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1 Introduction

Albert Einstein’s General Relativity is the current theory accepted for describing Gravitation. It
elegantly explains the gravitational force as the manifestation of space-time curvature caused either by
an arbitrary movement of the observer’s reference-frame or by the presence of energy (in all its forms,
including mass) within its surroundings. Although these causes are essentially different in nature they
produce the same effect: they change the geometry perceived. This was clearly expressed by Einstein
in his “Equivalence Principle” where he stated that inertial and gravitational forces act identically on
mass. Free falling objects are deviated by inertial and gravitational forces because they follow
geodesics which depart from strait lines when the geometry is curved. Energy, mass and all physical
fields evolve over this curved space-time and are responsible for its curvature at the same time. In this
elegant picture geometry plays a fundamental role.

Although this has been successfully contrasted in many ways up to a high degree of accuracy, the
theory is not complete in the sense that there are many issues for which it doesn’t give an explanation.
Let’s recall some of them:

Why space-time is four dimensional or seems to be like that?

Can matter be modeled out of some geometric aspect of the manifold?

Is the Cosmological Constant null?

Can Electromagnetism be integrated with Gravitation in a geometric way?

If the previous is possible can other gauge fields be included along with Electromagnetism?
From where the Standard Model ’s forces and symmetries come from?

Mainly those aspects are conveniently fixed or ignored in order to move on to reality modeling but it
would be nice if the theory itself could explain them. Of course this doesn’t reduce General
Relativity’s strength but constitutes the very motivation for latter research performed by Einstein and
many other mathematicians and physicists like David Hilbert, Ernst Reichenbdcher, Jan Schouten,
Arthur Eddington, Hermann Weyl, Elie Cartan, Theodor Kaluza and Oskar Klein to mention the very
firsts. Unification of all known forces under a single theory where each one can be seen as a different
aspect of the existing geometry is by no means one of the most attractive goals in today’s physics.

To integrate all known forces into the same picture more facts have to be addressed apart from those
covered by General Relativity: the Standard Model describing particle physics, the mechanism by
which particles gain the known masses, the internal symmetries in play, the existing particle flavors
and families, not to mention the inevitable Quantum Mechanics necessary to understand and work
with all of them. Such things can be observed in the labs and mostly can be correctly explained with
the actual quantum models developed for describing particle physics.

No matter how complex results the model for describing particle and field interactions or how
incompatible Quantum Mechanics and General Relativity appear to be: it is highly desirable that the
theory beyond could be mainly based on and ruled out by the geometric properties of space-time and
the internal-space. Since quantum modeling of reality is the correct way to describe things at very
short scales and General Relativity should be its classical limit at the standard scale then a geometric
foundation for a unified quantum field theory would be responsible for the geometric structure
described by Einstein’s theory. That’s why it is natural to think on quantizing the gravitational field in
order to take its geometrical content down to the quantum world just to have a clue on what a
geometrical foundation would look like at that level. But Gravity has resisted to every standard
guantizing attempt. Actually any Quantum Mechanics field theory is being defined over a flat space-
time (null connection and flat metric) and introduces gauge fields through the connection and
curvature of some associated internal-space. Gravity on the other hand is all about space-time’s
curvature (standard connection and curved metric). Even if both theories were taken to operate using
the same connection their Lagrangians would not combine well in their present form without affecting
each other. These facts make both approaches quite incompatible from the geometric point of view.
What is needed is a common modeling that better integrates the geometry into its foundations.




On the Geometrical Unification of Gravitation and Gauge Fields Juan Andrés Musante Apolo

The present theory achieves such unification working at the classical level and it is assumed that any
symmetry or geometric property considered will be reflected on the quantum domain. Starting with
expressions as general as possible it will be shown how to build a Lagrangian compatible with
General Relativity that includes Electromagnetism and other gauge fields. The resulting theory
requires the manifold to be four-dimensional.

This is a brief description of the topics seen on each chapter:

On chapter 2 the main geometric variables and some of their properties are introduced (that is the
metric and the connection; gauge group generators will be introduced latter on chapter 7). A postulate
is proposed on how to build the theory’s Lagrangian based on them. An alternative to the known
Lagrange’s equation is also given which results helpful for obtaining the field’s equations. Finally a
derivative operator is introduced for achieving a more compact notation when expressing the resulting
equations.

On chapter 3 it is shown that Einstein’s General Relativity can be obtained following the previous
postulate when using the Einstein-Hilbert Lagrangian. The concept of compatible theory is
introduced. Observations are made with respect to those limitations found when trying to introduce
additional fields like Electromagnetism.

On chapter 4 an alternative Lagrangian is given for obtaining a theory compatible with General
Relativity. The solution-conditions for achieving such compatibility are given. It is shown how a
stress-energy tensor can be obtained out of geometric components. Two solutions are given as
examples: one for the vacuum and another representing a relativistic perfect fluid. Some insight is
obtained about the nullity of the Cosmological Constant.

On chapter 5 the previous Lagrangian is extended for including Electromagnetism. The corresponding
field equations are obtained as well as the known compatible set. It is explained why currents can’t be
introduced with the usual action terms.

On chapter 6 the invariance that allows introducing Electromagnetism is analyzed in more detail. It is
seen how it affects tensors and derivative operators. Rules are given to restrict tensor algebra
according to this invariance. Some insight is obtained about the possibility of introducing mass terms
based on vector potentials when modeling bosonic contributions on a particle-field Lagrangian.

On chapter 7 it is explained how other gauge fields can be introduced. The corresponding group
generators become fields representing the Homogenous Lorentz group and will be taken as
fundamental variables like the metric and the connection. The Lagrangian is modeled to grant their
known properties and some additional one. An analysis is carried out on how the torsion can be
represented by independent internal components and for which internal symmetry are they
responsible. Based on that a suggested interpretation is given for matching this scheme with the
Standard Model’s structure which can be used as a guidance in future research related to the
introduction of particle-fields within the current theory. Also a more fundamental set of elementary
particles is proposed which may find its place in such extended theory.

On chapter 8 the Lagrangian is given for introducing gauge fields in a way that compatibility is
granted on the resulting solution set. Field equations are displayed and a partial sight is given on the
equivalent compatible set.

On chapter 9 a resume is done on the conclusions obtained and some suggestions are given for future
research based on this paper.
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2 Geometrical Objects and Postulate

2.1 Metric and Generalized Connection
This field theory will be started on a generic n -dimensional real manifold M " containing a Riemann

Metric gij which will be used as usual for measuring lengths, angles and any other relevant geometric
guantity (distance, surface, volume, etc.):

@1y 3 g'=g"(X) / gi=g" Riemann Metric
212 3 g;(X) / 9%.94 =0

The manifold will also contain a General Affine Connection l:ijk which allows performing parallel
transport operations between contiguous tangent spacesTp(X), and the corresponding tensor

covariant differentiation. This connection will be in general non-symmetric in its lower index pair.
It will be useful to express it as the sum of a Symmetric Connection T x and a Torsion tensor I j :

@13 I Dw=Dp+0x / { Tk=T"% Symmetric-Connection

(2.1.5) fijk = —fikj Torsion

@1 V V'(X) , W(X) — { VNV =8V +TV* Covariant Derivative
VW, =8 W, — "W,

Notice that this Torsion is half of the standard torsion tensor:
@16 [j=3.Cu-T)=1T'

When the so called Compatibility Condition is imposed to the metric the Standard Riemann
Connection can be obtained from it and its first derivatives:

@1y V,0"=0,0" +TMu.g" +Tn.g" =0 Compatibility Condition
@1y — I'=%940,0,}=1.9".(6,9,+0,9, —0,9;) Standard Connection

The general connection can be expressed as the sum of the standard one plus a Delta Tensor A'j
which in turn can be decomposed into a Symmetric-Delta tensor and the Torsion:

(2.1.9) fijk = Fijk Ak =T j)k+Ajk+ Aijk / A ik = Ay Symmetric-Delta tensor
A =T Torsion

2.2 Connection’s derived tensors
The following vector fields can be defined from the general connection by self contractions:

(2.2.1) f =T " Symmetric-Connection Trace
220 T =T% Torsion Trace
@23 IL,=D=T+I Right-Connection Trace
024y T.=T% =T - Left-Connection Trace

—
—
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Also the trace of the standard connection can be identified with the following metric’s gradient:

@25 T, =T =0,(In(y-a..))

With the general connection fkij and its first-order derivatives a Curvature tensor can be defined
along with two related ones obtained from it by self-contraction:

226) Rju=08I -0 jk+Tnl j —T'n I i Curvature
(2.2.7) F~2j| = F?ﬂu = akfkjl —8|l:j +l:r.1:rj| —T* .frjk Ricci Tensor
(2.28) Iik, =Rlju = 8kli| —a,ﬁ Segmental Tensor

By construction the following identities hold:

229 R'ju=-R'
(2.2.10) ﬁijkl + ﬁiklj + ﬁiljk = 2.(§kfij| +§jfi|k +§|fikj)+4.(fikr .frjl +fijr.fr|k +fi|r.frkj)
(2.2.11) %mﬁijkl +%k§ijlm +§| F~Qijmk =— 2.(§ijkrfr|m + ﬁijlr.frmk + ﬁijmr.frkl)

2212 Ry = ﬁkrkn —l:rjk.l:krl —6|l:j
_ Rji

ij —

Py

(2.2.13)
Curvatures corresponding to different connections defined over the same manifold (that is
connections differing on a generic tensor D' jx ) become related by the following expressions:
@218) T = r ik + D'k d
(2.2.15) ﬁijkl = kaiﬂ —8|fijk +firk.frj| —firl .frjk =

= F~Qijkl +%k D' —%lDijk — Z.frld.Dijr +D'w.D"j —D'".D" =

= ﬁijkl +€kDijl —€|Dijk —(Zfrm +D"w — Drlk).Dijr —D'w.D"ji + D'n.D"
Let’s introduce a compact notation for the rotational of any vector, shown with the previous traces:

(2.2.16) 8fij = éifj —iji
(2217 oL =0, —0,I

(2218 0@ =0, —0,I

Also some symbols will be defined for the components of the right-contracted curvature and the
associated contraction against the metric:

(2.2.19) FEH. =5.(R; + F~2ji) Symmetric Ricci Tensor
(2.2.20) ﬁij = %.(ﬁij - ﬁji) = %kfkij +%.6~ij Skew-Symmetric Ricci Tensor
2221y R = gk“.ﬁkr Generalized Curvature Scalar

From (2.2.20) and considering (2.2.3), (2.2.4) and (2.2.8) the following identity can be obtained:

(22 Ry —1R, =V, [*+al;
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2.3 The Geometrical Postulate

Geometry will be imposed into the theory by considering the fundamental geometric objects (the
metric, the generalized connection and later the gauge group generators) as dynamic variables which
vary independently from one another. Their usage and variational independence comes from the fact
that they represent conceptually independent attributes characterizing the containing manifold. Other
dynamic variables will be allowed as far as they introduce geometrical constraints on the previous
ones (i.e. index symmetries, differential relations, etc.). The Lagrangian will only contain first
derivatives of those fundamental variables combined up to conforming second order differential
terms:

23.1) Geometrical Theory - | = k.j L(g",a,g",l:'..,af’.., g)a I%').,(C:).dQ
X X y
D
(2:3.2) g (Xx) , 1:'..(X) : I%’).(X) - Fundamental Variables
@33 [/ (C~) (X) - Constraining Variables
y

(2.34) L=a(g",0.9" T w,0. ", E,8,E)+C.A(g",0.9" T ,0.T"we,E"., 0. E".)

