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The zitterbewgung of the electron is associated with an intrinsic time for

an electron, or any of the fermionic particles with mass such as quarks and

leptons. In this article it is shown that a massless particle coupled to noncom-

mutative coordinate geometry is subjected to a gauge-like force. This force

acts to trap the massless particle in an orbit within a region. This bottled

massless particle then has an induced mass. This is then argued to be tied to

fundamental aspects of physics, such as a dynamical Higgs model, as well as

strings and p-brane theory.

Overview

Zitterbewegung is a possible internal clock for an elementary particle.

This trembling motion of the electron reduces the mass of a particle to the

frequency of this motion. This motion of a massless particle is due to a

fundamental interaction between this particle and the structure of spacetime.

An underlying noncommutative geometry of spacetime induces a gauge-like

force on the massless particle. This force is similar to a micro-Einstein lens

that curves the path of the null geodesic into a spiral path. The motion

is similar a photon in a material with a spatially variable dielectric. This

quantal dynamics likely has connections to physical foundations, such as
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string theory and conformal field theory. The onset of this frantic motion

likely represents a transition in the renormalization group flow of conformal

field theory at the symmetry breaking point.

Time and Zitterbewegung

De Broglie proposed a wave with a certain frequency and wavelength was

associated with the motion of an electron [1]. This motion is something which

intertwines the proper time of a particle in relativity with the coordinate time

of a quantum particle. Special relativity defines the invariant interval

ds2 = − (cdt)2 + dx2 + dy2 + dz2 = ηabdxadxb (1a)

as the time measured on a worldline. A multiplication of proper time by

mass-energy E = mc2 of the particle on the worldline defines an action

dS = mc2ds, (1b)

and the motion of a particle is determined by the variational calculus. For

special relativity δds = ds−1ηabdxaδdxb, and the four velocity Ua = dxa/ds

gives the result

δds = ηijU
iδU jds + ηijU

iU jδ(ds). (2)

The variation in the four velocity is dUa determines a four acceleration, the

orthogonality condition between acceleration and velocity in four dimensions,

and the equations of motion in special relativity. This is easily extended to a

general gab metric, where the variational calculus will reproduce the geodesic

equations of motion.

Particle dynamics is determined by the extremization of the proper time

of a particle. Yet, what does it mean for a particle to have a clock? A clock

is a device on a frame which oscillates masses on springs or jostles electrons
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between atomic levels. In that case there is some sort of internal dynamics

to the particle to define the clock. It is then tempting to say

dS = mc2ds = pdq − Hdt, (3)

for some Hamiltonian which defines the working of the clock. The energy

involved with driving this clock contributes to the mc2 of the particle mass.

Further, this time “t” is a coordinate time, which is assigned by a gauge-like

coordinate condition or choice of spatial surfaces of clock synchronization,

which fixed the Hamiltonian. This coordinate time in quantum mechanics

defines the evolution of quantum waves. A working clock model of time

intertwines the proper time with coordinate time.

What about an elementary particle such as the electron? The electron

has no apparent spatial extent to hold a clock. So what does it mean for

an electron to have a clock? The answer to this question might be found by

early work by deBroglie, Schrodinger and Dirac. Louis deBroglie determined

that the wavelength of a particle times its momentum equals a unit of action.

This is rewritten as E = h̄ω, which tells us energy is frequency. Combined

with famous Einstein equation, mass is energy or E = mc2, the mass of an

electron is equivalent to its frequency

ω = mc2/h̄, (4)

which is about 1.6×10−21sec−1. This formula can be easily rewritten to give

the Compton wavelength of the electron, λ = h̄/mc = 3.9×10−11cm, which

defines the region of motion. Some care is in order for E = mc2 obtains on

the rest frame of a particle. An oscillatory wave function is written as [2][3]

ψ(r, s) = ψ(r)exp(iωs), (5)

for s the proper time of the particle. In the lab frame there is the observed

frequency ωL in lab time TL, and clearly ωs = ωLTL which gives us

ωL = ω(s/TL) =
ω

γ
, γ = 1/

√
1 − (v/c)2. (6)
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This suggests how an electron has a clock without internal “parts” that

requires internal dynamics dependent on coordinate time.

