoid of
level four of T.

Example 2.3.48: Let W = {[0, a], *, (12,0),a € Q" U {0}} be
an rational interval groupoid of level four. S = {[0, a], *, (12, 0),

a € 3Z" U {0}} is an integer interval subgroupoid of level four
of W.

Example 2.3.49: Let T = {[0, a], *, (19, 0),a e R" U {0}} be a
real interval groupoid of level four. S = {[0, a], *, (19, 0), a €
Q" U {0}} < T; S is a real interval subgroupoid of level four.

Example 2.3.50: Let W = {[0, a], *, (23,0),a € C U {0}} bea
complex interval groupoid of level four. P = {[0, a], *, (23, 0), a
€ R"U {0}} = W; P is a complex interval subgroupoid of level
four.

Now having seen examples of interval subgroupoid of level
four. We now proceed onto study the properties of all these
interval groupoids in the four levels.

THEOREM 2.3.3: The modulo integer interval groupoids T in
G**(Z") such that T = {[0, a]; * (t, w), a, t, u € Z,}(mod n) is

a modulo integer idempotent interval groupoid of level two if
and only if t + u = 1(mod n).
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Proof: Given T = {[0, a]; *, (t,u), a, t,u € Z,} € G**(Z, ) and t
+u =1 (mod n). To show T is an idempotent interval groupoid
we have to prove [0, a]*, [0, a] = [0, a] for all [0, a] € Z! .

Consider [0, a] * [0, a] = [0, ta + va (mod n)]. If T is to be
an idempotent interval groupoid we need [0, a] * [0, a] = [0, a].
So that [0, ta + ua (mod n)] = [0, a]. That is ta + ua = a (mod n)
thus (t + u— 1)a = O(mod n).

This is possible if and only if t + u =1 (mod n). Hence the
claim.

We will illustrate this by a simple example.

Example 2.3.51: Let T = {[0, a], *, [4, 5], a, 4, 5 € Zg} €
G**(Zy). T is a modulo integer idempotent interval groupoid.
For consider [0, a] * [0, a] = [0, 4a + 5a(mod 8)] = [0, a] as 9a =
a(mod 8). This is true for all [0, a] € Z; . Hence T is a modulo
integer idempotent interval groupoid.

COROLLARY 2.3.1: The above theorem is also true in case of
the class of interval groupoids of level one.

We now proceed onto define normal subgroupoids and ideals of
interval groupoids.

DEFINITION 2.3.10: Let G*(Z!) or G*(Z;) or G*(Q;) or
G*(R;) or G*(C; )) be a class of interval groupoids. A interval
subgroupoid V of T < G*(Z, ) is said to be a normal interval
groupoid or interval normal groupoid T < G*(Z! ) if
i [0,a]V=V]0 a]
ii. (V][0 a])][0 b]=V(0, a] ][0, b])
iii. [0, 4a] ([0, b] V)= ([0, a] [0, b])V

forall [0, a], [0, b] € V.
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Note: An interval groupoid T < G*(Z! ) is normal if
(a) [0,x] T=T IO, x]
(®) T ([0, x] [0, y]) = (T [0, x]) [0, y]
(¢) [0, y]1([0,x] T) = ([0, y] [0, x]) T

for all [0, x], [0, y] € T < G*(Z)).

This same definition holds good for interval groupoids built
using Z;, Q;, R} or C; . Further the same definition is true
for all the four levels of interval groupoids.

Thus from here onwards by interval groupoid T we may
mean any interval groupoid built using Z! or Z/, Q;, R} or
C; and from the context it will be easily understood to which
level they belong to and built using which set.

Now we proceed onto define ideal of interval groupoids.

DEFINITION 2.3.11: Let T be any interval groupoid. P a non
empty subset of T. P is said to be a left ideal of T if

(1) P is an interval subgroupid of T

(2) Forallx e Tanda € P, xa € P.

P is called a right ideal if P is an interval subgroupoid and
forallx e Tand a € P ax € P. If P is both left and right ideal
of T then we call P to be the interval ideal of T or just an ideal
of T. As in case of usual groupoids we call an interval groupoid
to be simple if it has nontrivial interval subgroupoids. The
interval groupoids of level one, two, three and four does not
have {0} as an ideal.

We have the following interesting theorem.

THEOREM 2.3.4: Let P be a left ideal of T < G* (Z;) where T

={[0,a], * (t, u), a, t, u € Z,} is the interval groupoid then P is
aright ideal of T"= {[0, a], * (u, t); a, t, u € Z,}.

The proof is left as an exercise for the reader.
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THEOREM 2.3.5: Let T_CG*(Z:) where T = {[0, a], * (t, u), a,

t, u € Z, with t and u primes and t + u = n} be an interval
groupoid then T is simple.

The proof uses simple number theoretic properties and is left for
the reader to prove.

Note: Even ifnis a prime and t + u = p, u and t primes then also
T=1{[0,a], * (tt u; t+u=p;t a ueZ,paprime}, the
interval groupoid is simple.

THEOREM 2.3.6: The interval groupoid T = {[0 a], *, (0, t); a, t
€ Z,} of level four is a interval P-groupoid and alternative
interval groupoid if and only if £ =t (mod n).

The proof is left as an exercise for the reader.
None of the above results hold good in case of interval

groupoids built using Z;, Q;, R} or C;. These properties are

only valid for the interval groupoids built using Z; .

2.4 New Classes of Polynomial Interval Groupoids

In this section we introduce the new notion of polynomial
interval groupoids. We will first briefly describe the essential

notations. Z! [x] = {collection of all polynomials in the variable

x with coefficients from the interval set Z! }
= {Z[O,ai]xi a, € z“}.
i=0

This collection will be known as modulo integer interval
polynomials.

Example 2.4.1: [0, 1]x” + [0, 2]x° + [0, 1]x° + [0, 2]x’ + [0, 1] is
a modulo integer interval polynomials in the variable x with
coefficients from Z.. Similarly Z/[x] = {collection of all
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polynomials in the variable x with interval coefficients of the
form [0, a] from the interval set Z; } =

{i[o,ai Ix'

i=0

a, ez U{O}} .

This collection will be known as the positive integer
interval polynomials or integer interval polynomials. Q; [x] =
{collection of all polynomials in the variable x with coefficients
from the intervals in Q; of the form [0, a;];

ae QU {0} - {i[o,ai]xi 2, Q" u{O}}.
Thus h
R [x]= {i[o,ai]xi a,eR* u{O}}
and h
Cl[x]= {i[O,ai]xi a,eC'uU {0}}

are defined as real interval polynomials and complex interval
polynomials respectively.

Now using these 5 types of interval polynomials we can
define 4 levels of polynomial interval groupoids or interval
DEFINITION 2.4.1: Let

polynomial groupoids.
T= {Z[O,ai]xi a, eZn}
i=0

be the modulo integer interval polynomials. Define * on T as
follows; let

P = Y (0.7

and
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q(x) = i[o,bj]xf
belong to T,
p(x) *q(x) = [i[&a,-]x"} * (i[abj]xfj

= Z[O,tai +ubj(modn)]x”j ;
k=0
(t, u € Z,\ {0} such that both t and u are primes and (t, u) = 1).
= Z[O,Ck]xk
k=0

where k = i + j and ¢, = ta; + ub; (mod n). [T, * (1, u)} is
defined as the modulo integer interval polynomial groupoid of
level one. We by varying t and u get a class of modulo integer
interval polynomial groupoid of level one.

We will illustrate this by some simple examples.

Example 2.4.2: Let {T,* (u,t)| T = Z‘[O,ai]xi ;a, € Zsand u

i=0
= 3 and t = 2} be the modulo integer interval polynomial
groupoid of level one.

Example 2.4.3: Let {T, *, (u,t) | T= > [0,a,]x' ;8 € Z,and u
i=0

= 5 and t = 7} be the modulo integer interval polynomial
groupoid of level one.

We can built rational interval polynomial groupoid of level
one using the rational intervals {[0, a] / a € Q" U {0}}, real
interval polynomial groupoid of level one using real intervals of
the form [0, a]; a € R" U {0}, integer interval polynomial
groupoid of level one using integer intervals of the form {[0, b]
/b e Z U {0}} and complex interval polynomial groupoid of
level one using the complex numbers.

We will illustrate each of them by one example.
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Example 2.4.4: Let
T= {Z[O’ai] %, (5, )y, 5,7 €27 L {0}}

i=0
be the integer interval polynomial groupoid of level one using
the integers Z" L {0}.

Example 2.4.5: Let

W= {i[o,ai]xi L%, (11,43); 85, 11,43 € Q" U {0}}

i=0
be the rational interval polynomial groupoid of level one.

Example 2.4.6: Let
S= {Z[O,ai]xi ,*, (47, 19); a, 19,47 e R" U {0}}
i=0

be the real interval polynomial groupoid of level one using
reals.

Example 2.4.7: Let
V :{Z[O5ai]xi 5 *a (239 2)’ 2) 235 a; € C+ % {0}}

i=0
be the complex interval polynomial groupoid of level one using
complex numbers.

We see each of the classes of interval polynomial groupoids
of level one have infinite cardinality, since pairs of primes is an
infinite collection. We can define interval polynomial
subgroupoids of level one built using modulo integers or reals
or rationals or integers or complex intervals.

DEFINITION 2.4.2: Let T be a interval polynomial groupoid of
level one. Let P < T be a proper subset of T, if P itself is a
interval polynomial groupoid of level one under the operations
of T then we define P to be a interval polynomial subgroupoid
of T of level one.

If T has no interval polynomial subgroupoids of level one
then we define T to be a simple interval polynomial groupoid of
level one.
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We will illustrate this situation by some simple examples.

Example 2.4.8: Let

T= {Z[O’ai]xi 5 *, (5, 7), aj, 5, = Z]()}

i=0
be a modulo integer interval polynomial groupoid of level one.
Take

P= {Z[O,ai]xi 3%,5,7),5,7€Zip;a€10,5; cZyoy = T;
i=0

P is a modulo integer interval polynomial subgroupoid of level

one.

Example 2.4.9: Let
S= {Z[O,ai]xi 0% (19, 11), 3, € Z5 U {0}}
i=0
be a integer interval polynomial groupoid. Take

pP= {Z[O,ai]xi ;*,19,11), 8, € 3Z" U {0}} cS;

i=0
P is a integer interval polynomial subgroupoid of S.

Example 2.4.10: Let
T= {Z[O,ai]xi ;% (2,3),a € Q U {0}}
i=0

be a rational integer polynomial groupoid.
Let

S= {i[oaai]xi *.(2,3),a€ Z" U {0} T;
S is a rational ilrzlzeger polynomial subgroupoid of T.
Example 2.4.11: Let
M= {i[o’ai]xi i*,(29,3),a,€ R"U {0}}
i=0

be a real interval polynomial groupoid.
Take
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W= {i[o,ai]xi ;%,(29,3),a € 3Z U {0}} =M.

i=0
W is a real interval polynomial subgroupoid of M.

Example 2.4.12: Let
V= {Z[O,ai]xi *,(3,5),a € CTU {0}}
i=0

be the complex interval polynomial groupoid.
Take

T= {i[O,ai]xi :*.(3,5), € R"U{0}} CV,

i=0

T is a complex interval polynomial subgroupoid of V.

Example 2.4.13: Let
P= {Z[O,ai]Xi ;*9 (37 2)7 a; € Z7}
i=0

be the modulo integer interval polynomial groupoid. It is not a
simple modulo integer interval polynomial groupoid even
though Z; is a prime field for

S= {i[o,ai]x2i

i=0

a,eZ,,* (3,2)} cP

is a modulo integer interval polynomial subgroupoid of P of
level one.

Now we proceed onto define level two interval polynomial
groupoids using Z,, Z" U {0}, R" U {0}, Q" U {0} and C" U
{03.

DEFINITION 2.4.3: Let
S = {Z [0,a,]x" ;
i=0
* (p, q), p and q are not primes but (p, q) = 1, p, q, a; € Z,}. S

under * is a groupoid defined as the modulo integer interval
polynomial groupoids of level two. Thus we can define interval
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polynomial groupoids of level two using Z" U {0} or Q" U {0}
or R™ U {0} or C* U {0).

We will illustrate this situation by some examples.

Example 2.4.14: Let
S = {Z[O,ai]xi 0 %,(2,9),2,2,9 € Zio}
i=0

be the modulo integer interval polynomial groupoid of level
two.

Example 2.4.15: Let
P= {i“[o,ai]xi ,*,(27,32),2;,27,32 € Z" U {0}}
be the integ;)interval polynomial groupoid of level two.
Example 2.4.16: Let
S= {i[o,aj]xi ;a; € R"U {0}, *, (64, 81)}

i=0
be the real interval polynomial groupoid of level two.

Example 2.4.17: Let
W= {Z[O,ai]xi ;% (14,27), a;, 14,27 € Q" U {0}}
i=0
be the rational interval polynomial groupoid of level two.

Example 2.4.18: Let
B= {Z[O, a,x', * (36,13),a;, 13,36 € C" U {0}}

i=0
be the complex interval polynomial groupoid of level two.

We can as in case of level one interval polynomial groupoids
define interval polynomial subgroupoids of level two.

We will illustrate by one or two examples and then proceed on
to define level three interval polynomial groupoids.
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Example 2.4.19: Let
P={>10,a]1x,%(9,7),a,9,7¢€Zpy}
i=0

be the modulo integer interval polynomial groupoid of level
two.
Take

W={>[0,a]1x",*(9,7),a € {0,2,4,6,8,10} € Z,} < P;
i=0

T is a modulo integer interval polynomial subgroupoid of level
two.

Example 2.4.20: Let
S={>[0,a,]x",* (3,4),3,4,a, € Z;}
i=0

be the modulo integer interval polynomial groupoid of level
two.
Consider

M={>7[0,a,]x" [ai € Zi1, %, (3, 4)} S,
i=0

M is a modulo integer interval polynomial subgroupoid of S of
level two.

Example 2.4.21: Let
T= {Z[O, a]x',* (27,43),a,27,43 € Z" U {0}}
i=0

be a integer interval polynomial groupoid of level two.
Take

W= {i[o, a,]x',* (27,43),a, € 22"} T,
W is an integer ilrzl(;erval polynomial subgroupoid of level two.
Example 2.4.22: Let
V= {i[o, a]x',* (27,8),a,27,8 € Q"}
i=0

be a rational polynomial groupoid of level two.
Choose

69



W= {i[o, a]x',* (27,8),a €2 cV
is the rational intel;f/al polynomial subgroupoid of level two.
Example 2.4.23: Let
S= {i[o, a]x',* (47,81),a, e R"U {0}}
i~0

be the real interval polynomial groupoid of level two.
Choose

W= {i[o, a,]x™,* (47,81),a e R"U {0}} S,
S is areal int;(jval polynomial subgroupoid of S of level two.
Example 2.4.24: Let
S= {Zm:[O, ax',* (27,2),a € C"U {0}}
be a complex intl;(l)'val polynomial groupoid of S of level two.
T= {i[o, ax',*aeR"U{0}} S,
i=0

T is a complex interval polynomial subgroupoid of S of level
two.

We now proceed onto describe and define level three interval
polynomial groupoid.

DEFINITION 2.4.4: Let
T={>[0.a]x %@ q=d=1pqaeZ Ui}
i=0
where * is such that

(X005 ) *(Y[0.b,]x') = 3 [0,ap+bgle,

Jj+i=0

T is defined to be the integer interval polynomial groupoid of
level three built using Z, .
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We can on similar lines define polynomial interval groupoid of
level three using modulo integers, rationals, reals and complex
numbers.

We will only give examples of them and the reader can
easily understand which type it belongs to by the context.

Example 2.4.25: Let
S={>[0,a]x",*(21,6),21,6,a € Zy}
i=0

be the modulo integer interval polynomial groupoid of level
three.

Example 2.4.26: Let
V= {Z[O, a,]x',* (24,32),a,24,32, € Q" U {0}}
i=0
be the rational interval polynomial groupoid of level three.

Example 2.4.27: Let
B= {Z[O, a]x',* (27,42),a,42,27, e R"U {0}}

i=0
be the real interval polynomial groupoid of level three.

Example 2.4.28: Let
C= {Z[O, a]x',* (2,128),a,2,128, € C" U {0}}
i=0
be the complex interval groupoid of level three.
As in case of other types of interval groupoids we can in
case of level three interval polynomial groupoids define
subgroupoids.

However we will illustrate the situation by some examples.

Example 2.4.29: Let
T={>[0,a]x",* 8, 12),a,8, 12, Z" U {0}}
i=0

be the integer interval polynomial groupoid of level three.
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Consider
W= {i[o, alx',* (8,12),a€2Z U {0}} T
is integer intell':\fal polynomial subgroupoid of T of level three.
Example 2.4.30: Let
S= {i[o, a,]x', *, (4,20),a;,4,20, e Q" U {0}}
i=0

be the rational interval polynomial groupoid.
Take

M= Z[O, a,]x>, *,(4,20),2,4,20 e Q" U {0}} S,
i=0

M is a rational interval polynomial subgroupoid of S of level
three.

Example 2.4.31: Let
S= {Z[O, a,]x', *,(5,20),a,5,20 e R"U {0}}
i=0

be the real interval polynomial groupoid of level three.
Consider

W={>[0a]x";*(5,20),2,520 R U {0}} S,
i=0

W is a real interval polynomial subgroupoid of level three.

Example 2.4.32: Let

M= {>[0,a]x",* (27, 15), 2,27, 15 € C" U {0}}
i=0

be the complex interval polynomial groupoid of level three.
Choose

N={>[0a]x* ;% (27,15),2, 27, 15 € C"U {0}} = M.
i=0

N is a complex interval polynomial subgroupoid of level three.

Now we will define level four interval polynomial groupoids.
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DEFINITION 2.4.5: Let
T= {i[O,ai]xi, *(1,0), 0=t a, eR" U{0})
where * is def;?{)ed by
(2[0, a ]x') * (2[0, b, ]x" )= i [0,ta, ]x"* .

i+j=0

T is a real interval polynomial groupoid of level four.
As we vary t in R* we get a class of real interval polynomial
groupoid of level four.

Now we can define level four interval polynomial groupoids
using Z, or Z" U {0} or Q" U {0} or C" U {0}.

We will illustrate all these situations by some examples.

Example 2.4.33: Let
T= {Z[O, aj]xi s *a (95 0)7 97 a; € 212}7
i=0

be a modulo integer interval polynomial groupoid of level four.

Example 2.4.34: Let
T={)[0,a]x",* (11,0),a;, 11 € Z;3}
i=0

be the modulo integer interval polynomial groupoid of level
four.

Example 2.4.35: Let
S={Y[0,a,]x",* (12,0), 2,12 € Z"U {0}}
i=0

be the integer interval polynomial groupoid of level four.

Example 2.4.36: Let
N= {Z[O, a,Jx', *,(0,913), 2,913 e R"U {0}}
i=0
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be the real interval polynomial groupoid of level four.

Example 2.4.37: Let
Z={>[0,a,]x",* (31,0),a,31 € Q"L {0}}
i=0
be the rational interval polynomial groupoid of level four.

Example 2.4.38: Let
S={>[0,a]x",* (22,0),2,22 € C" U {0}
i=0

be the complex interval polynomial groupoid of level four.

Now having seen examples of level four interval polynomial
groupoids, we can as in case of other level groupoids define
interval polynomial subgroupoids.

We only illustrate this situation by some examples.

Example 2.4.39: Let
T={)[0,a]x",* (12,0), 12, a € Zy}
i=0

be the modulo integer interval polynomial groupoid of level
four.
Take

P = {Z[Oa ai]xi s *9 (12, O)a aj, 12 €
i=0

{0,2,4,6,8,10, 12, 16, 18, 20,22} } < T; P is a modulo integer
interval polynomial subgroupoid of T of level four.

Example 2.4.40: Let
P={>[0,a]x",* (3,0),a,3 e Zy}
i=0

be the modulo integer interval polynomial groupoid of level
four. Take

W: {Z[O’ ai]XZi s *7 (35 O): a; € Zl7} gP
i=0
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be the modulo integer polynomial subgroupoid of P of level
four.

Example 2.4.41: Let
W= {2 [0,a]x",%(9,0),a,9cZ U {0}
i=0
be the integer interval polynomial groupoid of level four.
P={>[0,a]x",%(9,0),a €2Z U {0}} = W;
i=0

P is a integer interval polynomial subgroupoid of W of level
four.

Example 2.4.42: Let
S={>[0,a]x",* (13,0),a 13 Q" L {0}}
i=0

be the rational interval polynomial groupoid of level four.
Consider

X={>[0,a]x",*(13,0),a,13 € Z" U {0}} =S,
i=0

X is a rational interval polynomial subgroupoid of level four of
S.

Example 2.4.43: Let
S={>1[0,a]x",*(22,0),a,22 € R"U {0}}
i=0

be the real interval polynomial groupoid of level four.
Consider

Y= {Z[O, a]x”,* (22,0),a,22 e R"U {0}} cS;
i=0

Y is a real interval polynomial subgroupoid of S of level four.

Example 2.4.44: Let
Z=1{>10,a]x",* (241,0),a,241 € C' U {0}}
i=0

be the complex interval polynomial groupoid of level four.
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Take
W= {Z[O, a]x”, * (241,0),2;,241 e C' U {0}} c Z,
i=0

W is a complex interval polynomial subgroupoid of Z of level
four.

Now having defined four levels of interval polynomial
groupoids we can define for them normal interval polynomial
subgroupoid, normal interval polynomial groupoid and ideals in
interval polynomial groupoid.

We now give some of the properties enjoyed by them. We
see when the interval polynomial groupoids are built using
intervals of the form [0, a] from Z" U {0} or Q" U {0} or R" U
{0} or C" U {0}. We see we cannot get many nice properties.
Only for modulo integer interval polynomial groupoids which
are built using Z, enjoy several interesting properties.

THEOREM 2.4.1: Let {T, * (u, t), u, t € Z,\ {0}, (u, t) = 1}
where

T= i[o, a]x ;
i=0

a; € Z, under * is a modulo integer polynomial groupoid of
level two.

(T, % (1), T=>Y[0,a]x ;a eZ)
i=0

is a polynomial semigroup if and only if £ =t (mod n) and v’ =
u (mod n).

The proof is left as an exercise for the reader.
No modulo integer polynomial groupoid has {0} as an ideal.

THEOREM 2.4.2: Let

X={T=>[0,a]x, % (tu a,t,u cZ)

i=0
and
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Y={§= Z[O,a,.]xi, *(u t),a,t,u ez,
i=0

be modulo integer interval polynomial groupoid of level one. P
c X is a left ideal of X if and only if P is a right ideal of Y.

This proofis also left as an exercise for the reader.

Suppose we construct yet a new class of interval polynomial
groupoids using Z, say

P={>[0,a]x ;% (t1),teZ\ {0} anda € Z,}
i=0

be the modulo integer interval polynomial groupoid and if g =
{collection of all P’s for varying t; t € Z,} then each P is a P-
interval groupoid.

The following theorem is left as an exercise for the reader to
prove.

THEOREM 2.4.3: Let
T={>[0,a]x ;% @01 a e
i=0
be the modulo integer interval polynomial groupoid. Clearly T
is a P-groupoid.

Remark 2.4.1: We have a class of n — 1 modulo integer interval
polynomial groupoids built using Z,,. All these (n — 1) groupoids
are P-groupoids. Further as n varies in Z" we get infinite classes
of P-groupoids.

Next we will show that when n is a prime and t # 1 then the
class of modulo integer interval polynomial groupoids are not
alternative groupoids.

THEOREM 2.4.4: Let
T={>[0.a]x", % 1) ae€Z,1<t<p]
i=0

p a prime be a modulo groupoid. Clearly T is not an alternative
groupoid.
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Proof: Given T is a modulo integer interval polynomial
groupoid. To show T is an alternative groupoid we have to
prove (x *y)*y=x*(y*y)forallx,yeT.

Now
(x*y)*y = (i[o alx i[o,bj]xj]*[i[o,bj]ij
= (i[O, (ait+bjt)modp]x”jj * i[o b,]x’
= i [0, (a;t” +b,t* +b,t)(mod p)]x"" I
Xx*(y*y) = (i[oaai Xl}*[i[o byIx! * Z bj]Xj]

0

[i[o, ai]xij [ D10, [tb; + tb,[(mod p)]x* ]

j=0

Z [O, (tai + tzbJ + tzbJ )(modp)]x2j+i I

j+i=0

I and II can be equal if and only if t* =t (mod p) but when p
is a prime and 1 <t <p, t* =t (mod p) is impossible.
Hence T is not an alternative interval polynomial groupoid.

Remark 2.4.2: If
T=¢{>[0,a]x, % @1, 1=teZ’),
i=0

T is not a alternative interval polynomial groupoid for a; € R"
or a; € Q+ or a; € C" or a; € Z". Hence we have a larger
classes of interval polynomial groupoids which are not
alternative.

Proof is obvious as t* = t is impossible for any t € Z"\ {0}.

The following result can be easily proved by the reader.
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THEOREM 2.4.5: Let

r= {Z[O, a, ]x', * (t, 1), a; € Z, nnot a prime numbery},
i=0

T is an alternative modulo integer interval polynomial groupoid
if and only if £ =t (mod n). We have as in case of groupoids
some of the modulo integer interval polynomial groupoids to be
Smaradache groupoids.

Example 2.4.45: Let
T= {Z[O; ai] Xi s *a (17 5)9 5 ai, 13 5 € ZS}
i=0

be a modulo integer interval polynomial groupoid of level two.
Take

S= {i[o, a]x',* (1,5), 40,5} < Zs}.

It is easily verified S is a semigroup of interval polynomial.
Thus T is a Smarandache modulo integer interval polynomial
groupoid of level two.

Several properties enjoyed by general groupoids and
Smarandache groupoids can be derived as a mater of routine.
This is left as exercise for the reader.

Next we proceed onto define the notion of interval matrix
groupoids using modulo integers, positive integers, rational
integers, reals and complex.

2.5 Interval Matrix Groupoids

Throughout this section if A = (a;j) is a matrix then aj’s are
intervals from Z, or Q or R or C or Q" U {0} or R" U {0} or Z"
w {0} or Z. Now we proceed onto define different types of
interval matrix groupoids.

DEFINITION 2.5.1: Let A = {[ay, ..., a,] be such that each a; =
[0 x;], [0, x;] is an interval in Z,fl ;X € Ly, i=1, 2, ..., n} (Z,,—
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modulo integers). We call A a 1 xn row modulo integer interval
matrix.

We will illustrate this by some example.

Example 2.5.1: Let A = [[0, 2], [0 1], [0, 5], [0, 3], [0, 11], [O,
4], [0, 2], [0, 7], [0, 3]]; A is a 1 x 9 row modulo integer 12
matrix with intervals from Z,, .

Example 2.5.2: Let A = [[0, 20], [0 2], [0 19] [0 11], [0 12], [0
15], [0 21], [0 1], [0 0], [0 3]] be a 1 x 10 row modulo integer
interval matrix with entries from Z}, .

DEFINITION 2.5.2: 4 = {[a,, ..., a,] is defined to be a 1 x n row
integer interval matrix if a; € Z'). If in A = [a,, ..., a,], a; € O,
1 < i < n then we define A to be a 1 x n row rational interval
matrix.

Likewise one can define a 1 x n row real interval matrix if the
entries are from R' and 1 x n row complex interval matrix if the
entries are from C.

We will illustrate each of these by examples.

Example 2.5.3: Let A = [[0, 4], [-3, 2], [-7, 14], [15, 21], [11,
17] [15, 22] [-25, -2], [0, 24], [-2, 70]] be a 1 x 9 row integer
interval matrix with entries from Z'.