) Wy ) (x)
(235 — 5C ) ,B(g",a,g",l:'..,ﬁ,l:'.., E*.,0,E.) =0 Constraining Equations

m )

2.4 Variational Principle and Noéther Currents

The Variational Principle states that the action integral must remain stationary with field variations
having fixed values on any hypervolume-domain’s boundary. This leads to the usual Lagrange’s
equations:

a1 | = k.j L(q,0, q).dQ /I q,0d.q Generic fields and first order derivatives
D 0 ® (CO N6

0

@420 Voq, D [ 6q@D)=0 — =0 & 0, oL —iz
* * @ “ (q) 0 (q)

If the action admits symmetries such that remains stationary under certain parameter-variations then
by Noéther’s theorem a conserved current can be defined based on them:

@43 Véq [ =0 —>{ 0,3“=0 / J=_%_5
(x)

This last equation turns into a charge-conservation law if the corresponding charge is defined as
usual:

44 VD - AQ = §J k.ko =0
oD

Because of the Geometrical Postulate the constraining variables won’t generate any current at all so
no physical conserved attribute will be associated to them.

The Lagrangian function L(q,0, q) is a scalar-density so the resulting field equations obtained by
(CONNNCS)
using the standard equation (2.4.2) will inevitably involve tensor-densities.
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The following method avoids working with them: let’s assume the Lagrangian density can be
represented as the product of a Reference Density o (which can never be null) and a Lagrange
Scalar function A , both depending on the dynamic variables:

45 L(g,0,9)=0(q,0, q)A(q,0.q) / o(q,0, q) Reference Density
(CONNEY (COTN ) B CO NN €9 (C N

A(q,0, q) Lagrange Scalar
CONNNCY)
Based on them the Lagrange’s equations can be modified for directly returning tensor expressions:

(2.4.6) Equivalent Lagrange”s Equations
A A A
L S S A 720 SRS 2P L 720 sy L S g
@,.q | 0q @,q° 09 @, q @, q @, g
) ) ) ) ) ) )
eary | v =In(o) : oc#0 Density’s Function

Also Noéther’s currents can be rewritten so that the conservation divergence-law becomes tensorial:

@ag V3"~ —0p)d%=0

oA + A oy Sq Equivalent Noether’s Current
@;q 40, q|
) )

49 | J'=

2.5 Variational Derivative

Given a connection let’s define its Variational Derivative by subtracting to the corresponding
covariant-derivative operator a term containing the difference between the connection right-trace and
the density-function’s gradient. For a general connection this will be of the form:

@sy TV =VV —([, —dp)V' Variational Derivative

(25.2) fIkW = %kW ! —(1:"k —0,w)W?"

This derivative operator appears naturally in those field equations obtained when the varying

parameter of equation (2.4.6) is the generalized connection I" jk, and also in the current’s divergence
law (2.4.8):

@sy VI - -o0y)d*=0 — TJ%=0

Notice that because of the term subtracted this operator does not follow the Leibnitz rule. When the
connection becomes standard this operator reduces to the usual covariant-derivative and the Leibnitz
rule is recovered:

(2.5.4) i:ijk = F‘jk —> I_IKVi = VkVi
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3 Einstein’s Gravitation

3.1 Einstein-Hilbert Action

As a starting point let’s see how to obtain Einstein’s Gravity equations out of an action that follows
the Geometrical Postulate. Since the resulting connection is expected to be symmetric in its lower
index pair such condition must be imposed through a suitable Lagrangian:

Ly lg= _ﬁ-_{\/— g.. -(gkrﬁkr —2.4, +6krs-fkrsj.dg Einstein-Hilbert Action
D
@12 [ (Sk” (X) = —(Ek“(X) Lagrange’s Multiplier

The action is written in terms of the metric and the generalized connection as the only fundamental
variables. The first two terms in the Lagrangian are those from the Einstein-Hilbert action with a
cosmological term. The third one is a Lagrange’s multiplier which forces the torsion to be null.

On this action a reference density and a Lagrange’s scalar can be easily identified:

@13  o(0..) = —|0..

(314) A(g °* y i:.co y a.i:‘.oo y 6...) = g kr .ﬁ‘kr - 2.2«(: + 6'( * .fkrs

The resulting density’s function has the following non-null derivatives:

0
@19 w=h(/-g.) - % =-1.9, . ow=T,
The equivalent Lagrange’s equations for this kind of action become:

@16) O, oA |_OA +T,. oA _ 0 / q#g’
@, q 0q o0, q x)
(%) (x) (x)
oA | i
3.1.7 ——10.A=0 / —
( ) ag“ 2 glJ ((3) g

3.2 Field Equations
The field equations obtained for the action (3.1.1) are:

(3.2.1) éffi k ) fijk =0
@220 &g" ) F?'U. —%.(ﬁ ~2.2,+C," )9, =0
(3.2.3) éfijk ) ﬁig Ik —5ik .ﬁrg Iy Z.fkir.g Ir— (Si k

Since the torsion is null this equation set can be further simplified into the following:

(3.2.4) Rij —%-R-gij = _ﬂ’c'gij
(325) —> g’ =0
(3.26) . =0
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Equation (3.2.5) turns into the Compatibility Condition if the following connection’s extension exists:
@2 VA | Aag™ +Avg" -Airg® =0
(3.2.8) fijk =Tk + A - V. k_0

Such extension turns out to be null due to index symmetries so the field equations reduce exactly to
General Relativity for the vacuum with a given cosmological constant:

629 R;—3.Rg;=-4.9;

@210 V.0 k=0

With this approach it was shown that General Relativity can be obtained by following the proposed
Geometrical Postulate although the result is limited to the vacuum case. The parameter tensor CiJk is

a geometric-auxiliary object that imposes an index-symmetry constraint on the resulting connection.
It does not participate in the final equations since it cancels to cero.

3.3 Compatible Theories

A theory compatible with General Relativity will be one were the solutions for the later become a
particular case in the former solution set. One way for obtaining such a theory from the previous one
would be to introduce constraining fields in the action (3.1.1) with terms like the following:

@3.1) IG = _ﬁj‘ Vo g.. '(gkr'ﬁkr - 22’0 + C’:Nkrs-f‘krs + ¢de
D

Gz | $=a(g™,0.9" T, 0.1"0) + (6) (X).8(9",8.9" ,T"e,0.T"0)
y )

Although this takes to a metric-equation like (3.2.9) with an additional stress-energy tensor derived
from the ¢ function and its variables, the components ' and ' should generate a connection-

equation like (3.2.3) which admits the standard connection T"'jx as a solution. This demands the
following condition to hold:

039 E.jksa( o9 j_ 0 - 9  ,  pK__g
@  \0 k) al'x "0,k ) )

Very restricting is the fact that derivatives are not allowed for the constraining variables making it
impossible to obtain second order differential equations on them. This excludes the chance to
introduce field-potentials as constraining variables by using derivative terms like with
Electromagnetism. Since the connection reduces to the standard one the only way to introduce vector
potentials would be through the metric by following the Kaluza-Klein construct [8]. This last
procedure will be depreciated in favor of a better one.

For overcoming the previous limitations another compatible action will be proposed without the null-
torsion constraint. This will allow introducing additional fields (potentials) through the general
connection and not through the metric. At the same time it will fix the manifold’s dimensionality
while enabling a conformal symmetry which will be useful for the theory’s interpretation.

10
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4  Four-Dimensional Conformal Gravitation

4.1 Conformal Gravity Action

By removing the null-torsion constraint and the cosmological term, and by squaring the Generalized
Curvature scalar in action (3.1.1) the resulting one becomes invariant under conformal
transformations when applied to the metric tensor:

— \2
@11 lgg = —ﬁ-_[\/— g.. .(gkr.er) .adQ Conformal Gravity Action
D

A conformal transformation on the metric can be expressed as:

@i g"=eg’ , =T

This action remains invariant only when the manifold is four-dimensional:
= 2
@13  lgg = —m_chg-J.\/— g.. {grkrle,rj dQ =
D
— \2
== 16.3:.kg -I\/_ g.. -ew'(‘ln)-(gkr-erj dQ
D

@14 - V oo(X)  lg=leg <« n=4

Under such conditions if a metric is a solution of the resulting field equations then those obtained
from it by a conformal transformation will also be solutions. So the metric will be determined up to a
conformal factor. A four-dimensional manifold will be assumed from now on in order to allow this
symmetry.

4.2 Field Equations
The corresponding field equations become:

@22 ) I1,(R.g™)— 611 (R.g") + 2/%.(R.g") = 0
fo

4.3 Two Solution Sets
Solutions to the previous field equations can be classified in two separate sets which will be called
Compact and Standard:

|
Il
o

(4.3.1) } Compact Set
(432) R #0
433) Iiij —%.ﬁ.gij =0 Standard Set

@aay TLg*—<IT.g"+2%.g" =5.g"a.(INR)—g*.a.(InR)

11
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From equation (4.3.4) the following equality can be deduced:
@35 R(X)= 4.4,e°C Curvature- Phase Equation

@43s) | $(C.X) =-[(g, T, g™ +2I,).dx° Global Phase
C

The function 5(C, X)) will be called Global Phase. It depends on a curve C which ends at the point
X where the equation (4.3.5) is being evaluated.

For the compact set the unique field equation just fix one degree of freedom among those existing
within the metric and the Symmetric Ricci tensor. This allows lots of solutions which can strongly
depart from General Relativity ones.

4.4 The Uniqueness Constraints

The Curvature-Phase equation (4.3.5) involves a generic curve C which ends at the point in space
where the equation is being evaluated. The generic Curvature scalar should be determined by the field
equations up to an arbitrary conformal transformation. But the election of the curve has far more
degrees of freedom than a simple conformal transformation. This implies both sides of equation
(4.3.5) can’t compensate each other to leave a unique well defined function. That’s why some extra
condition should be imposed in order to calculate a unique solution: either a prescription is given for
considering only one curve ending at each point or the theory is tailored to depend as less as possible
on these curves.

Based on that one choice has to be made between the following two constraints:

441y Path Dependence Constraint

For each point X there exists a prescription for defining a single curve C ending at it for
which a unique solution can be calculated.

This converts the Global Phase into a well defined function which becomes dependent on the
family of curves considered. An example of such rule would be the following: define for each

point X, a family of open curves {C} starting at it which can reach every point X ina

neighborhood around it with a unique parameterization set. This could be for example a
family of geodesics starting at X, (Gaussian normal coordinates) and the neighborhood will

extend to the surface of first intersections. For covering the whole Universe many of these
patches would have to be considered with the corresponding boundary conditions for
preserving the result’s continuity when going from one neighborhood to a contiguous one.

(4.42) Path Independence Constraint
The Global Phase 5 holds the following property:

@43 3 5 / gir.ﬁkgrk +§f, = 6i5 Path Independence Constraint

With this constraint equation (4.3.5) will depend only on the starting and ending points of the
curve considered, assuming that the manifold is a connected one. Then only a prescription for
determining the starting point is needed.