There are measurable consequences of zitterbewegung. The distance tra-

versed by the the particle in the lab time TL is d = vTL which in a clock

period is equal to d = hp/(mc)2. An electron moving through a crys-

talline lattice with atomic spacing d exhibits a resonance between the zitter-

frequency and the occurrence of an atom in the lattice. For an silicon crystal

with d = 3.84A the resonance energy pc is easily computed as 80.87MeV . A

channeling experiment was performed with the linear accelerator at Saclay.

There was an observed drop in the transmission resonance of electrons at

81.8MeV . The publication received scant attention, in part because of the

venue, Annales de la Foundation Louis de Broglie, and a subsequent account

[4] was largely ignored. Zitterbewegung has historical connections to sub-

quantal interpretations and Louis de Broglie’s “French school” of quantum

mechanics. However the data is sufficient to be taken seriously.

The Dirac equation (γµ∂µ + m)ψ = 0 may be written as a Schrödinger

equation

Hψ(q, t) = ih̄
∂ψ

∂t
(q, t), (7)

with the spatial gamma matrices αi = γ0γk [5]. The free field Dirac Hamil-

tonian H = α0m + αip̂i determines the evolution of any observable O(t)

by i∂tO(t) = [O, H]. The position of the electron O(t) = qi(t) is governed

by the equation of motion

h̄∂tqi(t) = i[H, qi] = iαj[pj, qi] = h̄αi. (8)

The acceleration q̈i of the particle is determined again by the Schrödinger

equation

h̄∂tαi = i[H, αi] = i([α0, αk]m + [αi, αj]p̂j = 2iγim + i[γi, γj]p̂j, (9)
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where the last commutator defines the spin tensor σij = (i/2)[γi, γj]. Hence

the equation of motion clearly involves a rotational motion. The motion is

in a more compact form α̇i = 2i(pi − αiH). Hence the equation of motion

is αi(t) = αi(0)exp(2i(pjqj − Ht)), and particle in a frame with pi = 0

the motion is

qi(t) =
ih̄

2H
αi(0)(e−2iHt − 1). (10)

This motion occurs in all three directions qx, qy, qz and is a Lissajous type

of motion in the stationary frame of the electron. For a massless fermion the

null worldline exhibits this trembling motion confined in a region with an

induced mass m = 〈H〉/c2.

This motion appears paradoxical. It is clear that ṗi = 0 and H is time

independent, which contradicts the fact that the zitterbewegung motion is

an oscillatory motion. The Newton-Wigner representation with H0 = βm

removes zitterbewegung motion [6][7]. However, this requires a bare mass

for the particle. For a massless particle this motion still exists, but with

a changing momentum which contradicts ṗ = 0. So something appears

problematic. Zitterbewegung has been suggested as a source of the magnetic

moment of the electron, and the angular momentum or spin of the electron,

in addition to its mass. So this motion may point to deeper foundations, and

this problem with momentum might suggest some interaction on a deeper

level.

Gravity, Gauge Potentials and Noncommutative Geometry

A potential method for removing this apparent contradiction is to con-

sider a gauge potential ω so that pi → pi + ωi. The nature of this

gauge potential may then define a geodesic-like equation Pi = 0. Further,

the gauge potential must act as a confining interaction around one particle,

which is suggestive of a soliton-like object or a geon. The equation of mo-

tion for αi suggests this motion is identified with gµν
;ν = 0, with γµ

;ν =
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γµ
,ν + Γµ

νσγ
σ = 0.[8] Since covariant momentum is constant, the two

conditions α̇i = 0 pi = 0 implies a type of geodesic motion. If the Hamil-

tonian transforms according to the unitary operator U = exp(iα · ∫ ω
ω0

A) as

H → UHU−1 into the form

H ′ = α · p exp(2iα ·
∫ ω

ω0

A) = α · ω(cos(2θ) − isin(2θ)) (11)

for θ = 1 − |ω/ω0| and small. This factors out the Hamiltonian as H ′ =

α · (p + ω) where the angle θ is absorbed into the gauge connection. This

produces the zitterbewegung motion for the gauge transformed Hamiltonian

in equation 10, and where the covariant momentum P = p + ω is time

independent.