Example 2.5.4: Let B =[[5, 9], [3, 7], [13, 18], [11, 12] [0, 47],
[0, 1], [1, 21], [47, 48], [51, 112], [100, 109], [300, 308], [1000,
40017, [0, 1] [0, 21], [13, 18]] be a 1 x 15 row integer interval
matrix or 1 x 15 integer interval row matrix with entries from
(Z" v {0}

Example 2.5.5: Let T = [[-5/2, 1], [7/25, 19], [19/3, 25],
[-21/19, 19], [-43/3, =71, [3, 12], [0, 5], [-21/4,0]] be a 1 x 8
row rational interval matrix 1 x 8 rational interval row matrix
with entries from Q.
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Example 2.5.6: Let W = [[0, 2], [7/5, 20], [5/14, 27/4], [2/5,
21/13], [19/3, 42]] be a 1 x 5 row rational interval matrix with
entries from [Q+ U {0}]i= Q/u {0} = {[a,b] /a,b € Q" u
{0}}.

Example 2.5.7: Let P = [[0, J7/8 1, [9/&,@], [0, \/g]] be

a 1 x 3 row real interval matrix with entries from R; U {0}.

Example 2.5.8: Let T = [[-\3,3/11], [v2,4291, [3,4/43],
[\/51 53], [-+/43, 0], [7, 15], [~ 2, 0], [5/7, 9]] be a 1 x 8 row

real interval matrix or 1 x 8 real interval row matrix with entries
from R".

Example 2.5.9: Let S =[[0, 1], [ [, 1 +4i], [2 + 41, 26 + 47i],
[<7i, 0], [-8 + I, 14 + 3i]] be a 1 x 5 row complex interval
matrix with entries from C'.

Now having seen 1 x n row interval matrix we now proceed
onto define m x 1 column interval matrices. However from the
context one can easily understand whether the interval row
matrix is real or rational or complex or so on.

DEFINITION 2.5.3: Let

be a m x I column matrix where a;’s are intervals from Q or Z
orZ,or RorC.

Then we define S to be a m x 1 column interval matrix or S
is a interval m x I column matrix.

We will illustrate this by some simple examples.
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Example 2.5.10: Let
[0,1]
[0,12]
[0,9]
[0,1]
[0, 3]
| [0,9] |

be a 6 x 1 modulo integer interval column matrix with entries
from Z|,.

Example 2.5.11: Let

[-1,0]
[-7.2]
[9,12]
[-11,-2]
(~1,0]
[10,16]
[25,41]
| [-42,47]

be a 8 x 1 column integer interval matrix with entries from Z".

Example 2.5.12: Let

[0,4/7]
b |[3.441]

[—/31,48]

[V2,-17]

be a4 x 1 column real interval matrix with entries from R,
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Example 2.5.13: Let

[V3,419]

S=| [20,25]

[V14,,247]

be a 3 x | real column interval matrix with entries from R .

Example 2.5.14: Let
[i, 2+3i]
[0, 4i]
[-4+1,20+ 71]
[-5-7i, O]
[21,141 +42]
[21,171]
[3 4]
[0, 5i]
(=1, 0]
1[27,27 +1]

be a 10 x 1 column complex interval matrix with entries from
c!
Now we will define a usual interval matrix.

DEFINITION 2.5.4: Let V = (v;) where 1 <i <n, ] < j < mbea
n x m matrix whose entries v; are intervals from Z! or Z'or Q'

or R or C'. We define V to be a n x m interval matrix.
We will illustrate this situation by some examples.

Example 2.5.15: Let
0,11 [0,9]
A=1[0,3] [0,1] |,
[0,9] [0,6]

A is a 3x2 modulo integer interval matrix with entries from Z,, .
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Example 2.5.16: Let

[-3,11 [2,5] [0,7]
[-7,0] [-11,0] [L5]
A=|[-31 [0,0] [1,1]
[2,5] [-5,3] [37,101]
=7 71 1 6] [-7 1] |

be a 5 x 3 integer interval matrix with entries from Z'.

Example 2.5.17: Let
[V7.14]  [VBAIT] [-7,0]

w=|[-3402] [0.2] [-5,2]
[3541] [-5070] [9.91]

be a 3 x 3 real interval square matrix with entries from R,

Example 2.5.18: Let

110,71 [-3,0]
[2,4] [1,10]
[3,7] [-3,11]

[14,19]  [-16,4247]
W=11V3,431] [5.4/53]
[-1,2]  [7/9,3/2]
[3,3] [0,1]
[0,7] [14,19]
|[1,10] [-1,2]

be a 9 x 2 real interval matrix. We say an interval n x m matrix
A = (a;) 1s square if n = m and rectangular if n # m.
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Example 2.5.19: Let
P [2,9] [3,8] [7,9]
[0,7] [-3,2] [-7,0]

be a 2 x 3 interval matrix.

Now having defined the notion of interval matrices now we
proceed onto make them groupoids.

Let

P(Z!) = {[0a]/aeZ]

P(Z: U{0}) = {[ab]/bz0,a<baecZ U {0}}.

P(Q' U{0}) = {[a,b]/abx0eQ U {0}a<b}.

P(R; U{0}) = {[ab]/ab=0eR" U {0}a<b}and
P(C; v {0}) = {[abl=[x+iy,a +ib];x<a andy<b,

X,y,a,beR}.
We will now define operations on the interval matrices which
takes its entries from P(Z! ), P(Q; u {0}), P(R; U {0}), P(Z'
w {0}) and P(C; U {0}).

DEFINITION 2.5.5: Let G, = {[0, a)], ..., [0, a,]]| a; € Z,, 1<

i <m} denote the collection of all 1 x m interval row matrices.
Define a binary operation * on G, as follows.

Let A =1{[0, a], ..., [0, a,]] and B = [[0, b,] , ..., [0, b,]]

e G)" wherea, b; € Z,; 1 <i <m.

A*B = {[0,a], ... [0, a,] *[[0,b)], ..., [0, b,]]
= [[0’ 01]*[0, b]]’ ey [0, am][a bm]]
= [[0, ta; + ub; (modn)], ..., [0, ta,, + ub,, (modn)]]

where t, u € Z, \ {0}. Clearly ( Géx'" * (1, u)) is defined as the

row interval 1x m matrix groupoid using Z,,.

We will illustrate this situation by some examples.
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Example 2.5.20: Let Glzxj = {[[0, a,], [0, ay], [0, a3])/ a; € Zs, 0
< a; < 3}. Choose (2, 3) = (t, u); where 2, 3 € Zs. {G‘;j, * (t,

u)) is a groupoid, that is it is a row interval 1 x 3 matrix
groupoid. Choose

A =[[0, 1], [0, 3], [0, 2]]
and B =[[0, 4], [0, 1], [0, 2]]
in G'ZX:.
A*B = [[0,1],[0, 3], [0, 2]] * [[0, 4], [0, 1], [0, 2]]

([0, 1] * [0, 4], [0, 3] * [0, 1], [0, 2] * [0, 2]]
[0, 2+12 (mod 5)], [0, (6+3) mod 5],

[0, 4 + 6 (mod 5)]]

= [[0, 4], [0, 4], [0, 0]].

It is easily verified that ‘*’ on G%°is non associative.
z

Example 2.5.21: Let {GZ4 , ¥, (1, 2)} be a row matrix interval
groupoid.

Next we can give examples of groupoids using Z" or R" or Q" or
C.

Example 2.5.22: Let Glzxf = {[a), a3], [a3, a4], [as, ag], [a7, ag],
[ag, ai] | & € Z" U {0}, a; < &y 11 <9}, {G)7,*, (3, N} isa

row matrix interval groupoids using Z" U {0}.

Example 2.5.23: Let G**" = {[[a}, a3], ..., [as3, as4]]; a; < aj1; 1

z
<i<53 8 € 27U {0}}, {G)7, %, (2, 53)} is a row matrix
interval groupoid of row interval matrix groupoid using Z" U
{0}.
Example 2.5.24: Let Ggf = {[a}, 2] [a3, a4]] | a1 € Q"L {0}; 1
<i<4;a <ayl, {Ggf, * (7, 13)} is a row interval matrix

groupoid using Q" U {0}.
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Example 2.5.25: Let G'RX? = {[a;, a2] [a3, a4], ..., [a15, Q1] @ <
a1 <i<15]a e R"U {0} }; {Gi:?, * (7, 2)} is a row interval

matrix groupoid using R U {0}.

Now we proceed onto define column matrix interval groupoid.

DEFINITION 2.5.6: Let
a,,a
[ ! 2] ai Sai+1
G fas.a,] 1<i<2n
a, Q" U{0}
[aZn—I’aZ;'l]

be a column interval matrix using Q" U {0).
Define * on Gglfl as
A*B {[aiai ]} * {[Di bisi]}
{[la,» + ub,», l(li+] + ubi+1]}
= A+ uB;
tZu, (tu=11u eZ". {G;If], * (1, u)} is a column interval

matrix groupoid (column matrix interval groupoid).

We will illustrate this situation by some examples.

Example 2.5.26: Let
[a,a,] ]
Eapaﬂ ai S ai+|
a;,a
GI =< 1<i<]1
| ay.a,] +
a, eZ" U{0}

[a9’a10]
_[all’aIZ]_

be a column interval matrix groupoid (column interval matrix
groupoid).
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{G%', *, (5, 19)} with binary operation *, that is for A, B €

+ 9
ZI

G A*B=5A+19B.

Example 2.5.27: Let (G*', *, (7, 1)) where

+ 9
G

[2,,2,] a;=a,,
= asadll icq
! [as,a5] .
a, eC"U{0}
[a;,a4]

be a column interval matrix groupoid built using C* U {0}.

Example 2.5.28: Let

[a,a,] | |a; <a;,
Gy = 4| [a5a,]| [1<i<5

[a5,a4]| |a; € Z,

be the collection of all matrix column groupoids with * on Gzl ;
A *B=2A+ B (mod 3).

DEFINITION 2.5.7: Let Gglf” ={A = {[a;,a] e be am xn
interval matrix; al.j].,a;. e Q" U{0); a,.j < a; s 1<i<m; I<j <n).

Define * on Gé”[f” by A*B=tA +uB; t, u € Q', then Gglf",
* (4w, t #u, (t, u) = 1} is a mxn interval groupoid built using

o

We can construct mxn interval groupoid using Z! , Z;, R}, Q;
and C; .
We will illustrate this situation by some examples.
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Example 2.5.29: Let
[al’a’Z] [a3’a4] a'i < ai+1
GZ? = 1|[as,a,] [a;,a] [|1<a, <8
[a5,a,] [a,3,,])]a €2,
be a 3 x 2 interval matrix using the groupoid Zio. { Z,,*, (5, 7)}
is a 3 x 2 interval matrix groupoid using Zo.

Example 2.5.30: Let
[a,a,] [a},a,] [as,a6] | a) e Z L{0}
G =1|lal,a3] [a3.ai] [al,ag]|[1<i<3

[a},a5] [a3,a}] [al.a}]]|1<j<6

i

ag <al,,j=1,2,..., 6} beas x3 interval matrix with entries

from Z" U {0} or Z;. {G}?, *, (3, 19)} is a 5 x 3 interval

+ 9
ZI

matrix groupoid using entries from Z" U {0}.

Example 2.5.31: Let

[a,2,] [a3,a,] [as5,36] [a5,3,] [ag,a,]
G’ = [al,a), 1 a5y, a0, 1 (a5, 25,1 [a);,a5] [ags,a5]
‘a; eR; U {O};az < ajﬂ;l <i<2;1<5<19
be a 2 x 5 interval matrix built using R" U {0}. {Gf:f ,*,(3,2)}

is a 2 x 5 interval matrix groupoid using R; .

Example 2.5.32: Let

11 11 11 i +
[31,32] [33,34] [35,36] aJeQ U{O}
2 2 2 2 2 2 i i

4x3 — [a1 aaz] [3.3,8,4] [asaa(,] a; S a;+1

N 3 3 3 3 3 3 .

o [apaz] [33,34] [35,36] 1<1<4

[af,a3] [a3,a;] [ag.acl||1<j<5
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be a 4 x 3 interval matrix with entries from Q. {G‘gf , ¥ (3,
1

19)} is a interval matrix groupoid with entries from Q; .

If m = n then we see the interval groupoid is a square interval
groupoid.

We will illustrate this by some examples.

Example 2.5.33: Let

aleZ" U {0}
[aj,a5] [a},ay] [ah,ag]||

i i
3x3 _ ) 2 .2 2 .2 a <a;
sz? - [apaz] [33734] [35536] IJ' gl
3.3 3.3 3.3 <1<

[a},] [al,a}] [alal]||!=!
1<j<5

be a 3 x 3 interval matrix with entries from Z; . {G?3 , ¥, (3,
1

13)} is a interval groupoid matrix with entries from Z; .

Example 2.5.34: Let

[aj,al] [ala,] [al.ag] [aha]l [ay.a)]]
[af.a3] [a3.ai] [al.ag] [a7.a5] [a5.aj]
G5 [al,23] [23,2;] [al,a5] [a},a5] [a5.a),]
A ||laf,a3] [a3,a}] [al,ai] [al.ag] [af.a}]
[a],a3] [a3,a3] [al,ai] [a3.a3] [a},a]]

a;ezg;agéai ;1<1<5,1<5<9

j+o

be the collection of intervals from Zé . {GSZT5 , %, (3,5)) isa 5x5

square interval groupoid with entries from Zg.
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Example 2.5.35: Let

eR

4
J

_ [a},a'z] [3'1333'11] 313<aJ+1

u [af,ai] [ai,ai] 1=1,2.

1<j<3

be a 2 x 2 interval matrix with entries from Ry. {G}2*, *, (3,

23)} is a 2 x 2 square interval groupoid from R .

Example 2.5.36: Let

16316 _ J[ .t ot
GQ; _{[aij’aiﬂjﬂ]

1<t<16,a; <a1+1J+1,
ISI,_]SIS,aUEQ w {0}

be the set of all 16 x 16 interval matrices with entries from Q; .
{G'Cffm, * (7, 19)} is a square matrix interval groupoid with

entries from Q; .

Example 2.5.37: Let

8x8 __ t t
ngg = {I:aijaaiﬂjﬂ:l

a; €Z,,1<t<8,
a't’ - a1+1_]+1’1 <1 J< 15

be a collection 8 x § interval matrices with entries from Z., .
{G3°, *, (17, 3)} be a square matrix interval groupoid with

: 1
entries from Z,, .

Now we proceed onto define some more properties of these
matrix interval groupoid.
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DEFINITION 2.5.8: Let { Gg”, * (t, u), t, u € Q) be a row

interval matrix groupoid built over Q] .
Let P ¢ G(";”, if {P, * (t, u)} is itself a row interval matrix
1

groupoid then we say {P, * (t, u)} to be a row interval matrix
subgroupoid of{G(";”, * (1, w)} built using Q; .

We can have subgroupoid of row matrix interval groupoids
constructed using Z;, Z', R}, C! and Q] .
We will illustrate this situation by some examples.

Example 2.5.38: Let G,° = {([a1, a2], [as, as], [as, al, [a7, as,

[ag, a10]), *, (3, 5), ai € Zip; 1 <1< 10; a; < aj1} be a row matrix
interval groupoid built using 2112 .

Take P = {([a), a2], [as, a4, [as, as], [a7, ag], [a9, ai0]) | a; €
{0,2,4,6,8,10}, *,(3,5), a; < ai} < G'ZXI5 . P is a row matrix
1x5
z,

S = {([a1, a2] [as, a4] [as, ag], [as, as] [ao, ai0]) | & € {0, 3, 6,

9y, *, (3, 5), a < ay} C Glzxf is a row matrix interval
12

interval subgroupoid of G

: 1x5
subgroupoid of GZ][2 .

Example 2.5.39: Let G'Zig = {([a1, a2}, ..., [a15, ai6] /@i € Z]; &
<ag,i1=1,2,.. 15 * (17, 2)} be a row matrix interval
groupoid built using Z; .

Consider P = {([a, a,], ..., [a1s, a16)) [ai € 6 Z, ,i=1,2, ...,
15,* (17,2)} < Glzxf ; P is a row matrix interval subgroupoid of
Glzxf , built using Z .

Take L = {[ay, ay], [a3, a4], [0 O], [0 O], [0 O], [0 0], [0 O], [0

01} [ar, 8y, a5, € Z{ s & < i, *, (17,2)) < G;7; Lis also a

row matrix interval subgroupoid of Glzﬁg .
1
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Example 2.5.40: Let Gi:f = {[a1, a2], [a3, as] a; € R" U {0}; a; <
a; 1 <1<3, % (31, 43)} be a row matrix interval groupoid
built using R .
Consider P = {([a}, a,], [a3, a4]); & < ajp, 1 <1< 3, %, (31,
43); a € Q" U {0}} < G.Z; P is a row matrix interval
. 1x2
subgroupoid of GR{ .
Consider T = {([a}, @3], [a3, as]); a; € Z" U {0}; a; < Ay, 1=

1, 2, 3; * (31, 43)} < G::f; T is also a row matrix interval

subgroupoid of G 7. Infact it is easy to verify Tc P < G.°.

On similar lines we can define interval matrix subgroupoids in
case of column matrix interval groupoid and mxn interval
matrix groupoid.

We will leave this easy concept to the reader, however
substantiate this by some examples.

Example 2.5.41: Let
[a,,a,]
G;Ti = 1| [a5,a,]| | & €Za; @i <apy; 1 <i<5)
[as,a5]

be a column interval matrix using Z3,. G = {G>', *, (5, 7)} is

Zy’
a column interval matrix groupoid.
Take

[a,a,] || 2, €Zy,
P=4|[a;,a,]||1<1<3,;, % (5, 7)}
[0,0] ||a, <a,,

c {GY', * (5, 7)}. P is a column interval matrix subgroupoid.

1 9
ZZO

If we take
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[a,,a,]
T=4|[a;,a,]||a, €{0,2,4,6,..,18< Z,,, *, (5, 7),
[as,a,]
a<as; 1<i<5) ¢ {G3ZT1 ,*, (5, 7} = G; Tis a column

interval matrix subgroupoid of G.

Example 2.5.42: Consider G = {G”', *, (3, 17)} where

Qf' b b
[a,,a,]
[as,a,]
e o
G = 770 la <ay,;
Q[ [a a ] 1 1+
7,4dg .
1<i<11
_[amalz]_

G is a column interval matrix groupoid built using Q; .
Take

_[al,az]_
[0,0] N
a. eZ" u{0};
[as.a,]||
P= a;<a,; cG;
[0,0] .
1<i<5
[a5.a]
[0,0]

P is a column interval matrix subgroupoid of G.

Take
[a,,a,] |
[a;.2,] a, €27 U{0};
_ [a57a6] . . .

L= 1<1<11; cG;

[a;,a,]
ai Sai+|

[397310]
_[all’al2]_
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L is a column interval matrix subgroupoid of G.

Example 2.5.43: Consider

[a,a,] W <a
i — S+l
a.,a .
G=G' = [3, 2 1<i<19; ¥, (13,2))
[a,.0,] a,eR"U{0}

be a column interval matrix groupoid.

Let
[a;,a,] a <a,;
_ ] [a5a,] <10 - .
= : 1<i<19;  \:* (13,2)) cG;
aeQ ui{0
[a5a,1 ]| € VO

P is a column interval matrix subgroupoid of G.

Example 2.5.44: Let
a- [l
[a;,a,]
are proper intervals, * (3, 5)} be a column interval matrix

groupoid.
o {[[]}
[0,0]

Take
T is a column interval matrix subgroupoid of G.

a,€Ci=1,2,3,4

a,,a,€C* (3,5} cG;

Example 2.5.45: Let

[al’az] [a3,a4] a; €Z36;;
G= GZ: =1|las,a] [a;.a5] ||a; <a,,; %3, 11)}

i+1°

[a9’a10] [allaalz] lﬁlﬁll
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be a 3 x 2 interval matrix groupoid built using Z}, .
Consider
[a,,a,] [a;,a,]]|a €Zsy;
P=4110,0] [a;,a5] ||a; <ay;
[ag,a,] [0,0] |[1<i<7;

* (3, 11)} < G}, Pis a3 x 2 interval matrix subgroupoid of G.

Example 2.5.46: Let
oo [[al,az] [ag,ad}
[a5,a5] [a;,a]

a,€Q U{0};a, <a, ;1<i<T;* (19, 7)} be a 2 x 2 interval

i+l2

matrix groupoid built using Q; .
Take
b {[al,az] [a3,a4]}
[a5,a5] [a;,a4]

a,eQ uU{0};a, <a, ;;1<i<7, * (19, 7)} < G, P is a square

i+12

interval matrix subgroupoid of G.

Example 2.5.47: Let

[a,a,] [a;,a5] [a.a,,] [a,,8,]
G = [a3’a4] [395310] [aIS’aIG] [a21’a22]
[a5.a6] [aj,a,] [a,a5] [a5,a8,]
a,€Z" U{0};a, <a,;1<1<23; %, (23, 2)} be a 3 x 4 interval
matrix groupoid using Z; .
Consider
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[a,,a,] [as,a¢] [0,0]  [0,0]
S=4/10,0] [a;,a5] [ag,a,] [a),a,]
[as,a,] [0,0] [0,0] [a;,a,]

a,€Z" U{0};a,<a, ;1<i<13, * (23, 2)} < G; S is a 3x4

+1°
interval matrix subgroupoid of G.

Now we define some of the properties enjoyed by these interval
matrix groupoids.

DEFINITION 2.5.9: Let G be a interval matrix groupoid (built
using Z, or Z; or Q; or R or C;). A interval matrix
subgroupoid V of G is said to be a normal interval matrix
subgroupoid or interval matrix normal subgroupoid of G if

(a) aV="Va

(b) (Vx)y = Vixy)

© y&V)=0ox)V
forallx, y,a eV.

If a interval matrix groupoid G has no interval matrix
normal subgroupoid then we define G to be a simple interval
matrix groupoid; we say an interval matrix groupoid G is itself
normal if

(a) x G=Gx

(b) G (xy) = (Gx)y

(© y (xG) = ()G
forallx,y € G.

Example 2.5.48: Let

o el
fe.d]

G is a column interval matrix groupoid built using Z|, .

a,b,c,d e Zp, *, (4,8)},

Consider
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po O e 0,481 % (4.8
[C,d] a’ ’C’ e { b b }, ’( b )}'

P is a normal interval matrix subgroupoid of G.

Inview of this we have the following theorem.

THEOREM 2.5.1: Let G = G = {all m x p interval matrices

with entries from Z,f L* (L u)suchthatt +u=mn, (t, u) =t t/n

and n even}! be a mxp matrix interval groupoid with 1 <m, p <

oo}

Then G has matrix interval normal subgroupoid.
The proof uses simple number theoretic techniques.

Example 2.5.49: Let G = {([a, b], [c,d], [e, f]) | a, b, c,d, e, f e
Z1o, *, (8, 4)} be a interval matrix groupoid. Take P = {([a, b],
[c,d], [e, f])|a,b,c,d, e, fe {0,4,2,8,6}},% (8,4} cGisa
matrix interval subgroupoid of G but need not be a interval
matrix normal subgroupoid of G as 4/10 and 4 + 8 = 10.

DEFINITION 2.5.10: Let G be a interval matrix groupoid built
using Z! or Z; or Qf or R}. G is said to be a interval matrix

P-groupoid if (AB) A = A (BA) for all A, B € G.

Example 2.5.50: Let G = {([x, y] [a, b], [c,d]) | x,y,a, b, c,d,
€ Zy; *, (t, )} be a l x 3 row matrix interval groupoid; G is a
row interval matrix P-groupoid.

Take
A= ([al, bl]’ [a29 b2] [33, b3])
and
B =([x1 yi1] [x2 ¥2] [X3 ¥3])
A,B e G.
Consider

(A* B)*A = ([als bl]a [aZ: b2] [33’ b3]): *’ ([Xl, yl]a [X25 yZ]a
[x3, y3]) * {([a1, bi], [a2, b2] [a3, bs])}
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= ([tx; + tay, ty; + tby], [txs + tay, ty, +tby], [txs + tas,
ty; + tbs]) * ([a; bi], [a b2], a3, bs])
= ([t'x; +t'a +tay, Ly, £ +tby],
[t'%, + tPa, + tay, 'y, + t°h, + thy],
[t x5+ tagttas, ty; + t°bs + ths]) )
Consider

A* (B*A) ([a1, bi] [a2, by], [as3, bs]) *

([x1, y1), [%2, yal, [x3, y3]) *

([a1, bi], [a2, ba], [a3, b3])

= ([a1, bi] [az, b2], [a3, b3]) * ([tx; + tay, ty; + tby],
[th + taz, ty2+tb2], [tx3+ta3, tY3 + tb3])

= ([ta; + £x, + tha;, tb, + y; + £by],
[ta, + tx, + t2a,, tby + oy, + by],
[tas + t°X; + t2as, tbs + t'y; + t'bs]) Il

It is easily verified that (A*B)*A = A* (B*A) for all A, B
e G.
Thus G is a interval matrix P-groupoid.

In view of this we have the following theorem.

THEOREM 2.5.2: Let G = G" = {{all m x p interval matrices

with entries from Z'}, * (t, 1), t € Z,\ {0}} be am x p interval
matrix groupoid built using Z!. Clearly G is a m x p matrix
interval P-groupoid.

DEFINITION 2.5.11: Let G be a mxp interval matrix groupoid. If
(A*B) *B=A*(B*B) for all A, B € G; we define G to be a
mxp interval matrix right alternative groupoid.

If (A *A) *B =A% (A *B) for all A, B € G then we define
G to be a m x p interval matrix left alternative groupoid.

G is said to be a mxp interval matrix alternative groupoid
if G is both m x p interval matrix right alternative groupoid and
left alternative groupoid simultaneously.
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Example 2.5.51: Let

[a,b]
[c,d]

G= a,b,c,d, e, f,g, heZs* (3,3)}
[e,f]

[g,h]

be a 4 x 1 row interval matrix groupoid built using Z. . G is not
an alternative 3 x 1 row interval matrix groupoid. Let

[a,b] [x,¥]

= [a,,b,] B= [X,,Y,]

[a;,b;] , [X5,Y;]

[a,,b, ] [x45¥,]

be in G.
Consider

[3a, +3x,,3b, +3y,] [x,,,]
(A*B)*B= [3a, +3x,,3b, +3y,]| , [[X,,Y,]

[3a, +3x,,3b, +3y,] [X5,Y;]
[3a4+3x4,3b4 +3Y4] [X4,y4]

[9a, +9x, +3x,,9b, + 9y, +3y,]

_ | [9a, +9x, +3x,,9b, + 9y, +3y,]
| [9a, +9x, +3x,,9b, + 9y, +3y,]
[9a, +9x, +3x,,9b, + 9y, +3y,]

[4a, +2x,,4b, +2y,]

_ [4a, +2x,,4b, + 2y, ] 0
[4a, +2x,,4b, +2y,]
[4a, +2x,,4b, +2y,]
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Now consider

[a;,b,] [6x,,6y,]
[a,,b,] . [6x,,6y,]
[a;,b;] [6x,,6y,]
[a,,b,] [6x,,6y,]

A* (B *B) =

[3a, +18x,,3b, +18y,]
| [3a, +18x,,3b, +18y,]
| [3a, +18x,,3b, +18y,]

[3a, +18x,,3b, +18y,]

[3a, +3x,,3b, +3y,]
| [3a, +3x,,3b, +3y,]
| [3a, +3x,,3b, +3y,]

[3a, +3x,,3b, +3y,]

I

I and II are not equal. Thus G is not a 4 x 1 interval matrix
alternative groupoid.

In view of this we have the following theorem which can be
easily proved using simple number theoretic techniques.

THEOREM 2.5.3: Let G = G,* = {all collection of m x n

P

interval matrices with entries from Z ;, * (1 1), t<p}beamxn

interval matrix groupoid built using Z; s Gis notam xn

interval matrix alternative groupoid if p is a prime.

THEOREM 2.5.4: Let G = G = {all m x p interval matrices

with entries from Z! n-not a prime, *, (t, 1), ; t € Z,\ {0}} be a

m x p matrix interval groupoid. G is an alternative mxp interval
matrix groupoid if and only if =t (mod n).
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Example 2.5.52: Let G = G = {all 7 x 3 interval matrices

7
with entries from Z, *, (3, 3)} be a 7 x 3 interval matrix
alternative groupoid as 3> = 3 (mod 6).