12
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4.5 GR-Compatible Field Equations

The solutions for the standard set have a special significance: they will take us back on the track of
General Relativity. For achieving this lets notice that for the following general connection equation
(4.3.4) simplifies very close to the standard Compatibility Condition:

@5 YV Dj=T"jk+Ak , My =Ty

@52 |/ Connection Compatibility Condition
Arig™ +Ag” —(9, Aep.g® +2.A,+A).9% +2.65A,.9" +2.A%.g" =0

(453 (452 , (434 vigh-g*.g,V,g®=0

From this last equation the metric Compatibility Condition (2.1.7) cannot be deduced even though
both equations share the standard connection as a solution:

@54 YV Ty |/ Vigjk =0 N Vigik_gjk_gir_vpgrp ~0
This happens due to the conformal invariance of equation (4.3.4), inherited by (4.5.3) but missing in

Einstein’s equations. The condition (4.5.2) will be called Connection Compatibility Condition and can
be decomposed into the following two independent ones:

A -

@55 D'yx=-1.(5 I - fj)
Connection Compatibility Conditions
@56  Aj+AG -5 (A +A ) =0

One more condition is necessary for obtaining compatibility with General Relativity:

Relativistic Conformal Gauge

This condition will be called Relativistic Conformal Gauge and stands for a special choice on the
metric’s conformal gauge. Since the Lagrangian is invariant under conformal transformations,
imposing this condition won’t affect the field equations or the physics of their solutions.

With conditions (4.5.5), (4.5.6) and (4.5.7) when identifying T x with T, the standard equation
set can finally be transformed into:

@58 A= —%.(5} .Ak —5;.&1.)
459  ASj+AY —é]k.(Ajrr +Ajir) =0
4510 V.0 k=0

8.7.k
(4.5.11) Rij _%-R-gij = C_AgTu _j“c'gij

(4.5.12) T c* (Zij -

ij 8mky "

9" 'Zkr'gij)

[N

B>

(4.5.13) i = —szkij +Zkir.zrjk _%'Ai' i
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This is General Relativity having a stress-energy tensor and a cosmological term so its solutions are
also solutions of the current theory which proves its compatibility.

A stress-energy tensor (4.5.12) is obtained out of components coming from the general connection in
(4.5.13) so it can be said such tensor is the manifestation of some geometric aspect of the manifold. It
can be used for modeling continuous-matter fields based on the Geometrical Postulate (...”’some
wood out of marble”...) gaining this way a strong geometrical foundation.

A non-null torsion (4.5.8) is admitted whose trace contributes to the resulting stress-energy tensor in
(4.5.13).

4.6 The Compatible Family of Curves
According to (4.3.5) and (4.5.7) the Relativistic Conformal Gauge (and so the possibility of having
compatible well defined solutions) is equivalent to setting the Global Phase to cero:

461 ¢(C,X)=0

This can be achieved in a variety of ways and the type of family-curve considered becomes relevant.
If any curve is to be allowed then the previous condition translates into:

462 g, 19" +21,=0
But the family of curves can be constrained resulting in different compatibility conditions.
For example it’s possible to consider only closed curves. In such case condition (4.6.1) becomes
equivalent to the Path Independence Constraint mentioned in (4.4.2):
@3 0,10, +2f =04 — #(C,X) z§ak5.dxk =0
C
This constraint may also apply to open curves holding:
@64) @d(X)=0(X,)

The bigger the family of curves the smaller will be the set of compatible solutions.

4.7 Vacuum solutions
Vacuum solutions are obtained for the following Vacuum Connection:

wry TDp=T'k +6).a, Vacuum Connection

Where a; is an arbitrary vector field that will be called Vacuum Potential.

Conditions (4.5.8) and (4.5.9) hold for this connection while the stress-energy tensor (4.5.12) becomes
null. Equality (4.6.2) is also true so these solutions live in the Relativistic Conformal Gauge s domain.
The simplified equation set becomes the one for General Relativity’s vacuum as in (3.2.9) and
(3.2.10):

@72 Ry—3.Rg; =-4.9;

(4.7.3) Vigjk =0

Connection (4.7.1) is commonly known as being a projective transformation of the standard one.

14
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4.8 Perfect Fluid’s Stress-Energy Tensor

As an example of a geometric-like matter field let’s see how a Killing vector field can generate the
standard stress-energy tensor for a perfect fluid:

@81 VYV a(X) / Via;+V,0,=0
With this field the following delta-tensor can be constructed for the general connection:
482 A =i(g; a' —5} o, — 0, a;)

Such tensor hold conditions (4.5.8) and (4.5.9) as it should be.
The corresponding stress-energy tensor can be derived following equations (4.5.12) and (4.5.13):

@83 T;=(e+P)V,V, - p.g;

_1
(4.84) V. = (a“.a,) . Velocity
@ss) | & =355a"a Mass Density
(4.8.6) p= —ﬁ.ak.ak Pressure

Where V' is the fluid’s relativistic velocity field corresponding to the direction of vector ¢, and ¢

and p the mass-density and pressure respectively, both depending on the field’s module.

It’s interesting to notice that a complex-value connection is needed for modeling matter. This strongly
suggests that the current theory may be well extended to the complex domain. The resulting
connection (standard plus (4.8.2)) looks similar in shape to the one considered by Weyl in his
unification theory [8].

4.9 The Cosmological Constant can’t be Null

From (4.3.2) and (4.3.5) it can be seen that the cosmological constant becomes associated to the
standard solution set which is the one leading to General Relativity. Such constant can’t be taken to
have a cero value because in that case the solution set would become the compact one. Although
compatible solutions may exist under this last set they would not be completely determined by the
corresponding field equation. So when talking about General Relativity as being well defined by the
theory the cosmological constant should be assumed to be different than cero:

(4.9.1) General Relativity <> A.#0

4.10 Relation between Standard Differential Geometry and General Relativity
While the metric is being scaled by conformal transformations, distance vectors and the affined
connection are not. That’s why not all geometric measurements remain invariant under those

transformations. For example angles between invariant vectors are conserved but vector modules are
not.

@101 gj=e">".g; , A= A , B — B

ij

(4.102) |A|2 =g, AA" N AP = e‘z"".|A|2 " |A|2

@103) CoS(AB) = gkr.A".Br.|A|71.|B|7l —  cos(A'.B’) = cos(AB)
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The space-time interval results to be non-invariant and so do the velocity vector:

@104y dS®=g, .dX*dX" —  dS?=e?7.dS? # dS®
(4.105) Visddis —  V'i=e?V'izV!

For such reasons most geometric measures under the actual conformal theory depends on the gauge
selected. General Relativity physics is recovered after adopting the Relativistic Conformal Gauge and
so do the standard measurement essentials (up to a constant scaling factor). Here it can be seen that
the standard differential geometry becomes a special case on a more elaborated one where the
geometric objects defined should be invariant under conformal transformations of the metric. The fact
that the geometry simplifies with the Relativistic Conformal Gauge is the reason why General
Relativity becomes a very special (preferred) reference for describing reality. The relation is similar to
the one Special Relativity maintains with General Relativity being the first a special case of the
second: when defined on a neighborhood small enough with respect to the existing curvature and an
inertial coordinate-system is being used as a reference.

4.11 Noether Currents
The Noether currents for each geometric variable result:

(4.11.1) 5g” ) (g\]“)i =0

@112 O j ) J "=2R.(g" Tk —g"‘.él:k)

()
So far the currents associated to the metric become null which implies that no “metric charge” can be
considered. On this respect the fundamental variable behaves as a constraining one. This wouldn’t be
the case if the action is constrained for example by introducing the following Lagrange’s term which
depends on the metric and its first order derivatives:

@113) Clim.(V,g* —g¥*.g, V.g").g" / ' =1.9" {0,9,}

—|9..

Such term turns the Connection Compatibility Condition into a field equation.
The payoff for such change would be a theory having non-null metric currents and a stress-energy

tensor containing the parameter C'jum which becomes a real physical field. The solutions for the

theory will be stretched in range while the compatibility with General Relativity remains untouched.
Terms like this one will be considered later on this paper.

5. Conformal Electromagnetic Gravitation

So far the Four-Dimensional Conformal Gravitation proved to be a theory compatible with General
Relativity, but something important is missing: it does not contain Electromagnetism. By following
the Geometric Postulate there is no way to introduce such field only with this action and additional
constraining terms. As discussed in (3.3) with the Einstein-Hilbert Lagrangian, the solution will be
reached by adding new fundamental terms. For knowing what terms to add a good starting point will
be to consider the Vacuum Potential as a candidate for the Electromagnetic one. Doing so prevents
the current action term to generate any unreal Electromagnetic stress-energy tensor. The good one
would be generated by new terms which should preserve the existing compatibility with General
Relativity. Only this way Gravitation and Electromagnetism will be able to merge seamlessly.
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5.1 Conformal Electromagnetic Gravity Action

Let’s consider the Vacuum Connection plus a compatible symmetric delta-tensor and identify the
vacuum potential with the Electromagnetic one:

61) =Tk +0'k+C.5.A EM-GR Connection
(5.1.2) Ok =0y

/
(5.13) 0 +0-5.(0,r +0';) =0

This will be called the Electromagnetic Gravity Connection, where A, is the usual Electromagnetic

potential and ¢, the corresponding coupling constant. The torsion of such connection depends entirely
on the Electromagnetic potential:

614 ['x=30.(8.A-6.A)=-10 T -6.I)) EM-GR Torsion

Introducing the potential this way is also supported by the fact that the curvature tensor for any
connection remains invariant when the connection is modified in the following way:

G15 V  AX), l:ijk - { l:'ijk Efijk +5}.8kl - ﬁ'ijkl = ﬁijkl

This change which was called Lambda Transformation by Einstein breaks the index-symmetry on any
symmetric connection making this property to lose relevance. It motivated him to look for unification
between Gravitation and Electromagnetism using a non-symmetric field theory. Although such theory
did not succeed this transformation found to be useful in the current paper.

For the EM-GR connection the lambda function can be seen as representing the gauge freedom of
Electromagnetism. Latter this will be proved to be correct under the appropriate conditions.

For finding the correct Electromagnetic terms for the Lagrangian only those connection-derived
tensors being invariant under lambda transformations will be considered. This ensures that after
constraining the generalized connection to the EM-GR one, the correct equations can emerge. There
are only two independent tensors that can be formed from the general connection and its first order
derivatives which are lambda-invariant:

(5.1.6) R ki , aﬁj
All other invariant terms can be derived from them by tensor operations.
For preserving the Lagrangian’s conformal symmetry the additional terms should have the form:

617 +—[9..].94.9%". X,

g..

Where Xy, is a generic expression for quadratic combinations of lambda-invariant tensors obtained

from those in (5.1.6). Such combination of first order differential terms will generate the expected
second order differential equations for Electromagnetism.

Also those quadratic combinations should not break compatibility with General Relativity achieved
by the current action term. This rule out many combinations leaving the following terms to be
combined:

(5.1.8) ﬁij , § , ﬁijkl + ﬁiljk + ﬁiklj , ol

]
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This is consistent with the fact that all of these terms must vanish when constraining to the standard
connection in order to preserve compatibility:

(5.1.9) l:ijk =Tk - F~3ij ﬁij = Gfij =0 , ﬁijkl + Isiuk + ﬁiklj =0

By following those rules a first tentative for the action would be:
.9“.g° (

+ k7-(§mkso + ﬁmoks + ﬁmsok)-(ﬁorlm + ﬁomrl + ﬁolmr) +

(5.1.10)

IGeneral = kOJ‘
D

o

R, +K,.R.R, +k,.00 .00, +

:Un|
:Unl
2>

g K.