Let the connection one-form be ωi = Γi
00dt, which defines a geodesic

equation of motion for the covariant momentum dP i/ds = dpi/ds + ωi(U t)2

which vanishes. This to the prospect the momentum may be constant where

position variable may change. There is a slight problem however, for geodesic

motion is determined by the proper time, while the Dirac equation is gov-

erned by a coordinate time. It is tempting to say that U t ' 1, yet the

frequency of motion is ω = 1021sec−1 and a Newtonian acceleration in a

region ∼ 10−11cm is a ' 1030cm/s2. This extreme condition calls into

question this assumption. Further, if we assume a gravitating mass with

Γi
00 ∼ a = GMqi/r

3 the mass would have to be M ' 1015g. Clearly

there is no mini-black hole with this mass, and radius ∼ 10−13cm, in an

electron.

Let the spacetime be tessellated by Planck units of volume, similar to

a crystalline lattice. The quantum wave is a Bloch wave with a symmetry

according to the Voronoi structure of the lattice, with solid state physics par-

allels [9]. A Brillioun reciprocal k space is determined by the polytope dual to

the fundamental unit of tessellation. There is a translational symmetry to the
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wave with T (r)ψ(q) = ψ(q + r), which equals ψ(q) for r = D a lattice spac-

ing. Assume the Voronoi cell is the root lattice for the gauge group G. The

translation of the wave function is UT (r)U †ψ(q) = U∇rU
†ψ(q), U ∈ G.

Define gauge-like fields Az = h̄U∇zU
†, for a symplectic z = {q, p}, which

define a system of general translations in the lattice and reciprocal lattice.

This is a noncommutative coordinate system:

[q, p] = ih̄ + ih̄2∇[qAp]

[q, q′] = ih̄2∇[pAp′], [p, p′] = ih̄2∇[qAq′], (12a)

where these commutators are spacetime covariant, and the first of these is

[q, p′] = ih̄ + ih̄2eµ((∂[qAp])
µ − iRµ

ναβAνqαpβ). (12b)

The first of these is employed in equation 8, so that αi → αi + ih̄2εijk∇[qjApk],

which adds a magnetic-like field Bi = εiµν∇[qµApν ], to the Dirac matrix ele-

ment. In a manifestly covariant form the dynamical equation for αi will now

be extended to

α̇i = 2i(pi − αiH) + αl∂[lBi]. (13)

By analogy with the Maxwell-Faraday equation this is a field equation with a

current term. The identification of a displacement current α̇i = α0∂tBi leads

to a general wave equation of the form 2Aµ = 4πjµ, for jµ = 2i(pi − αiH)δi
µ.

An obvious question is how near Planck scale physics, 1033cm has this

effect upon nature on a scale much larger scale 10−11cm. This issue is ad-

dressed at the end of this section. The physics is scale invariant on a quantum

critical point. The Planck scale effects then scales to the Fermi length, as

indicated below.

This gravity-like field and its wave equation binds the electron in a bottle,

similar to a geon [10]. This is particularly if the bare mass of the electron is

zero and the mass of the electron is due to energy trapped in this “bottle.”
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By way of comparison we consider elements of geon physics. Consider the

noncommutative aspects of the spacetime as a small O(h̄) correction to a

flat background. The unitary operators on a flat spacetime, large enough

so the noncommutative physics is small, the (U †U)µν = ηµν + hµν , which

are transition functions identified with a metric. The order parameter for

this expansion is the wavelength of the field λ induced by noncommutivity

and the background scale for either spacetime or a background field with a

scale variation L. Consider the noncommutative aspects of the spacetime

as a small O(h̄) correction to a flat background. The unitary operators on

a flat spacetime, on a large scale so the noncommutative physics is small,

then (U †U)µν = ηµν + hµν . The order parameter for this expansion is the

wavelength of the field λ induced by noncommutivity and the background

scale for either spacetime or a background field with a scale variation L, with

order parameter ε = λ/L. Let the variation in the spacetime metric due

to noncommutativity be small so that the average 〈gµν〉 = 〈ηµν〉 on the

scale L. This zero average applies as well with higher order derivative of hµν .