THEOREM 2.5.5: Let G = G7/" = {all mxp interval matrix with

entries from Z!, * (t, 0), t € Z,\ {0}} be a m x p matrix interval

groupoid. G is a P-groupoid and alternative groupoid if and
only if £ =t (mod n).

Example 2.5.53: Let G = {3 x 8 interval matrices with entries
from Z;,, *, (4, 0)} be a 3 x 8 interval matrix groupoid. G is

clearly a interval matrix P-groupoid and interval matrix
alternative groupoid.

2.6 Smarandache Interval Groupoid

As in case of usual groupoids we can in case of matrix
interval groupoids also define the concept of Smarandache
groupoids.

We will illustrate this concept.

Example 2.6.1: Let G = {G;:, * (1, 5)} be a 3 x 8 matrix
interval groupoid. Take P = {3 x 8 interval matrices from the set
{0, 5}, *, (1, 5)} < G is easily verified to be a 3 x 8 matrix
interval semigroup. Thus G is a Smarandache 3 x 8 matrix

interval groupoid or 3 x 8 interval matrix Smarandache
groupoid.

THEOREM 2.6.1: Let G = { G, *, (1, u) such that t, u € Z, |

[0}, m>5);t+u=1 (modn)and (t, u) = 1} be am xp
interval matrix groupoid using Z! . Then G is a Smarandache m

x p interval matrix groupoid.

(We give only hint of the proof).
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Proof: For every m € Z, is such that m * m = mt + mu = m.
Thus every singleton is a semigroup. Hence the claim.
We have yet another new result about Smarandache interval

matrix groupoid using Z. .

THEOREM 2.6.2: Let G = { G ; * (1, u) where t + u = 1(mod

n)} be a m x p interval matrix groupoid. G is a m x p matrix
interval Smarandache P-groupoid if and only if = t(mod n)
and v’ = u (mod n).

Proof: 1t is already proved G is a m x p matrix interval
Smarandache groupoid if t + u=1 (mod n). Now to show G is a
m x p matrix interval Smarandache P-groupoid if and only if t*
=t (mod n) and u* = u (mod n).

Let Amx P ([aij, aiﬂjﬂ]) and Bm xp = ([bij, bi+1j+1]) with 1 <1
<m-1land 1 <j<p-1.Toshow Gisam x p matrix interval
S-P-groupoid (Smarandache-P-groupoid) we have to show (A *
B)*A=A*(B *A)forall A,B € G.

Consider
A*B)*A = [([ai aisij+1]) * ([bij, biwigei]) * ([aij, Aisij1])

[(ta;; + uby) (mod n), (tait1j+1 + ubirj1) (mod)] * ([aij, Aisij+1])

= [(tzaij + tub;; + ua;) (mod n), (tzai+1j+1 + tubisje1 + tagj)]

I
Consider
A*B*A) = ([ay auia]) * ([(tby + vay) mod n,
tbisij+1 + uai+ij+1) mod n])
= [(taij + lltbij + Ll2 aij) mod n,
(tairije1 T utbijo + uzai+1j+1) mod n] I

Using the fact t* = t (mod n) and u® = u (mod n) we see I and II
are equal. Hence G is a m x p interval matrix S-P-groupoid.
We will illustrate this situation by some simple examples.

Example 2.6.2: Let G = {G”*, * (4, 9)} be a 3 x 4 interval

z,’
matrix groupoid. It is easily verified that G is a 3 x 4 interval
matrix S-P-groupoid.
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THEOREM 2.6.3: Let G = { G, * (t, w), t, u € Z,\ {0} with t

z
+u =1 (mod n)} be a m x p matrix interval groupoid. G is a m
x p matrix interval Smarandache alternative groupoid (m x p
matrix interval S-alternative groupoid) if and only if £ =t (mod
n) and u’ =u (mod n).

The proof is simple and can be obtained by using number
theoretic techniques. For definition of different types of
Smarandache groupoid using interval matrices please refer [20-
21]. Thus using those definition in [20] we will prove results
related with them.

Example 2.6.3: Let G = {G”', * (3,9)} be a3 x 1 column

7y’
interval matrix groupoid built using Z;, . G is a column interval
matrix Smarandache Moufang groupoid.

It can be easily verified forall A, B,C € G; (A *B) * (C *
A)=(A * (B*(C)) * Ais true.

Likewise we give an example of a matrix interval Smarandache
Bol groupoid.

Example 2.6.4: Let G = {G>, * (2, 3)} be a 5 x 7 matrix

7
interval groupoid. It is easily verified G is a Smarandache Bol
groupoid. For A, B, C in P we have ((A*B)*C) * B = A*
[(B*C)*B)] where P = {All 5 x 7 interval matrices with entries
from the subset {0, 2} < Z4, *, (2, 3)} < G. However the
identity is not true for all elements in G.

Example 2.6.5: Let G = {G°, * (5, 6)} be a interval 12 x 5

matrix groupoid built using the intervals of Z;, .

It is easily verified for every 12 x 5 interval matrices A, B,
CinG,A*B)*(C*A)=[A*B*C)]*A. Thus Gis a
interval 12 x 5 matrix Smarandache strong Moufang groupoid.
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AN~

THEOREM 2.6.4: Let G = { ;T”, * (m,m);m € Z,withm +m

= I(mod n) and m’ = m(modn)} be a q x p matrix interval
groupoid};
G is a g xp matrix interval Smarandache strong P-groupoid.
G is g x p matrix interval Smarandache idempotent groupoid.
G is a gx p matrix interval Smarandache strong Bol groupoid.
G is a q x p matrix interval Smarandache strong Maufang
groupoid.
G is a q x p matrix interval Smarandache strong alternative
groupoid.

Note: q and p are positive finite integers 1 <p, q <o; p =q can
also occur.
The proof is left as an exercise for the reader.

THEOREM 2.6.5: Let G = { G}, % (2, 0), 2 € Zyu} be ap xq
interval matrix groupoid built using intervals from Z, . G is a

p x q interval matrix S-groupoid.

Proof: Follows from the fact when intervals {[0, 0], [m, m], [0,
m]]} < Z)_ are taken as entries of the p x q interval matrix the

collection is a p x q interval matrix semigroup under the
operation *. Hence the claim.

THEOREM 2.6.6: Let p x g matrix interval groupoid G =
{GP, % (m, 0)} built using Z!, n = 2m is a Smarandache p x

V4

n

q matrix interval groupoid.

Proof is left as an exercise for the reader.

COROLLARY 2.6.1: G = { G ,* (p,0) where p is a prime and p

/n}, the tx s interval matrix groupoid is a tx s interval matrix S-
groupoid.

Several other results in this direction can be derived. Now we
proceed onto define classes of groupoids built using intervals.
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2.7 Classes of Groupoids Built Using Intervals

In this section we indicate the classes of groupoids built using
intervals from Z! or (Z" U {0}),=

Z: ={[a,b]]la<b,a,be Z U {0}} or

Q; ={[a,b]la<b,a,be Q" U {0}}

R; ={[a,b]]a<b,a,b e R U {0}} and

C/ ={[a,b]la<b,a,be C U {0}}

C" = {x +1iy /X, y are positive real} }.

C(Z,pxq=1{{ G;?q = {all p x q matrices with entries from

Zry, %, (t,u) /t,u € Z,y / t and u vary over Z, with all
possibilities (t, u) =1 or (t, u)=d or (t, u) =t or (t, u) =u or (t,
0) or (0, t) or (t, t)}. Thus C(Z. , p x q) is defined as the class of
p x q matrix interval groupoids built using Z;' .

Clearly C(Z, , pxq) has only finite number of such p x q
matrix interval groupoids for a fixed p and q (p and q are
positive integers). If p =1 we call 1 x q interval matrix groupoid
as interval row matrix groupoid built using Z! and is denoted
by (Z;, 1 x q) for a fixed q. Similarly (Z], p x 1) denotes the
class of interval column matrix groupoid for a fixed p.

Likewise (Z; , m x m) denotes the class of interval m x m

square matrix groupoid built using Z7 . In Z,, n is finite but n

can be prime. Thus we have 4 types of class of matrix interval
groupoids. Further the collection of interval 1 x 9 row matrix
groupoids for varying q is infinite so we have an infinite

number of classes (Z], 1 x q) where q € Z". This is true of any

p x qorpx 1 orm x nmatrix interval groupoids p, q, m € Z".
We will describe some of the properties enjoyed by them.

THEOREM 2.7.1: The groupoids in this class (Z], t xu, (0, p))
are Smarandache matrix interval groupoids (n-even).
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COROLLARY 2.7.1: No matrix interval groupoid in this class of
groupoids C(Z], t x u, (0, p)) is a n-even matrix internal S
idempotent groupoid.

Both the results hold good for the class of groupoids C(Z;,

t xu, (p, 0)) n-even.

THEOREM 2.7.2: Let C(Z], t x u (m, m)) where m + m = |

(mod n) and m’ = m (mod n) be the class of matrix interval
groupoids for the specific m’s then

1. C(Z;, t xu, (m, m)) are matrix interval S-idempotent
groupoides.

2. C(Z], t xu, (m m)) for those special m are matrix
interval Smarandache strong P-groupoids.

3. C(Z;, t xu, (m, m)) for that specific m’s are matrix
interval Smarandache strong Bol-groupoids.

4. C(Z/, t xu, (m, m)) are matrix interval Smarandache
strong Moufang groupoids.

5. C(Z], t xu, (m, m)) are Smarandache strong matrix
interval strong alternative groupoid.

THEOREM 2.7.3: C(Z;, mxs, (1, p)) / p is a prime and p /n)
C(Z;, mxs, (1, p)) contained in the class of interval mxs matrix

groupoids are interval mxs matrix S-groupoids.

THEOREM 2.7.4: The subclass of groupoids C(Z;, m xs, (t, u)
/t+u=I1modn) c C(Z, m xs (t u)) are m x s matrix
interval S-idempotent groupoids.

THEOREM 2.7.5: The subclass of groupoids C(Z;, m xs, (t, u)
/t+u=1(modn) and t =t (mod n) and v’ = u (mod n)) <
C(Z/, m x s, (1, u)) are matrix interval Smarandache P-
groupoides.
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THEOREM 2.7.6: The subclass of groupoids C ((Z], mxs, (t, u))
/ t+u=l (mod n), i’ = u (modn), £ =t (mod n)) cC (Z;, mxs,
(t, u)) are matrix interval Smarandache alternative groupoids.

THEOREM 2.7.7: The subclass of groupoids C (Z;, mxs, (t, u)
/t+u=l (mod n), ' =u (modn), £ =t (modn)) cC (Z, mx

s, (1, u)) are mxs matrix interval Smarandache strong Bol
groupoids.

THEOREM 2.7.8: The subclass of groupoids C (Z;, m xs, (t,u))
/t+u=I1(modn), v’ = u(modn), £ =t(modn)) cC (Z, mxs,

(t, u)) are m x s matrix interval Smarandache strong Maufang
groupoid.

The above theorems can be easily derived using the
definition and simple number theoretic techniques.

Now we proceed onto define classes of groupoids using Z"
v {0} etc.

C(Z}, m x n, (p, q) = {(collection of all m x n interval
matrices with entries from Z; together with * binary operation
on Grz“f“ such that for A, B € Grz“f“ , A * B=pA + gB, where p,

q € Z" and p, q vary over Z to give the class of mxn matrix
interval groupoids using Z;}. Clearly this is an infinite
collection. Likewise C (Q;, m x n, (p, q)) p, q € Q" is again a
class of m x n matrix interval groupoid of infinite cardinality.

Similarly C(R}, m xn, (p,q)) p,q € R"and C (C;, m x n, p, q

€ R") are classes of m x n matrix interval groupoids of infinite
cardinality. Here m and n are fixed for that class as m and n
varies in Z" we get different classes of matrix interval groupoids

using Q; or Z; or R} or C;.
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Chapter Three

ON SOME NEW CLASSES OF
NEUTROSOPHIC GROUPOIDS

In this chapter we for the first time introduce the new concept of
neutrosophic  groupoids. The algebraic structures like
neutrosophic groups, neutrosophic semigroups, neutrosophic
rings, neutrosophic fields and neutrosophic vector spaces have
been introduced by the authors. It is pertinent to mention that all
those algebraic structures were associative structures. We
assume by a neutrosophic set a non empty set S with the
element I, the indeterminate. So if S is a neutrosophic set I € S.
This chapter has seven sections. Section one introduces the
concept of neutrosophic groupoids. Section two introduces new
classes of neutrosophic groupoids using Z,. Neutrosophic
polynomial groupoids are introduced in section three. Section
four introduces the notion of neutrosophic matrix groupoids.
Neutrosophic interval groupoids are introduced in section five.
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Neutrosophic interval matrix groupoids are introduced in
section six and neutrosophic interval polynomial groupoids in
section seven are described.

3.1 Neutrosophic Groupoids

We now proceed on to define a neutrosophic groupoid and
illustrate it by some examples.

DEFINITION 3.1.1: Let S be a neutrosophic set which is non
empty. Let * be a closed binary operation on S such that a*
(b*c) # (a * b) * c for some a, b, c € S. We call (S, *) to be a
neutrosophic groupoid.

It is interesting to note that all neutrosophic semigroups are
neutrosophic groupoids but a neutrosophic groupoid in general
is not a neutrosophic semigroup. Thus the class of all
neutrosophic semigroups is contained in the class of
neutrosophic groupoids.

We will illustrate this new structure by some examples.

Example 3.1.1: Let {Z U1} =N(Z)={a+Dbl|a,b €Z}. Define
the binary operation subtraction ‘= on N(Z). {N(Z), —} is a
neutrosophic groupoid.

It is easily verified ‘" operation on N(Z) is non associative.
Thus (N(Z), -) is not a neutrosophic semigroup as ‘-’ operation
on N(Z) is not associative.

Example 3.1.2: Let N(Z;) = {a+bl/a,be Z;} ={0,1, 21, 1, 2,
1+1,2+1 2[+ 1, 2[ + 2}. Define a binary operation * on
N(Z5) as follows. For x, y € N(Z5) define x * y = x + 2y (mod
3) ‘“+’ usual addition.

It is easily verified (N(Z3), *) is a neutrosophic groupoid.
Example 3.1.3: Let G = {M, .3 = (my) / mjj € N(R), 1 <i<2

and 1 <j < 3}. Define a operation * on G as follows. If A = (a;;)
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and B = (b;) are in G. A * B = (2a; + 3by). It is easily verified
(G, *) is a neutrosophic groupoid as ‘*’ is a closed non
associative binary operation on G.

Now having seen some examples of neutrosophic groupoids we
now proceed onto define the cardinality of these algebraic
structures.

DEFINITION 3.1.2: Let (G, *) be a neutrosophic groupoid. If the
number of distinct elements in G is finite, then we say G has
finite cardinality or finite order and we denote it by |G| < oo If
G has infinite number of elements then we say G has infinite
cardinality and is denoted by |G| = wor o(G) = «.

We see neutrosophic groupoids given in examples 3.1.1 and
3.1.3 are of infinite order and the neutrosophic groupoid given
in example 3.1.2 is of finite order.

DEFINITION 3.1.3: Let (S, *) be a neutrosophic groupoid.
Suppose H < S be a proper subset of S and if (H, *) is itself a

neutrosophic groupoid then we call (H, *) to be a neutrosophic
subgroupoid of (S, *).

We will illustrate this situation by some examples.

Example 3.1.4: Let S = {N(Z), *} be a neutrosophic groupoid
where for any X, y € N(Z); x * y = 5x + 3y. Take H = {a + bl |
a,b e Z'}; (H, *) is a neutrosophic subgroupoid of S.

Example 3.1.5: Let S = {N(Zs), * where a * b =2a + b} be a
neutrosophic groupoid.

Take H = {Zsl}, (H, *) is a neutrosophic subgroupoid of S.
In example 3.1.4 if we take H, = {Z"} = N(Z); we see (H;, *) is
a groupoid but (H;, *) is not a neutrosophic groupoid. Likewise
in example 3.1.5. H, = (Zs, *) is a subgroupoid of (N(Zs), *) but
H, is also not a neutrosophic groupoid.

Thus in view of this we give a definition.
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DEFINITION 3.1.4: Let (S, *) be a neutrosophic groupoid. If P =
H such that (P, *) is a groupoid but is not a neutrosophic

groupoid then we call (P, *) to be a pseudo neutrosophic
subgroupoid of (S, *).

We will first give some examples of this definition.

Example 3.1.6: Let {N(Z,,), *} = G be a neutrosophic groupoid
where ‘*’ is such that x * y = 3x + 7y (where ‘+’ is addition
modulo 12}; for all x, y € N(Z;y). Take H = {Z,,, *} we see H
is a groupoid and is not a neutrosophic groupoid. So H is a
pseudo neutrosophic subgroupoid of G.

Example 3.1.7: Let V = {N(Z), * where * is such that a * b = 8a
+9b fora, b € N(Z)}. V is a neutrosophic groupoid.

Take W = {Z, *} < V = {N(Z), *}; W is a pseudo
neutrosophic subgroupoid of V.

DEFINITION 3.1.5: Let (V, *) be a neutrosophic groupiod. If V
has no neutrosophic subgroupoid; then we call V to be a
neutrosophic simple groupoid or simple neutrosophic groupoid.

Example 3.1.8: Let V = {Z;1, *; a * b =2a + 3b(mod 7)} be a
neutrosophic groupoid. Clearly V is a simple neutrosophic
groupoid.

Example 3.1.9: Let V = {Z;1, *; where a * b = 2a + b(mod 3)}.

*10 | I ]2
0121
I |21 0|1
21| I |21

be a neutrosophic groupoid. V is also given the table
representation. V is a simple neutrosophic groupoid.
Thus we have a class of simple neutrosophic groupoids.

Now we proceed onto define pseudo simple neutrosophic
groupoids.
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DEFINITION 3.1.6: Let (V, *) be a neutrosophic groupoid. If V
has no nontrivial pseudo neutrosophic subgroupoids then we
define (V, *) to be a pseudo simple neutrosophic groupoid.

We will illustrate this by some examples.

Example 3.1.10: Let V = {QI, *} be a neutrosophic groupoid.
Clearly V is a pseudo simple neutrosophic groupoid as V has no
nontrivial pseudo neutrosophic subgroupoids.

Note: If {0} < 'V are call {0} to be a trivial pseudo neutrosophic
subgroupoid.

Example 3.1.11: Let V = {Z1, *, where * is defined for any a,
b e Zl asa*b=3a+ Sb(mod 11)}, V is a neutrosophic
groupoid which is a simple pseudo neutrosophic groupoid as V
has no nontrivial pseudo neutrosophic subgroupoids.

DEFINITION 3.1.7: Let (V, *) be a neutrosophic groupoid if V' is
both a simple neutrosophic groupoid as well as pseudo simple
neutrosophic groupoid then we call (V, *) to be a doubly simple
neutrosophic groupoid.

We will illustrate this by some simple examples.

Example 3.1.12: Let V = {Z;1, *} where fora,b € Z;,[;a*b=a
+ 2b (mod 7). V is a doubly simple neutrosophic groupoid.

Example 3.1.13: Let V= {ZI, * wherea*b=8a+ 11b fora, b
e ZI} be a pseudo neutrosophic simple groupoid and is not a
doubly simple neutrosophic groupoid.

Thus we see a simple neutrosophic groupoid need not in
general be a doubly simple neutrosophic groupoid. In fact by
appropriately defining “*’ on Z,I; p a prime we can get a class
of doubly simple neutrosophic groupoids.

Also we have got a class of groupoids which are not doubly
simple neutrosophic groupoids. For take {N(Z,), *} =V (p a
prime) forms a class of neutrosophic groupoids which are not
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doubly simple neutrosophic groupoids as {Z,I, *} < {N(Z,), *}
is a nontrivial neutrosophic subgroupoid of V and {Z,, *}
{N(Z,) *} is a nontrivial pseudo neutrosophic subgroupoid of V.
Hence the claim.

Having defined substructures of a neutrosophic groupoid we
now proceed onto define the notion of neutrosophic groupoid
homomorphisms.

DEFINITION 3.1.8: Let (G, *) and (H, o) be two neutrosophic
groupoids. A map n : G — H is said to be a neutrosophic
groupoid homomorphism if the following conditions hold good.

@) nd=1
(ii)) n(a *b) = n(a) o n(b) for all a, b € G.

The interested reader is expected to give examples of them.
It is important to mention that I should be mapped only onto I
and no other element can be substituted as I stands for the
indeterminacy.

Another factor which is to be noted in case of these
algebraic structures is that neutrosophic groupoids may or may
not have identity. An element e in a neutrosophic groupoid such
that e * x =x * e = x for all x € G is called the identity. Even if
0 € G it does not in general imply 0 * x =x * 0 =x for all x €
G. Thus with these special properties it is not always possible to
define kernel of the homomorphism.

However we can define as in case of other algebraic
structures isomorphism. A homomorphism which is one to one
and onto is defined as an isomorphism.

Example 3.1.14: Let (G, *) = {Z/1, * is such that a * b=a + 2b}
and (H, o) = {N(Z,) ‘0’ is such that a 0 b = a + 2b} be any two
neutrosophic groupoids. Define 1 : (G, *) —> (H, o) by n (a * b)
= a o b for all a, b € G. It is easily verified n is a
homomorphism of G to H.

The interested reader can construct any number of neutrosophic
groupoid homomorphism.
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Having defined the notion of neutrosophic groupoid
homomorphism we can now proceed onto define the another
substructure.

DEFINITION 3.1.9: Let (G, *) be a neutrosophic groupoid. Let H
< G be a proper subset of G. We say H is a neutrosophic ideal
of G if the following conditions are satisfied;

i. (H, *)is asubgroupoid
ii. ForallgeGandh eH, g*handh * g arein H.

We will illustrate this situation by some examples.

Example 3.1.15: Let G = {0, 1, 21, ..., 151} = Z¢l. Define “*’
on G by a *b=2a+ 3b (mod 16]) for a, b € G. (G, *) is a
neutrosophic groupoid. Take H = {41, 81, 0, 121}, {H, *} is a
neutrosophic subgroupoid of (G, *).

It is easily verified that H is not a neutrosophic ideal of the
neutrosophic groupoid G. It is easily verified G has no
neutrosophic ideals.

Example 3.1.16: Let G = Zgl = {0, 1, 21, 31, 41, 51, 61, 71},
define * on G by a * b =2a + 4b (mod 8I) fora, b € G. (G, *) is
a neutrosophic groupoid. Take {0, 21, 41, 61} = H < G (H, *) is
a neutrosophic subgroupoid of (G, *).

It is easily verified that (H, *) is a neutrosophic ideal of (G, *).

Thus we see some neutrosophic groupoids contain
neutrosophic ideals and others do not contain any neutrosophic
ideals.

DEFINITION 3.1.10: Let (G, *) be a neutrosophic groupoid.

Suppose G has no proper neutrosophic ideals then we call (G,
*) to be ideally simple neutrosophic groupoid.
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Can we have non trivial ideally simple neutrosophic groupoids.
We explicitly show a class of such neutrosophic groupoids.

THEOREM 3.1.1: Let G = Z .1 ={0, 1 21, ..., 2"l - 1} (modulo

integers 2"I, n > 2}. Define a operation * on G by a * b = ma +
nb (mod 2"I) for all a, b € G and m + n = a prime in G and m, n
€ Z,,, (G, *) is a ideally simple neutrosophic groupoid.

Proof: Given G is a neutrosophic groupoid of a special order 2";
n > 2. Now the operation on G is also such that a * b =ma + nb
(mod 2") for all a, b € G with m + n = a prime in G and m,
negG.

Let H be any proper neutrosophic subgroupoid of G. Any
element in H is of the form {2°[ |s=1,2,...,2"}. Letm,n € G
such that m + n = prime.

Now for any odd prime a € G and b € H we must have a *
b to belong to H.

Thus ma + nb ¢ H as ma + mb # 2°[ forany s, s=1, 2, ...,
2". For if m + n = prime at least one of m or n must be of the
form p.q where q or p is an odd neutrosophic prime such that
ultimately m + n = a neutrosophic prime, » and ®» < 2".

This is not possible. Hence G = Z 1 is ideally simple

neutrosophic groupoid.

Note: When we say n is a neutrosophic prime; n = pl where p is
a prime. Likewise when we say pure neutrosophic modulo
integers we mean Z,1 = {0, [, 21, ..., (nl — I) = (n — 1)I}. Thus
Z:31= {0, 1, 21}; 21 + 1= 31 = 0 (mod 3I).
N(Z,)={a+bl/a,be Z,}. Clearly N(Z,) is neutrosophic
modulo integers (but N(Z,) # Z,1. Z,] = N(Z,)) and is not a pure
neutrosophic modulo integers. Further Z,I X Z, both are
different as one is pure neutrosophic where as other is pure
modulo integers; only |Z,l| = |Z,| =n and Z,] N Z, = {0}.

Now we proceed onto define new classes of neutrosophic
groupoids using Z,, Z, Q and R.
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3.2 New Classes of Neutrosophic Groupoids Using Z,

In this section we present some new classes of groupoids
constructed using modulo integers.

DEFINITION 3.2.1: Let Z,1 = {0, 1, 21, ..., (n— 1)I}; n > 3. For a,
b € Z,1\ {0} define a binary operation * on Z,I as follows a * b
= ta + ub (mod nl) t, u are two distinct elements in Z,1 \ {0} or
Z, \ {0}. + is the usual addition of two neutrosophic integers
modulo nl. {Z,1, (t, u), *} is a neutrosophic groupoid in short
denoted by Z,1 (t, u).

It is interesting to note for a given Z,I we can construct several
neutrosophic groupoids by varying t and u. (t # u; t, u € Z,l).
Clearly every neutrosophic groupoid Z,I (t, u) is of order n we
denote the class of neutrosophic groupoids built in this way
using Z,l by Z(n)I.

Example 3.2.1: Let Z;1 = {0, 1, 21}. The neutrosophic groupoid
{Z5], (1, 2I), *} = Z51 (1, 2I) is given by the following table.

*10 I ]2
0 ]2I] 1

I |1 21
21121 1[0

Clearly this neutrosophic groupoid is non associative and
non commutative and its order is 3.

Likewise {Zsl, (21, I), *) = Z5I (21, I) is also a neutrosophic
groupoid of order three given by the table.

*10 T[22
0|12
I ]2I]0 |1
211 1 |21
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We see from the tables that Z;1 (I, 21) is not the same as Zsl
(21, T). However it is important to note that we can have only
two neutrosophic groupoids built over Z;l.

Now consider the mixed neutrosophic modulo integers
N(Z;)={a+bl/a,beZ:}={0,1,2, 2, 1 + I, 1 + 2L, 2 + 2,
2 +1}. We will study how many neutrosophic groupoids can be
constructed using N(Z3).

Example 3.2.2: Let N(Z3) be the mixed neutrosophic integers
modulo Zs.
Define * on N(Z3) as follows:
a*b=la+(1+IDb
for all a, b € N(Zy3).
The table for this neutrosophic groupoid is given in the
following.

1 2 1 21 1+ | 2+1 | 1421 | 2+21

1+1 | 2+21 21 1 1 2+1 | 1+21 2

2+1 21 1+21 | 1+1 2 | 2+21 0

Nf—= D] %
N|—= OO

| 1421 | 2421 | 2+1 0 1+1 21 1

I 1 1421 2 0 21 1+ | 2+21 1 2+1

21 21 1 2+1 | 0 21+1 2 1+1 | 2+21

1+1 1+1 | 2+21 0 1 1421 | 2+1 21 2 1

2+ | 2+1 21 1 2 2+21 | 1421 0 1+1

1+21 | 1421 2 I 1+1 1 2+21 0 2+1 21

2+21 | 2421 0 1+1 | 241 2 21 1 1 1+21

It is easily verified P = (N(Z3), (1, 1 + I), *) is a non
associative structure. Thus P is a neutrosophic groupoid we see
using N(Z;) we can construct 56 number of neutrosophic
groupoids. Thus we have a very large number of groupoids
using N(Z3).

