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Abstract  

 A geometrical/mechanical model of charmonium has been developed, based on the 

logarithmic confinement potential. The quark and antiquark pair orbit around the centre of mass, 

with their gluon and colour fields contained within a torus structure of characteristic radius.  

 

 

PACS:  14.40.Lb 

 

 

 

Submitted to Journal of Physics G: Nuclear and Particle Physics. 

 

 

 

 

 

1. Introduction 

 A model of charmonium structure has been developed, based on Einstein’s equations of 

general relativity, as was done for previous models of the electron and proton, (Wayte, Papers 1 

and 2).  Essentially, the model is compatible with measured spectra of charmonium and 

bottomium.  Although different types of quark/antiquark potentials have been invoked in the 

literature, our application of Einstein’s equations is quite selective.  The Coulomb + linear 

potential presented by Eichten et al (1978), (1980) appears to cover the data in many ways, but it 
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is not as straightforward as the logarithmic potential described by Quigg and Rosner (1977), 

(1979). Whereas the former is effectively two superimposed fields, involving a variable strength 

factor, the latter describes a single field extending smoothly from a source radius to infinity, with 

a familiar constant field strength factor.  Furthermore, the corresponding theoretical leptonic 

decay widths of vector mesons appear to fit the observations better. 

 

2. The Potential 

Previous work on the Coulomb and Yukawa potentials (Papers 1 and 2) indicated that 

those potential functions were inherently relativistic and very simple in form.  We shall now 

find that a logarithmic confinement potential, based on the work of Quigg and Rosner (1979, 

pp217-223), can be very successful when introduced into Einstein’s field equations, namely: 

 )r/rln(C)r(V q  ,        (2.1) 

where C = 0.733GeV, rq = 0.89GeV
-1

 ( 0.18fm) is the separation of quark and antiquark.  These 

two semi-empirical values may be used to calculate the quark-antiquark field strength relative to 

the electromagnetic field.  Given that the electron classical radius is usually defined as roe = 

e
2
/mec

2
= 2.818fm, and the Quigg-Rosner fundamental charmed quark mass is mc = 1.08GeV/c

2
, 

then the field strength ratio could be of the order: 
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Intuitively this ratio should be 137.036 (the inverse fine structure constant α
-1

 ), comparable with 

the strong force. So the analysis of Quigg and Rosner, using the nonrelativistic Schrodinger 

equation, appears reasonably accurate for further application.  They determined the empirical 

charmonium masses from their expression: 

  onlnl ECEM     ,        (2.3) 

where nlE  is the eigenvalue, C = 0.733GeV, and Eo is a reference mass constant given by:  

   2
qcco rCmlnCm2GeV329.2E

2

1
    .     (2.4) 

It is not clear how to adjust these parameters, in order to get the inferred 137 relativistic field 

strength ratio in (2.2). 

Compatibility of proton and charmonium as electromagnetic structures is confirmed since 

the proton has spin radius (rp = /mpc = 1.066GeV
-1

 = 0.2103fm), and mass mp = 0.938GeV, so 
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 )m2)(2/r(c/mr cqpp     .       (2.5) 

Quigg and Rosner (1979) also give the fundamental mass of the upsilon family as mQ = 

4.52GeV, while the field strength 2q  and the radius rq remain the same as for charmonium.  

Consequently, extra mass is incorporated passively in the quark and the antiquark mechanisms, 

as was found for baryons (unpublished).  In this case we have: 

   9/7.37mm cQ    ,        (2.6) 

which will be interpreted by postulating that a charmonium quark is made of 3 pearls, each of 3 

grains, whereas an upsilon quark consists of 37 such grains, but the overall charge must be 

saturated. The three pearls allow for the concept of 3 colours to be introduced, if they differ in 

some feature or just in relative phase. Design of a charmonium quark is then something like a 

proton’s design; however, rq could be a characteristic radius, rather than being a structural 

constant like the proton radius rp. 

 

3. Application of Einstein’ Equations: 

In order to interpret the attractive inter-quark force in a way compatible with the 

electromagnetic and hadronic forces, the metric tensor component will be given a similar form: 

   2cM/)r(V1 C  ,       (3.1) 

For this, C in (2.1) will be set equal to 2/12 22/cMC  , where MC = 2mc is the fundamental 

charmonium mass. Then the potential energy, for an antiquark in the field of a quark, may be 

written as: 
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which means that: 
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We shall now discover that the potential (3.2a) cannot be spherically symmetric, but is linear as 

for a tube of gluons. 