Within the scale of the spacetime field the deviations have the order

O(hµν,α) = O(1), O(hµν,αβ) = O(ε−1). (14)

A form of the Ricci curvature is calculated easily as

Rµν =
1

2
ηαβ(hαβ;µν + hµν;αβ − hαµ;νβ − hαν;µβ). (15)

The overall derivative on the metric subtracts the ih̄2∇[qAq′], whichdoes not

depend upon the gravitational constant G and is larger. The field effect due

to noncommutative coordinates expressed according to a special derivative

notion is hµν;α̂β = Uµ∇βU †
ν . So while the gravitational field component may

be small the field effect due to noncommutative coordinates may be appre-

ciable. For this reason the zitterbewegung motion can be tied to spacetime

without a mini-black hole source for the field.
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There is a series in the Ricci tensor according to powers in the perturb-

ing metric term hµν [11]. This series is similar to the Ricci series expan-

sion of the Einstein field equation in string theory for some Ricci-like tensor

Rµν = λgµν , and an eigenvalued system for derivatives of the metric cor-

rections. Possible connections between string theory and geons are an open

question to be examined. Yet the geon is similar to a soliton, which might

have connections to the dynamics of an open string and a D-brane.

The gauge-like field is similar to a gravi-electromagnetic geon [12]. The

wave equation for the gauge-like field

2Aµ = 8πi(pi − αiH)δi
µ, (16)

is examined for a Hamiltonian that contains the H = 1
2
B2 for this magnetic-

like, or gauge-like field, with pi = 0. For the sake of simplicity we reduce this

differential equation to 1 + 1 dimensions and consider the gauge-like potential

as a scalar field φ. The magnitude of the field strength is |B|2 ∼ k2φ2 − g2φ4,

and we replace the αi with a conjugate momentum operator αi → − i∂/∂φ

which results in a differentiation of H by φ. In this approximation the curl

term is replaced by φx. The approximate simplified wave equation is then,

φxx − φ̈ + 8π(κφψ − 2k2φ + 3g2φ3) = 0, (17a)

for ψ a massless one-dimensional field for the fermion and κ a coupling con-

stant between the massless fermion and the gauge-like field. This wave equa-

tion is a cubic Klein-Gordon equation, with some similarities to the 1 + 1

spacetime differential equation for a gravi-electromagnetic geon. The cou-

pling includes an equation for the motion of the massless fermion, which

is

ψ̇ = − iφψ, (17b)

which in a numerical treatment is considered to be a point-like particle.
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The evolution of the particle is a helix in two dimensional spacetime,

and the gauge-like field is in a soliton-like configuration. The solution is

approximately φ ∼ φ0sech(kx − ωt), for φ << 1 and weak coupling. If

the initial configuration of the field is described by some other configuration,

such as a periodic function with a gaussian envelope, it numerically evolves

into a soliton-like configuration. The wave function of the massless particle

oscillates back and forth as if in a potential well. The differential effective

index of refraction from the particle coupling to noncommutative spacetime

defines a path which slows the particle down the further it moves from φx = 0

of the potential field φ.

The gauge-like field induces the fermionic spin to the massless field, so the

electron observed is a quasi-particle, similar to spin density fields. The Hamil-

tonian for quasiparticles near the Fermi point is H = Ei
aσ

a(pi − p0
k), for

p0
i on the momentum representation of the Fermi surface, σa Pauli matrices.

Thus near the Fermi surface the quasi-fermions behave as Weyl 2-component

spinors, and Ei
a a tetrad which acts on the field. The tetrad may define the

gauge-like field, “lens” or an effective gravity field. Such quasi-fermions will

acts as Landau fluids which “break down” at a quantum critical point as

pi → p0
i . At the quantum critical point the physics becomes scale invariant,

and the Planck scale physics scales to much larger values. In this way elemen-

tary particles (quarks and leptons) acquire their masses at E ' 10−16Lp.

The vacuum configuration is close to a quantum critical point, which cor-

responds to a phase transition point on the abscissa, where T → 0. In

certain condensed matter systems the effective mass of a Landau heavy elec-

tron fluid diverges near the quantum critical point. The ratio m/m∗, for

m∗ → ∞ near this point is a measure of the overlap between electron states

and heavy spin states (heavy electrons) vanishes: or Z = |〈e−|p−〉|2, which

is a scale invariant quantum state. The imaginary time ti = h̄/kT for a

quantum process is large as the temperature T → 0, which induces a scaling
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invariance.

The Higgs Field, M-theory and Beyond

This section considers how zitterbewegung may have connection with

deeper aspects of physics. Zitterbewegung hints at a deeper structure to

quantum mechanics, and the above illustrates connections with the founda-

tions of spacetime physics. These connections lead to quantum gravity and

string theory.