Example 3.2.3: Let N(Z,)= {0, 1, , 2,3, 2,3, 1 + [ 2+ 1,3 +
L1+2,2+2L,3+3 1+ 3L 2+ 3l 2+ 31} be the mixed
neutrosophic modulo integers 4.

We see o (N(Z4)) = 4> = 16 that is by order of N(Z,) we
mean the number of elements in N(Z,). We can construct 2 (15
C,), that is 210 number of mixed neutrosophic groupoids using
N(Zy).
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In view of this we have the following results. We call a
neutrosophic groupoid to be pure if it does not contain any
element x where x # 0 and x has no I present with it. (Z,1, (x, y),
*), X, y € Z,l is a pure neutrosophic groupoid. We call (N(Z,),
X, ¥), *); X, y € N(Z,) to be a neutrosophic groupoid which is
not pure.

The following theorems can be easily proved by any reader.

THEOREM 3.2.1: Let (Z,1, (x, y), *) be any pure neutrosophic
groupoid of order n. There exists exactly 2C,, _ ; C, number of
groupoids of order n built using Z,1.

THEOREM 3.2.2: Let (N(Z,), (x, y), *) be any neutrosophic
groupoid (which is not pure) built using N(Z). There exists
2 ., C5) number of such groupoids of order .

Let P = {0, 21} be a left ideal of Z4;I(u, v) where u=3 and v = 2.
Clearly P = {0, 21} is a right ideal of Z4I (v, u).

In view of this we have the following theorem the proof of
which is straight forward.

THEOREM 3.2.3: P is a left neutrosophic ideal of Z,I(u, v) if and
only if P is a right neutrosophic ideal of Z,I(v, u); v, u € Z,I |
{0}.

Suppose P is a left neutrosophic ideal of (N(Z,), (x, y), *); x,
y € N(Z,) \ {0} then P is a right neutrosophic ideal of (N(Z,), (¥,
x), *).

In view of this we have the following theorem, the proof of
which is left as an exercise to the reader.

THEOREM 3.2.4: P is a neutrosophic left ideal of (N(Z,), (t, u),

*) if and only if P is a neutrosophic right ideal of (N(Z,), (u, 1),
*) where u, t € N(Z,).
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THEOREM 3.2.5: No neutrosophic groupoid (Z,, (t, u), *)
[N(Z,), (t, u), *)] has {0} to be an ideal.

Proof: Follows by the very operation in Z,I or (N(Z,)).

THEOREM 3.2.6: The neutrosophic groupoid Z,I (t, u) is an
idempotent groupoid if and only if t + u =1 (mod n).

Proof: Recall a neutrosophic groupoid Z,I (u, t) is an
idempotent neutrosophic groupoid if and only if a * a = a (mod
nl) foralla € Z,I (u, v).

Nowa*a=at+uva=(ttu)a=al(modnl)ast+u=1I
(mod nl). This is possible if and only if t + u =1 (mod n).

We will illustrate this situation by an example.
Example 3.2.4: Let Z¢l (21, 5I) be a pure neutrosophic

groupoid.
Take 0 * 0 = 0 (trivial). Consider

[*1 = 2L

[*#5IxI = 2I+5I
= I (mod 6l).

21 * 21 = 20[*2[+5Ix2I
= 41+ 10I
= 2I (mod 6l).

So

21 * 21 = 21

31*31 = 3Ix2I+3Ix5I
= o6l+15I
= 31 (mod 6])

41 * 41 = 4] (easily proved)

SI* 51 = 5L

Thus Zgl (21, 51) is a pure neutrosophic idempotent groupoid.
Infact there exists 4 neutrosophic idempotent groupoids
constructed using Zgl given by Z¢l (21, 51), Z¢l (51, 21), Z¢l (31,
4I) and Z¢ (41, 31). In case of Zol we see there exists 7
neutrosophic idempotent groupoids built using Zol.
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THEOREM 3.2.7: Let Z,1 (x, y) be a neutrosophic groupoid. If n
is even there exists even number of neutrosophic idempotent
groupoids. If n is odd then there exists an odd number of
neutrosophic idempotent groupoids.

This can be proved using simple number theoretic techniques.
Consider the neutrosophic groupoid Z¢I (31, 41). Clearly Zl
(31, 4I) is a neutrosophic semigroup.

For
(a*b)*c = (Bla+4lb)*c¢
= (Blat+4lb)3l+4lc
= 3la+4lc.
a*(b*c) = a*[3Ib+4Ic]
= 3al+ (3Ib+4lc) 41
= 3Ja+4lc.

So(a*b)*c=a*(b*c)foralla,b,c e Zgl.

Thus Z¢I (31, 41) is a only neutrosophic semigroup and Zgl
(41, 31) is also a neutrosophic semigroup and not a neutrosophic
groupoid as the operation * is associative. We see 41 * 41 =
4I(mod 6I) and 31 * 31 = 3I(mod 61).

In view of this we have in neutrosophic groupoids the following
result.

THEOREM 3.2.8: Let Z,I (u, t) be a neutrosophic groupoid. If
=t (mod nl) and v’ = u (mod nl) then Z,I (u, t) and Z,I (1, u) are
neutrosophic semigroups.

The proof is straight forward.

THEOREM 3.2.9: Let Z,I (t, u) be a neutrosophic groupoid. If n
is a prime number no groupoid built using with the operation x
*y =ux + yt (mod nl); u, t € Z,1 is a neutrosophic semigroup.

The proof of this theorem is also left as an exercise for the
reader.
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Recall as in case of groupoids. We say a neutrosophic groupoid
G is normal if
. xG=Gx
ii. G (xy)=(Gx)y
ii. x(yG)=xy G forallx,y € G.

Let G be a neutrosophic groupoid H and K be any two
proper neutrosophic subgroupoids of G with H N K = ¢. We say
H is conjugate with K if there exists x € G such that H = xK or
Kx.

Several properties enjoyed by groupoids built using Z,(u, v)
will be true for neutrosophic groupoids Z,I (u, v).

However for this new class of neutrosophic groupoids
(N(Zy), (u, v), *) we do not know whether all properties are
derivable. However every neutrosophic groupoid Z,I(u, v) <

G\I(Zn) (u> V): *)
Now we will define Smarandache neutrosophic groupoid.

DEFINITION 3.2.2: Let G be a neutrosophic groupoid under the
operation *. If H < G; H a proper subset of G is such that (H,
*) is a neutrosophic semigroup then we call G to be a
Smarandache  neutrosophic  groupoid  (S-neutrosophic
groupoid).

It is left as an exercise for the reader to prove that every
neutrosophic subgroupoid of a Smarandache neutrosophic
groupoid need not in general be a Smarandache neutrosophic
subgroupoid.

We can build yet a new class of neutrosophic groupoids
(Z,1, *) which is still restricted neutrosophic groupoid. To this
end we say two neutrosophic number x, y € N(Z,) or Z,I are
relatively neutrosophic prime if (x, y) =1 or (x, y) = 1. If n = 25;
(8L, 9I) = I so 81 and 9I are relatively neutrosophic prime.

Take 2 + I, 7) = 1 so 2 + 1 and 71 are relatively
neutrosophic prime. We do not differentiate (x, y) =1 or (X, y) =
I; x,y € N(Zy).
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DEFINITION 3.2.3: Let Z,1 = {0, I, 21, ..., (n-1)I}, n > 3, n < oo
Define * a closed binary operation on Z,I as follows. For any a,
b eZldefinea*b=ta+ub; (tu=1t=u),tuecz,I\{0}.

We see (Z,1, (t, u), *) is a neutrosophic groupoid defined as
prime special neutrosophic groupoid.

Take for example the set Zgl.

Example 3.2.5: (Z¢l, (31, 51), *) is a prime special neutrosophic
groupoid. (Zgl, (21, 41), *) is not a prime special neutrosophic
groupoid. (Z¢l (I, 41), *) is also a prime special neutrosophic
groupoid (Zgl, (21, 31), *) is also a prime special neutrosophic
groupoid. (Zgl, (21, 5I), *) is a prime special neutrosophic
groupoid. Thus we have using Z¢l, 18 prime special
neutrosophic groupoids.

Further we see the class of prime special neutrosophic
groupoids built using Z,] is contained in the class of
neutrosophic groupoids built using Z,1.

It is an interesting and important problem to study the number
of prime special neutrosophic groupoids built using Z,l.

Now {Z,I, (t, u), *} is a non prime special neutrosophic
groupoid if (t, u)y=rlift,u € Z,I; (t, u) =rift,u € N(Z,), r €
Z,. We can also derive almost all properties for the new class of
prime special neutrosophic groupoids.

Example 3.2.6: Let (Zgl, (21, 4I), *) be a non prime special
neutrosophic groupoids which is not a prime special
neutrosophic groupoid. (Zgl, (41, 4I), *) is also a neutrosophic
groupoid which is non prime special neutrosophic groupoid.

Based on this we define yet another new class of neutrosophic
groupoids.

DEFINITION 3.2.4: Let {Z,, * (t, tI)} be a neutrosophic

groupoid. This neutrosophic groupoid is known as the equal
special neutrosophic groupoid.
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We see equal special neutrosophic groupoid is not a prime
special neutrosophic groupoid or non prime special
neutrosophic groupoid.

We will illustrate this by an example.

Example 3.2.7: Let (Zsl, (21, 2I), *) be a equal special
neutrosophic groupoid given by the following table.

0| I |2I|31]4]
0 |24 1 ]3I
I |24 |1 |31]O
21 (41| 1 |31 0 |21
301 [31]0 21|41
41|31 0 |24 | I

Consider (21 * 31) * 41 =31, 21 * (31 * 4I) = 21 (* 41) = 21

Thus (Zs1, (21, 21), *) is a neutrosophic groupoid. Thus we
have 3 neutrosophic groupoids called the equal special
neutrosophic groupoids.

THEOREM 3.2.10: Let (Z,1, (tI, tl), *) be a equal special
neutrosophic groupoid. There exists (n — 2) equal special
neutrosophic groupoids.

Follows using number theoretic methods.

THEOREM 3.2.11: The equal special neutrosophic groupoids
are commutative neutrosophic groupoids.

Proof: Given (Z,1, (tI, tI), *), t < 3 is a equal special
neutrosophic groupoid. We have

a*b = tla+tlb
= (at+b)tl,
b*a = tlb+tla.
= (b+a)tl

Soa*b=>b*aforall a, b € Z,I. Thus (Z,l, (t, tI), *) are
commutative neutrosophic groupoids.
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THEOREM 3.2.12: (N(Z,), (i, tl), *) is a equal special
neutrosophic groupoid. Clearly (Z,1, (11, tl), *) < (N(Z,) (11, t]),
*). Thus (Z,, (¢, tl), *) is a equal special neutrosophic
subgroupoid of the equal special neutrosophic groupoid.

THEOREM 3.2.13: The equal special neutrosophic groupoids
(Z,1, (t, 1), *) are normal neutrosophic groupoids.

Proof: Clearly the equal special neutrosophic groupoid (Z,], (t,
t), *) are normal for we have a (Z,], (t, t)) = (Z,I (t, t)) a for all a
e Z,L

Also it is easily proved ((Z,l, (t, t)] x) y = (Z,I (t, )] (xy)
and (xy) (Z,I(t, t)) = x (y (Z,L, (t, 1)), p a prime.

Thus we have a new class of equal special neutrosophic
normal groupoids.

Recall a neutrosophic groupoid G is said to be a P- groupoid
if (xy) x =x (yx) forall x,y € G.

We will first illustrate it by an example.

Example 3.2.8: Z¢l (41, 4]) is a neutrosophic P — groupoid. For
take a, b € Zgl (41 4]);
a *(b*a) = a*(4lb+4al)
= 4al + 41 (4Ib + 4al)
= 4al+ 16Ib + 16al
= 20al + 16lb. €]

(a*b)*a = (4al+4bl)*a
16al + 16bl + 4al
= 20al + 16Ib. 2)

We see (1) and (2) are the same. Hence Zgl (41, 4]) is a
neutrosophic P-groupoid.

We have a class of neutrosophic P-groupoids which is evident
from the following theorem.

THEOREM 3.2.14: The neutrosophic groupoids Z, (t, t) are
neutrosophic P groupoids, t € Z,1.

125



Proof: For every X,y € Z,l (t, t) we have

x*¥(y*x) = x*(tytwx)
= tx+ty+tx

x*y)*x = (tx+ty)*x
= t2x+t2y+tx.

Thus (x *y) *x=x* (y *x) for all x, y € Z,[ (t, t). Hence
the claim.

We see we have infact a large class of neutrosophic P-groupoids
which is evident from the following theorem.

THEOREM 3.2.15: The neutrosophic groupoids (N(Z,), (t, t), *)
are P- groupoids.

The proof of the above theorem is left as an exercise for the
reader to prove.

We say a neutrosophic groupoid G is said to be an
alternative neutrosophic groupoid if (xy) y = x (yy) for all x, y
e G.

We first illustrate by an example the neutrosophic groupoid Zol
(51, 51) which is not an alternative groupoid.

Example 3.2.9: Let Zol (51, 51) be a neutrosophic groupoid. To
provex * (y*y)=(x*y)*yforx,y € Zl .

Consider

x*(y*y) = x*(Sly+5ly)
= 5Ix + 251y + 251y
= Sx+7ly+7ly
= SIx+ Sly.

Take

x*y)*y = (SIx+5ly)*y
= 25Ix +25Iy + 5y
= TIx+3ly.

126



Thus x * (y *y) # (x *y) * y for all x, y € Zol (51, 5I). Hence
Zol (51, 51) is not an alternative neutrosophic groupoid.

In view of this we have the following theorem.

THEOREM 3.2.16: Z,/ (¢, t) are not alternative neutrosophic
groupoids t € Z,I | {0}.

Proof: Consider x * (y * y) for any x, y € Z,I (t, t).

x*(y*y) = x*(ty+ty)

= tx+ty+tly D
x*y)*y = (x+ty)*y
= tx+ty+ty )

Clearly (1) and (2) are not equal for all t.
Hence the claim.

THEOREM 3.2.17: All neutrosophic groupoids Z,1 (t, t), n not a
prime t € Z,I\ {0} with ¥ =t(mod nl) are alternative groupoids.

Proof: Given Z,l (t, t) is a neutrosophic groupoid such that n is
not a prime and t* = t (mod nl). (t € Z,I)

Consider
xFy*y) = F(ytty)
= Wx+ty+ty
= txttytty (1)
Now
x*y)*y = (x+ty)*y
= t2x+t2y+ty
= WXttyfty 2)

From (1) and (2) we see Z,I (t, t) is a neutrosophic
alternative groupoid.

The following theorem is left as an exercise for the reader to
prove.
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THEOREM 3.2.18: Let (N(Z,), (t, t), *) be a neutrosophic
groupoid where £ = t (mod nl), n a non prime. Then (N(Z,), (t,
1), *) is an alternative neutrosophic groupoid.

Thus we have non trivial class of alternative neutrosophic
groupoids as well as a class of neutrosophic groupoids which
are not alternative.

3.3 Neutrosophic Polynomial Groupoids

In this section we for the first time define the class of
neutrosophic polynomial groupoids built using Z,I or N(Z,) or
Z1 or N(Z) or QI or N(Q) or N(R) or RI or N(C) or CI.

a,eZ In<oo
i=0

Z,l[x]= {i aixi

X a variable or an indeterminate}.

NZo)[x] = {iaixi

i=0

a,eN(Z,),n Soo}.

Clearly Z,I [x] = N (Z,) [x].

ZL[x] = {Zaix a, eZln< oo}
i=0

N(©2Z)[x] = {i ax'|a, e N(Z),n< oo}

and ZI[x] < N(Z)[x]. Similar notations for RI, N(R) and so on.
Further ZI [x] < QI [x] < RI [x] < CI [x] and N(Z)[x] <

N(Q)[x] € N(R)[x] < N(C)[x]. Now we can build finite classes
of neutrosophic groupoids of finite or infinite order using Z,I[x]
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and N(Z,)[x] and infinite classes of neutrosophic groupoid of
infinite order using QI [x] or ZI [x] or N(Q)[x] or N(Z)[x] and
SO on.

Groupoids built using N(Z,)[x], QI[x] and so on will in
general be known as polynomial neutrosophic groupoids.

DEFINITION 3.3.1: Let G = {Z,1 [x], * (v, q¢); pq € Z, \ {0}; p
and q are primes} be such that if
ax) =aptax + .. +a,x"

and
b(x) =by+b;x+ ... +b,x"
then
a(x) *b(x) = ap*by+ (a;*b)x + ... + (a, * b,)x"

+(0 *b, A1) X"+ ..+ (0 *b,) X"
= (pap + gbg)(mod nl ) + (pa; + gb;)(mod nl)x
+ (pas + gby)(mod nl) X’ + ... + (pa, + qb,)
(mod nl) X" + ... + (p0 + gb,,) (modnI) x"
where a;, b; € Z,1.

(If m < n or m = n one can easily define * on Z,I [x]). Thus
{Z1[x], * (p, q) /' p, g € Z,\ {0}, p and q primes} = G is a
neutrosophic polynomial groupoid of modulo integers of level
one.

We will illustrate this situation by some examples.

Example 3.3.1: Let G = {Z,1[x], *, (3, 5)} be the polynomial
neutrosophic groupoid of modulo integer of level one.

Example 3.3.2: Let G = {Zol [x], *, (7, 11)} be the polynomial
neutrosophic groupoid of modulo integers of level one.

Clearly we see the cardinality of both the polynomial
neutrosophic groupoids given examples 3.3.1 and 3.3.2 are of
infinite order.

Now we give also finite order polynomial neutrosophic
groupoids of level one.
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Example 3.3.3: Let

G= {iaixi

i=0

a, € Z4I,(1,3)}

be a neutrosophic polynomial groupoid of finite order.

Example 3.3.4: Let

G= {ZA‘: ax'
i=0

a e 2231,(5,13)}

be the finite neutrosophic polynomial groupoid.

Example 3.3.5: Let

G= {i ax'
=0

a, eN(Z,);(7,1 1)}

be an infinite neutrosophic polynomial groupoid as n < oo.

Example 3.3.6: Let
G= {Zaixi ;8 € N(Zg3), (23, 29); n < oo}

i=0
is an infinite neutrosophic polynomial groupoid.

Example 3.3.7: Let
G={> ax';a eN(Z);(l,2)}
i=0

be a finite neutrosophic polynomial groupoid.

Example 3.3.8: Let

G= {iaixi
=0

a € N(ZG);(3,5)}

is a finite neutrosophic polynomial groupoid built using N(Z).
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Now we can define neutrosophic polynomial integer (real or
rational or complex) groupoid similar to the one given in the
definition 3.3.1.

We will illustrate this only by examples.

Example 3.3.9: Let

G= {Zn: ax'
i=0

n<oo;a, € ZI;(13,17)}

be a neutrosophic integer coefficient polynomial groupoid.

Example 3.3.10: Let

G= {Zn:aixi

i=0

n<o;a, € 321;(2,19)}

be the neutrosophic integer coefficient polynomial groupoid.

Example 3.3.11: Let

G= {iaixi

i=0

n<o;a, € ZI;(23,53)}

be a neutrosophic polynomial integer groupoid.

Example 3.3.12: Let G = {Zax’; a, € N(Z); (3, 13)} be a
neutrosophic polynomial integer groupoid of infinite order.

Example 3.3.13: Let

G= {iaixi

i=0

n<o;a, € N(Z);(19, 2)}

be a neutrosophic polynomial integer groupoid of infinite order.

Example 3.3.14: Let

G= {iaixi

i=0

a, € N(Z);(3,17)}
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be an infinite neutrosophic polynomial integer groupoid.

Example 3.3.15: Let

19 )
P= {Zaix‘

i=0

a € ZI;(3,29)}

be an infinite neutrosophic polynomial integer groupoid.

DEFINITION 3.3.2: Let

G= {Zaixi,*,ai GZI;(PaQ)}
i=0

be a neutrosophic polynomial integer groupoid. If P < G is such
that P is a neutrosophic polynomial integer groupoid under the
operations of G then we call P to be a neutrosophic integer
polynomial subgroupoid of G.

It is to be noted in this definition we can replace ZI by N(Z) or
Z,1 or N(Z,,) or N(Q) or N(R) or N(C) or QI or RI or CI.

We will illustrate however all these by some simple examples.

Example 3.3.16: Let
G= {Zaixi,n >m,3, € N(le),(3,7)}

i=0

be a neutrosophic polynomial groupoid.
Take

10
P= {Zaixi,ai € N(le),(3,7)} cG;
i=0

P is a neutrosophic polynomial subgroupoid of G.
Consider

20
X= {Zaixl,ai € (ZIZI),(3,7)} cG;

i=0
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is also a neutrosophic polynomial subgroupoid of G.
Let

F= {i ax'

i=0

a, e Z1212(3a7)} cG;

be a neutrosophic polynomial subgroupoid of G. We see P and
X are finite neutrosophic polynomial subgroupoids of G where
as F is an infinite neutrosophic polynomial subgroupoid of G.

Example 3.3.17: Let

G= {i ax'

i=0

a,eZ,Iin< oo,(3,5)}

be an infinite polynomial neutrosophic modulo integer
groupoid.
Let

25 .
P= {Z ax'
i=0

a, e Z7I;(3,5),*} cG

be a finite polynomial neutrosophic subgroupoid of G.
Consider

X= {iaixi
i=0

X is an infinite polynomial subgroupoid of G.

a, Z7I,(3,5),*} cG;

Example 3.3.18: Let

G= {i:aixi

i=0

a e N(Z),*,(3,17)}

be an infinite polynomial neutrosophic integer groupoid; G has
no finite polynomial neutrosophic subgroupoid. However G has
infinitely many polynomial neutrosophic subgroupoids.

Take

P= {iaixi

i=0

a, e N(mZ),*,(3,17)} cG
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are all infinite polynomial integer neutrosophic subgroupoids of
G.

Since m = 2, 3, ..., © we have infinitely many such
subgroupoids but G has no finite polynomial neutrosophic
subgroupoids.

Example 3.3.19: Let

G= {iaixi
i=0

a. € QL*, (29,3)}

be a neutrosophic polynomial rational groupoid of infinite order.
G has infinitely many polynomial neutrosophic subgroupoids of
infinite order but has no neutrosophic polynomial subgroupoid
of finite order.

Take

P= {i“aixzi

i=0

a, QI,(29,3)} c G;

P is an infinite neutrosophic polynomial subgroupoid of infinite
order.

Example 3.3.20: Let

0
G= {Z ax'
=0

a e N(Q),*,(—17,23)}

be a neutrosophic polynomial rational neutrosophic groupoid of
infinite order.
Take

10 )
W= {Zaix‘
i=0

is also an infinite polynomial rational neutrosophic subgroupoid
of G.

a;, € N(Q)’*a(_17523)} < G

Example 3.3.21: Let

G= {i“aixzi

i=0

n<oo,a, € N(R),*,(—2,7)}
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be an infinite polynomial real neutrosophic groupoid.
Let

P= {Zaixi:*a(_za 7),ai € N(Q)} < Ga
i=0
P is an infinite polynomial real neutrosophic subgroupoid of G.

Example 3.3.22: Let
26
G= {Z ax'
i=0

be an infinite complex polynomial neutrosophic groupoid.
Take

a, e N(C),*,(7,17)}

M= {iaixi
i=0

M is also an infinite complex polynomial subgroupoid of G.

a, e RI,*,(7,17)} c G,

Now having seen examples of these groupoids now we proceed
onto state that all properties and definitions like ideals of a
groupoid, normal groupoid, normal subgroupoid, conjugate
subgroupoids and so on which can always be adopted to
neutrosophic polynomial groupoids with appropriate simple
modifications.

Only in case of homomorphism m of neutrosophic
groupoids G and G'; we demand n(I) = I and n should be a
groupoid homomorphism. By no means I should be mapped on
to any real number for the indeterminate can never be
compensated, it should always continue to remain as an
indeterminate. The reader is expected to give some examples of
polynomial neutrosophic groupoid homomorphism.

We expect the reader to study the concept of substructures
of polynomial neutrosophic groupoids.

We call a polynomial neutrosophic groupoid G to be a
Smarandache polynomial neutrosophic groupoid if G has a
proper subset S where S under the operations of G is a
polynomial neutrosophic semigroup.

Now we define yet another new substructure in case of
neutrosophic polynomial groupoids.
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DEFINITION 3.3.3: Let

G= {i ax'
i=0

be a neutrosophic polynomial groupoid of level one.
Let

a, e N(Q)* (p,q)}

p= {Z“ixi‘af € Q»*°(p’q)}"

p, q are primes in Q < G. P is clearly a polynomial
(sub)groupoid but is not a neutrosophic polynomial groupoid.
We call P to be a pseudo neutrosophic polynomial subgroupoid
of G. If G has no pseudo neutrosophic polynomial subgroupoid
then we call G to be a pseudo simple neutrosophic polynomial
groupoid.

We will illustrate both these situations by some simple
examples.

Example 3.3.23: Let
8
G= {Z aixi
i=0

be a neutrosophic polynomial rational groupoid.
Let

a, e N(Q),*,(3,7)}

W= {iaixi

i=0

a, e 3Z,*,(3,7)} cG

is a pseudo neutrosophic polynomial subgroupoid of G.

Example 3.3.24: Let

G= {Zn:aixi

i=0

a, NI,*,(B,IB)}

be a polynomial neutrosophic groupoid we see G has
polynomial neutrosophic subgroupoids but G has no pseudo
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neutrosophic polynomial subgroupoid. Thus G is a pseudo
simple neutrosophic polynomial groupoid.

Example 3.3.25: Let

G= {i ax'
=0

a, e RI,*,(3,23)}

be a neutrosophic polynomial groupoid. It is easily verified G
has no pseudo neutrosophic polynomial subgroupoids hence G
is a pseudo simple neutrosophic polynomial groupoid.

In view of this we have the following theorem.

THEOREM 3.3.1: Let

a,eZI(ZlorRlorQlorCIl), * (p, q);

G= {i ax'

i=0

p and q primes in Z'} be a neutrosophic polynomial groupoid.;
clearly G is a pseudo simple neutrosophic groupoid.

Proof: Since Z,1 or ZI or QI or RI or QI are pure neutrosophic
sets we see the polynomial groupoids G built using them cannot
have even a single non zero real coefficient. Hence G is always
a pseudo simple neutrosophic groupoid in such cases. However
G can have neutrosophic polynomial subgroupoids.

We give yet another theorem which gurantees the existence of
pseudo neutrosophic polynomial subgroupoids.

THEOREM 3.3.2: Let

a,eN(Z, )(or N(Z)or N(Q)or N(R)or N(C)),

G= {Zn: ax'

i=0

* (b, q)}; be a neutrosophic polynomial groupoid. G has non
trivial pseudo neutrosophic polynomial subgroupoid.
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Proof: Take

a,eZ cN(Z,)

P= {i ax'

i=0

(orZ=N(Z), Qe N (Q orRc N (R)or C= N (C), *, (p, )}
c G. P is clearly a pseudo neutrosophic polynomial
subgroupoid of G.

Hence the theorem.

Example 3.3.26: Let
G= {Z ax'
i=0

be a neutrosophic polynomial groupoid.
Take

a; €N(Zy,), (7,5), *}

ai € le > (7a 5)9 *} - Ga

i=0

W= {Z“aixi
W is a pseudo neutrosophic polynomial subgroupoid of G.
Example 3.3.27: Let

G= {i ax'
i=0

a,eZ,1* (3,17)}

be a neutrosophic polynomial groupoid. Consider M = {Za;x' | a;
e {0, 5I, 101, 151, 201}, (3, 17)} < G; M is a neutrosophic
polynomial subgroupoid of G. However G has no pseudo
neutrosophic polynomial subgroupoids. Thus G is a pseudo
simple neutrosophic polynomial groupoid.

Note: If a neutrosophic polynomial groupoid has no
neutrosophic polynomial subgroupoids as well as no pseudo
neutrosophic polynomial subgroupoids then we define G to be a
doubly simple neutrosophic polynomial groupoid.