A

R,k RO, + kg RO

A

,\_
;Ulb

+ k8.gmn.gop.(§0ksm + ﬁomks + ﬁosmk).(ﬁprln + ﬁpnrl + ﬁplnr)j-dg

Within this action some extra conditions called EM-GR Splitting Conditions must be met by the
constants k, for preserving compatibility and obtaining a neat separation between Gravity and
Electromagnetism:

6111 kK, =1k, : k, =—k, EM-GR Splitting Conditions
ke =—1k k, =—1k —2ks—3k,
(5.112) ST " e - field equation -  Vvgk=0 , V.F¥=0

When the EM-GR connection is in use these conditions will generate the splitting of the field equation
analog to (4.2.2) into the standard Compatibility Condition and the second pair of Maxwell’s
equations. They become mandatory for maintaining compatibility with General Relativity. The
resulting Lagrangian and field equations will be those from the Four-Dimensional Conformal
Gravitation with extra torsion-dependent terms (that is, they vanish if the torsion does). By this way
Electromagnetism becomes a direct manifestation of torsion and preserves its independence from
Gravitation. Finally after adopting the splitting-values and renaming the constants

by (1,3,5,8) — (1,2,3,4) the candidate action for unification results:

(5.1.13) Conformal Electromagnetic Gravity Action

ICEMG = ko-J.\/_ g.. -gkr-QSI (ﬁ ﬁ k (ﬁks _%'ﬁks)'(ﬁrl _%'ﬁrl)'_i_
D

+k4.gmn-gop-(§oksm + l-:\;omks + ﬁosmk)-(ﬁprln + ﬁpnrl + ﬁplnr) +

— (%kl +%.k3 + 3.k4).(§mkso + ﬁmoks + ﬁmsok).(ﬁorlm + |-:\;Omrl + ﬁolmr)}dg

32Ky 4
3.cte?

(5114 [ 3k, +k; =

That the new terms are torsion-dependent can be seen by considering identities (2.2.10) and (2.2.22).
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5.2 Field Equations
The corresponding field equations become:

U

pollll
P
:Uu|

G2 &' ) R.(R;—4

gu) =

>

— K (~(RY 1R).(Ry, —3R)+1.(R" 1 RY).(R, 1R, ).0;) +
+Ky.(—0l O, + 100 aF,.0;) +

A

+3k (~(R¥ ~LR)AF, — (R —1.R )00 +1.(R¥ —1.R") 4l ;) +
+2 K,. (—3 (F~Q " F~Q " +R Ini) (Rpjln + anjl + Rplnj)+

+(R™M+ R”rI +R"™). (RJrln + ij, + RJInr)+

+%.(RprIn + Rpan + ﬁp'"r).(Rprun +RPri + R"mr).gij )+
-Gk +3 K, +3.k4).(— (ﬁmilo +R™' + ﬁmloi).(ﬁojlm + ﬁomjl + ﬁolmj) +
+4.(R™s +R™" +R™").(R%m + R + §°|mr).gij)

N N

622 o'k ) TI, (R g™) -0 (5 )+2fkir.(§.gjr) =
=k ([, (R* 1 R¥) - 3101, (RY 3 R+ 2% (RY ~ 1R+
—K, (S (T80 + T, arp )~ &) ([T, 807 + T*pr a0 ")) +
+ kl'é‘ij'(flp(ﬁpk _% ﬁ )+fkrp-(§rp _%.ﬁrp)) +
— Lk (TTOF* = 5% T, + 2.0, 01P) +
Lk, S (T, (RP - LRP) + P15 (RP ~3R™) +
+%'ka-é‘ij-(ﬁp(ﬁpk _%Epk) +1 pr-(ﬁplr —%Epr)) +
+ 1 k.8 (T, 0P+ T%,p.00™) +
+2.(5 K, + 2k, +3K,).(IT, (R + RSP+ R®) + T (R + RP + R™) +
+1:Ip(§jpki + R+ R+ T 0 (R + R + RP) +
+ﬁp(§pkji + ﬁpikj + ﬁpjik) +fkrp.(§rpji + ﬁripj + ﬁrjip)) +
6K, (I,(R™ +R¥ +R™) + . (R™ + R +R™))
This last equation can be shortly written as:
623  T1L(R.g™) —6*I1.(R.g")+2.1%.(R.g") =Q*

From this the following expression can be deduced:
(5.2.4) Fai.(gjs.(%igSk - gSk.girﬁpgrp) +2.(0% +3.(5 T, - 5 .f“i))) =Q," +1.(5:.Q -5Q))

625 | Q'=qQ"
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If the generalized connection is expressed as the standard one plus as delta tensor the following identity
holds:

626) Dx=T'x+Ax — %g” — g”.gkrﬁsg“ = (A +A") - g0, (A + AP)

This delta expression corresponds to the Connection Compatibility Condition (4.5.6).
Using this (5.2.4) translates into:

(5.27) R.(Ajki + NG = (A + A%) + 2.(A +3.(5F A, - 5}(.&))) —Q+1.(5°Q -5"G)
Starting with equation (5.2.3) by contraction of the index pair (ij) the following one can be derived:
2 Q'=Q"=0 - 1,00 + T 00 = 0

By contraction of indexes (ik) on (5.2.3) this other is obtained:

pellll

629 0;(InR) =—(g, I1,9" +%ﬁ +3. Q)

From this identity it can be seen that for adopting the Relativistic Conformal Gauge the following
condition should be reached:

s210 R=42, o  [(124.(9,11,0" +35)+Q)dX =0
C

According to (5.2.4) if the Connection Compatibility Condition (4.5.6) is met then the first equation
can be decomposed into the following set which will be useful in later analysis:

G211 Vg% — gSk.girﬁpgrp =0 Generalized Compatibility Condition

(52.12) Q, =-Q;"

il

(5213 — 2. .(fijk +fkij +fjki) = (iji +Q'i +Qkij)

A

(5.2.14) 2R8I —6i0) -6 -1, = 1.(8.Q - 6:.9,) Q. —Q'ik

Considering (5.2.8), equality (5.2.12) implies the following one:

(52.15) —> Q' =-Q'=0

5.3 GR-Compatible Field Equations
When considering the Electromagnetic Gravity Connection the following identities hold:

630 T =T+ @ +0.50A EM-GR Connection
632 Vig* -g*.g,V,9" =0

ﬁ
(5.33) 9, I1,9"+21, =0 | o' =0
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With connection (5.3.1) equation (5.2.8) transforms directly into the second pair of Maxwell’s
equations for null currents:

634 28 —  V,F¥=0

All conditions (5.2.10), (5.2.11) and (5.2.12) are met:
639 - Q=-Q;" . Q/+Qu+Q'i=0 , 1(5Q-5&Q)-Q/i-Qu =0

The first pair of Maxwell’s equations is obtained as an identity coming from the definition of the
Electromagnetic field as the rotational of a vector potential, which was introduced with the EM-GR
Connection:

(5.3.6) Fij zaiAj —8JA — akFi,. +a,.Fki +8iij =0

With identities seen on (5.3.3) equation (5.2.10) shows that for this connection the Relativistic
Conformal gauge holds:

(537) (52100 —> R =44,

Considering all of this and doing the corresponding substitutions the resulting compatible field
equations become:

538 Ok =0 , O

i +05 —55.(0, +0') =0
639) V.g*=0
63100 V,F¥=0

6311 VK +V,F+ViF, =0

8.7.Kg 8.7.Kg k r
63120 R; —%.R.gij == T =405 + ~ .(ﬁ.(—Fi Fye +%.Fk .Fkr.gij))
(5.3.13) T, = ﬁ(@u _%'gkr'ékr'gij)
/
(5.3.14) (:)ij = —Vk®kij + 0.0k +%.(Vi®kjk +Vj®kik) - 0.0«

The absence of current terms in (5.3.10) under the EM-GR connection is taken to be a consequence of
a missing representation for particle fields. Such topic is a pending issue and requires a thinner
analysis to be done in future research.

5.4 About the Current Term

For including the missing current in equation (5.3.10) one may be tempted to add to the Lagrangian a
term of the form:

(5.4.1) -

0...9".9" k..J,..I / 3=

After selecting appropriately the corresponding K, constant the desired result would be obtained:

krs

(5.4.2) Vijk:—“-T”.Jj / J, =%
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Also a corresponding term would be added to the Einstein’s stress-energy equation:

643 Ry —1Rg; =..+34 k(-3 L, —1.(3, I, +3,1})+1J" T ..9)

The term (5.4.1) can’t be considered to be a constraining variable because that would force the nullity
of the torsion’s trace which in this context represents the Electromagnetic vector potential:

Gas) Dy ) [=0 —  Null Electromagnetic field ???

Then currents should depend on the fundamental variables and demand new terms to be included in
the current Lagrangian.

6 The Gauge Unification

6.1 Beyond Weyl’s Theory

So far it was shown how the action proposed based on the Geometrical Postulate allows obtaining
Gravitation and Electromagnetism together. Conformal invariance acting on the metric and lambda-
invariance acting on the connection were introduced because the first imposes a four-dimensional
manifold and permits recovering compatibility with General Relativity while the second allows to
correctly introduce the Electromagnetic potential and field. The most interesting thing about having
those single-object symmetries is this: they can be combined to represent the manifestation of a U (1)

gauge symmetry acting on a specific set of objects on the manifold (other than the metric and the
connection) in a “geometric-like” transformation.

The effect on the action variables can be described by this transformation law:

61y g"=e*’.g" , M =T"k—06,0,p

This conjugation of symmetries does not eliminate any of them: is just a particular case but it will
prove to be a useful one since it allows introducing the abelian gauge group needed. The
transformation on the metric and the Lagrangian in use looks quite similar to those in Weyl’s
unification theory [8] (first and third terms of the Lagrange’s scalar (5.1.13)) except that in this case a
general connection with torsion is allowed and other terms related to Electromagnetism are
considered. Also a different interpretation is given to the associated symmetry and the way it operates
on tensors and it is shown on what conditions the compatibility with General Relativity can be
recovered. This transformation won’t be carried out on all tensors since some of them should remain
invariant. For understanding this lets introduce the necessary concepts.

6.2 Diffeomorphisms and Parallel Transport
Consider a coordinate system change where each point X is taken to a nearby one X' by a linear
transformation defined by a vector field dX':

ax ri

= =5 +0.dX’
oX 1 o
XM= X" +dX (X OX’ =5 —0.dX'
(6.2.1) = X'+dX'(X) — o =217 Y

The representation for any covariant vector field V' in the new coordinate system can be obtained by
applying the usual coordinate-transformation law:

(6.22) V"(X')zg((—k.\/k(X):vi+vk.ako|xi
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This expression relates representations of the same vector field evaluated at different points with
different coordinate systems. It is not an identity between tensors evaluated at the same point.
I will become “tensorial” once the first operand is expressed in the initial coordinate system:

©23)  V(X'+dX") =V (X)+dX*(X).o0 V" (X)+...
6249 — V'z=zV' - LV

(dX)
625 | (dI;()Vi =dX*oV'-V¥*,dX' Lie’s derivative along dX'

Expression (6.2.4) is equivalent to (6.2.2) and have all the fields evaluated on the initial coordinate
system. The transformation’s operator results to be the Lie derivative.

The diffeomorphism considered corresponds to a change of coordinates where the tensor fields are not
being modified. In that sense it’s a “passive” transformation.

Now consider the following “active” one: take a vector field V' and parallel-transport it using the
manifold’s generic connection I'*ij along a given displacement field dX':

626 V(X +dX) =V (X)+dX"(X).V,V(X)

For extracting a tensorial equation out of this expression a coordinate change is done so that the
starting point X is taken to the ending one (X +dX) along dX":

627 V'(X)=V' +(V,dX —2[ dX")V

This active transformation up to a first differential order becomes characterized by the product of the
vector field with the following tensor operator:

628 V'=UYV* / U'j=6+V,dX' —2005.dX" = 6} +V,dX' — " .dX"

The resulting linear operator U'; only contains elements associated to the transformation itself and

will be the same no matter the transforming vector considered. It’s interesting to notice that this
operator depends on a connection having an opposite torsion with respect to the original one.