Higgs field, mass and zitterbewegung

The zig-zag of the two component Weyl field theory with

∇AA′ψ
A =

m√
2
ψA′ , ∇AA′ψ

A′ =
m√
2
ψA, (18)

describes the oscillatory motion of a particle between its two helicity states

through a scattered by its mass. In the standard model this mass is deter-

mined by a Yukawa Lagrangian with the Higgs field. The underlying gauge-

like structure induced by noncommutative geometry underlies a dynamics for

the Higgs field. This gauge particle has the characteristic of a bound state

of fermions, such the above scalar as a dynamical Higgs particle composed

of the top and anti-top quark [13]. The gauge-like particle is associated with

the pair production of a fermion and anti-fermion, which is an underlying

quaternionic structure to the theory. To bring this in line with the standard

model and QCD these fermions are the top and anti-top quarks.

The Higgs field with gauge fields determines lepton or quark masses in

a complicated manner. The mass is induced by the term V = ūHu, for

u = q, ` for quarks or leptons respectively. We consider the fermion as

transformed by a gauge transformation u → uexp(i
∫

A · dx), which we

consider for a small gauge shift with a variation. Then the expectation of

the potential variation is 〈δV 〉 ∼ 〈 |A†ūHuA| 〉. This is a version of the
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”zig-zag” which is seen with the two component Weyl equations. The Higgs

field induces the zig-zag, or this zitterbewegung, and with the inclusion of the

gauge field the effect is enhanced. Further, the Higgs field and the gauge field

may in principle be mixed into each other. The Higgs field may be exchanged

for a pair (A, A†) or (t, t̄). In the asymptotic freedom case the gauge field

becomes weak and so the diagram is reduced to the quark interaction only

with the Higgs with some small QCD interaction. In this case the quark mass

is the bare Higgs induced mass. When the interaction is at low energy the

QCD interaction strength becomes very large and contributes to this mass.

For a gauge field the momentum-energy tensor is.

T ab = − F acFc
b − 1

4
gabFcdF

cd

which quantum mechanically is evaluated as 〈T ab〉. Let us consider the un-

certainty in this quantity ∆T ab

∆T ab = δxc∂cT
ab +

1

2
δxcδxd∂c∂dT

ab

Under the expectation 〈δxc〉 = 0 and the second order term remains. The

second order term δxcδxd has symmetric and antisymmetric portions. The

antisymmetric portion is clearly zero since ∂[c∂d] = 0 and so

∆T ab =
1

6
δx2∂c∂

cT ab

The term δxc for a massive particle evolves by the generalized Lorentz equa-

tion mD2δxc/ds2 = UaF
ac, and for an oscillator motion δxc = δx(0)cexp(iνt)

then

ν2δxc = UaF
ac.

The frequency ν is then related to the mass of the particle through E = mc2

and the deBroglie relation E = hν, and so ν = mc2/h, or

δxc =
2ph̄

mc2
UaF

ac, 〈δx2〉 =
2ph̄

mc2
〈 |F abFab| 〉,
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which is a result related to zitterbewegung. The expectation of the uncer-

tainty in the momentum energy tensor leads to the Lamb shift for the box

normalization condition on the electric field (E0)
2 = h̄ck/2εV . The require-

ment of a mass term in the δxc motion is somewhat artificial. To remove this

the noncommutative term being set to zero condition is removed. This leads

to noncommutative variables which are responsible for the zitterbewgung,

which then feeds into the mass m in the dynamics of the variation in δxc.

The relativistic quantum field theoretic perspective on zitterbewegung

suggests that the motion is connected with the virtual production of particles

in the vacuum state. The current source in equation 13 may be interpreted

as a stochastic source. The delta function δµ
j in a quantum stochastic setting

is augmented by a distribution determined by
∫

dV ψ̄ψ or that the current

is determined by 〈 jµ〉. Within this interpretation the current is a quantum

stochastic source that confers a mass to the fermion. This is a coupling of the

massless field to the vacuum state, so that the current expectation has the

form j ∼ 〈 |{q̄, ¯̀}H|{q, `}〉, where {q, `} represent quarks or leptons. It is

possible to consider the direct interaction to be due to QED, but ultimately

the mass term is conferred through the Higgs interaction.