Example 3.3.28: Let G = {ax” | a; € Zs I, *, (3, 2)} be a

neutrosophic polynomial groupoid. Clearly G is a doubly simple
neutrosophic polynomial groupoid.
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Next we proceed onto define level two neutrosophic
polynomial groupoids.

DEFINITION 3.3.4: Let G = {Zux' | a; € Z, (or N(Z,) or ZI or
N(Z) or RI or QI or N(Q) or N(R)), * (p, q) such that p and q
are just numbers not necessarily prime but (p, q) = 1}; G is
defined to be a polynomial neutrosophic groupoid of level two.

We will illustrate by a few examples before we proceed onto
define other levels of neutrosophic polynomial groupoids.

Example 3.3.29: Let

G= {i ax'
i=0

a, eZl,* (9,16)}

be the neutrosophic polynomial groupoid of level two.
Example 3.3.30: Let

G= {i:aixi
i=0

a, e N(Q), *, (24, 49)}

be the neutrosophic polynomial rational groupoid of level two.
Example 3.3.31: Let

G= {Zn: ax'
i=0

a, €Z,l, (9,8), %}

be a neutrosophic polynomial groupoid of level two.
Example 3.3.32: Let

G= {Zn:aixi
i=0

a, e N(C), *, (24, 35)}

be the neutrosophic polynomial complex groupoid of level two.
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Substructures as in case of level one groupoids can be
defined in case of level two neutrosophic polynomials
groupoids also.

Further from the very context one can easily understand the
level to which the polynomial neutrosophic groupoid belongs
to. Now we define level three polynomial neutrosophic
groupoids.

DEFINITION 3.3.5: Let

G= {Zn:aixi a,eN(Q)

(or QI, Z,I or N(Z,) or RI or N(R) or N(C) or CI) /n <o, * (p,
q); (p.q) =d=1,p q eZ)} Gis apolynomial neutrosophic
groupoid defined as level three neutrosophic polynomial
groupoid.

We will illustrate this by some simple examples.
Example 3.3.33: Let

G= {i ax'

n<ow,a, eZ.1,* (3, 15)}

i=0

be a neutrosophic level three polynomial groupoid.

Example 3.3.34: Let

G= {iaixi

i=0

a e 71, *, (7, 147)}

be a neutrosophic polynomial groupoid of level three.
Example 3.3.35: Let

G= {i“aixi
i=0

a, eN(R), *, (3,42)}

be the neutrosophic polynomial groupoid of level three.
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We can define substructure of level three neutrosophic
polynomial groupoids as in case of level one neutrosophic
polynomial groupoids.

Now we proceed onto define level four neutrosophic
polynomial groupoids.

DEFINITION 3.3.6: Let

G= {i ax'
i=0

a,eN(Z,)

(or Z,1 or N(Z) or ZI or RI or N(R) or N(Q) or QI or CI or
N(C)), * (t, t); t € Z'} be a neutrosophic polynomial groupoid.
G is defined as the neutrosophic polynomial groupoid of level

four.

We will illustrate this situation by some simple examples.
Examples 3.3.36: Let

29 _
G= {Z ax'
i=0

a, €Ql, * (5,95}

be a neutrosophic polynomial groupoid of level four.
Example 3.3.37: Let

G= {i ax'
i=0

a. e N(R), *, (22, 120)}

be a neutrosophic polynomial groupoid of level four.

Example 3.3.38: Let

G= {iaixi

i=0

a; e N(Z,,), *, (8, 18)}

be a neutrosophic polynomial groupoid of level four.
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Substructure of these groupoids can be constructed as in
case of other level groupoids.
Finally we now proceed onto define level five groupoids.

DEFINITION 3.3.7: Let

G= {i ax'
i=0

a,eN(Z,)

(or Z,1, ZI, N(Z) or QI or N(Q) or N (R) or RI or CI or N (C)),
* (0,t)t 20, t € Z'}) be a neutrosophic polynomial groupoid.
We define G to be a polynomial neutrosophic groupoid of level
five.

We will illustrate this by some examples.
Example 3.3.39: Let

G- {iaixi 2, eN@), %, G0}

be a polynomial neutrosophic groupoid of level five.

Example 3.3.40: Let

G= {iaixi

i=0

a; € N(le)’ *7 (078)}

be a neutrosophic polynomial groupoid of level five.
Example 3.3.41: Let
G= {Z“aixi
i=0

be a neutrosophic polynomial groupoid of level five.

a,eZ,l,* (0,9)}

Example 3.3.42: Let

G= {i ax'
i=0

a, €QIl, * (25,0)}
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be a neutrosophic polynomial groupoid of level five.

Now we give results about these neutrosophic polynomials
groupoids.

THEOREM 3.3.3: The neutrosophic polynomial groupoids of
level four are commutative groupoids.

Proof: Follows from the very fact if G is any neutrosophic
polynomial groupoid of level four then for a(x), b(x) € G. We
have a(x) * b(x) = ta(x) + tb(x) and b(x) * a(x) = tb(x) + tb(x),
hence G is commutative groupoid. In case of building groupoids
using Z,l we can choose t,u € Z,l.

THEOREM 3.3.4: Let G be a neutrosophic polynomial groupoid
of the form

G= {Zn: ax'

i=0

a,€Z,1,paprime, * (1, tl); il < pl}

then G is a neutrosophic polynomial groupoid.
The reader is expected to prove the theorem.

THEOREM 3.3.5: Let
G= {iaixi sn<ooa €Z,* (1 tl)}
i=0
be a neutrosophic polynomial groupoid of level four; then G is
a neutrosophic polynomial P-groupoid.
Proof'is obvious
THEOREM 3.3.6: Let

G= {Zn: ax'

n<ow,a,€Z 1 paprime, * (i, tl); il < pl}
i=0

be a neutrosophic polynomial groupoid of level four. G is not a
neutrosophic polynomial alternative groupoid.
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Proof is left as an exercise for the reader.

THEOREM 3.3.7: Let

G= {i ax'

i=0

a,€Z,1; nisnotaprime, * (1, tl)}

is a neutrosophic alternative polynomial groupoid if and only if
(t1)? =tI (mod n).

Proof: Clearly this is proved using the alternative identity.

THEOREM 3.3.8: Let

G = {i ax'

i=0

aeZl, * (0t

is a neutrosophic polynomial P-groupoid and neutrosophic
polynomial alternative groupoid if and only if (tI)* =tI (mod n).

Proof is left as an exercise for the reader.

Example 3.3.43: Let

G= {Zglaixi

i=0

a eZ]I,* (41, 51)}

be a Smarandache polynomial neutrosophic groupoid.

For
8
A= {Zﬁxi} =G
i=0

is a semigroup.
Also
a, € {L,3L,5I}, *, (4L, 5D} < G

P= {iaixi
i=0

is not Smarandache right ideal of G but P is a Smarandache left
ideal of G.
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Example 3.3.44: Let

G= {iaixi

i=0

a,eZJ,* (21, 61)}

be a polynomial groupoid. Let

A= {Zglaixi

i=0

a, € {0,21,41 61}, (2L 61)} = G

be a Smarandache subgroupoid. It is easily verified A is a
Smarandache normal subgroupoid of G.

Example 3.3.45: Let

G= {iaixi

i=0

a,eZ,1,*, (51, 6I)}

be a neutrosophic polynomial groupoid. It is easily verified G is
a Smarandache strong Moufang groupoid.

Example 3.3.46: Let

G= {iaixi

i=0

a eZ,1,*, (31,91)}

be a neutrosophic polynomial groupoid. G is a Smarandache
Moufang groupoid.

Example 3.3.47: Let

G= {Zglaixi

i=0

a. eZ,1,* (31, 4I)}

be a neutrosophic polynomial groupoid. It is easily verified that
G is a Smarandache strong Bol polynomial neutrosophic
groupoid.

Example 3.3.48: Let

G= {iaixi

i=0

a eZ,1,8, (2L 30)}
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be a neutrosophic polylnomial groupoid. It is easily verified G
is a Smarandache Bol groupoid and is not a Smarandache strong
Bol groupoid.

Example 3.3.49: Let

120
G= {Zaix'

i=0

a eZ],8, (41, 31}

be a neutrosophic polynomial groupoid. G is a Smarandache
strong neutrosophic polynomial P-groupoid.

Example 3.3.50: Let

27 .
G= {Zaix‘

i=0

a eZ,1l,*, (21 30)}

be a neutrosophic polynomial groupoid. G is a Smarandache
strong neutrosophic polynomial P-groupoid.

Example 3.3.51: Let

P= {i ax'

i=0

a,eZ,l,* (71, 8)}

be a neutrosophic polynomial groupoid. P is a Smaradanche
strong alternative neutrosophic polynomial groupoid.

Example 3.3.52: Let

G= {iaixi

i=0

a,eZJ,* (1, 31)}

be a neutrosophic polynomial groupoid. Clearly G is not a
Smarandache groupoid.

THEOREM 3.3.9: Let
7
G= {Z a,.x"
i=0

be a polynomial neutrosophic groupoid. If t + u =1 (mod nl)
then G is a Smarandache neutrosophic idempotent groupoid.

aeZ]1,*, (tl,ul)}
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The proof is obvious by using simple number theoretic
techniques.

THEOREM 3.3.10: Let

G= {i ax'

i=0

aeZl,* (tlul)/t+u=1(modn)}

be Smarandache neutrosophic polynomial groupoid. G is a
Smaradache P-groupoid if and only if 1 =tI (mod n) and v’ I =
ul (mod n).

Proof is left as an exercise for the reader.

THEOREM 3.3.11: Let

G= {Z ax' /al. eZ 1, * (i, ul) with tl + ul =1 (mod nl)}

i=0

be a neutrosophic polynomial groupoid, G is a Smaradache
strong Moufang groupoid if and only if 1 =tI (mod n) and u’l
= ul (mod n).

Proof is left as an exercise for the reader.

Several results of this type can be derived for neutrosophic
polynomial groupoids built using Z,1.

3.4 Neutrosophic Matrix Groupoids

In this section we for the first time introduce a new class of
neutrosophic matrix groupoids using Z,I or N(Z,) or ZI or N(Z),
QI or N(Q), RI or N(R) or N(C) or CI. We define some new
classes and enumerate a few properties about them. Let X = (a,
a, ..., a,) where a; € Z,1 or N(Z,) or QI or RI or so on. We call
X a neutrosophic row matrix with entries from Z,I or N(Z,) or
RI or QI or so on.
Likewise
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Y.
p=|?
Ym

where y; € N(R) or N(Z,) or Z,I or QI or N(Q) or so on is a
neutrosophic column matrix.

Now take
mll Il’llm
m e m
_ 21 2m |,
Mnxm - . . 5
I‘nnl o Il’1nm

m; € N(Z,) or Z,I or N(R) or RI or so on; we call My a
neutrosophic nxm matrix. If n = m we call M., to be a
neutrosophic nxm square matrix.

With this convention we now proceed onto define several new
classes of neutrosophic matrix groupoids.

DEFINITION 3.4.1: Let G = {(x}, ..., x,)/ x;i € Z,I, * (p, q), p and
q primes} be a neutrosophic row matrix groupoid with the
operation for *; x = (x;, ..., x,) andy = (y;, ..., v,) € G;

x*y = (X e X)) TV Y2 e )
(px; + qy; (mod nl), ..., px, + qy, (mod nl));
G is a neutrosophic row matrix groupoid of level one.

We will illustrate this situation by some examples.

Example 3.4.1: Let G = {(xy, X2, X3, X4, X5, Xg) | X; € N (Q), *,
(7, 13)} be a neutrosophic row matrix groupoid of level one.

Example 3.4.2: Let G = {(y1, Y2, Y3, Y4 Y5> Y6» ¥7> ¥8> ¥9> Y10) | ¥i
€ Zol, *, (3, 7)} be a neutrosophic row matrix groupoid of level
one.
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Example 3.4.3: Let P = {(x1, X2, X3) | X; € RI; *, (19, 3)} be a
neutrosophic row matrix groupoid of level one.

We see the row matrix neutrosophic groupoid given in examples
3.4.1 and 3.4.3 are of infinite order where as the groupoid in
example 3.4.2 is of finite order.

DEFINITION 3.4.2: Let
X

X5

G=4|." ||x €ZL * (p, 9); p and q are distinct primes).

X

G is a column matrix neutrosophic groupoid of level one where
* for any

X Yi
X
x=1. Nandy = Y2
le ym
in G is defined by
X i px;+qy,
Xty = .xz % .yz _ | PX .+ qy,
X Y pX, +qy,

We will illustrate this situation by some simple examples.

Example 3.4.4: Let

G={|x, ||xieN(2),* (3,23)}

be a column matrix neutrosophic groupoid of level one.
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Example 3.4.5: Let

P={|x, ||x e N(C),* (19,29)}

be a column matrix neutrosophic groupoid of level one.

Example 3.4.6: Let

X

X

R:{ ’ |Xi€Z7I, *a (37 5)}
X3
X4

be the column matrix neutrosophic groupoid of level one.

Example 3.4.7: Let

T={ X“ | xi € N(Z3), *, (1, 2)}

be a neutrosophic column matrix groupoid of level one.
We see examples 3.4.4 and 3.4.5 groupoids are of infinite order

where as groupoids in examples 3.4.6 and 3.4.7 are of finite
order.
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DEFINITION 3.4.3: Let M., = {(my) /m; e N(Q); I <i<n, I <
j<m, * (p, q); p and q are distinct primes} be the n x m matrix
neutrosophic groupoid of level one.

We will illustrate this situation by some examples.

Example 3.4.8: Let
a2, 43 Ay
G=1qlay ay ay ay |laeZl
a a a a

34

1<i<3;1<j<4; % (13,43)} be the 3 x 4 neutrosophic matrix
groupoid of level one.

Example 3.4.9: Let
a11 a12
aZl a22
a'31 3'32
P=14la, a,|lajeN(Zs),* (3,2);1<1<6,1<j<2}
aSl aSZ
af)l a62
a7l a72

be a 6 x 2 neutrosophic matrix groupoid of level one. Clearly P
is a finite groupoid.

Example 3.4.10: Let
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a; € N(Q), *, (31, 43), 1 <1 <20} be the 4x5 neutrosophic
matrix groupoid of level one of infinite order.

When n = m in the definition 3.4.3 we get square
neutrosophic matrix groupoids of level one.

We will illustrate this situation by some simple examples.

Example 3.4.11: Let

al a2 a3
P=4la, a; a |laeNR),* (3, 17)1<i1<9}
a7 a8 a9

be the 3 x 3 neutrosophic matrix groupoids of level one. Clearly
P is an infinite groupoid.

Example 3.4.12: Let
a b
M= {[ J |a,b,c,d e ZI, *, (231, 531)}
c d
be the 2 x 2 neutrosophic matrix groupoid of level one of
infinite order.

Example 3.4.13: Let

a, a, a; a,
0 a; a, a,

W= | a; € N(Zyol), *, (17, 2);
0 0 a; a,
0 0 0 a

1 £1 <10} be the 4 x 4 square matrix neutrosophic groupoid of
finite order.

Example 3.4.14: Let R = {20 x 20 matrices with entries from

Zo1, *, (31, 111)} be the 20 x 20 neutrosophic matrix groupoid
of level one of finite order.
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Now having seen level one groupoid we proceed on to define
level two neutrosophic matrix groupoids.

DEFINITION 3.4.4: Let G = {m x n matrices with entries from
Z,1 or N(Z,) or QI or N(Q) or ZI or N(Z) or so on, *, (p, q) such
that (p, q) = 1, p and q need not necessarily be primes}. G is
defined to be the mxn neutrosophic matrix groupoid of level
two. If m = I then G is a I x n row neutrosophic matrix
groupoid of level two. If n = 1 we get a m x 1 column
neutrosophic matrix groupoid of level two.

If m = n then we get a square neutrosophic matrix groupoid
of level two. If m # n then G is a rectangular neutrosophic
matrix groupoid of level two.

We will illustrate the definition by some examples.

Example 3.4.15: Let

G=14| ||xieZ1,1<i<6,*, (3,4)}

be a column neutrosophic matrix groupoid of level two. Clearly
G is of finite order.

Example 3.4.16: Let W = {(y1,y2, ¥3) | Vi € N(R), 1 <1< 3, *
(8, 9)} be the row neutrosophic matrix groupoid of level two of
infinite order.

Example 3.4.17: Let

- 3
P= la,b,c,de N, * (12, 25)}
c d

be the square neutrosophic matrix groupoid of infinite order.
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Example 3.4.18: Let

a a a a a a
M: {|: 1 2 3 4 5 6 :| |aj c N(Zzg),

a’8 a’9 a10 all alZ

1 <112, * (24, 25)} be the rectangular neutrosophic matrix
groupoid of finite order.

Now having seen level two groupoids we will just give the
method by which level three, level four and level five matrix
groupoids are built.

In the definition 3.4.4 if we take p, q such that (p, q) =d =1
then we call G to be a neutrosophic matrix groupoid of level
three. If in the definition p = q = t is taken then we define the
neutrosophic matrix groupoid to be a level four groupoid.

If instead of (p, q) we take one of p or q to be zero then we
define those matrix neutrosophic groupoids to be level five
matrix groupoids.

We will illustrate this situation by some examples.
Example 3.4.19: G = {(x, X2, X3, X4)| X; € N (2), *, (25, 35)} be
the row matrix neutrosophic groupoid of level three. Clearly G

is of infinite order.

Example 3.4.20: Let

G= Xy | Xi € N(ZIZ)a *, (8, 6)}

be the column matrix neutrosophic groupoid of level three of
finite order.
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Example 3.4.21: Let
{(a bj
G=
c d

be the square matrix neutrosophic groupoid of level three of
infinite order.

a,b,c,d e N(R), *, (27, 45)}

Example 3.4.22: Let P = {all 10 x 9 neutrosophic matrices with
entries from Z 1, *, (9, 6)} be the 10 x 9 neutrosophic matrix
groupoid of level three of finite order.

Example 3.4.23: Let

G= 1% e N(2), % (5,5); 1 <i<8}

be a 8 x 1 neutrosophic column matrix groupoid of level four of
infinite order.

Example 3.4.24: Let G = {[Xy, X3, X3]| X; € N(Q), 1 <1< 3, %
(17, 17)} be a 1 x 3 neutrosophic row matrix groupoid of level
four. Clearly G is a groupoid of infinite order.

Example 3.4.25: Let G = {all 12 x 15 neutrosophic matrices

with entries from Zg, *, (3, 3)} be a rectangular neutrosophic
matrix groupoid of level four of finite order.

155



Example 3.4.26: Let G = {8 x 8 neutrosophic matrices with
entries from ZI, *, (19, 19)} be a square neutrosophic matrix
groupoid of level four of infinite order.

Now we proceed onto define neutrosophic groupoids of level
five.

Example 3.4.27: Let

G=1| x, |IxieN(Zy),* 3,0); 1 <i<25}

RSTH

be a neutrosophic column groupoid matrix of level five of finite
order.

Example 3.4.28: Let G = {[xy, X, ..., X7] such that x; € ZI, *,
(0, 8), 1 <1< 7} be a neutrosophic row groupoid of level five of
infinite order.

Example 3.4.29: Let V = {3 x 3 square matrices with entries
from N(C), *, (0, 7)} be a square neutrosophic complex
groupoid of infinite order of level five.

Example 3.4.30: Let P = {20 x 5 rectangular matrices with
entries from N(Zg), *, (6, 0)} be a rectangular neutrosophic
groupoid of level five of finite order.

Here we wish to state from now on wards we will not state
to which level the groupoid belongs, it will be known from the
context and further the properties defined will hold good for all
levels of groupoids.

We will illustrate these by suitable examples.
DEFINITION 3.4.5: Let (G, * (p, q)) be a matrix neutrosophic

groupoid. Suppose P < G and if (P, * (p, q)) is again a
neutrosophic matrix groupoid then we call (P, *, (p, q)) to be a
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neutrosophic matrix subgroupoid. If G has no neutrosophic
matrix subgroupoids then we define G to be a simple
neutrosophic matrix groupoid.

We will first illustrate this situation by some simple examples.

Example 3.4.31: Let G = {(x1, X2, X3), ¥, (3,5), x; € Z;; 1 <i <
3} be a neutrosophic row matrix groupoid of level one of finite
order.

Choose P = {(x, x, x) | x € Z71, *, (3, 5)} < G, P is a
neutrosophic row matrix subgroupoid of G of level one.

Example 3.4.32: Let G = {set of all 3 x 3 neutrosophic matrices
with entries from N(Z), *, (7, 8)} be a neutrosophic matrix
groupoid of level two of infinite order. Choose P = {all 3 x 3
neutrosophic matrices with entries from 3ZI, *, (7, 8)} < G; P is
a neutrosophic matrix subgroupoid of level two of infinite order.

Example 3.4.33: Let G = {all 2 x 9 neutrosophic matrices with
entries from N(C), *, (9, 13)} be a neutrosophic matrix groupoid
of level two.

Take P = {all 2 x 9 neutrosophic matrices with entries from
N(R); *, (9, 13)} < G; P is a neutrosophic matrix subgroupoid
of G of infinite order and of level two.

Example 3.4.34: Let G = {all 7 x 2 neutrosophic matrices with
entries from RI, *, (2, 15)} be the neutrosophic matrix groupoid
of level two. Take W = {all 7 x 2 neutrosophic matrices with
entries from 3ZI, *, (2, 15)} < G, W is a neutrosophic matrix
subgroupoid of G.

Example 3.4.35: Let G = {all 2 x 5 neutrosophic matrices with
entries from ZI, *, (3, 15)} be a neutrosophic matrix groupoid of
level three. Let W = {all 2 x 5 neutrosophic matrices with
entries from 3ZI, *, (3, 15)} < G, W is a neutrosophic matrix
subgroupoid of G.
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Example 3.4.36: Let G = {all 1 x 5 row matrices with entries
from Z3l, *, (6, 15)} be a neutrosophic row matrix groupoid.
Take W = {(a, a, a, a, a)l a € Zsl, *, (6, 15)} < G; Wis a
neutrosophic row matrix subgroupoid of G of level three.

Example 3.4.37: Let M = {all 10 x 8 neutrosophic matrices
from QI, *, (17, 34)} be a neutrosophic matrix groupoid of level
three. Take P = {all 10 x 8 neutrosophic matrices with entries
from 13ZI, *, (17, 34)} < M; P is a neutrosophic matrix
subgroupoid of M of level three.

Example 3.4.38: Let

a a a
G=<la a allaeZl* (3,06)}

a a a

be a neutrosophic matrix groupoid of level three; clearly G has
no proper subgroupoids. Thus G is a simple neutrosophic matrix
groupoid.

Example 3.4.39: Let G = {(a a a a) where a € Z71, (16, 14), *}
be a neutrosophic matrix groupoid, clearly G is a simple matrix

neutrosophic groupoid of level three.

Example 3.4.40: Let

where a € ZI, *, (12, 38)}

Q
Il
S T

[N RN B )
[N RN B

be a neutrosophic matrix groupoid of level three. G is not
simple, G has infinitely many neutrosophic subgroupoids.
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Example 3.4.41: Let

la e QL *(9,48)}

Q
Il
I S I T

be a neutrosophic matrix groupoid of level three. G has
infinitely many neutrosophic matrix subgroupoids.

Example 3.4.42: Let

|a € Zgl, *, (24, 40)}

Q
I
O T R I R

be a neutrosophic matrix groupoid of level three. G is a simple
neutrosophic matrix groupoids.

Example 3.4.43: Let G = {all 5 x 5 neutrosophic matrices with
entries from ZI, *, (13, 13)} be a neutrosophic matrix groupoid
of level four.

Take W = {all 5 x 5 upper triangular neutrosophic matrices
with entries from mZI, *, (13, 13)} < G is a neutrosophic matrix
subgroupoid of G for everym € Z"\ {1}.

Example 3.4.44: Let G=[(a, a,a,a) |a € ZsI, *, (3, 3)} be a

neutrosophic matrix groupoid of level four. G is a simple
neutrosophic matrix groupoid of level four.
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Example 3.4.45: Let G= {(a, a,a,a) | a € Zl, *, (4,4)} be a
neutrosophic matrix groupoid of level four. Let V= {(a, a, a, a) |
a e {0, 21, 41}, *, (4, 4)} < G, V is a neutrosophic matrix
subgroupoid of G.

a a a

Example 3.4.46: Let G = {(
a a a

a
]| a e 22315 *9 (5’ 5)}
a

be a neutrosophic matrix groupoid G is a simple neutrosophic
matrix groupoid.

THEOREM 3.4.1: Let

a .. a
a .. a

G=4|. . |la €Z,, paprime, * (1 1); 0 <t<p}
a .. a

be any neutrosophic matrix groupoid. G is a simple
neutrosophic matrix groupoid of level four.

The proof is left as an exercise for the reader.

THEOREM 3.4.2: Let

a a a
a a a
G= )
a a a

aeZdorRlorQlor ClorZI, * (t, ), 0 <t<nifa eZ,l
otherwise t € Z' \ {1}| be a neutrosophic matrix groupoid. G is
not a simple neutrosophic matrix groupoid of level four.

The proof is left as an exercise for the reader.
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Example 3.4.47: Let G = {all 7 x 7 square matrices with entries
from Z,1, *, (3, 0)} is a neutrosophic matrix groupoid of level
five. Let P = {All 7 x 7 square matrices with entries from {0, 31,
6L, 91}, *, (3, 0)} < G, P is a neutrosophic matrix subgroupoid
of level five.

Example 3.4.48: Let

|a,b,c,d, e, feZl,*,(0,8)}

i I =P e -

be a neutrosophic matrix groupoid of level five.
Take

lae5ZL % (0,8)} <G,

[ R T

a

P is a neutrosophic matrix subgroupoid of level five.

Example 3.4.49: Let G = {(a, a,a,a,a,a,a,a,a),a € Zy I, ¥,
(0, 24)} be a neutrosophic matrix groupoid of level five. G is a
simple neutrosophic matrix groupoid of level five.

Example 3.4.50: Let G = {All 8 x 8 neutrosophic matrices with
entries from N(Q), *, (21, 0)} be a neutrosophic matrix
groupoid of level 5.

P = {all 8 x 8 neutrosophic matrices with entries from QI, *,
(21, 0)} < G is a neutrosophic matrix subgroupoid of G of level
five.
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Example 3.4.51: Let

a a a a
G=4|a a a a||laeZyl * (90,0)}
a a a a

be a neutrosophic matrix groupoid of level five. G is a simple
neutrosophic matrix groupoid.

In view of this we have the following theorem the proof of
which is left as an exercise for the reader.

THEOREM 3.4.3: Let

a a a
a ... a

G =
a a a

such that a € Z,I, p a prime, * (0, t) 0 <t < p} be a
neutrosophic matrix groupoid of level five. G is a simple
neutrosophic matrix groupoid of level five.

This proof is also left as an exercise for the reader.
Now we give yet another theorem which states as follows.

THEOREM 3.4.4: Let G = {m x n matrices with entries from Z,1,
* (t, 0)} (the entries can be from N(Z,) or ZI or N(z) or N(Q) or
N(R) or N(C) or QI or Rl or Cl). G is not a simple neutrosophic
matrix groupoid of level five.

The proof is left as an exercise for the reader.

As in case of other groupoids we can in case of
neutrosophic matrix groupoids also define the notion of ideal
(right and left), normal subgroupoids, normal groupoids,
Smarandache groupoids, groupoids satisfying special identities.
However we give some interesting properties satisfied by these
neutrosophic matrix groupoids and a few examples to
substantiate them. For more refer [20].
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THEOREM 3.4.5: Let G = {m x n matrices with all entries from
Z.0, * (t, u),; t and u primes with t + u = 1 or I (mod n)}. Then G
is a simple neutrosophic matrix groupoid.

Proof: Let
a a .. a
a a .. a
P=4. . .| laeZl * (t,u),t+u=1orImodnj}.
a a a

It is easily verified using simple number theoretic techniques.