6.3 Loop Transformations

If the parallel transport of a vector field is done along a closed infinitesimal curve C the ending point
becomes the original one so there is no need to apply any coordinate system change since the equation
obtained results tensorial. In that case the transformation will be called Loop Transformation.

Such change will depend on the curve considered and translates into a tensor operator involving the
general connection and tensors derived from it. The simplest case is obtained when the curve is a

“parallelogram” defined by two infinitesimal vector fields dX' and dY' (simplest kind of loop)
which were parallel transported along each other for obtaining the opposite sides and the gap caused
by the torsion was appended for having the necessary closure.

The resulting operator can then be expressed using the corresponding curvature tensor:

63 VT=ULV" / U'j =68 +R'jndX dY®

23



On the Geometrical Unification of Gravitation and Gauge Fields Juan Andrés Musante Apolo

6.4 Absolute and Relative Transformations

Looking to the previous transformations two kinds can be distinguished: those that depend on the field
being transformed and those do not. The firsts are linear operators containing derivatives to be
evaluated on the transformed field. Here they will be called Relative Transformations. The seconds
become tensor fields depending only on the transformation agents and will be referred as Absolute
Transformations.

Among this terminology the first example (6.2.4) becomes a relative transformation while the other
two (6.2.8) and (6.3.1) result to be absolute.

6.5 Absolute Transformations as a Group

Absolute transformations are the most interesting entities since they exist as independent stand-alone
fields. They interact with all transformed fields in a homogeneous way and can be generally
represented as the following sum:

65 U'j=06+T'.do+T'1.d0.do+T';.d0.do.do+...
@ @ (@b (@ () (apbg (@ ((b) (o)

Where Tij ,Tij,..,Tij are arbitrary tensors which define the transformation and (?z? a finite set of
(a) (ab) (a..z) a
infinitesimal scalar-functions acting as driving parameters.

These transformations are invertible since an inverse can always be found:
-1

_l .
652 3 Uy [/ Uik.Ukj:5;

_1 - . - .
653 U'j=6;+V';.do+V';.d0.do+V';.d6.d6.do+...
(@ (@ (ab) (@ ) (apg (@) (b) (c)

(6.5.4) Vij :—Tij
(a) (a)

655 Vlj:—le+le.Tkj
(ab) (ab) (@ (b)

(65.6) Vi =T+ T TS+ T T =T T T
(abo) (abc) (@) (be) (@b) (c) @ () (o)

They represent a transformation group which will be called Absolute Transformation Group.

6.6 Absolute Transformations as the Key Invariance Symmetry

In the plan of constructing a field theory based on the manifold’s geometric structure only absolute
transformations based on geometrical objects will be considered. As shown in the previous examples
they can be defined by combining parallel displacements and loop transformations which are well
understood geometrical operations but in principle any transformation build out of geometrical objects
will be good even if it doesn’t have a direct interpretation as a composition of known “moves”. Of
course knot-based loops will generate absolute loop transformations and in that case the resulting
transformations may be classified according to the corresponding loop-invariants.

Invariance under the action of absolute transformations will be the key principle of the theory.
For being generic enough the geometrical objects considered will be displacement fields, the metric,
the general connection and gauge group generators which will be introduced later:

(6.6.1)

AT-Geometrical Field Theory <> Field equations are covariant under AT (dX°, g

... E%).
(x) )
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6.7 Invariant Tensors

During absolute transformations some tensors remain unchanged.
The manifold’s points remain invariant under an absolute loop transformation (ALT) so any
displacement vector field linking two points will remain the same:

671 X=X —  dX"(X)=dX'(X) (ALT)
Any scalar field also remains the same under an ALT and so do the contraction between a covariant

and a contravariant vector fields. If both are transforming fields this implies that the contravariant
transforming tensor should be the inverse of the covariant one:

672 V'=U"WV" - @ (X) =¢(X) — VW =Vviw,
_ . . A
W/ =U" W, o ULkUS =6 - U'j=Uj

The Kronecker-delta or Identity tensor remains invariant under any absolute transformation (AT) since
covariant and contravariant transforming tensors are inverses from one another:

. . 71 .
673 &) =U'%.5rU" =5 (AL)
From (6.7.1) and (6.7.2) results that the gradient of a scalar function is also invariant under any ALT:
©74) d¢'(X)=dg(X) (ALT)
dX"'(X) =dX'(X) (ALT) - 0,#(X)=0,4(X)  (ALT)

dg =, dX*

It will be seen that gauge fields will be included into the theory by imposing its Lagrangian to be
absolute-loop invariant under suitable transformations based on the corresponding gauge group
generators.

6.8 Index Rules and Types

For being consistent with a different transformation law for transforming and invariant vector fields,
only vectors (indexes) of the same kind can be added or contracted. The sum or contraction of
different kind of vectors results in a tensor having an arbitrary transformation law were the absolute
characteristic of the transformation is lost:

681 V'=UYWV*
W' =W — | Y'=UW+WE 2 UV +WE) 2V W
Yi=Vi+W' ? VAW, =US VW, = VEW,

Exceptions to this rule apply to tensors that can be considered to be either transforming or invariant. A
general case would be those proportional to the identity tensor. A particular case for a given

transforming operator U '; would be those tensors commuting with it:

682 A'j=UWAGCUY, C'i =UL (A + 95 )U™;
B'ij = Bij ad
Cli=Aj+p5 ? D"j = B'j + ¢

D'j=B'j +4.5] ?
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683 A'j=UW AU, } - A =UWAYUY =AU U = A
U'.A — AU =0

The transforming tensors U'; when acting on themselves can also be considered as transforming or
invariant.

Self-contraction is allowed whenever contracted indexes are of the same type:

684 AN = U AU =AY

To resume there are three kinds of indexes: the Transforming ones, the Invariant ones and those like
in the identity tensor which act in pairs of mixed indexes (covariant and contravariant) that can be
considered to be either transforming or invariant. These last will be called Neutral indexes.

6.9 Connection Index Types
Consider the covariant differential on any vector field:

691 DV =V VidX =@V +eV ).dX’

(692 DW, =V W.dX"=(@W, - W,).dX"

The connection’s last covariant index is contracted with dX' being an ALT-invariant vector so it
should be also ALT-invariant according to index rules. The other connection indexes may be
contracted with either transforming or invariant vectors since the same connection is used with all of
them so they should behave as a neutral-pair.

~

693 I'%k —  k-Invariant i, j — Neutral

6.10  The Connection transformation law

The transformation law for the connection can be obtained by demanding absolute transformations to
commute with the covariant derivative operation:

(6.10.1) g’jV” = (§jVi)’

There are two possible ways to define such relation depending on the type of vector considered.

For transforming vector fields this yields the following law:
-1 -1

6102 V' =UWW* -  TMp=U,"U"TM-8U")=T"k+U"V,U"

For invariant vector fields the law should read:

6103 W' =W* - l:'ijk = l:ijk

These two transformation laws can coexist if the theory fixes the connection field up to a degree of
1

freedom given by the extension U ir.§k U"; produced by the absolute transformation in play.

In other words connections differing only on an AT-extension should be regarded as representing the
same geometrical object which becomes an equivalence class under these AT.
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The theory’s field equations should only be sensible to the connection’s equivalent class and
completely invariant to the action of the proposed transformations. So do the resulting fields and all
the physics involved. As a consequence of this the connection can be considered to follow
transformation law (6.10.2) and all physics equations should be invariant under these changes.

When considering a transformation up to a first order in the transforming parameters, the connection

will change as follows:
_ ) : -1 i :
6104 U'j=0;+T'.dO+..., U'j =6, -T'j.do+...
(a) (a) (a) (a)

(6.105) — l:'ijk = l:ijk _%k(Tij .do)
(a @

6.11 Conformal Electromagnetic Gravitation as an Absolute Invariant theory
Conformal and lambda transformations can be conjugated to represent and absolute-loop
transformation corresponding to a U (1) gauge group, the one associated to Electromagnetism

(although particle wave functions and phase invariance were not introduced). The corresponding
operators and the effects on the connection are:

Gy U'; =564 , U'i™" =569
U@ u@®
1

6112) —> [Mi=Tk+U ir.%k U' =Tk —C1.5} O, @
The metric will be considered to be a transforming tensor:

6113 g =U'.U' .g" =e?2? gl
U@ uQE

Considering the Lagrangian terms:

e The metric is an absolute-transforming tensor but it changes conformally so it does not affect
the current Lagrangian nor the physics involved.

e The curvature results invariant since the absolute-transformation produces a lambda one on
the connection.

e The torsion-trace’s rotational terms are also invariant for the lambda transformation.

Because of these the Lagrangian results invariant and the Conformal Electromagnetic Gravitation
becomes an absolute-invariant theory with respect to transformations (6.11.1).

The point of having a conformal symmetry in the theory now becomes clear: the Electromagnetic
gauge effect on the metric can be canceled out by a suitable conformal transformation so the metric
and the associated geometry may stand still for any observer.

The U(1) gauge freedom will contribute to the Global Phase when considering the Relativistic
Conformal Gauge:

6114 ¢(C,X)= —I(gsr.ﬁkgrk +21)dX° - Z'Cl'(E?w ) = _I(gsr'ﬁkgrk —C.(A-2.04)dX"
C e Cc

(EM)

In that case the metric-conformal gauge will be also compensating the Electromagnetic gauge when
reaching compatibility.
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6.12 The Electromagnetic Potential’s transformation law: is the Higgs boson necessary?
Considering the EM-GR connection, the transformation law for a U (1) regauging becomes:

(6.12.1) l:ijk =T'x +0' i +C1.5}.A( — I:'ijk =T +0O Kk + C151|(A< —0,9)
It looks like the potential is transforming according to the standard gauge rule for Electromagnetism:

©122) A — A=A -0

But due to absolute-invariance index behavior the vector potential comes to be invariant making the
previous transformation rule not a true one. The good one should be:

©123) A - A=A

The gauge extension-term appearing in the connection is caused by the connection transformation law
not by the vector potential one. This enables the vector potential to be placed directly into the
Lagrangian. The corresponding contributions to the field equations become gauge invariant. This fact
turns out to be quite interesting since it allows in particle-theory formulation to introduce mass-terms
based on the field’s potential in order to give mass to the corresponding boson fields. The actual
Higgs mechanism used for that purpose in the Standard Model [7] may not be necessary at all since
mass terms can be introduced without breaking any symmetry. That may happen if particle physics
and the Standard Model can be both reformulated while being based on the present theory.

6124) Standard Model s Lagrangian ~— ...+@".g".m_.A.A +... Mass terms are allowed

7  Introducing Other Gauge Symmetries

7.1 Gauge Field components

Following Yang-Mills steps once Electromagnetism has been addressed the next step is to generalize
the theory for allowing other gauge groups. Since the Conformal Electromagnetic Gravitation works
in a four-dimensional manifold it turns out that not all the symmetries of the Standard Model can be
introduced while using a real domain just because there are not enough dimensions. At least there is
space for introducing another SU (2) x SU (2) representation without having to talk about an extra

Internal Space.