Strings and M-theory

There are possible connections with M-theory. The soliton-like field in-

duced by noncommutative coordinates is similar to braney solitons induced

through Chan-Patton factors for open strings. Spacetime is then induced

by oscillations on the p-brane by a target map. Further, M-theory predicts

on small scales the fabric of spacetime exhibits noncommutative coordinate

conditions. The gravitational contribution from noncommutative geometry

is the Ricci curvature term in equation 12b. This becomes only apparent

at scales approaching the Planck length. However, there is in addition a

gauge-like field effect which may exist on much larger scales comparable to
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the Compton wavelength of the electron.

How does this physics really scale to 20 orders of magnitude? We consider

the geon-like physics as tied to a soliton field on a p-brane. The superspace

Lagrangian contains dXn ∧ dX10−n 10-form [14] for n = 3 the states of the

vacuum are |0〉 and have other states by |1k〉 = b†k|0〉, where the bk, b†k
operators are the quantization of the modes on the D3-brane. We consider

the electron as an open Type II with fermionic modes, which are confered to

the brane. The states on the dual D7-brane are spinon fields, which are dual

to the states on the 3-brane. The three brane can’t be identified with the

spatial manifolds of evolution in LQG until some constraints are imposed.

This happens for a vanishing overlap between these states. Hence the 3 brane

will have states that correspond to states 〈p| that have minimal overlap with

states |q〉 ∈ D7-brane |〈p|q〉| ' 0. The states |q〉 have their dual then with

3-brane states | ∗ q〉 that similarly have

|〈p| ∗ q〉|2 = m/m∗ → 0, (19)

where m∗ is the ZPE of the vacuum state for other D3-branes in a foliation

with the D3-brane corresponding to states 〈p|, and a dual D7-brane with

ZPE ∼ 1/m∗. This is analogous to the heavy mass of Landau electron fluids

when the “die” near the quantum critical point [14]. The states | ∗ q〉 may

then be arrived at from a magnetization Mq from the vacuum |0〉 and states

|p〉 by

| ∗ qk〉 = Mqb
†
k−q|0〉 (20)

and the minimal overlap is then a statement of how the vacuum in our

universe is “light,” or has a small cosmological constant. This also means

that the net field content on the spatial manifold satisfies a constraint

There is an induced target map to a spatial. The noncommutative coor-

dinates define a magnetic-like field B = dA, which is by the map defines
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the magnetization Mq. The vector potential under this map defines a LQG

connection term pij → pij + iσaAijba. This field obeys a Gauss’ law with

a net charge Qa = ∇iAi, for Ai the 3-dim Hodge dual to Aij. The minimal

overlap then defines a constraint BaQ
a = 0. These spin fields, similarly

those associated with twistors, exist on a Fermi surface. This surface also

has some topological features. A space of evolution may be a spin-net in the

LQG sense, or a D-brane in the string theory. For the space of evolution,

which defines a world volume V = Σ × R, where V is the evolute of the

surface Σ, which has a target map to the spacetime or super-spacetime Mn.

The compactified winding of a D-brane on this world volume is given by a

unitary group U(n), where n is the winding number or coincidence number

of these branes. These winding numbers define the brane charges on the

volume, which define charges in K-theory groups on the manifold Mn [14],

which are closely related to the cohomology Hp(Mn, R). Within twistor the-

ory for n = 4 this is a sheaf cohomology, where these charges are helicity

states or frequencies for the PT± subspaces of twistor geometry.

The entire structure suggests a format by which gauge theories and grav-

itation exist in a single system. Noncommutative geometry can put gauge

fields and gravitation on the same footing. The two fields exist on the same

frame bundle. The commutator of coordinate or momentum variables is a

type of operator which produces a vector field, or a differential of a con-

nection term, with both gauge or gauge-like content and gravitation. The

perturbation series for geon Ricci curvature is remarkably similar to the Ricci

curvature expansion in string theory in orders of αg.

The framing of these gauge or gauge-like fields differ by the important

gravitational constant, and the invariance under R ↔ α/R in T-duality,

exchanges bundle information by imposing the constant G ∼ α2
g. This is

an intertwining on the frame, which in noncommutative geometric context
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exchanges the two fields. This connects with the AdS/CFT duality, where in

ten dimensions conformal fields on S5 are dual to the five dimensional space

of AdS. The Anti-de Sitter spacetime is SO(3, 2) which embeds in SU(4).