COROLLARY 3.4.1: Let G be as in theorem 3.4.5 then G is a
neutrosophic groupoid which is an idempotent groupoid.

Example 3.4.52: Let

a a a
G=1la a allaeZyl* 3,7}
a a a

G is an idempotent (neutrosophic matrix) groupoid.
It is further verified that G has no left or right ideals.

THEOREM 3.4.6: Let G = {all m x n neutrosophic matrices with
entries from Z,1, * (¢, t); 0 <t < n} be a neutrosophic matrix
groupoid. G is a neutrosophic matrix P-groupoid.

Proof: Let A = (a;j) and B = (bjj) be in G. To show
(A*B)*A=A*(B*A).

Consider
(A * B) *A = (taij + tbij) *A
= (tzaij + tzbij + taij) I
Consider
A*B*A) = (ay* (tby + tay)

(taij + tzbij + tzaij) II
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I and II are identical hence G is a neutrosophic matrix P-
groupoid.

Example 3.4.53: Let

a b
G={( J|a,b,c,deZ6I, * (5,5}
c d

be a neutrosophic matrix groupoid. Clearly G is a neutrosophic
matrix P-groupoid.

Let
o 3
A=
c d
and
>-(; )
AR
be in G.
To show
(A*B)*A = A*B*A)

- LG

_ (S5a+5x(mod6) Sb+Sy(mod6) NE! b
5¢c+5z(mod6) 5d+5w(modo6) c d

~ (7a+7x+5a(mod6) 7b+7y+5b(mod6)
7¢c+7z+5c(mod6) 7d+ 7w +5d(mod 6)

X
_ Y] I
zZ W
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Xy a b

A k %
Z W c d

A ¥ 5x +5a(mod6) Sy +5b(mod6)
5z+5c¢(mod6) Sw + 5d(mod6)

Sa+7x +7a(mod6) 5b+7y+7b(mod6)
Sc+7z+7c(mod6) 5d+ 7w+ 7d(modo6)

z W

X
I and II are equal to ( yj . Thus G is a neutrosophic matrix
zZ W

P- groupoid.

THEOREM 3.4.7: Let G = {m x n neutrosophic matrices with
entries from Z, I; n not a prime, * (t, t); 1 <t < n} be a
neutrosophic matrix groupoid. G is an alternative neutrosophic
matrix groupoid if and only if £ =t (mod n).

Proof: To prove the theorem it is sufficient if we show for A =
(aj) and B = (b;j) in G
(A*B)*B=A*B*B).

Consider
(A*B)*B = (tb; + tby)*B
= (tay+ by + tby) (mod n)
(taij + tbij + tbij) I
Take
A*B*B) = (ay* (tby +tby)

(tajj + by + t°by)
(taij + tle + tblj) II

I and II are identical if and only if * = t(mod n).
Thus G is a neutrosophic alternative matrix groupoid.
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Note if n is a prime then t* = t (mod n) is impossible. In view of
this we can say the neutrosophic matrix groupoid described in
the above theorem is not an alternative groupoid if n is a prime.

THEOREM 3.4.8: The neutrosophic matrix groupoid G = {m xp
matrices with entries from Z,1; *, (0, t) (or (t, 0)); 1 <t <n}is
an alternative neutrosophic matrix groupoid and a neutrosophic
matrix P-groupoid if and only if =t (mod n).

The reader is expected to prove the above theorem.

Example 3.4.54: Let G = {5 x 8 neutrosophic matrices with
entries from Zgl, *, (4, 0)} be a neutrosophic matrix groupoid. G
is easily verified to be both a neutrosophic matrix P-groupoid as
well as neutrosophic matrix alternative groupoid.

We see also G = {m x n, neutrosophic matrices with entries
from Z¢l with (3, 0)} (or (0, 3) or (0, 4) or (4, 0)) are all both P-
neutrosophic matrix groupoids as well as neutrosophic matrix
alternative groupoids.

Example 3.4.55: Let G = {8 x 9 neutrosophic matrices with
entries from Zol, *, (1, 5)} be a neutrosophic matrix groupoid.
It is easy to verify G is a Smarandache neutrosophic matrix
groupoid.

Example 3.4.56: Let G = {all 3 x 4 neutrosophic matrices with
entries from Zgl, *, (2, 6)} be a neutrosophic matrix groupoid. P
= {all 3 x 4 neutrosophic matrices with entries from {0, 2I, 41,
61} < Zsl, *, (2, 6)} < G; P is a Smarandache normal matrix
groupoid of G.

Example 3.4.57: Let G = {all 2 x 2 square matrices with entries
from Zsl, *, (3, 3)} be the neutrosophic matrix groupoid. Clearly

G is Smarandache inner commutative groupoid.

Example 3.4.58: Let G = {all 1 x 10 neutrosophic matrices with
entries from Z,1, *, (3, 9)} be a neutrosophic matrix groupoid.
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It is easily verified that G is a Smarandache Moufang groupoid
and is not a Smarandache strong Moufang groupoid.

Example 3.4.59: Let G = {8 x 9 neutrosophic matrices with
entries from Z,1, *, (3,4)} be a neutrosophic matrix groupoid.
G is a Smarandache strong neutrosophic Bol groupoid.

Example 3.4.60: Let G = {all 18 x 1 neutrosophic matrices with
entries from Z4l, *, (2, 3)} be a neutrosophic column matrix
groupoid.

It is easily verified G is a Smarandache Bol matrix
neutrosophic groupoid and is not a Smarandache strong Bol
neutrosophic matrix groupoid.

Example 3.4.61: Let G = {all 10x6 neutrosophic matrices with
entries from Z,I, * (0, 2); n = 2m} G is a Smarandache
neutrosophic matrix groupoid of level five.

Several results true in case of general groupoids built using Z,
can be derived for these neutrosophic matrix groupoids built
using Z,l.

3.5 Neutrosophic Interval Groupoids

In this section we just introduce a new class of groupoids called
neutrosophic interval groupoids.
We will give the basic notations.
o(Z.D) = {[0, ai] | a; € Z,I}
o(N(Zy)) = {[0,a +bl][a,b € Z,}
0(Q'I)={[0,a]|]aeQ'T;a=0
is also allowed
o(N(Q"uU {0}}) = {[0,a+bI]|a,b e Q U {0}}
o(ZT)={[0,a]|]ae Z Tu {0}}
o{N(Z'T)) = {[0,a+bI]|a,b e Z U {0}}
o(R'I)= {[0,a]|a € R'TuU {0}}
o(N(R"U {0}))= {[0,a+DbI]|a,b e R U {0}}
o(C'I)={[0,a]|lae C'TuU {0}}
and
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o{N(C)=fa+bl/a,be CtuU {0}}

are special neutrosophic intervals. We only take positive values
and always the least value is zero.

DEFINITION 3.5.1: Let o(Z,l) be the collection of intervals.
Define * for any two intervals [0, a], [0, b] in o(Z,1) as [0, a] *
[0, b] = [0, ta + pb(mod n)] where t, pe Z,\ {0} such that t and
p are primes with (t, p) = 1. We see G = {o(Z,, I), *, (t, p) } is a
interval neutrosophic groupoid of level one.

We will illustrate this by some examples.

Example 3.5.1: Let G = {[0, a] | a € ZJ, * (7, 3)} be a
neutrosophic interval groupoid of level one.

In the definition 3.5.1 we can replace o(Z,I) by o(N(Z,)) or
o(Z'T) or o(N(Z")) or o(R'T) or o(N(R")) or o(N(Q'T)) or so on.
Still we get only neutrosophic interval groupoids.

We will illustrate all this situation only by some examples.

Example 3.5.2: Let G = {[0, a] | a € Z'], * (19, 17)} be the
neutrosophic interval groupoid of level one.

Example 3.5.3: Let G=[0,a+bl]|a,b e Q U {0}, * (3,23)}
be the neutrosophic interval groupoid of level one.

Example 3.5.4: Let P = {[0,a+bl] |a, b € R" U {0}, *, (13,
11)} be a neutrosophic interval groupoid of level one.

Example 3.5.5: Let W = {[0, a] | a € C'L, *, (3, 29)} be the
complex neutrosophic interval groupoid of level one.

Now we just indicate how neutrosophic interval groupoids of
different levels are defined.

In the definition 3.5.1 if we take instead of t, u; t and u
prime, t, u such that (t, u) = 1 but t and u need not be primes
then we get neutrosophic interval groupoids of level two.
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We will first illustrate level two neutrosophic interval
groupoids.

Example 3.5.6: Let K = {[0, a] | a € Q'1, *, (15, 17)} be the
neutrosophic interval groupoid of level two.

Example 3.5.7: Let T = {[0,a+bl] |a, b € R"U {0}, *, (18,
25)} be the neutrosophic interval groupoid of level two.

Example 3.5.8: Let S = {[0, a] | a € Z'], *, (27, 40)} be the
neutrosophic interval groupoid of level two.

Now if in the definition 3.5.1 we take t, u such that (t, u) =d # 1
then we define those groupoids to be neutrosophic interval
groupoids of level three.

We will illustrate this by some examples.

Example 3.5.9: Let T = {[0, a] | a € Zyl; *, (6, 14)} be a
neutrosophic interval groupoid of level three.

Example 3.5.10: Let M = {[0,a+ bI] | a,b € R" U {0}, *, (24,
38)} be the neutrosophic interval groupoid of level three.

Example 3.5.11: Let P = {[0, a] | a € (C']), *, (25, 45)} be the
neutrosophic interval groupoid of level three.

Example 3.5.12: Let B= {[0,a+bl] |a,b e C U {0}} *, (8,
18)} be a neutrosophic matrix groupoid of level three.

If in the definition 3.5.1 we take t = u then we call the interval
neutrosophic matrix groupoid to be a level four interval
neutrosophic matrix groupoid.

We will illustrate this situation by some examples.

Example 3.5.13: Let T = {[0, a] | a € Zyl, *, (15, 15)} be a
neutrosophic interval groupoid of level four.
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Example 3.5.14: Let T = {[0,a + bl] |a,b € R" U {0}, (7, 7)}
be a neutrosophic interval groupoid of level four.

Example 3.5.15: Let W = {[0, a] | a € C'I; (9, 9)} be the
neutrosophic interval groupoid of level four.

Example 3.5.16: Let P = {[0,a + bI] | a, b € C" U {0}, (20,
20)} be the neutrosophic interval groupoid of level four.

Now if in the definition 3.5.1 we take u = 0 or t = 0 then we get
neutrosophic interval groupoid of level five.

We will illustrate this by examples.

Example 3.5.17: Let S = {[0, a] | a € Zol; *, (0, 8)} be the
neutrosophic interval groupoid of level five.

Example 3.5.18: Let S = {[0, a + bI]| a, b € N(Zys), *, (9, 0)} be
the neutrosophic interval groupoid of level five.

We will not distinguish between the levels of neutrosophic
interval groupoids or the neutrosophic sets which are being used
to build these groupoids as it clear by the structure.

DEFINITION 3.5.2: Let G = {[0, a] | [0, a] € o(Z,1), * (p, q)} be
a neutrosophic interval groupoid.

Let P < o(Z,1) such that (P, * (p, q)) is a neutrosophic
interval groupoid. We call P to be a neutrosophic interval
subgroupoid of G.

We will illustrate this by some examples.

Example 3.5.19: Let G = {[0, a] | a € Zgl, *, (3, 0)} be a
neutrosophic interval groupoid of finite order. P = {[0,a] | a €
{0, 21, 41, 61}, *,(3,0)}, G 1is a neutrosophic interval
subgroupoid of G.
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Example 3.5.20: Let T = {[0,a+bl] | a+ bl € N(Q"), *, (3, 8)}
be a neutrosophic interval groupoid. P = {[0, bI] | bl € Q'L *,
(3, 8)} < T; is a neutrosophic interval subgroupoid of G.

Example 3.5.21: Let G = {[0, a + bl] | a, bl € N(Z'T), *, (20,
0)} be a neutrosophic interval groupoid. Choose M = {[0, a] | a
e Z'L *, (20, 0)} < G, M is a neutrosophic interval subgroupoid
of G.

Example 3.5.22: Let G = {[0,a] |a € R'TuU {0}, *, (18, 24)} be
a neutrosophic interval groupoid. Let V = {[0, a] |a € Q'T U

{0}, *, (18, 24)} < G; V is a neutrosophic interval subgroupoid
of G.

Now it may so happen G be a neutrosophic interval groupoid, P
may be a proper subset of G which is just an interval groupoid
and not a neutrosophic interval groupoid. We call P to be a
pseudo neutrosophic interval subgroupoid of G.

If G has no pseudo neutrosophic interval subgroupoids we
call G to be a pseudo simple neutrosophic interval groupoid.

We will illustrate this situation by some examples.

Example 3.5.23: Let G = {[0, a + bl], a, b € N(Z»), *, (3, 4)}
be a neutrosophic interval groupoid. Take W = {[0, a] | a € Z3,
*,(3,4)} < G is areal interval groupoid; W is called as pseudo
neutrosophic interval subgroupoid of G.

Example 3.5.24: Let G = {[0,a] |a € Z'TuU {0}, *, (3, 24)} be
a neutrosophic interval groupoid we see G has neutrosophic
interval subgroupoids but has no pseudo neutrosophic interval
subgroupoid. Thus G is a simple pseudo neutrosophic groupoid.

The following theorem gives a very large class of pseudo simple
neutrosophic groupoids.

THEOREM 3.5.1: Let G = {[0, a] | a € Z,Jor Z'Tor Q"I or R'I

or C'I, * (t, u)} be a neutrosophic interval groupoid. G is a
pseudo neutrosophic interval groupoid.
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The proof is left as an exercise to the reader.

THEOREM 3.5.2: Let G = {[0, a + bl] / a, b € N(Q") or N(Z,)
or N(R") or N(Z') or N(C"), * (t, u)} be a neutrosophic interval
groupoid. G has pseudo neutrosophic interval subgroupoids
that G is not a simple pseudo neutrosophic interval groupoid.

This proof is also left as an exercise to the reader.

We call a neutrosophic interval groupoid G to be doubly simple
neutrosophic interval groupoid if G has no neutrosophic interval
subgroupoid as well as G has no pseudo neutrosophic interval
subgroupoid.

Example 3.5.25: Let G = {[0, a] | a € ZsI, *, (3, 4)} be a
neutrosophic interval groupoid. Clearly G has no neutrosophic
interval subgroupoids. Further G has no pseudo neutrosophic
interval subgroupoid. Thus G is a doubly simple neutrosophic
interval groupoid.

We will illustrate this situation by a theorem which guarantees
the existence of a large class of doubly simple neutrosophic
interval groupoids.

THEOREM 3.5.3: Let G = {[0, a] | a € Z,I, p a prime, *, (t, u); 0
<t u < p— 1} be a neutrosophic interval groupoid G is a
doubly simple neutrosophic interval groupoid.

The proof is simple and is left as an exercise to the reader.

As in case of general groupoids we can in case of
neutrosophic interval groupoids also define the notion of right
ideal, left 1ideal, ideal, normal, subgroupoids, normal
neutrosophic interval groupoids, Smarandache neutrosophic
interval groupoids and all concepts like neutrosophic interval
groupoids satisfying special identities like Moufang, Bol,
alternative. Idempotent neutrosophic interval groupoids,
neutrosophic interval P-groupoids and their Smarandache
analogue and Smarandache strong analogue.
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We will however give some examples of these concepts and
a few interesting theorems.

Example 3.5.26: Let G = {[0, a] | a € Z4, *, (2, 3)} be a
neutrosophic interval groupoid.

This groupoid has left ideals given by P = {[0, a] | a € {0,
213, *,(2,3)} = Gand T = {[0, a] | a € {I, 31}, *, (2, 3)} < G.
Clearly P and T are not neutrosophic interval right ideals of G.

However P and T right ideals of G' = {[0, a] | a € Z4l, *, (3,

2)}.
In view of this we have the following theorem.

THEOREM 3.54: Let G = {[0, a] | a € Z,1, * (t, u)} and G’ =
{10, a] |a € Z,1, * (u, t)} be neutrosophic interval groupoids. P
is a left neutrosophic interval ideal of G if and only if P is a
right neutrosophic interval ideal of G.

The proof is got by simple number theoretic computations and

the simple translation of rows to columns. The reader is
expected to prove the same.

Example 3.5.27: Let G = {[0, a] | a € Zyol, *, (3, 7)} be a
neutrosophic interval groupoid G has no left or right ideals.

THEOREM 3.5.5: Let G = {[0, a] | a € Z,I; p a prime, (1, 1), t <
p, ¥} be a neutrosophic interval groupoid. G is a normal
groupoid.

Proof is left as an exercise for the reader.

THEOREM 3.5.6: Let G = {[0, a] | a € Z,1, * (¢ 1)} be a
neutrosophic interval groupoid. G is a P-groupoid.

This proof is also left for the reader as a simple number
theoretic exercise.
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THEOREM 3.5.7: Let G = {[0, a] | a € Z,1, p a prime, * (t, 1);
1<t < p} is a neutrosophic groupoid. G is not an alternative
interval groupoid.

Proof: We have to prove for any x, y, € G;

x*y)*y#=x*(y*y).
Take x = [0, a] and y = [0, b]. Consider

x*y)*y = {[0,a] * [0, b]) * [0, b]
[0, ta + tb] * [0, b]
[0, t*a + t°b + tb (mod p)] I

Consider
X*(y*y)

[0, a] * ([0, b] * [0, b])
[0, a] * ([0, tb + tb])
[0, at + t*b + t*b (mod p)] 1l

Clearly I and II are different. Hence G is not an alternative
neutrosophic interval groupoid.

THEOREM 3.5.8: Let G = {[0,a] |a € Z,1, (t, t); ] <t<mn, n
not a prime, *} be a neutrosophic interval groupoid. G is an

alternative neutrosophic interval groupoid if and only if £ =
t(mod n).

The proof is left to the reader.

Now we will illustrate these situations by some simple
examples.

Example 3.5.28: Let G = {[0, a] | a € Zyl, *, (11, 11)} be a
neutrosophic interval groupoid which is alternative.

Suppose in G we take instead of (11, 11); (10, 10) then G =
{[0, a] | a € Zyl, *, (10, 10)} is not an alternative groupoid.

Example 3.5.29: Let G = {[0, a] | a € Zyl, *, (5, 5)} be a

neutrosophic interval groupoid, G is clearly a neutrosophic
alternative interval groupoid.
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THEOREM 3.5.9: Let G = {[0, a] | a € Z,1, * (¢, 0)} be a
neutrosophic interval groupoid. G is a P-groupoid and
alternative interval groupoid if and only if £ = t(mod n).

The proof is left as a simple exercise.
We will illustrate this by some simple examples.

Example 3.5.30: Let G = {[0, a] | a € Zy, *, (16, 0)} be a
neutrosophic interval groupoid G is an alternative interval
groupoid and G is also a neutrosophic interval P-groupoid.

Example 3.5.31: Let G = {[0, a] | a € Zy, *, (t, 0)} be an
interval neutrosophic groupoid. G is not a P-groupoid for any t;
1 <t<29.

Example 3.5.32: Let G = {[0, a] | a € Zyl, *, (5, 6)} be a
neutrosophic interval groupoid. G is a Smarandache strong
neutrosophic interval Moufang groupoid.

Example 3.5.33: Let G = {[0, a] | a € ZpI, (3, 9), *} be a
neutrosophic interval groupoid; G is a Smarandache Moufang
neutrosophic interval groupoid which is not a Smarandache
strong Moufang neutrosophic interval groupoid.

Example 3.5.34: Let G = {[0, a], *, (3, 4), a € Z;pI} be a
neutrosophic interval groupoid. G is a Smaradache strong Bol
neutrosophic interval groupoid.

Example 3.5.35: Let G = {[0, a] | a € Z4, *, (2, 3)} be a
neutrosophic interval groupoid. G is a Smaradanche
neutrosophic interval Bol groupoid but is not a Smarandahce
strong neutrosophic interval Bol groupoid.

Example 3.5.36: Let G = {[0, a] | a € Zl, (4, 3), *} be a

neutrosophic interval groupoid. G is a Smarandache strong
neutrosophic interval P-groupoid.
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Example 3.5.37: Let G = {[0, a], *, a € Z;,1, (5, 10)} be a
neutrosophic interval groupoid. G is only a Smarandache
neutrosophic interval P-groupoid and is not a Smarandache
strong neutrosophic interval P-groupoid

Example 3.5.38: Let G = {[0, a] | a € Zj4l, *, (97, 8)} be a
neutrosophic interval groupoid. G is a Smarandache
neutrosophic strong interval alternative groupoid.

Several properties enjoyed by interval groupoids can also be
derived for neutrosophic interval groupoids with appropriate
modifications.

When we define homomorphism of neutrosophic interval
groupoids it is essential that I is mapped only on to I for during
homomorphisms it is impossible for the indeterminate I to be
changed to real, this indeterminate must remain as an
indeterminate only.

3.6 Neutrosophic Interval Matrix Groupoids

In this section we will define for the first time the new notion of
neutrosophic interval matrix groupoids and describe a few of the
properties associated with them. We will be using only the
notations given in section 3.5.

We will first give some essential notations.

Let (ay, ay, ..., a,) = X be such that a; € o(Z,]) or o(N(Z,)),
o(Z'T), oN(Q" U {0}} o(Z'T), o(N(Z'T)) and o(R'T) so on. X is
known as the neutrosophic interval row matrix.
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where x;’s are neutrosophic intervals from o(Z,l), o(N(Z,)),
o(Q"I), o(N(Q" U {0})) and so on. Y will in general be known
as the neutrosophic interval column matrix.

Let

M=

a a

nl nm
be the neutrosophic interval matrix. The entries in M are from
o(Z.I), o(N(Z,)), o(Q'T) and so on.

If m = n then we call M to be a neutrosophic interval square
matrix.

Now we will define groupoids using these neutrosophic
interval matrices. We can have five levels of interval matrix
groupoids we will define them without mentioning the levels for
from the very context one can easily understand to which level
the groupoid belongs to. We will now make a formal definition
and give examples of them.

DEFINITION 3.6.1: Let G = {(a;, a, ..., a,) | a; = [0, x;] € o(Z,1}
or o(N(Z,)), o(Z" 1), o(N(Z" _0)) and so on, * (p, q); q, p € Z,
or Z* U {0})}) where for X = (ay, ..., a,) and Y = (b,, ..., b,) in G.
X*Y=([0,x/], ..., [0, x4]) * ([0, y:]. ..., [0, y]) = ([0, px; +
qyi], [0. px2 + qy], ... [0, px, + qya]) € G.

It is easily verified G is a groupoid and G is defined as a
row neutrosophic interval matrix groupoid.
We will illustrate this by some examples.

Example 3.6.1: Let G = {([0, a,], [0, a3], ..., [0, ag]) | a; € Zol, *,
(3, 8)} be a neutrosophic 1 x 8 row interval matrix groupoid
built using o (Zol).

Example 3.6.2: Let G = {([0, a], [0, az], ..., [0, axs]) | & €

N(Q), * (24, 0)} be a neutrosophic row interval matrix groupoid
of level five.

177



Example 3.6.3: Let G = {([0, a;], [0, ay], ..., [0, a4]) | & €
N(Z"),i=1,2,...,14; * (9, 17)} be a neutrosophic row interval
matrix groupoid of level two.

Example 3.6.4: Let G = {([0, a,], [0, a,], [0, a3]) | a; € N(Q"),
(5, 19), *} be a neutrosophic row interval matrix groupoid of
level one.

Example 3.6.5: Let G = {([0, a;], [0, az], ..., [0, ai]), *, & €
N(R), (4, 28), *} be a neutrosophic row interval matrix
groupoid of level three.

Example 3.6.6: Let G = {([0, a,], [0, a,], ..., [0, as]) | a; € Z'1,
(3, 3), *} be a neutrosophic row interval matrix groupoid of
level four.

Example 3.6.7: Let G = {([0, a;], [0, a;], ..., [0, a;s]) | a; € Zysl,
1 <1<18, * (24, 8)} be a neutrosophic row interval matrix
groupoid.

DEFINITION 3.6.2: Let

xi = [0, aj], a; € o(Z,1) or o(N(Z,)) or o(Z'I) or o(Q"1) and so
on. * (p, q); p, q € Z,or Z" U {0}} be such that for any

X Yi

X
x=|7]andy= y,z

X, Y

where x; = [0, a;] and y; = [0, b;]; a;, b; € o(Z,]) or o(N(Z,)) or

SO on.
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Xl 0,pa, +4qb,
Ya| _ 0,pa, +qb,
xn yn 0’ pan + qbn
It is easily verified G is a neutrosophic column matrix interval

groupoid.
We will illustrate this situation by some examples.

Example 3.6.8: Let

G=1<x;||xi=[0,a],a € ZI; 1 <1< 5; %, (7, 1)}

be a neutrosophic interval column matrix groupoid of level one.

Example 3.6.9: Let

G=1|x, | [x=1[0,a];a € NQ), * (8,92), 1 <i<7}

be a neutrosophic interval column matrix groupoid level three.

Example 3.6.10: Let
Yi
G=14]Y,|lyie[0,m]; m R'T; 1<i<3,*,(9,28)}
Y3
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be a neutrosophic column interval matrix groupoid of level two.

Example 3.6.11: Let

G=1| 7 |Ix=10,t]; t € N(Za); 1 <i<27; %, (13, 13)}

X

27 |

be a neutrosophic column matrix interval groupoid of level four.

Example 3.6.12: Let
Xy
XZ
G= | x; =10, n;], n; € Zsl, *, (3, 0)}
X3
X4

be a neutrosophic column interval matrix groupoid of level five.
Clearly G is a groupoid of finite order.

Example 3.6.13: Let

G= {ﬂ' xi=[0,a] € Z'T, %, (8,26), 1 <i<2}

X,

be a neutrosophic column interval matrix groupoid of level
three. Clearly G is of infinite order.

DEFINITION 3.6.3: Let G = {M = (my) | m; = [0, ay]; 1 <i <n,
I<j<m;a € N(Q'), * (t u)} be such that, for any M = (my)
and N = (n;); M * N = ([0, ay]), * ([0, b)) (where n; = [0, by])
= ([0, 1a; + uby)).
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G is a neutrosophic n x m interval matrix groupoid when n
= m we call G to be a neutrosophic interval square matrix
groupoid.

We will illustrate these situation by some examples.

Example 3.6.14: Let

X X
G= | Xi = [O, ai]; a; € ZSII: *’ (9’ 25)}

X; Xy

be a neutrosophic interval square matrix groupoid of finite
order.

Example 3.6.15: Let

G= (y‘ e y4}yie[o,ai];aiez*l;*,(s,ll)}
Ys Yo Y ¥s

be a neutrosophic interval rectangular matrix groupoid.

Example 3.6.16: Let

Y Y2 Y3

G _ Y4 y5 y6 | Yi = [0, mi] m; € N(R+)5 *5 (05 7)}
Yo ¥Ys Yo
Yioo Yu Ve

be a neutrosophic interval groupoid of level five.

Example 3.6.17: Let

G=1{la, a, a, ||a=[0,m],meN®Q"),?* (14,26)}
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be a neutrosophic interval matrix groupoid of level three.

Example 3.6.18: Let

a=1[0,d];di e RT; 1 <i< 16, * (0, 26)} be a neutrosophic
interval matrix groupoid of infinite order.

Example 3.6.19: Let
a’l a2
a, a,
G= . : | a;i = [0’ ni]; n; € Z4L (2a 2): *}
a, a

be a neutrosophic interval matrix groupoid of finite order.

Now having defined neutrosophic interval matrix groupoids we
now proceed onto define substructures in them and then
illustrate it by examples.

DEFINITION 3.6.4: Let G = {M = (my) | my = [0, ay]; a; €
N(Z') or N(Z,) or Z,] or N(R") and so on 1 <i <m; 1<j <t *
(p, q)} be a neutrosophic interval matrix groupoid. Let P < G;
P is proper subset of G such that P itself is a neutrosophic
interval matrix groupoid. We define P to be a neutrosophic
interval matrix subgroupoid of G.

We will illustrate this by some simple examples.