 

3.1 Spherically symmetric field 
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The energy-momentum tensor components, for a conserved spherically symmetric radial 

field, are from the adapted Einstein’s Equations:  
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where Q is a quark constant. As previously, this expression for 2
2T  is most like the classical 

Poisson’s Equation and will be developed by keeping the charge component on the right side 

separate from the field component. After introducing (3.2b), we have: 
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The first term on the right represents momentum density of space-charge gluons, and the second 

term gives the momentum density of the ‘colour’ field emitted by these gluons. This field 

strength decreases linearly with radius. 

 Energy density 4
4T  may likewise be derived from (3.3) and arbitrarily expressed: 
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Here the first term on the right represents energy density of space-charge gluons, for an attractive 

force. If a spherically symmetric integration is carried out on (3.6), as was done for the proton 

nuclear force field, then total field energy could approach infinity. It is concluded that the 

empirical logarithmic potential (2.1) is not due to an actual spherical field, so (3.6) and (3.5) 

could only describe a field of limited extent. 

3.2 Linear field 

 We will let the charmonium binding field of gluons and colour quanta from the quark and 

antiquark be confined to a torus structure, analogous to the spin-loop of an electron or proton, see 

figure 1. The electron's spin-loop energy was calculated on the assumption of a spherical field, 

so let the quark's effective area of emission be 4roq
2
. We can then determine the total energy 

within a tube of effective cross-sectional area 4roq
2
, by integrating the energy density 4

4T .  
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Figure 1      Schematic diagram of charmonium in which a quark and antiquark orbit around a centre of 

mass, while emitting a field of gluons with their colour field, all confined in a torus.  

 

 For convenience, radial parameter r is retained as the diametrical separation of the quark 

and antiquark, which orbit the centre of mass at radius r/2.   

 There is a solution of Einstein’s Equations, specifically for a linear field. For example, 

consider an ideally static field produced between a quark placed at the origin and an antiquark 

placed on the x-axis, say. The field of gluons is to be confined by a tube of cross-sectional area 

4roq
2 

parallel to the axis. It will have components of the energy-momentum tensor as derived 

from Dingle’s formulae (Tolman, 1934, p. 253), for the line element: 

  2222222 dtdzdydxds     .     (3.10) 

These components are mathematically: 
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Upon introducing γ from (3.2b), with (r = x) we get the separate gluon and colour field 

tangential momentum densities: 
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2
2T  is the effective momentum/stress density of the field of the source quark, as seen at the 

position of the antiquark. Given the form of (3.5) and (3.6), we shall infer that 4
4T  in (3.11a) 

cannot really represent zero energy density, and should be made compatible with 2
2T  by taking 

the form: 
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Integration of 4
4T  from r = 2roq (where  = 0) to r = ∞ will then lead to the separate and equal 

gluon and colour field energy components: 
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The modulus of the first term on the right will be attributed to the energy of the gluons because 

the negative sign could be due to the opposite signs of quark and antiquark. Upon setting [roq = 

QMC/c
2
], analogous to the electron, then the maximum gluon plus colour field energy is (1/16) 

of the charmonium total mass energy: 
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When 2roq < r < ∞, the gluon plus colour field energy is less than this, such that at r = rq (where  

= 1), it is (MCc
2
/28) approximately. The actual quark radius value (roq ~ (√2/24)(rq /2 ), defined at 

( = 0), has not been interpreted further. 

 The tangential momentum density may be integrated to get a similar result: 
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This means that the gluons plus colour field quanta have unitary helicity and propagate at the 

velocity of light. 
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  Clearly, it has been essential to introduce some prior knowledge of the real gluon and 

colour field into these solutions of Einstein’s Equations, instead of trivially solving mathematical 

terms. 

 

4. Conclusion 

A model for charmonium has been developed, based on applying the logarithmic 

confinement potential to Einstein’s equations of general relativity.  The quark and antiquark orbit 

around a common centre of mass, with their gluon and colour fields entirely confined to a torus. 

The fundamental torus radius is rq /2  0.09fm, but the empirical charmonium excited states are 

larger and more massive, as derived by Quigg and Rosner.  Half the charmonium total energy 

remains in the external radial pionic field. 
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