In a toy model system we may decompose SU(4) into SU(3) × U(1). The

additional U(1) is an abelian B-L transformation and the SU(3) is a dual

field theory to the strong nuclear force. This is a reflection of QCD, and a

duality between the chromodynamics of type IIB strings which bind p-branes

in a foliation, and gluon flux lines which bind quarks in a hadron.

Conformal fields and renormalization group flows

The zitterbewegung may represent the endpoint of conformal renormal-

ization group (RG) flow. The conformal boundary of the Anti de Sitter

(AdS) spacetime is equivalent to a Conformal Field Theory (CFT) at high

energy [16], which exhibits a simple RG flow according to the geodesic arcs

on the hyperbolic AdS, similar to the arc on the Poincaré disk. The low

energy theory, where the curve returns to the boundary, appears the same

as the high-energy theory. This is because there is no intrinsic scale — the

AdS is conformally invariant. But if you perturb the theory by adding mass

terms to certain fields, the RG flow is nontrivial and one obtains a different

theory at low energies. The zitterbewegung is a manifestation of how the RG

flows continue into the low energy, or sub-electroweak scale. The conformal

fields are equivalent to the AdS, and at very low energy addition boundary

conditions enter into the physics. The conformal infinity of AdS is a timelike

Minkoswki space which requires additional BC information on top of spatial

surfaces for their specification. So this appears to be the energy cut off of RG

flow, but in fact the apparent masses are simply manifestation of RG flows

as energy approaches zero. The zitterbewegung may encode this additional

information.

Suppose that the endpoint of the RG flows is a point where masses and
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gauge field coupling constant are such that the total horizon area of black

holes in the average cosmological horizon bubble of radius r =
√

3/Λ is

some extremum. In other words if the gauge fields were too strong or two

weak or did not have their observed proportions the number of black holes in

the universe would be smaller or larger. Further all of the physical field data

outside of black holes in this region are holographically projected by both

the cosmological event horizon and these black hole horizons. Now trans-

fer to the equivalent AdS spacetime from the physical de Sitter spacetime.

These black holes are ”lumped” into a single BTZ black hole. The fields

at the boundary of the AdS spacetime are CFT, and leave the boundary at

E ∼ ∞, and then approach it again at E ∼ 0. However, with the BTZ

black hole fields that leave the black hole by quantum tunneling with energy

E ∼ h̄/8πM approach the CFT with → 0, and those which leave the

CFT ∼ ∂AdS (∂ = conformal boundary) at E ∼ ∞ approach the BTZ

horizon with Kt · E = const, and the Killing vector Kt = 1/
√

1− 2M/r

means E ∼ 0 as r → 2M . So there is a difference in the energy scales

for the two cases. This of course involves the mass of the BTZ black hole,

which corresponds to the total black hole horizon area in the corresponding

physical dS cosmology. This information provides the boundary conditions

on the conformal boundary of AdS, which is encoded in the zitterbewegung

of the massive elementary particles.

Back to time

Returning to the issue of time, this picture suggests that proper time is

an emergent form of time. An electron, or any other fundamental particle

is a massless particle trapped in a self-confining region. The particle then

really has no proper time, but emerges from this interaction with noncom-

mutative geometry. Coordinate time in general relativity is a group element

that under covariant differentiation defines connection terms det = ωt
µe

µ.
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The differential of the time basis element defines a choice for a “flow of

time,” which due to its definition according to a connection term is not

physically “real,” since it does not transform homogeneously. The Dirac mo-

tion of the electron emerges from a time averaging over the zitterbewegung,

which is where the quantum wave equation is defined by a coordinate time.

From the perspective of relativity this averaging is what gives rise to the

proper time of the particle, though here the world line is the most expected

path which cooresponds to a classical solution.

The zitterbewegung problem has been used to argue for the existence of

subquantal physics. The helical motion of the massless particle is the source

for the spin of the fermion. While there is connection here, it is preferable

to see the spin of the particle induced by the noncommutative structure

of spacetime, which couples to the particle. The connection coefficient in

general relativity is more generally

Γa
bc =

{a

bc

}
+ h̄γa

bc,

where the classical connection term is supplanted by a quantum torsional

spin connection. For a classical system with action S, the contribution of

the torsional term is O(ε2), for ε the affine distance of transport, times h̄/S.

Thus in order to measure this torsional connection the geodesic motion of a

rotating nucleus in a cavity would be required.
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