Example 3.6.20: Let

a1 a’2
G=1la, a,|la=[0,m];m;eZl;1<1<6,%*,(3,06)}
aS a6
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be a neutrosophic interval matrix groupoid of level three.
Take

a a
P=4|a a||la=[0,m],b=[0,n];m,n e Zl; *, (3, 6)} G.
b b

P is a neutrosophic interval matrix subgroupoid of G of level
three.

Example 3.6.21: Let G = {all 9 x 9 interval neutrosophic
matrices with entries from o(Z'T), *, (11, 11)} be a neutrosophic
matrix interval groupoid of level four.

Take W = {all 9 x 9 upper triangular interval neutrosophic
matrices, with entries from o(Z'T), *, (11, 11)} < G; T is a
neutrosophic matrix interval subgroupoid of G of level four.

Example 3.6.22: Let

a, 4

a a
3 4

G=+] . .
A Ay

a, = [0, n], n; € N(R"U {0})); 1 <i<20; * (0, 16)} be a
neutrosophic matrix interval groupoid of level five.
Take

a, 4
a a
2 2
P=4 . .
a a

10
a;=[0,m]; m; € N(R"U {0})),1<i<10, *, (0,16)} cG.Pis
a neutrosophic matrix interval subgroupoid of G of level five.

We can define as in case of other groupoids the notion of
ideals, left ideal, right ideal, normal groupoid, normal
subgroupoid, Smarandache groupoids, groupoids satisfying
special identities and so on.

10

183



We will give some examples, a few important properties
about these structures.

Example 3.6.23: Let

al a2 :
G= lai =10, m]; m; e Zyl, 1 <14, * (2, 3)}
a, a,
be a neutrosophic interval matrix groupoid.

Take

p= {“‘ az} 2= [0, m]; m; € {0, 21}, *, (2, 3)} € G,
a

3 9y
T is also a neutrosophic interval matrix left ideal of G.

THEOREM 3.6.1: Let G = {m x p neutrosophic interval matrices
from o(Z,), * (& u)} be a neutrosophic matrix interval
groupoid. G is an idempotent neutrosophic interval matrix
groupoid or neutrosophic interval matrix idempotent groupoid
if and only ift + u = 1(mod n).

Proof: Let M = (m;)) € G with m;j = [0, a;], ajj € Z,[; 1 <1 <m,
1<j<p. ToshowM * M =M.
Consider
M*M = (my) * (my)
[0, ay] *, [0, ay]
[0, ta;; + ua;; (mod n)]
[0, a;j (t + u) (mod n)]
[0, ay]
M

if and only ift + u=1 (mod n). Hence the claim.

THEOREM 3.6.2: Let G = {all m x p neutrosophic interval
matrices with entries from o(Z,1), * (t, u)} and G’ = {all m xp
neutrosophic interval matrices with entries from o(Z,1), *, (u, t)}
be two neutrosophic interval matrix groupoids. P is a left ideal
of G if and only if P is a right ideal of G.
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Proof: Simple number theoretic computations will yield the
result.

The reader is expected to prove.

Example 3.6.24: Let G = {set of all 3 x 1 column interval
neutrosophic matrices with entries from o(Zol), *, (3, 7)} be a
neutrosophic column interval matrix groupoid. G has no left or
right ideals.

THEOREM 3.6.3: Let G = {collection of all 1 x m neutrosophic
interval row matrices with entries from o(Z,1); * (¢, w)} be a
neutrosophic interval row matrix groupoid. If n =t + u; where t
and u are primes then G has no left or right ideals.

The reader can prove this theorem using some simple number
theoretic techniques.

COROLLARY 3.6.1: If in the above theorem n = p, p a prime
and if (t, u) = 1 with t + u = p then also G has no left or right
ideals.

Example 3.6.25: Let

a a a
G= {[ }| a e o(Zsl), *, (2,2)}
a a

a

be a neutrosophic matrix interval groupoid. G has no
subgroupoids.

Example 3.6.26: Let

a e o(Z4), *, (3, 3)}

[ R < I )

[ I R I R
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be a neutrosophic interval matrix groupoid. G has no
subgroupoids.

Example 3.6.27: Let

G= {|:a :|| aeo (Z6I): *’ (27 2)}
a

a
a
be a neutrosophic interval matrix groupoid. G has subgroupoid

a a
P= {{ }| a e 0(0, 21, 41), *, (2,2)} = G
a a

is a neutrosophic interval matrix subgroupoid of G.

THEOREM 3.6.4: Let
a a
G = {[ }a € o(Z)l); p aprime, * (1, 1), t<p}
a a
be the neutrosophic interval matrix groupoid of level four. G is
a normal groupoid.

The proof is left as an exercise for the reader.

THEOREM 3.6.5: Let

a a a
G=1la a al|l|laecolZl);* (t 1)}

a a a

be a neutrosophic interval matrix groupoid of level four. G is a
P-groupoid.

The reader is requested to supply the proof.
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THEOREM 3.6.6: Let

a a a al
a a a a
G=<la a a al|laeo(Zl),* (1), ]<t<n}
a a a a
la a a a

be a neutrosophic interval matrix groupoid. If n is a prime then
G is not an alternative groupoid.

Proof: We see for any X = (a) and Y = (b) in G we have to
show that
X*Y)*Y#=X*(Y *Y).

Consider
X*Y)*Y = (tatth)*Y
= (t2a+ t2b + tb) (mod n)) I
Consider
X*(Y *Y) = X *(tb+tb)
= ((tb + t’a + t°b) (mod n)) 11

I =IIif and only if t* = t (mod n) this is possible if and only if n
is not a prime number.

THEOREM 3.6.7: Let

a a a a
a a a a

G= |a €o(Z,), * (0, 1)}
a a a a
a a a a

be a neutrosophic matrix interval groupoid. G is a P-groupoid
and an alternative groupoid if and only if ' =t(mod n).

Proof is simple and hence is left as an exercise for the reader.

187



Example 3.6.28: Let G = {(a, a, a, a, a, a, a, a) | a € o(Zo]), *,
(91, 5)} be a neutrosophic matrix interval groupoid. G is a
Smarandache neutrosophic matrix interval groupoid.

Example 3.6.29: Let

a a

G= {|: :||a€0(Z6I), *9 (4’ 5)}
a a

be a neutrosophic matrix interval groupoid.

P= {[a a} a  {[0, 0], [0, 21}, [0, 41}, *, (4, 5)}
a a
is a neutrosophic interval matrix subgroupoid of G but is not a
Smarandache subgroupoid of G.

Example 3.6.30: Let

G a e o(Zs),*, (4,5} be

Il
® o o

a neutrosophic matrix interval groupoid.

/a e {[0, 0], [0, 1], [0, 31], [0, 51I]}, *, (4,5)} = G

>
Il
IS I SIS

is a Smarandache left ideal of G which is clearly not a
Smarandache right ideal of G.

Example 3.6.31: Let

a a
G=4|a a|/ae {{00],[02I], [0, 41]}, *, (2, 4)}
a a
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is an ideal which is not a Smarandache ideal or even a
Smarandache groupoid of G.

Example 3.6.32: Let

/aeo(Zsl),* (2,6))

Q
Il
® o o
® o o
® o o

be the neutrosophic matrix interval groupoid.

Let
a a a
a a a
A= |a e {0, [0, 21], [0, 41], [0, 611}, *, (2, 6)} < G;
a a a
a a a

A is clearly a Smarandache neutrosophic matrix interval normal
groupoid of G.

Example 3.6.33: Let G = {(a, a, a, ..., a)| a € o(Zo), *, (5, 6)}
be a 1 x 26 neutrosophic row matrix interval groupoid. G is a
Smarandache strong Moufang groupoid.

Example 3.6.34: Let

a a a a a a
G=<la a a a a allaeo(Zpl);* 3,9}

a a a a a a

be a neutrosophic matrix interval groupoid. G is only
Smarandache Moufang groupoid but is not a Smarandache
strong Moufang groupoid.
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Example 3.6.35: Let

[a a a
a a a
a a a
a a a
G=<la a a||aeco(@Zpl),* 3,4)}
a a a
a a a
a a a
la a a]

be a neutrosophic matrix interval groupoid. G is a Smarandache
strong Bol groupoid.

Example 3.6.36: Let

aeo(Z),* 4,3)}

Q
Il
[ I 2 -l - - - - I < - < <
[T R -2l - - - - R - I < - < T <
- R 2 -l - - - - I < < <

be a neutrosophic matrix interval groupoid. G is a Smarandache
strong P-groupoid.
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Example 3.6.37: Let

|a € o(Z4), *, (2, 3)}

[
[ I I )
[ I R )

be a neutrosophic matrix interval groupoid. G is only a
Smarandache Bol groupoid but G is not a Smarandache strong
Bol groupoid.

Example 3.6.38: Let

a a a a a
G= {{ } a e o(Z4), *, (2, 3)}
a

a a a a

be a neutrosophic matrix interval groupoid. G is a Smarandache
strong P-groupoid.

Example 3.6.39: Let
a

a € o (Ze), *, (3,5)

O v 0

[ R R )
[ SRR -
[ RN R -

be a neutrosophic matrix interval groupoid. Clearly G is only a
Smarandache strong P-groupoid.

Example 3.6.40: Let
a a a

G=4la a a||laeo(Zpl),*(5,10)}
a a a
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be a neutrosophic matrix interval groupoid. G is a Smarandache
P-groupoid and is not a Smarandache strong P-groupoid.

Example 3.6.41: Let

ae€o(Zyl),*(7,8)

Q

I
® Mo o W
o o o o ®

be a neutrosophic matrix interval groupoid. G is a Smarandache,
strong alternative groupoid.

Example 3.6.42: Let
a a a a a

G=+<la a a a allaeo(Zpl),* (,6)}

a a a a a

be a neutrosophic matrix interval groupoid. G is only a
Smarandache strong alternative groupoid.

Example 3.6.43: Let
a a
G= {{ }I a € o(Zol), *, (4, 4)}
a a
be a neutrosophic matrix interval groupoid. Clearly G is not a
Smarandache groupoid.

THEOREM 3.6.8: Let

a a a
G=14|la a al|/ae€o(Z)),* (0,2) andn=2m}
a a a
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be a neutrosophic interval matrix groupoid. Clearly G is a
Smarandache groupoid.

Several other results not mentioned in this section but satisfied
by general groupoids are true in case of Smarandache
neutrosophic interval matrix groupoids with appropriate
modifications.

3.7 Neutrosophic Interval Polynomial Groupoids

In this section we will be defining and discussing about
neutrosophic interval polynomial groupoids or neutrosophic
polynomial interval coefficients groupoids.

The notions given in section 3.5 will be used in this
section. Here also we can define five levels of neutrosophic
interval polynomial groupoids using o(Z,l), o(N(Z,)), o(Z'T),
o(N(Z")), o(Q'T), o(N(Q")) and so on.

From the context one can easily understand to which level
the neutrosophic interval groupoid belongs to.

DEFINITION 3.7.1: Let
G= {Z[O,a,]xi /a; €Z,d * (. q).p. q €7Z,)
i=0

where * for any two interval neutrosophic polynomials.

x= Z[O, a Jx'
i=0
and
y=>[0b]x
i=0
is defined as follows.
x*y = (Z[o,aijx"j * [Zfo,b,-]x"j
i=0 i=0
= 2([0.a]*[0.b])x
i=0
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= Z([O,pal. +gb.(modn)]x".
i=0

G is easily verified to be a groupoid which we call as the
neutrosophic polynomial interval groupoid.

If p and q are two distinct primes we call G to be a level one
groupoid.

If p and q are distinct such that (p, q) = 1 we call the
groupoid G to be a level two groupoid. If p and q are such that
(p, q) =d =1 we call G to be a level five groupoid.

In definition 3.7.1 we can take instead of Z,I. N(Z,) or Z'I
or N(Z") or N(R") or N(Q") or Q"I or so on.

We will give some illustrations before we proceed on to prove
some results.

Example 3.7.1: Let
25 i
G= {Z[O,ai]x' la; e QTuU {0}, *, (13, 41)}
i=0

be a neutrosophic polynomial interval groupoid of level one.

Example 3.7.2: Let
45 .
V= {Z[O,ai]x' |a; e N(R™U {0}), *, (12, 25)}
i=0
be a neutrosophic interval polynomial groupoid of level two.

Example 3.7.3: Let
150 .
V= {Z[O,ai]x‘ |a; € Zool, *, (15, 10)}
i=0

be a neutrosophic polynomial interval groupoid of level three.
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Example 3.7.4: Let

W= {i[o,ai]xi la; e CTuU {0}, *,(3,3)}

i=0
be a neutrosophic polynomial interval groupoid of level four.

Example 3.7.5: Let
pP= {Z[O,ai]xi la;e Z'TU {0}, *, (0, 22)}
i=0

be a neutrosophic polynomial interval groupoid of level five.
Now we have seen different levels of neutrosophic polynomial
interval groupoids. Now we will define the notion of

subgroupoids.

DEFINITION 3.7.2: Let

G= {Z[O,ai]xi /a; € Z, or Z'T or so on, * (p, q)}
i=0

be a neutrosophic polynomial interval groupoid.

Suppose P < G be a proper subset of G if P under the
operations of G is a neutrosophic polynomial interval groupoid,
then we define P to be a neutrosophic polynomial interval
subgroupoid of G.

We will illustrate this situation by some examples.

Example 3.7.6: Let
G= {Z[O,ai]xi |a; € Zyol, *, (23, 17)}

i=0

be a neutrosophic polynomial interval groupoid of level one.
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Take
5

P=>[0,a]x' |a € Zsl, *,(23,17)} =G
i=0

is a neutrosophic polynomial interval subgroupoid of G.

Suppose

S= {i[O,ai]Xi |

a; € {0, 21, 41, 6l, 81, 101, 11, ..., 36, 381}, *, (23, 17)} <G, S
is also a neutrosophic polynomial interval subgroupoid of G.
We see P is a finite order where as S is of infinite order.

Example 3.7.7: Let
25 .
G= {Z[O,ai]x' |a; € QT U {0}, *, (24, 35)}
i=0

be a neutrosophic polynomial interval groupoid of level two.

Take

25 )
W = {Z[O,ai]x' la; € Z'TU {0}, *, (24,35)} c G

i=0
is a neutrosophic polynomial interval subgroupoid of G of level

two.
Consider

10 _
P= {Z:[O,ai]x1 |a; e 4Z'TU {0}, *, (24, 35)} =G,

i=0

P is also a neutrosophic polynomial interval subgroupoid of G.
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Example 3.7.8: Let

G= {i[o,ai]xi |a; e N(R"U {0}), *, (38, 90)}

i=0

be a neutrosophic polynomial interval groupoid.
Take

25
P= {Z[O,ai]xi laye 15, ZTuU {0}, *, (38,90)} = G
i=0
is a neutrosophic polynomial interval subgroupoid of G of level
three.

Example 3.7.9: Let

G= {A‘zo[o,ai]xi la; e Z'TuU {0}, *, (10, 10)}

i=0
be a neutrosophic polynomial interval groupoid of G of level

four.
Consider

20 )
W= {Z[O,ai]x' la; € 20 Z'Tu {0}, *, (10, 10)} = G

i=0

is a neutrosophic polynomial interval subgroupoid of G of level
four.

Example 3.7.10: Let
G= {Z[Oaai]xi |ai € N(C) L {0}, *, (26, 0)}
i=0

be a neutrosophic polynomial interval groupoid of level five.
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P= {i[o,ai]xi |a; e C'TU {0}, *,(26,0)} =G

i=0
is a neutrosophic polynomial interval subgroupoid of G.
We can as in case of other groupoids define the notion of
left ideal, right ideal, ideal, normal groupoid, normal

subgroupoid, Smarandache groupoids and Smarandache
groupoids satisfying special identities.
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Chapter Four

APPLICATION OF THESE
NEW CLASSES OF GROUPOIDS AND
NEUTROSOPHIC GROUPOIDS

In this chapter we give some of the application of these new
classes of groupoids. In the first place these polynomial
groupoids can be used in theory of cryptography as the
operations used by the user cannot be easily understood by the
intruder so the information cannot be broken unless he has a
good knowledge of groupoids and their properties.

Secondly these matrix groupoids can serve as storage
systems in a special way when the information stored is a
confidential one.

One of the nice applications would be using interval
groupoids in the construction of semiautomaton and
Smarandache automaton. Interested reader can unravel the
probable applications of matrix interval groupoids and
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neutrosophic matrix interval groupoids when the field of study
demands a non-associate structure with closure operations and
interval solutions.

Smarandache groupoids can be used in computing or
information science.

Smarandache groupoids can be used in biology to describe
certain aspects in the crossing of organisms in genetics and in
considerations of metabolisms.
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Chapter Five

SUGGESTED PROBLEMS

Here we suggest over 200 problems. Solving these will enable
the reader to understand the concepts described in this book.

Find subgroupoids of {Z", *, (7, 9)}.
Find subgroupoids of {Q", *, (3/7, 2/11)}.

Let P,,, = {all 2 x 2 matrices with entries from Z" U {0}};
define * on szzby A *B=5A+ 7B forall A, Be P2X2. P= {
Py, *, (5, 7)} is a matrix groupoid.
a. Is P a normal matrix groupoid?

b. Can P have normal matrix subgroupoids?
c. Find atleast three matrix subgroupoids of P.
d. Is P a Bol matrix groupoid?

e. Can P be an alternative matrix groupoid?

201



Justify your answers.

Let S = {Collection of all 2 x 4 matrices with entries from Q"
v {0}, *, (7, 3)} be a 2 x 4 matrix groupoid.

a. Find atleast 3 subgroupoids.

b. Can S have normal matrix subgroupiods?

c. Is S asimple matrix groupoid?

d. Is S a commutative matrix groupoid?

Let T = {all 1 x 5 row matrices with entries from Z,, *, (3,
5)}. That is for A, B € T; A * B=3A + 5B, ‘+’” mod 12 be
the matrix groupoid.

a. How many elements are in T?

b. Find subgroupoids in T.

c. Is T a normal matrix groupoid?

d. Can T be a Bol groupoid?

e. Is T a Moufang groupoid?

Please justify your answers.

Let P = {7 x 1 matrices of the form

a, |la,€Z,,%,(3,2),1<1<7}

be a 7 x 1 column matrix groupoid.

a. Does P have subgroupoids?

b. Can P have normal subgroupoids?

c. IsPaS-groupoid?

d. Is P aleft alternative groupoid? Justify your claim.
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7.

10.

11.

12.

13.

al a2 a3
Let W= <la, a, a |a,e€Z;;1<1<9,% (5, 6)} bea3 x
a; 8 8

3 matrix groupoid. Find subgroupoids of W. What is the
cardinality of W?

.

Find the number of elements in R. Is R simple? Justify your
claim.

aeZ,;*(7,5)} be a2 x 2 matrix groupoid.

a a a a
0 a a a i

LetT = aeZ,;* (2,19)} be a 4 x 4 matrix
0 0 a a
0 0 0 a

groupoid.

a. Find the cardinality of T.

b. Is T simple?

c. Can T have normal subgroupoids?

d. Is T anormal groupoid?

e. Can T be a Bol groupoid?

f. Is T a Moufang groupoid?

g. Can T be an alternative groupoid? Justify your claim.

Obtain some interesting results about matrix groupoids built
using Q" U {0} using (p, @) = (3, 5).

Can the matrix groupoid P = {As.; = (a;); 1 <1<5,1<j<3;
a;j € R" U {0}, (23, 41)} be Moufang? Justify your claim.

Can P in problem (11) be an alternative groupoid?
Substantiate your answer.

Obtain some interesting properties about the matrix groupoids
constructed using C" U {0}.
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14.

15.

16.

17.

18.

19.

20.

21.

Give an example of a matrix groupoid which is simple.
Give an example of a matrix groupoid which is normal.

Obtain conditions for a matrix groupoid to be a Smarandache
matrix groupoid.

Give an example of a matrix groupoid which is not a S-matrix
groupoid.

Does there exist a Bol matrix groupoid constructed using Z"
u {0}?

Can there be a matrix groupoid which is Moufang constructed
using Q" U {0}?

Can any matrix groupoid constructed using R" U {0} be right
or left alternative? Justify your claim.

Find subgroupoids of  the matrix groupoid
a1 a2 a3
a, a, .
G= where a; € Zj9; 1 <112, % (3, 7)}.
a, ag a
alO all a12
a. Is G a Bol matrix groupoid?
b. Can G be right alternative?
c. Does G have normal subgroupoids?
a a a
a
d. CanH = aeZ,, * (3,7)} < G be normal?
a a a
a a a

Justify your claims.
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22.

23.

24,

fa, 0 b, 0]
0 a, 0 b,
0 0 a; b, )
Let H= a,b,eZ,,1<1<6;* (8, 9)}
a, 0 0 b,
a;, by 0 O
0 a; b, 0 |

be a matrix groupoid.
a. Find atleast 2 proper subgroupoids of H.

b. What is the cardinality of H?

c. Can H satisfy any one of the special identities?

al a2 a3
Let P= 4]0 a, aj|la,€Z,,; 1 <1<6, (2, 3)} be a
0 0 ag

matrix groupoid find;

Atleast 2 subgroupoids of P.

Is P simple?

Can P be a S-groupoid?

Is P a P-groupoid?

Can P be a strong Bol groupoid?

Can P be a strong Moufang groupoid? Justify your claim.
Replace (2, 3) by (20, 30) and answer all the six problems

(a) to (f).

Let V= {(a, ay, ..., )| a; € Zpg; 1 £1<9; (16, 9)} be a
matrix groupoid.

a. Is 'V aP-groupoid?

b. Is V an idempotent groupoid?

c. Does V contain normal subgroupoids?

d. Is V an alternative groupoid? Justify your claim.

W= {(@a,..,a) a € Zy; 1<1<9, (9, 16)} be a matrix
groupoid. Is V isomorphic with W? Is |V| = |W|? Justify all
your claims.

Mmoo o
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25.

26.

27.

28.

29.

Prove G = {(xy, ..., X20)| X; € Zpo; 1 £1<20; *, (16, 5)} is a S-
idempotent matrix groupoid. Is G a Smarandache P-groupoid?
Justify your claim.

a, a,
a, a,

Prove T = (la; a, ||a;€Z,; 1 <i1<10,* (4, 9)} is a
a, a
_a9 alO

matrix S-P-groupoid.

a
Consider T = ! a,eZ;,* (3, 2)} be a matrix

a10 all a12

groupoid. How many groupoids are in the class of 4 x 3

matrix groupoids C(Zs, (4 x 3)) constructed using Zs?

a. How many in that class are S-matrix P-groupoids?

b. Can this class of groupoids contain matrix S-strong Bol
groupoids? Justify your claim.

Prove the 1 x 12 row matrix groupoid V = {{(a, a,, ..., a;2) |

aie Z" U {01}, *, (11, 15)} is of infinite order.

a. Is V a S-matrix groupoid?

b. Find two subgroupoids of V.

c. Can V have normal subgroupoids? Justify your claim.

d. Is the groupoid W = {(a, a, ...,a) /a € Z" U {0}, *, (11,
15)} normal in V? Substantiate your claim.

Suppose in problem (28) set Z* U {0} is replaced by Z,s so
that V is of finite order, can V be normal? Does atleast V
contain normal subgroupoids? What are the identities satisfied
by V? Is V an alternative groupoid? Is V an idempotent
groupoid? Justify your claim.
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30.

31.

32.

33.

34.

35.

36.

37.

38.

Let T = {Z}*, * (1, 11)} be a 3 x 8 matrix groupoid built
using Z,. Is T a S-groupoid? Justify your answer.

Let W= {Z;*, * (1, 23)} be a 7 x 2 matrix groupoid built
USing Z46.

a. Is W a S-idempotent matrix groupoid? Prove your claim.
b. Can W be a S-strong Bol matrix groupoid? Justify.

c. Prove W is to a S-P-matrix groupoid.

Let M = {Z), * (p, Q, P, 4 € Zos} be a 9 x 3 matrix
groupoid.
a. Does there exists for a suitable p, q € Zys, so that M is a;

i.  S-P-matrix groupoid.

ii. S-idempotent matrix groupoid.

iii. S-alternative matrix groupoid.

iv. S-strong Bol matrix groupoid.

Let G= {C", *, 10 x 8, (9, 19)} be the set of all 10x8 complex
matrix groupoid. Obtain some interesting properties about G.

10
Let P = {Zaixi| a € Zy;, *, (3, 11)} be a polynomial
i=0

groupoid built using Z;;. Find subgroupoids of P. Is P a S-
groupoid? Prove or disprove!

Obtain some interesting properties about polynomial
groupoids built using Z, or Q" U {0} or R" U {0} or Z" U
{05.

Give an example of a simple polynomial groupoid built using
Z.

Obtain some interesting properties about polynomial S-
groupoids.

Give an example of a S-strong Bol polynomial groupoid.
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39.

40.

41.

42.

43.

44,

45.

46.

Does their exist a S-strong Moufang polynomial groupoid
built using Z" U {0}? Justify your claim!

Construct an example of a polynomial groupoid which is not a
S-polynomial groupoid.

Obtain a necessary and sufficient condition for a S-
polynomial groupoid to be a S-alternative polynomial
groupoid built using Z,.

Can an alternative polynomial groupoid G = {Z ax |ae

Z U {0}, *,p,qeZ (p,q)} be built? Justify your claim.
Find atleast 3 polynomial subgroupoids of G.

24
Whenis T = {Z“aixi |ai € Zos, *, (P, ), P> q € Zos};

i=0
S-strong polynomial Bol groupoid (obtain condition on p
and q)?
S-strong alternative polynomial groupoid?
S-strong P-groupoid?
S-groupoid?
S-idempotent groupoid?
btam conditions on p and q.

Qo oo

15 _
CanV = {Zaix‘ |ai € Zio; *, (p,q), P, q, € Z19} everbe a
i=0
a. S-idempotent groupoid?
b. S-P-groupoid?
c. S-alternative groupoid (Here V is a polynomial
groupoid)?

Obtain some interesting results about polynomial groupoids
built using Z,, n not a prime.

Prove there exist infinite number of polynomial groupoids
built using Z,.
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47.

48.

49.

50.

51.

52.

53.

54.

29 _

Can the polynomial groupoid J = {Zaix‘ | ai € Zag; *, (20,
i=0

3)} have identity element? Justify your claim.

a. IsJaS-groupoid?

b. Is J a S-strong Bol polynomial groupoid? Justify your

claim.

10

Let P = {Z“aixi | & € Zpp, *, (3, 9)} be a polynomial
i=0

groupoid built using Z,.

a. Find subgroupoids of P.

b. Can P have a subgroupoid of order 4?

c. What is the cardinality of P?

d. IsPaS-groupoid?

e. Does P have normal subgroupoids?

Justify your answers.

Can any polynomial groupoid built using R* U {0} be
normal?

Obtain conditions for two polynomial subgroupoids built
using Z4s to be S-semi conjugate subgroupoids.

5 .

Can G = {Zaix' | ai € Zs, *, (2, 8)} the polynomial groupoid
i=0

have S-semi conjugate subgroupoids?

Define the notion of S-conjugate subgroupoids of a
polynomial groupoid G built using Z" U {0} or Z, or R" U
{0} or Q" U {0}.

Give examples of S-conjugate subgroupoids built using Z44.

20 _

LetT ={Z:aixl | ai € Zip, *, (1, 3)} be a polynomial groupoid
i=0

built using Z;;. Can T have S-conjugate polynomial
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55.

56.

57.

58.

59.

60.

61.

62.

20
subgroupoids? Is P = {Zaixi, a € {0,369}, * (3, 1)}

i=0
20 _
conjugate with S = {Zaix' ,a € {2,5,8,11} where P and S
i=0

polynomial subgroupoids of T? Prove T is a S-polynomial
groupoid.

Define S-inner commutative polynomial groupoid and give
some examples.

8
Is G = {Zaix‘ | ai € Zs, *, (3, 3)} a S-inner commutative

i=0
polynomial groupoid? Justify your claim.