For introducing the components let’s begin with a generic gauge group.
The elements defining the group are:

71y E'j(X) Group Generators / E'«.E*j—E'«.E¥j = C .E';
(a) (@ (b) (®)  (a) (cab) ()
712y C Structural Constants  / C =-
(cab) (cab) (cba)

c.c+C.Cc+C.C =0

(eda) (dbc) (edc) (dab) (edb) (dca)

713 Aj(X) Vector Potentials
(@)
714 H;(X) Gauge Fields / H; =0, Ai—0; A+c;. C . ALA

B |
(@) @) (@) @ @9 p) (g
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Where E'; are tensor fields having the role of group generators, (Cb) are the group’s structural
(a) ca
constants, A, the field potentials, c,their corresponding coupling constant and H;; the associated
(a) ()
gauge fields. They will be integrated into the generalized connection in the following way:

(7.1.5) I:ijk =Tk +0 i + Clé‘;Ak —C,. E'; A
(@) (a)
Like in Yank-Mills theory the transforming operator will be:
-1

716 U'j= Exp(C3.I%i)j(X).((p)(X)) : U'j = EXp(—CS.I%i)j(X).(¢)(X))
The generator’s trace should vanish causing the operator’s determinant to have a unit value:
(7..7) E(k)k =0 —  detu'j| =1

a @

Properties (7.1.1) and (7.1.7) are absolute-invariant with respect to Electromagnetism (6.11.1) and the
actual Gauge transformations (7.1.6) so they can be imposed using invariant constraining fields

(C'=C).

As seen in (6.10.5), on any infinitesimal transformation defined by 6@ the connection transforms
(a)
like:
@18 IMxz=T'x—c,.(V, E'j.0p+E';.0, o)
@ @ (@ (@)
This ALT-extension will not leave the Lagrangian invariant unless the group representation and the
transforming parameters fulfill some extra conditions.

7.2 Metric Constraint and the Homogenous Lorentz Group
The metric was taken to be a transforming tensor when applying the U (1) absolute transformation

associated to Electromagnetism and compatibility with General Relativity was recovered by selecting
the Relativistic Conformal Gauge. For any other absolute transformation even if compatibility is not
met the Lagrangian should remain invariant. This will be achieved by granting the invariance of its
components like the curvature, the torsion-trace’s rotational and the metric. Since there is no other
symmetry like the conformal one that can be used for compensating changes on this last tensor the
allowed transformations should be constrained to those of the Homogenous Lorentz Group which are
the ones leaving the metric invariant. From this the Lorentz constraint results:

2y g =USU"i0,=09; Lorentz Constraint

This can be traduced into symmetries on the group generator’s indexes. When considering an
infinitesimal transformation up to a first order this definition turns out to be:

220 E;+E; =0 Group Generator’s Symmetry
(@ (@
/ ae{l,2,345,6}

The group generators are six skew-symmetric tensors in their covariant form and their traces become
null as expressed earlier in (7.1.7).

Conditions (7.2.2) are AT-invariant with respect to Electromagnetism and Gauge transformations so
they can also be imposed using an invariant constraining field.

29




On the Geometrical Unification of Gravitation and Gauge Fields Juan Andrés Musante Apolo

From an inertial coordinate system these tensors can be taken to be the following set:
Lorentz Group Generators

-1 -1 -1
+1
(7.23) E; = Ei = } E;, =
® 2 @ | |
-1 +1
Eij = +1 Eij = ] Eij el
(4) | -1 (5) +1 (6) L |

+1
w24 g'=| - E'j=0"E,
@)
-1 @)
-1 -1 -1
Ei_ — -1 EI = Ei_ —
© ' @' ®' ",
9

Ei_E Ei_E +1 Ei_E -1
@’ L @ | ®' "

These tensors can be arranged in two sets: one corresponding to space-time accelerations (K)i,- and the
X

other associated to space rotations (l_)ij :
X

(7.2.5) Kij = Eij Kij = Eij Kij = Eij Acceleration
) (1) : )R : (2) @)
LijEEij Lij EEij LijEEij Rotation
(x) (4) ! ) 5) ! (2) (6)

Combining these tensors the following complex set of group generators can be formed:

i . . .
(7.2.6) )(()i j= %.((K)'j + I.(I_)',-) | ae{x,y,z}  Lorentz Complex Group Generators
a a a
. -1 . [ -1 ] ) -1
! 1|-1 ! 1 i ! 1 —i
(7.27) X+jEE' i X+J'EE'-1 - X+J'EE' +i I
) N ) - (2) .
- . -1 -1 ) -1
- 1)-1 -! 1 =i -1 1 +i
(7.2.8) X j=- N X =i X =1
0 -2 L w AT () 7,

These generators splits the Lorentz Group into the direct sum of two SU (2) algebras as it can be seen
in their commutation rules:

(7.2.9) [X*,X*}=i. e . X"
(@) (b) (abc) (c)

(7.2.10) [X‘,X‘} =—i. &g . X~
(@ (b (abo) (c)
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(7.2.11) [X*, X} =0
@ ()

/ a,b,ce{x,y,z}

The algebra (7.2.10) corresponds to a SU (2) one for a reversed orientation on {X, y, z}.
They also fulfill the following properties (no contraction is being carried on the space index (x)):
k

i k i k i k ik ik 0, i
7212) X Tk X7 =X X=X X7 j=X" . X j=X". X j=X"«.X j=%.5;
(x) (x) (y) (y) (2) (2) (x) (x) (y) (y) (2) (2)

7213 X % =0

@
The Lorentz group representation is isomorphic to the algebra SU (2) x SU(2) so the Lie-Algebra
structure of the theory can be taken to be:

(7.2.14) Theory’s Lie-Algebra —  GRxU@xSU(2)xSU(2)
EM [ L

Where GR symbolize the Gravity contribution, U (1) the Electromagnetic one and the last two
EM

correspond to the Lorentz group in its complex representation.

7.3 Group Generators Constraint

Other important terms in the Lagrangian are those related to the curvature tensor. For any
infinitesimal absolute transformation (7.1.6) this will remain invariant up to a first order if the
following differential conditions hold for the group generators:

(7.3.0) 5k E'i=0 Generators Compatibility Conditions
(a)
U’ E5}+8.C3.Eij.¢ — ﬁ'ijk|=§ijk|+82.032. C .Eijﬁkgo.@lgoz ﬁijkl
@ (a) @b () @ (b
| e<<l

These are conditions not on the group itself but on its tensor representation (since they don’t affect the
structural constants or the resulting algebra). They will be called Generators Compatibility
Conditions.

For the particular case of a finite single-dimensional transformation (the one associated with a single
group generator) the curvature remains invariant up to any order:

@320 U 55} +C3.Eij.g0
(@ (a
! ¢ =(0,..,0,¢,0,..,0) — R =R'ju
(a)

The Generators Compatibility Conditions also allows the curvature to be expressed in a very simple
way based on the gauge fields introduced in (7.1.4):

733 R'j= R'ju — 0O +C1.5}.Fk| —¢c,.E'j.H,
@ (a

@34 | Ou=—(V,0') -V,0')k+0'w0j —0'm.0 k) Matter Curvature
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In terms of the standard connection and structural constants, conditions (7.3.1) can be expressed in the
following way:

@35 V,E'j=0 <« V. Ej=-c.C.A.Ej+E, 0 k-E"j.Ox
(a) () @9 my © @ (@)

An immediate property emerging from (7.3.1) is the following:

(7.3.6) ﬁirkI.Erj = ﬁrjkLEir
(a) (a)
This can be seen as a commutation rule between (Gravity — Matter) curvature-difference and the
group generators:
7377 — (Rt —0'w).E'j—E+.(R'u -0 ) =¢,. C .E'j.H,
(a) (@) (cba) (c) (b)
Conditions (7.3.11) are AT-invariant with respect to Electromagnetism and Gauge transformations so

they can be introduced into the Lagrangian using invariant constraining fields (Sijk :
(a)

(7.3.8) 5k Ei=0 - 5[( E" =0
(@) (a)

s ~ ~ =~ BV "
(739  4/—|9.. g g ! Ckms V E()' / Cijk = _Cikj ) (Cijk) = (Cuk) ©F = Ijk
é (a) () (@) (a) (@)

7.4 Invariant Torsion Terms

The other Lagrangian terms are those associated with derivatives of the torsion-trace afij . Such term
results absolute-invariant for Electromagnetic transformations (6.11.1) but not in general for those
like (7.1.6). One may be tempted to suppress such terms from the Lagrangian (i.e. by taking
k, =k, =0) but this will exclude Electromagnetism from the resulting theory. Because of this the

following EM-Gauge-Compatibility Condition will be imposed to the gauge-group’s transforming
parameters in order to grant invariance to the torsion-trace’s rotational:

(7.4.2) 6fi} = 6fij “ I%k). 0, ¢ =0,0(X) EM-Gauge-Compatibility Condition
(@

7.5 The Connection’s Variational Structure

As mentioned in (2.1.9) the general connection can be decomposed into the sum of independent terms
as follows:

(7.5.1) rijk = Fijk +fijk

The symmetric connection and the torsion are independent from one another due to their different
lower index symmetries and different covariant behavior (connection vs. tensor).
The torsion itself admits an irreducible decomposition in three independent components [9]:

(7.5.2) fijk =T jk+rijk+rijk
() (2) (3)

(75.3) [y =-1 (5' I 5;.11)
&)
54 | I ik +Fk i +F
@)
(7.55) M =1, (5 | Iy F) I —fjki

(3)
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By construction the last two have the following properties:

(7.5.6) k=0

jk
2

7571 D =—Iy =-Ty =-Ty
(2) (2) (2) 2)

(7.5.8) fkjk =0
®)
(7:5.9) 1—‘ijk_'_l—‘k +ijl Fjlk rkjl ij :O
® & & & & @
Identities (7.5.7) shows that fijk corresponds to the totally skew-symmetric part of the torsion. Both
(2

(7.5.6) and (7.5.8) implies that I jk and I jk are traceless so that all the torsion’s trace is contained
(2 ©)

in [ jk . Since these components are linearly independent because of their symmetries, for the torsion
0

to be null each one has to vanish. That’s why the torsion’s variations can be decomposed into three

independent ones:

(1510) =0T w+ 0T k+ 0T je
@ 2 3)
Finally the connection admits at least four independent variations:
7511) O j= o j + T o+ T j+ ST
() (2 3)

Using the metric and the Group Generators each of the torsion’s components can be written as a
function of vector potentials as follows:

75120 D' =41c,. (61.A —5.A)
@

513 ['j = 1.6,/—9..|€0-9".0".(5,.B,, — 5,,.B,)
2

7514 [j=-1 c3(5'Ekc ~&8.E'j.C,) +1.c,.(E'}.C,—E%.C;+2.E,.C")
®) (@) @ @) @ (a) @ () @ @

/ ae{l,2,345,6}
The two first vector potentials can be calculated from the torsion by the following expressions:
(7515) A = —%.cl_l.5kr Ie==-2 2e L Electromagnetic Potential
7516 B, =—1C, "\ [—|0"].05.0,n-E " T Weak Potential

Taking into account the general form of the fijk component it is clear that any torsion can be
®
expressed as a combination of vector potentials associated to the Lorentz Group generators:

@517 'y =-1¢,.(E';.C,—E%.C, i) Torsion Lorenz Basis
@ @ @ @
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All the torsion degrees of freedom are then captured by the C, vector fields which will be called
(2)

Lorentz potentials. Once they are given, the Electromagnetic potential and the Weak one can be

calculated using expressions (7.5.15) and (7.5.16).