Prove every S-commutative polynomial groupoid is a S-inner
commutative polynomial groupoid and not conversely.

Give an example of a S-Moufang polynomial groupoid built
USing Zzo.

45
IsG= {Zaix‘ | ai € Zio, *, (5, 6)}, the polynomial groupoid

i=0
a S-strong Moufang groupoid? Justify your claim.

20
IsP= {Zaix‘ | a; € 12 (3, 9)} the polynomial groupoid a S-

i=0
strong Moufang Groupoid? Justify your claim.

Prove every S-strong Moufang groupoid is a S-Moufang
groupoid and not conversely.

IsW= {Z ax'|aj € Z4, (2,3)} the polynomial groupoid a S-
i=0

strong Bol groupoid? Can W be just a S-Bol groupoid? Justify

your claim.
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63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Give an example of S-strong P-groupoid built using Z.

25 )
LetB = {Zaix‘ | ai € Zg, *, (4, 3)} be a polynomial groupoid

i=0
built using Zs. Is B a S-strong P-groupoid? Prove your claim.

14
Let C ={Z a,x'|a € Zs, *, (2, 3)} be a polynomial groupoid.

i=0
Is C a S-strong P-groupoid? Justify your claim.

Prove if G a S-polynomial groupoid built using Z,(n even)
and if G is a S-strong polynomial P-groupoid then every pair
in G need not satisfy the P-groupoid identity.

Every S-strong polynomial P-groupoid is a S-polynomial P-
groupoid and not conversely.

Define the notion of S-strong right alternative groupoid and
illustrate it by an example.

20
IsG= {Zaix‘ |ai € Zis, *, (7, 8)} the polynomial groupoid a
i=0

S-strong alternative groupoid?

LetG ={Z:aixi |ai € Zin, *, (1, 6)} be a polynomial groupoid
i=0

built using Z;;. Is G a S-strong polynomial alternative

groupoid?

Give an example of a S-strong polynomial right alternative
groupoid which is not a S-strong polynomial left alternative

groupoid.

Give an example of S-alternative polynomial groupoid which
is not a S-strong alternative polynomial groupoid.
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73.

74.

75.

76.

7.

78.

79.

80.

81.

19
Can G = {Zaixi| a € Zy, *, (3, 12)} the polynomial

i=0
groupoid be a strong Bol groupoid?

Let G = {Zaixi| ai € Zy, *, (4, 15)} be a polynomial

i=0

groupoid. Can G be a S-Bol groupoid? Justify your claim.

27
Let T = {Zaixi a € Zsg, * (3, 6)} be a polynomial

i=0

groupoid. Can T be a S-strong P-groupoid?

Let L = {Zaixi a € Zo, * (2, 4)} be a polynomial

i=0
groupoid. Can L be a S-strong right alternative groupoid?

Find S-right ideals of L given in problem (76). Does L in
problem (76) have S-ideals? Justify.

Let G = {set of all 3 x 5 interval matrices built using Z; , *,

(3, 7)} be an interval matrix groupoid. Find subgroupoids of
G. Is G a S-interval matrix groupoid?

Obtain some interesting properties about row matrix interval
groupoid built using Z! .

Let P = {all 3 x 1 interval matrices constructed using Z., *,

(2, 3)} be the 3 x 1 interval matrix groupoid built on Z; . Is P
a S-interval matrix groupoid?

Let T = {{set of all 3 x 3 interval matrix built using Z, }, *,

(15, 5)} be the matrix interval groupoid. What are the
identities satisfied by T? Is T finite? Can T be a S-strong Bol
interval matrix groupoid? Justify.
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82.

83.

&4.

85.

86.

&7.

88.

9.

90.

91.

92.

Give an example of a 3 x 8 matrix interval groupoid built
using Z|, , which is a S-groupoid.

Give an example of a 6 x 3 matrix interval groupoid built
using Z} which is not a S-groupoid.

Give an example of a 5 x 5 matrix interval groupoid built
using Z|, which is a S-strong Moufang groupoid.

Give an example of a S-row matrix interval groupoid built
using Z), which is a S-alternative row matrix interval
groupoid.

Give an example of a 5 x 8 matrix interval groupoid built
using Z}, which is simple.

Does their exists a S-inner commutative matrix interval
groupoid constructed using Z}, ?

Obtain some interesting properties about square matrix
interval groupoids built using Z]IJ ; p an odd prime.

Construct a class of simple matrix interval groupoids using
Z,.

Give an example of a 10 x 2 matrix interval normal groupoid
built using Z}.

Give an example of a 1 x 8 matrix interval groupoid
constructed using Z), which has normal matrix interval
subgroupoids but is not a normal matrix interval groupoid.

Give an example of a 9 x 9 matrix interval groupoid which is

a not a S-strong right alternative 9 x 9 matrix groupoid but a
S-strong left alternative 9 x 9 matrix groupoid.
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93.

94.

95.

96.

97.

Can a 4 x 10 matrix interval groupoid built using R} be a S-
groupoid? Justify your claim.

Let G = { Z;[x], *, (3, 7)} be an interval polynomial groupoid
built using the intervals in Zj,

Does G have subgroupoids?

Is G a S-groupoid?

Is G a S-strong Bol groupoid?

Can G be normal?

Can G have alteast normal subgroupoids?

Can G be a S-strong alternative groupoid? Justify your
answers.

mo Ao os

4

Let P = {Zaix‘ | a; € Z, = {all intervals built using 0, 1, 2,
i=0

3}, * (3, 1)} be a polynomial interval coefficient groupoid.

a. What is the cardinality of P?

b. Find subgroupoids of P.

c. Does P satisfy any one of the standard identities?

Let W = {Zaixi | a; € Z;, = all intervals built using Z,,, *,
i=0

(1, 3)} be an infinite polynomial interval coefficient

groupoids built using Z, .

a. Prove W is an infinite S-groupoid.

b. Is W a S-strong Moufang groupoid? Prove your answer.

c. Can W be a S-Bol groupoid? Justify.

d. Find two S-subgroupoids of W which are S-conjugate
subgroupoids.

e. Is W a S-idempotent groupoid? Justify your claim.

5
Let B = {Zaix’ | a; € Zi = {all intervals built using Zs = {0,
i=0

1, 2,3, 4}, * (3, 3)} be a polynomial interval groupoid built
using Z;.
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98.

99.

100.

101.

Find subgroupoids of B.
Prove B is S-groupoid.

Is B a commutative groupoid?
Find the cardinality of B.

Is B inner commutative?

opooe

20

LetK = {Z:aixi | a; € Z§ = {all intervals built using Zg = {0,
i=0

1,2, ..., 7}}, * (2, 8)} be a polynomial interval groupoid

built using Z; .

a. Prove K is a S-groupoid.

b. Prove K is of finite cardinality.

c. Prove K is a S-normal groupoid.

17
LetP = {Zaix’ | a; € Z; = {all intervals built using {0, 1, 2,
i=0

3,4, 5}, % (0, 2)} be a interval polynomial groupoid built

using Z, in the variable x.

a. Prove P is a non commutative groupoid.

b. Is P aP-groupoid? Prove your claim.

c. If (0, 2) is replaced by (0, 3) or (3, 0) can P be a P-
groupoid and an alternative groupoid?

LetG= {z a,x' | a; € {all intervals built using Z,, = {0, 1, 2,
i=0

..., 24}, *, (0, t)} be a polynomial interval groupoid in the

variable x with coefficients from Z}, . Prove there exists a t €

Z,4 such that for that t, G is both a P-groupoid and an

alternative groupoid.

25 _
Let W = {Zaix‘ | a; € Z,, = {all intervals built using {0, 1,

i=0
2, ..., 18}}, *, (0, )} be a interval polynomial groupoid built
using Zj,. Prove for no t € Z;y\ {0, 1}. W can be a P-
groupoid or a alternative groupoid.
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102.

103.

104.

105.

106.

107.

108.

Obtain some interesting results on polynomial interval
groupoids built using Z; .

9
Let S = {Zaix‘ /a; € Z|, = {all intervals built using {0, 1, 2,
i=0

..., 10}}, *, (3, 0)} be a interval polynomial groupoid. Can S
satisfy the Moufang identity?

Can the interval polynomial groupoid F = {Zaixi / a; € {all

i=0
intervals built using Z, = {0, 1,2, ...,n— 1} = { Z] , *, (t, 0)}
be a Bol groupoid?

4
WIill T = {Z aixi | a € ZI20 = {all intervals built using Z,,},

i=0
* (0, 4)} be an alternative interval polynomial groupoid?

i=0
built using Z, = {0, 1, 2, 3}, *, (0, 3}} the interval polynomial
groupoid built using intervals from Z,. Find the order of P.

3 .
Find all subgroupoids of P = {Zaix' | a; € Z, = {all intervals

Does the order of the subgroupoids divide the order of P?

Find all subgroupoids and ideals if any of the interval
3 .

polynomial groupoid T = {Zaix‘ | a; € Z;, = {all intervals
i=0

built using Z;, = {0, 1, 2, ..., 1}, *, (4, 0)}. Does there exists

in T a subgroupoid which is not an ideal? What is the order of

T?

Let S = {Zaixi |ai € Z, = {all intervals built using Z, = {0,
i=0

1,2,...,p— 1} where p is a prime, *, (t, t); t <p} be a interval
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109.

110.

111.

112.

113.

114.

115.

polynomial groupoid built using coefficients from ZL. Prove

S is a normal groupoid.
Prove groupoid S in problem (108) is a P-groupoid.

Prove groupoid S in problem (108) is a commutative
groupoid.

Can groupoid P in problem (108) be an alternative groupoid?

Let F be the collection of all interval polynomial groupoids G

where G = {Z ax'|a; € Z = {all intervals using the modulo
i=0

integers {0, 1,2, ...,n— 1}, nis not a prime, *, (t, t) where t €

Z,\ {0, 1} and t is such that t* = t (mod n). Prove F contains

only alternative groupoids. Find the number of such groupoids

when n = 128.

7 .

Let S = {Zaix‘ lai € Zjg, *, (9, 9)} be a interval polynomial
i=0

groupoid built using the intervals from Z;,. Does S contain

any normal subgroupoid?

25’

Is the interval polynomial groupoid T = {Za x'|a e Zk;

<i<5, % (17, 17)} a normal groupoid. Is T a S-groupoid?
How many subgroupoids does T have? What is the cardinality
of T?

3
Can the polynomial interval groupoid L = {Z ax |ae Z),,
i=0

* (7,7)} be a P-groupoid?

Find all the subgroupoids of L.

What is the cardinality of L?

Does the order of each subgroupoid divide the order of L?
Will L be a S-groupoid?

e o
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116.

117.

118.

119.

120.

121.

122.

123.

124.

e. Can L be a normal groupoid?
f.  Does L contain any normal subgroupoids?
g. Will L be an idempotent groupoid?

3 .
Does the polynomial interval groupoid V = {Zaix‘ | & €
i=0
115 *, (4, 7)} satisfy the Bol identity?

Can the groupoid V given in problem (116) be a Moufang
groupoid or an idempotent groupoid? Justify your claim.

Does the polynomial interval groupoid M = {Zaixi | a; €
i=0

Z%,; *, (3, 7)} have ideals? What is the order of M? IsM a S
groupoid? Find all right ideals of M?

How many semigroups are in the interval polynomial
6 .

groupoid K = {Zaixl| a e Z; % (3, 49?2 Is KasS-
i=0

groupoid? What is the order of K?

Construct a polynomial interval groupoid using Z}, such that
it is not a S-groupoid.

Construct a polynomial interval groupoid T using Z},, which
is an alternative groupoid.

Does there exist a simple polynomial interval groupoid using
the interval set ZJ, ?

Find the number of subgroupoids of the polynomial interval

5 .
groupoid X = {Zaix‘ lae Zi;*, (1,2)}.
i=0

Is X given in problem 123 a S-groupoid?
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125.

126.

127.

128.

129.

130.

131.

What is the order of X given in problem (123)?

Let G ={Z:aixi |a; € Z;,; *, (11, 7)} be a polynomial interval
i=0

groupoid.
a. Is G simple?
b. Can G contain semigroups?

Obtain some interesting properties about interval matrix
groupoids built using intervals from Z; .

Let P = {6 x 7 interval matrices built using intervals from Z} }

be a interval matrix groupoid. Is P simple? Find all
subgroupoids of P. What is the cardinality of P?

Let Y = {All 3 x 3 interval matrices with entries from Z}}. P
= {Y, *, (3, 5)} be the interval matrix groupoid using Z}.
What is the cardinality of P? Find all subgroupoids of P. Is P a
Moufang groupoid? Can P be a normal groupoid? Does P

contain ideals? Find all right ideals of P. If (3, 5) is replaced
by (4, 4) in P, will P be simple?

Let B={L, *, (3, 9)} where L = {all 7 x 2 interval matrices
with entries from Z; } be a matrix interval groupoid.

Can B be a S-groupoid?

Find at least 5 subgroupoids of B.
Does B contain right ideal?

Can B have left ideals?

Will B have an ideal?

Can B be a normal groupoid?

Can B satisfy any standard identities?

N

Obtain some interesting properties about the groupoid F =
{the 10 x 10 interval matrix groupoid F built usingR |, *, (3,

11)}. Can F be simple? Find atleast 3 proper subgroupoids of
F. Can F be a S-groupoid?
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132. Let D = {All 2 x 17 interval matrices using Z}; *, (3, 1)} be a
matrix interval groupoid,

133.

134.

135.

5 mmoepoo o

What is the order of D?

How many subgroupoids exists in D?

Is D simple?

Is D normal?

Is D a Moufang groupoid?

Can D have ideals?

Is every left ideal of D a right ideal of D? Justify your
answer.

Can we say order the subgroupoids of D will divide the
order the groupoid D?

Let G = {all 2 x 2 interval matrix built using ZI5 ,*,(3,3)} be

the interval matrix groupoid built using Z} .

a.
b.
C.
d

€.

Find the number of elements in G.

Is G a commutative groupoid?

Is G a normal groupoid?

Can G have left ideals which are not right ideals and vice
versa?

How many subgroupoids does G contain?

If in problem (133) Zsl is replaced by Z,I; n a composite
number. Find the solution from a to e of problem (133).

Let G = {1 x 7 interval matrices with entries from Zf3 , %, (3,

11)} be a interval matrix groupoid.

a.

R

Find subgroupoids of G.

Is G a normal groupoid?

Can G be a Bol groupoid?

Will G be a S-groupoid?

Find the cardinality of G

Find right ideals of G.

Prove in general right ideal in G is not a left ideal of G
and vice versa.
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136.

137.

138.

139.

140.

141.

142.

Let T = {all 3 x 9 interval matrices with entries from Z; , ¥,

(0, 2)} be the interval matrix groupoid.

Prove T is a S-groupoid.

Find subgroupoids of G

Find the cardinality of T.

Does T have S-subgroupoids?

Find ideals in T.

Prove in T a left ideal in general is not a right ideal.

mo a0 o

Let X = {all 2 x 2 interval matrices with entries from Zj,, *,
(6, 6)}. Derive the important features enjoyed by X.

Let Y = {5 x 5 interval matrices with entries from Zlé, * (3,

4)} be a matrix interval groupoid built using Z; .
Is Y a S-groupoid?

Prove Y is of finite order.

Is Y a S-strong Bol-groupoid?

Find subgroupoids of Y.

Will Y be a S-strong Moufang groupoid?
Can Y contain normal subgroupoids?

mo oo o

Construct a S-Moufang groupoid with 3 x 2 interval matrices
built using Z}, .

Find all S-P- 3 x 3 matrix interval groupoids built using Z; .

Let G = {3 x 3 interval matrices with entries from ZIG, * (2,

3)} be an interval matrix groupoid. Find all the special
identities satisfied by G.

Let T = {3 x 2 interval matrices with entries from Zz, * (2,
3)} be the interval matrix groupoid built using Z;. S = {3 x 2
interval matrices with entries from Z;,, *, (2, 3)} be the

interval matrix groupoid built using Z;,. Construct a SG
homomorphism between T and S.
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143.

144.

145.

146.

147.

Let W = {2 x 5 interval matrices with entries from Z;9 , %, (3,
7)} be a matrix interval groupoid built using Z;,. V= {2 x 5
interval matrices with entries from Z,, *, (3, 6)} be a matrix

interval groupoid built using Zj,. Give a SG homomorphism

between W and V. Find all the common properties enjoyed by
Wand V.

T = {3 x 2 interval matrices with entries from Zj,, *, (3, 12)}

be a interval matrix groupoid built using Z|, .

Is T a S-Bol groupoid ?

Find the order of T.

Find all subgroupoids of T.

Is T a S-groupoid?

Is T a normal groupoid?

Can T have normal subgroupoids?

Obtain any other interesting property enjoyed by T.

O

Let B = {All 1 x 8 interval matrices with entries from Z,,, *,

(3, 6)} be an interval matrix groupoid.

a. Find the cardinality of B

Find all subgroupoids of B

Is B a S-strong Moufang groupoid?

Can B be a S-strong right alternative groupoid?
Can B have normal subgroupoids?

Find an ideal in B.

oo o

Let W = {3 x 1 interval matrices with entries from Ziz , %, (1,

3)} be the matrix interval groupoid built using Z;, .

a. Find two S-subgroupoids of W which are S-conjugate.
b. Is W a S-groupoid?

c. Is W anormal groupoid?

d. How many semigroups does W contain?

Let V = {3 x 3 interval matrices with entries from Zé, * (3,

3)} be a matrix interval groupoid built using Z; .
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148.

149.

150.

151.

152.

153.

154.

Is V a S-inner commutative groupoid?

Find cardinality of V.

Find all subgroupoids of V.

Does V have normal subgroupoids?

Will V satisfy any one of the special identities?

opo oe

Let G = {4 x 5 interval matrices with entries from Zé, * (4,

5)} be a matrix interval groupoid. Prove every S-left ideal of
G is not a S-right ideal of G.

Define the notion of S-seminormal matrix interval groupoid.
[lustrate it by some examples.

Let G = {all 6 x 6 interval matrices with entries from Z;, *,

(2, 6)} be a matrix interval groupoid.
a. Prove G is a S-groupoid.

b. Does G have a S-normal subgroupoid?
c. Find all S-subgroupoids of G.

d. What is the cardinality of G?

e. Can G be a S-strong Moufang groupoid?

Let T = {Set of all 3 x 6 interval matrices with entries from
Z.,,*,(3,9)} be a interval matrix groupoid. Prove T is a not

a S-strong Moufang groupoid. Prove T is only a S-Moufang
groupoid.

Prove every S-strong Moufang groupoid is a S-Moufang
groupoid and not conversely.

W = {set of all 2 x 8 interval matrices with entries from Z,,,

* (5, 6)} be an interval matrix groupoid. Prove W is a S-
strong Moufang groupoid.

Let P = {All (4 x 4) interval matrices with entries from Z.,

* (17, 17)} be an interval matrix groupoid. Is P a normal
groupoid?

223



155.

156.

157.

158.

159.

Let S = {all 7 x 7 interval matrices with entries from Z} , *,

(7, 7)} be an interval matrix groupoid. Is S a P-groupoid?
Justify your claim.

Let V = {3 x 3 interval matrices with entries from Zis , %09,

9)} be a interval matrix groupoid;

Is V a normal groupoid?

Does V contain normal subgroupoids?

Is V an idempotent groupoid?

Find all subgroupoids of V.

Is V a S-groupoid?

Find all S-subgroupoids of V. (Provided V is a S-
groupoid).

mo a0 o

Let G = {all 3 x 12 interval matrices with entries from ZL , ¥,

(2, 3)} be a matrix interval groupoid.

Can {0} be an ideal of G?

Prove left ideals of G are not right ideals of G.
Find the cardinality of G.

Find all subgroupoids of G.

Is G a S-groupoid?

Is G a normal groupoid?

mo o o

Let V = {all 3 x 5 interval matrices with entries from Zé, *

(3, 5)} be a matrix interval groupoid.
a. IsV a S-strong P-groupoid?

Is V a S-P-groupoid?

Is V a S-groupoid?

What is the cardinality of V?
Find all subgroupoids of G.

Find all S-subgroupoids of G.

moe o o

Let B = {2 x 1 interval matrices with entries from Zi, * (2,
3)} be a matrix interval groupoid.

a. Prove B is a S-strong P-groupoid.

b. Find all subgroupoids of B.

c. What is the cardinality of B?

d. Find all S-subgroupoids of B.
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160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

e. Can B have ideals?
f. Can aright ideal in B in general be a left ideal?

Let R = {All 2 x 2 interval matrices with entries from R, *,

(3, 13)} be an interval matrix groupoid.
Find atleast 3 subgroupoids of R.
Find 3 left ideals of R.

Find 3 right ideals of R.

Find 3 ideals of R.

Can R satisfy special identities?
Can R have normal subgroupoids?

mo a0 o

Obtain some interesting results about the matrix interval
groupoid G = {all 7 x 7 interval matrices with entries from

Q. * (1,2)}.
Let G = {Zl, *, (3, 2)} be a neutrosophic groupoid. Find

whether G is a S-neutrosophic groupoid. What is the
cardinality of G?

Let G= {Z], *, (3, 4)} be a neutrosophic groupoid. Can G be
written as a partition of conjugate groupoids? Justify your
answer.

Find the conjugate groupoids of G = {Z;sl, *, (9, 8)}.
How many neutrosophic groupoids of order 7 exist?

Find all right ideals of the neutrosophic groupoid G = {Z, 1, *,
(3, D}

Let G = {N(Zys), *, (3, 8)} be a neutrosophic groupoid. What
are the important properties enjoyed by G? How many
groupoids can be built using N(Zs)?

Is P = {N(Zs), *, 2I+ 1, 4I)} a neutrosophic groupoid? Justify
your claim.

Is R = {N(Z,), *, (4 + 31, 2)} a neutrosophic groupoid?
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170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

Let W = {N(Z", * (1431, 7+2I)}. Is W a neutrosophic
groupoid? What are the special properties enjoyed by W?

Let S = {N(Z'u {0}), * {31, 2 + 2I)} be a special
neutrosophic groupoid. Find subgroupoids of S. Does S
satisfy any one of the special identities? Justify your answer.

Does there exist a P-neutrosophic groupoid of order 15?

Give an example of a P-neutrosophic groupoid built using
Zsl.

Find all the ideals of the neutrosophic groupoid W = {N(Z,,),
* (7, 14)}. Find atleast 3 neutrosophic subgroupoids. Is W an-

idempotent neutrosophic groupoid?

Does there exist an infinite neutrosophic groupoid which is a
P-groupoid?

Give an example of a S- neutrosophic groupoid of order 32.
Suppose G is a neutrosophic groupoid of finite order. Will
every neutrosophic subgroupoid of G divide the order of G?

Justify your claim.

What is the order of the neutrosophic groupoid G built using
221 where G = {N(221), *, (2, 3)}?

Obtain some interesting results about neutrosophic interval
groupoid.

Give an example of a neutrosophic interval matrix Bol
groupoid.

Show there exist neutrosophic interval matrix groupoids
which do not satisfy any special identities.
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182.

183.

184.

185.

186.

187.

Does there exists a neutrosophic polynomial interval groupoid
of finite order?

12
Let G = {Z[O,ai]xi
i=0

polynomial interval groupoid.

Does G satisfy any of the special identities?
Is G normal?

Is G a Smarandache groupoid?

Find atleast 2 subgroupoids of G.

Does G have Smarandache ideals?

a, ex4I,*,(3,2)} be a neutrosophic

o0 o

0

Let G = {Z[O,ai]xi

i=0

a, eZlSI,*,(3,13)} be a neutrosophic

polynomial interval groupoid of infinite order.

a. Find subgroupoids in G.

b. Does there exists right ideals in G which are not left
ideals?

c. Is G a Smarandache groupoid?

d. Does G satisfy any special identities?

Obtain some interesting results about neutrosophic interval
groupoids of finite order.

Let G = {[0, a;]| a; € Zxl, *, (3, 6)} be a neutrosophic interval
groupoid;

a. Find the order of G.

b. Does G have subgroupoids?

c. Is G a Smarandache groupoid? Justify your claim.

Let G = {[a}, ay, ..., a9]| 3; = [0, Xi]; Xi € Zysl, *, (12, 13)} be a
neutrosophic row matrix interval groupoid,

a. Does G satisfy any special identities?

b. What is the order of G?

c. Is G anormal groupoid?
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188.

189.

190.

191.

192.

193.

194.

195.

a, [|a, =[0,x,];
Let P = <|a e ||X€Z,1,%,(9,9);; be a neutrosophic
a, a, |[I<i<10

a

10 |

matrix interval groupoid.
a. Is P a finite order groupoid?

b. Is P an alternative groupoid?

c. Does P satisfy the Moufang identity?

d. Find some subgroupoids and ideals in P.
e. Is P a Smarandache groupoid?

Obtain some interesting results about neutrosophic
polynomial interval groupoids built using o(NC").

Does there exists a neutrosophic polynomial interval groupoid
which satisfies both the Bol identity and Moufang identity?

Give an example of a neutrosophic polynomial interval
groupoid which is a P-groupoid and an alternative groupoid.

Obtain some interesting properties about neutrosophic matrix
interval groupoids built using o( Z;).

Obtain some interesting results about neutrosophic
polynomial interval groupoids built using o(N(Z,)), p a prime.

Enumerate the properties enjoyed by neutrosophic polynomial
a, e ZHI,*,(t,t);}

10
interval groupoids G = 0,a.]x’
group {ZO[ W

Does there exist a neutrosophic row matrix interval groupoid
of order 26? Justify your claim.
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196.

197.

198.

199.

200.

201.

Is it always true that in case of finite neutrosophic matrix
groupoids the order of the subgroupoid divides the order of
the groupoid? Justify your claim.

Let G = {Z[O,ai]xi a, eZ'Tu {0},*,(3,7)} be the
i=0

neutrosophic polynomial interval groupoid.

a. Find subgroupoids of G.

b. Is G a Smarandache groupoid? Justify.

o 0]

matrix interval groupoid.

a. What is the order of G?

b. Find subgroupoids of G.

c. Does G satisfy any special identities?

aeo(ZSI),*,(3,5)} be a neutrosophic

a a
Let G = aco(N(Z,,),*(6,5); be a neutrosophic
a a

a a

matrix interval groupoid.
a. Is G a finite order groupoid?
b. Enumerate all the special identities satisfied by G.

22
Let P = {Z[O,ai]xi

i=0

aieZSI,*,(3,2)} be a neutrosophic

polynomial interval groupoid.

a. Find the order of P.

b. Is G Smarandache strong Bol groupoid?
c. Does G have Smarandache ideals?

Obtain some interesting properties about finite neutrosophic
polynomial interval groupoids built using Z,. n < co.
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202.

203.

204.

205.

Let G = {i[o,ai]

i=0

aieZuI,*,(9,4)} be a neutrosophic
polynomial interval groupoid and G’ =
a a a a
a a a a

interval groupoid. Does there exists a groupoid
homomorphism of G to G'?

anz4I,*,(12,4)} be a neutrosophic matrix

Does there exists a neutrosophic matrix interval groupoid
built using o(Z,]) which has Smarandache conjugate
subgroupoids?

Give an example of a pseudo simple neutrosophic matrix
interval groupoid.

Give an example of a doubly simple neutrosophic polynomial
interval groupoid.
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R

Real matrix, 15-6

Right alternative groupoid, 8-9
Right ideal of a groupoid, 9

Right ideal of interval groupoids, 61
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Row matrix groupoid, 15-6

Row neutrosophic matrix, 15-6

S

S- normal matrix groupoid, 166
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Special modulo integer interval groupoid, 45-9

Special non prime neutrosophic groupoids, 121-3
S-right ideal of a neutrosophic interval matrix groupoid
S-strong Moufang matrix groupoid, 165-7

S-strong Moufang matrix interval groupoid, 189
S-strong neutrosophic interval matrix P-groupoid, 190-1
S-strong neutrosophic interval Moufang groupoids, 175
Subgroupoid, 8

U

Usual or real column matrix, 15-6
Usual or real row matrix, 15-6
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