7.6 Duality Transformations

On a four-dimensional manifold any totally skew-symmetric part of a tensor of order r can be put
into a one-to-one correspondence with its Dual of order (4—r) by the following Duality
Transformation:

(761) € = /—|0..] i : e = [—|g.[ "™ Levi-Civita Tensor

o

@62 V. - Vik=V,.g"e

i sijk

763 V;=-V, - Viy=1V,.0"0%e,; Duality Transformations
764 Vi = Vi - Vi=1V.0.9".0% 8

765 Vijg = Vi) - V =4Ve0%.9".0%.9" €

The transformation is done by contracting with the Levi-Civita totally skew-symmetric tensor-
capacity which was transformed into a tensor by multiplication against the Reference density in use.
Such transformation can be reversed in the following way:

(7.6.6) Vi = %.gia.eakrslv krs

(7.67) Vi =300 Vie =—5.V,.0".0% 6 =~ (VJ
%

(7.6.8) Vi =Va.g;y-0;.Gyne™™

(7.6.9) Vi =V 929 jp-Oic-Ga €

Because such duals can be reversed they contain the same information of their original tensors.
In this paper the following torsion “dual” will be considered:

7610 D'k =30"%.9"™.0% e, Torsion s Dual

7.7 The Torsion’s Structural Symmetry
When the Duality Transformation is applied to the torsion its structure transforms in such a way that

components fijk and fijk interchange their roles at the time component fijk transforms into
@ ) ®)
itself:

oy =) fi,-k:(fi,-kj | fi,-k:(fi,-kj | fi,-k:(fi,-kj

@ (2) ) ® ©) @)
In terms of the vector potentials this can be expressed as the following interchange-symmetries:

772 A= —;—Z.Bi B =&

1 Cz'
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So the Duality Transformation operates as a symmetry transformation between this pair of vector
potentials. What follows is a suggested identification of the previous structure and symmetry with
known physical facts.

7.8 Forces, Particles and Symmetries of the Standard Model?

Four independent variations in the connection according to section (7.5.11) lead to the concept of four
independent forces acting together. When thinking on elementary particles this traduces into four
different attributes a particle can have for telling how it interacts with each force-field. These
attributes are the charges associated to each force. In particle physics every time N particles within a
closed system can interchange roles it’s because their wave functions conform a multiplet of a given
SU(N) symmetry. At the classical level this could correspond to some symmetry taking place
between the corresponding vector potentials for which particles act as sources. That’s why the
following identifications are being made:

e The symmetric-connection variation o jx will be associated with mass as it contributes to

the matter stress-energy tensor in equations seen on section (4.5). Through Einstein’s
equation and the Compatibility Condition, Gravity is being determined by the matter tensor
and corresponding contributions of other torsion (gauge) fields.

e Variations on the torsion’s trace S1" jk will be associated as shown in section (5.1) with the
)

Electromagnetic potential A whose rotational generates the Maxwell’s fields. Electric

charges act as sources for those potentials and transmit the Electromagnetic force back to
those objects exposing them. Electrons and positrons become particles exposing a pure
Electromagnetic field which generates only this kind of torsion in it surrounds.

e Variations of the torsion’s completely skew-symmetric part o r jk will be associated to the
(2

Weak potential B, with weak charges acting as sources and transmitting the associated force

back to the containing objects. Neutrinos and antineutrinos will be particles exposing a pure
Weak field generating this kind of torsion.

e Variations of the torsion’s remaining component O r ik will be associated to the Strong
®

potentials generated by the color charges which transmit the Strong force back to the

containing objects. The three color charges red, green and blue would be associated to the

Lorentz generators )((;ij which close under the corresponding SU (2) algebra. The other
a L+

three generators )(()" i will be responsible for the associated anti-color charges generating the
a

SU (2) algebra.
-

e Quarks would be particles having a full torsion contribution where the components 5fijk ,
@)

ST ik and O I jk define their attributes (they have the three kind of charges).
@) ®
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e If components fijk and fijk can be interchanged by Duality Transformations then this
@) (2)

symmetry would be responsible for the Electro-Weak SU (2) symmetry between electrons
D

and neutrinos or up and down quarks.

o A symmetry (?) related to the cyclic permutation of the Lorentz generators may allow quarks
to be arranged into SU (3) multiplets of the Strong Force.
LG

Although a particle-field modeling is needed for confirming up to the very end this interpretation it
looks quite consistent with the Standard Model and may give a geometric support at the classical level
for what it can be seen at the quantum scale.

Because of this a quark’s wave function could have a U (1)x SU (2)x SU (3) gauge symmetry which
EM D LG

is considered to be the Standard Model’s one.

The suggested identifications should be validated lately with a more complete analysis including
particle-fields, their spins and most probably a theory based on a complex domain.

7.9 The Connection’s Decoupled Field Equations

The field equation obtained by a general variation of the connection él:i,-k can be decomposed into

independent equations when varying against its components. In particular this will be true if the
variation is being carried with those vector potentials in play:

(79.1)  (75.11) - Igijk = Eijk+ E; = E; o E e Eijk+ E; .

(T)  (T%) () (Th) (M) (Fe) (%)
) (2) (3)

v EM =0 - E'=0 E"=0  E"=0 E"=0

() (T") r () ()
(€] (2) (3)

793 EX=0 - E*+EY =0 Mass Equation
(T*) () (%)

o4 EX =0 - E" =0 Electromagnetic Equation
(f&;‘) ()

o5 EX =0 - E" =0 Weak Equation
(ﬁ('z.). ()

796) EX =0 - E'-E¥-E* =0 Strong Equation
() (F*e) () (F°

Where a duality transformation was applied to the upper index-pair in (7.9.5) for simplifying the
final expression.
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With respect to those equations seen in (5.2) and considering the torsion’s irreducible components
(7.5) this decomposition establish the following equation-equivalences under the Relativistic
Conformal Gauge (5.2.10) and the Generalized Compatibility Condition (5.2.11):

7ory EX =0 - Q'=0 / Q'=0
(5
(7.9.8) Eijk =0 - 2RI k= (QJk +Q'k+Q.))
a5 @
o9 EX =0 —>  2R. (;;-k =1.(61.Q, - 5.9,)-Q. i —Q'ik

(F*e)
@)

7.10  Holotrinos: the Fundamental Particles?

The Electromagnetic field was identified with the first torsion component fijk which would be the
)
whole torsion generated by an object exposing only and electric charge:

@101 [Mi=1.6.(5.A —5.A)

According to (7.5.17) such torsion can be expressed as a combination of Lorentz generators and
potentials. For defining a general Electromagnetic potential A the Lorentz ones should have the
following form:

(7.10.2) 201(5'A< 5'A)—1C(E' .C.— I%)kC)
() (a) a)  (a)

(C)i = (A, A,00) C; =2.(A,0,A,0) C a.(A00,A)
PARN 1
ﬁ; =2.(00-A,A) 05 =2.(0,A0-A) C6 ==.(0-A,,A0)

Following the generator definition given in (7.2.5) these Lorentz potentials can be more suitably
renamed as:

(7.103) C, =Kk , C =k , C, =Kk
® (x) (2 () ©) (2)
C—1 , C — | , C — |

4 (x) (©) () (6 (2)

Then the equality (7.10.2) would read:
104 $.C.(5.A - 5'A)—103(K' K —K'k. kj)+% G, (L I—Lkl)
@ @ @ () @ @ @ (g
/ ae{xy,z}

If each of the Lorentz vector potentials can be associated to an elementary particle then those
particles should be more fundamental than leptons and quarks.
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They would be called Holotrinos (from Ho-mogenous Lo-rentz group) and could be arranged in two
sets of three similar particles called Acceletrinos and Rotatrinos (from Acceleration and Rotation):

105 k*, k¥, k* = Acceletrinos 1,1, 1? >  Rotatrinos

For an electrically charged object at rest the Electromagnetic potential simplifies to (electrostatic
case):

106 A =(A(X),00,0)

If the object is a single electron then in the Lorentz base the holotronic potentials should be:

7107 K :%.(O,A),0,0) , k, :%.(0,0,A),O) , k; :%.(O,O,O,AO)
(x) (y) (2)

An electron will then be composed of three different acceletrinos. Since they contribute equally to
determine the final potential they should have the same electric charge which then becomes —1.e.

Holotrinos would then combine to give electrons, neutrinos, down and up quarks. This means leptons
and quarks could be taken to the same footing becoming clearer their interaction as a particle family.

Taking into account Dual symmetries, the final electric and weak charges and the fact that the
combined spin should be 1.7 (considering holotrinos as fermions of spin %.71) the know particles
would admit the following electro-weak-static composition in terms of these fundamental particles:

(7.108) € = (5)(0,—1,0,0) + (I§)(0,0,—1,0) + (I;(0,0,0,—l) Electron
(7.109) V, = (IX)(O,—l,O,O) - (Iy)(0,0,—l,O) +(!)(0,0,0,—1) Electron-Neutrino
(71010) dp = (I;(O,—L0,0) +(Iy)(0,0,—1,0) +(IZ)(0,O,0,—1) Red Down-Quark
(71011 dg = (IX)(O,—J,O,O) + (5)(0,0,—1,0) + (!)(0,0,0,—l) Green Down-Quark
(r1012) dg = (IX)(O,—:LO,O) + (Iy)(0,0,—l,O) + (I;(0,0,0,—l) Blue Down-Quark
(71013) Uy = (IX)(0,+1,0,0) + (5)(0,0,+1,0) + (5)(0,0,0,+1) Red Up-Quark
(7.10.14) Ug = (5)(0,+L0,0)+(Iy)(0,0,+1,0)+(I§)(0,0,0,+1) Green Up-Quark
(7.10.15) Up = (5)(0,+1,0,0) + (If/)(0,0,H,O) - (IZ)(O,O,O,+1) Blue Up-Quark

Where the coupling constants and potential units were adjusted for leaving the electron value —1 as
the unit reference.

When quarks combine for integrating protons and neutrons their electro-weak-static composition
results opposite to those for electrons and neutrinos respectively:

(71116) p’ = (k)(O,+L0,0) + (k)(0,0,+l,0) + (k)(0,0,0,+1) Proton
X y z
(7.1117) N = (I)(O,+l,0,0) + (I)(0,0,+1,0) + (I)(0,0,0,+1) Neutron
X y z

While acceletrinos would be responsible for the final electric charge the rotatrinos would do the
same for the weak charge.
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8 Conformal Gauge Field Gravitation
When the torsion is allowed to have any value more degrees of freedom are available to introduce
what will correspond to new gauge field potentials into the theory. The corresponding gauge
invariance results from the absolute invariance associated to the loop operators in (7.1.6) which
depend on the Group Generators fields and the corresponding phase-function parameters. The Group
Generators are new geometrical variables that have to meet the Metric Constraint (7.2.1) and the
Generators Compatibility Conditions (7.3.1) along with the usual gauge algebra (7.1.1) in order to fit
into the theory and preserve standard measurements (i.e. intervals) and loop invariance. They are six
covariant skew-symmetric tensor fields adding the Lie’s algebra of the Homogenous Lorentz Group
SU (2) x SU(2) to the already existing for the Conformal Electromagnetic Gravity represented here

asGRxU(1). The phase-function parameters are constrained by the EM-Gauge-Compatibility
Condition (7.4.1) for preserving Electromagnetism.

8.1 Conformal Gauge Field Gravity Action

The Conformal Gauge Field Gravity action will be the Conformal Electromagnetic Gravity one with
those extra terms necessary for introducing the Group Generators and their properties.

Although torsion is relaxed from compatibility condition (4.5.5) for allowing new gauge fields,
compatibility with General Relativity still requires the delta-condition (4.5.6) to hold. This is
equivalent to the Generalized Compatibility Condition (5.2.11) which is AT-invariant both to
Electromagnetic and Gauge transformations so it can be granted as a field equation by introducing the
following Lagrangian term:

~ ~ ~ ~ 1(EM) ~ ~
(8.1.1) - 9" 'Ckls'(vrgls - gls'gro'vpgop) / (Cii) = (Cijk)”(GF) = Cij

g..

This condition may have been introduced in the previous Conformal Electromagnetic Gravity
Lagrangian but that was avoided only for showing that a compatible theory was possible having a
standard solution set bigger than the known for General Relativity + Electromagnetism (it is bigger
since it includes standard non-compatible solutions as well).

After adding the term (8.1.1) and those for ensuring the generators properties (7.1.1), (7.2.2) and
(7.3.1), the gauge unification action results:
(8.1.2) Conformal Gauge Field Gravity Action

leore = ko-_[ —19.. -gkr-QSI-(er-Rm + kl'(Rks _%- ks)'(RrI _%-er) + k2.8fks.6fr| + k3'(Rks _%'Rks)'afrl +
D
+ k4.gmn.gop.(§oksm + ﬁomks + ﬁosmk).(ﬁprln + ﬁpnrl + ﬁplnr) +
— (%kl +%.k3 +3.k4).(§mkso + ﬁmoks + ﬁmsok).(ﬁorlm + ﬁomrl + ﬁolmr) +
+5Ks. 09 Comn- (V. 3™ =9™.9,4.V,9%) +K;.C o . E"1+K;.Cpp V, E™i 4
(a) (a) (a) (a)
Ky.Cye-(E™0.E%—E™.E%— C .E™) |dOQ
T sy ( @ ® o @ (@b (c)')J
(8.13) 3k, +k; = 3320?:2 , éijk = Eikj
/ Cijkl = Cjikl = Cijlk ) Cijk = _Cikj ) Cijkl = Cjikl = _Cijlk = _Cijkl
(a) (a) (a) (a) (a) (ab) (ab) (ab) (ba)
=—C , Cc.Cc+C.C+C.C =0
(cab) (cha) (eda) (dbc) (edc) (dab) (edb) (dca)
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8.2 Field Equations
The corresponding field equations become:

~

©21) Ky, ) 6ig - gjk-girﬁsgrs =0
€22  6Cyy ) E; =-Ej
(a) (a) (a)
623 6C, ) V, E'j =
(a) (a)
824) OC, E'v.EX—E.E¥ = C .Ej
©29 o ) @ © ® @ @@ o
(8.2.5) SE™, ) —ke.érrij+k7.ﬁk Ekji—z.kg.(Eik.érrkj—Ekj ' Ik——c:r I . C j =0
(a) (a) (a) (b)  (ab) (b)  (ab) (cb) (ach)
e26) A" ) R.(R,-iR. g”) =

Il)

A
=

— K (~(R" ~1R).(R, —LR)+1.(R" —LR")(R, —1.R,).0;) +
+k,.(—a0f 81“Jk+1 Fkral“krg )+

K (—(RE —2.RY)F, — (R~ 2R )4, +2.(RY —LR¥).l,.0,) +
4( 3. (F~Q "R ”i' +R '"i) (Rpjln +RPji +RPinj) +
+(R™ + R"” +R™)(Ryrim *+ Ryt + Ry
+%.(RprIn + Rpan + ﬁp'"r).(Rprun +RPort + R"mr).gij )+
-Gk +3k, +3.k4).(— (R™'s +R™o' +R™oi).(R®jim + Rt + R%my) +
+2.(R™5 +R"" +R™,").(R%m + RCmi + §°|mr).gij)

l\)|l—‘ l\)|l—‘

)+

(8.2.7) éi:ijk) ﬁra’\ " +fisr.afsr =0

628 O') TI(R.g*)—or 1, (ﬁ?g")+2rk.r (Rg") =
= k(I (R* -2 R*)— ¥ IT,(R" 3 R" R
+k.S).(1, (F‘épk—%ﬁ )+fkrp.(pr—%.pr))+
1 k. (ITO0 % = SFTT 00 P +2.1%.00 ) +

kST (RP — L RP) 4 T (R — LR +

+%'k3'5ij'(ﬁp(§pk _%-Ispk) +fk pr'(ﬁpr _%.ﬁpr)) +

+2.Gk +3k +3.k4).(1:[p(§kjpi +R4P RO £ T (RS + R+ R +
+ﬁp(§jpki +RI Isjkip) JrlAﬂkrp-(ﬁjrpi +RI™ + Iijpir) +
+ﬁp(§pkji + ﬁpikj + ﬁpjik) +fkrp.(§rpji + ﬁripj + ﬁrjip)) +

_6'k4'(ﬁp(§i ik ﬁikjp n ﬁi ) +fkrp_(§ijrp N ﬁi Pir __ ﬁirpj)) N

—1k, (_ék.i _CH, +6irr_gjk+é“jrr_5ik)+

—1k,(~C4".E}i+C* E") =0
(@ (a) (@ (a)
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The connection-equation coming from variation o jk was opened in two in order to simplify the
resulting expressions. Others can be similarly extracted out of (8.2.8) according to (7.9).

Notice that the group generators and the constraining variables don’t add new terms to the Stress-
energy equation (8.2.6). All their influence on this equation is being done through the way they
integrate and define the connection.

8.3 GR-Compatible Field Equations
With the following Gauge-Field Gravity Connection solutions can be found for the previous equation
set, which under the Relativistic Conformal Gauge becomes:

(8.3.1) I3 =4.1

C
€32 D=T'+0)+C.5.A —C.Ej.A GF-GR Connection
(@) (a)
833 | Ok =0 , @ikj + 08 —é}k.(('*)jrr +0";) =0

834) V.g*=0

©35) A =A+12.ENA
©36) Fj=0,A-0,A
@371 V, Fk=0

©38) O F +0,FR;+0,F =0

©39) R, -%+Rg;= S'Z;kg Ty — 2.9, + S'Z;kg .(ﬁ.(—lﬁ’k.ijk +%.F’kr.Fk',.gij))+ (other _terms)...
(8:3.10) T = B_f:kg .((:)ij —%.gkr.@)kr.gij)

/
(8.3.11) @ij = —Vk®kij +05.0" ik +%.(Vi®kjk + Vj®kik) - 0.0«

(8.3.12) + (other equations)...

Terms in (8.3.6) and equations in (8.3.11) were contained for remarking the resulting ones.

This is again General Relativity having contributions from a matter field Tij , Electromagnetism, other

Gauge Fields and those auxiliary geometric fields needed for the theory’s consistency Eijk, Cij
(2)

Ci and Cyy, .
(@) (ab)
The Electromagnetic potential A’ is a combination of a generic one A and the corresponding

contribution coming from the Lorentz potentials.
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9 Conclusions

The present theory achieves unification between Gravitation, Electromagnetism and other Gauge
Fields at a classical level on a real four dimensional manifold. Such dimensionality allows a metric’s
conformal symmetry which combined with the connection’s lambda invariance enable introducing the
U (1) Electromagnetic gauge symmetry through a new transformation called Absolute Loop

Transformation.

A Geometrical Postulate was given for building the Lagrangian based on fundamental geometric
objects which characterize the manifold: the metric, the generalized connection and the Gauge
Group’s Generators. Other fields were introduced solely for imposing symmetries and differential
constraints on the previous ones. By this all the terms in the Lagrangian become carriers for some
geometric specification.

One of the main symmetries in the theory was identified as the Absolute Loop Transformation which
leaves the connection’s equivalent class invariant under its action. While being quite particular it

allows introducing the gauge group U (1)xSU(2)xSU(2) which may be a projection of the
Standard Model’s one U (1) x SU(2)x SU(3) seen at the particle level since the following chain
exists: SU(3) o SU(2).

For the U (1) gauge corresponding to Electromagnetism it was mandatory for the theory to support

the metric’s Conformal Symmetry in order to free this fundamental tensor and the involved geometry
from the influence of an Electromagnetic regauging. This symmetry demanded the manifold to be
four-dimensional. Because the remaining SU (2)x SU (2) comes from the Homogeneous Lorentz

Group any regauging naturally leaves the metric invariant.

Different gauge potentials were introduced through independent connection components having no
relation with the metric. In this sense this theory doesn’t follow the Kaluza-Klein construct or need
any dimensional compactification to reach the space-time dimensionality perceived.

The theory was developed in order to contain General Relativity’s solutions. Compatibility is
achieved by choosing a given conformal gauge and ensuring the connection meets some internal
properties. When this happens the field equations are found to be those of General Relativity with a
stress-energy tensor that can model continuous-matter fields and contains the additional gauge fields
introduced.

Continuous-matter can be introduced through the symmetric-Delta tensor in the connection so a
geometric origin can be finally associated to it. If all kind of matter can be modeled following this
construction and the corresponding thermo-dynamic considerations that is something to be found in
future analysis.

Under compatibility a non-null cosmological constant is needed. For solutions belonging to the
Compact Set such constant becomes null. Continuity between those two solution-types can be
achieved if the Relativistic Conformal Gauge is abandoned in the transition zone (non-compatible
solutions). This shows that although different physic laws are applied when describing compatible
and compact solutions some linkage may exist between them. This opens the door for finding out
what happens to the physical information when relativistic solutions reach extreme limits (like in the
core of a black hole or at the initial moments of the Big-Bang) because non-compatible and compact
solutions can be used for describing the continuous evolution of those compatible ones when General
Relativity cease to be valid. This would be the case if a classical theory is still adequate for describing
reality at those events.
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The group generators were introduced as new geometrical fields. This was done in such a way that all
their usual properties along with those differential conditions needed were determined by the theory
itself.

Gauge fields were introduced through the torsion tensor. Independent internal components in the
torsion were expressed using the corresponding vector potentials and gauge group generators. Based
on them the torsion may expose symmetries like the duality transformation which along with its
internal structure can be used for understanding those particles contained in a family and forces acting
between them. This suggests that in the case the theory can be extended to represent particle fields
there is a chance the torsion symmetries turn out to be a geometric justification for the existing model
of particles and interactions of the Standard Model.

The actual formulation does not allow introducing currents in the standard way. This is regarded as a
demand for the missing particle fields mentioned previously. It is understood that particle fields
should be introduced without violating the Geometrical Postulate so currents have to be composed of
fundamental variables (existing or new ones).

On section (4.4) it was seen that uniqueness on the solutions of the Curvature-Phase equation
demanded some constraint to be met for calculating the Global Phase. This lead to the concept of an
associated family of curves (Path Dependent) or points (Path Independent) which become related to
them. On section (4.6) it was pointed out that this also was the case when the Relativistic Conformal
Gauge was considered. The relation between solutions, family of curves and compatibility strongly
suggest that it may be possible the existence of elementary well defined solutions based on oscillating
curve-sections which evolve consistently under General Relativity’s conditions. These are no others
but Strings. Based on collections of such elementary solutions bigger ones could be obtained. In that
case the image of Strings being the foundation for all know particles would be justified. Since the
actual manifold is constrained to four dimensions it is not possible to claim that Strings can be
completely defined in it since the renormalization condition on a quantum-field theory demands the
containing manifold to have 10 or 26 dimensions. This becomes an additional motivation for
extending the actual theory to be part of a bigger one where particles can be introduced and the
Internal Space justified.
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