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Abstract 

 

A Lagrangian depending on geometric variables (metric, affine connection, 

gauge group generators) is given which maintains compatibility with 

General Relativity. It generates the dynamics for Electromagnetism and 

other Gauge Fields along with Gravitation, at the time it gives a geometric 

foundation for the stress-energy tensor of continuous matter. The geometric-

invariance principle under this integration is exposed and the resulting field 

equations are obtained. The theory is developed over the tangent space of a 

four-dimensional real manifold and the generators become those from the 

Homogenous Lorentz group. 
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1 Introduction 

Albert Einstein’s General Relativity is the current theory accepted for describing Gravitation. It 

elegantly explains the gravitational force as the manifestation of space-time curvature caused either by 

an arbitrary movement of the observer’s reference-frame or by the presence of energy (in all its forms, 

including mass) within its surroundings. Although these causes are essentially different in nature they 

produce the same effect: they change the geometry perceived. This was clearly expressed by Einstein 

in his “Equivalence Principle” where he stated that inertial and gravitational forces act identically on 

mass. Free falling objects are deviated by inertial and gravitational forces because they follow 

geodesics which depart from strait lines when the geometry is curved. Energy, mass and all physical 

fields evolve over this curved space-time and are responsible for its curvature at the same time. In this 

elegant picture geometry plays a fundamental role. 

 

Although this has been successfully contrasted in many ways up to a high degree of accuracy, the 

theory is not complete in the sense that there are many issues for which it doesn’t give an explanation. 

Let’s recall some of them:  

 

 Why space-time is four dimensional or seems to be like that?  

 Can matter be modeled out of some geometric aspect of the manifold?  

 Is the Cosmological Constant null?  

 Can Electromagnetism be integrated with Gravitation in a geometric way?  

 If the previous is possible can other gauge fields be included along with Electromagnetism?  

 From where the Standard Model’s forces and symmetries come from? 

 

Mainly those aspects are conveniently fixed or ignored in order to move on to reality modeling but it 

would be nice if the theory itself could explain them. Of course this doesn’t reduce General 

Relativity’s strength but constitutes the very motivation for latter research performed by Einstein and 

many other mathematicians and physicists like David Hilbert, Ernst Reichenbächer, Jan Schouten, 

Arthur Eddington, Hermann Weyl, Élie Cartan, Theodor Kaluza and Oskar Klein to mention the very 

firsts. Unification of all known forces under a single theory where each one can be seen as a different 

aspect of the existing geometry is by no means one of the most attractive goals in today’s physics. 

 

To integrate all known forces into the same picture more facts have to be addressed apart from those 

covered by General Relativity: the Standard Model describing particle physics, the mechanism by 

which particles gain the known masses, the internal symmetries in play, the existing particle flavors 

and families, not to mention the inevitable Quantum Mechanics necessary to understand and work 

with all of them. Such things can be observed in the labs and mostly can be correctly explained with 

the actual quantum models developed for describing particle physics.  

 

No matter how complex results the model for describing particle and field interactions or how 

incompatible Quantum Mechanics and General Relativity appear to be: it is highly desirable that the 

theory beyond could be mainly based on and ruled out by the geometric properties of space-time and 

the internal-space. Since quantum modeling of reality is the correct way to describe things at very 

short scales and General Relativity should be its classical limit at the standard scale then a geometric 

foundation for a unified quantum field theory would be responsible for the geometric structure 

described by Einstein’s theory. That’s why it is natural to think on quantizing the gravitational field in 

order to take its geometrical content down to the quantum world just to have a clue on what a 

geometrical foundation would look like at that level. But Gravity has resisted to every standard 

quantizing attempt. Actually any Quantum Mechanics field theory is being defined over a flat space-

time (null connection and flat metric) and introduces gauge fields through the connection and 

curvature of some associated internal-space. Gravity on the other hand is all about space-time’s 

curvature (standard connection and curved metric). Even if both theories were taken to operate using 

the same connection their Lagrangians would not combine well in their present form without affecting 

each other. These facts make both approaches quite incompatible from the geometric point of view. 

What is needed is a common modeling that better integrates the geometry into its foundations. 
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The present theory achieves such unification working at the classical level and it is assumed that any 

symmetry or geometric property considered will be reflected on the quantum domain. Starting with 

expressions as general as possible it will be shown how to build a Lagrangian compatible with 

General Relativity that includes Electromagnetism and other gauge fields. The resulting theory 

requires the manifold to be four-dimensional.  

 

This is a brief description of the topics seen on each chapter: 

 

On chapter 2 the main geometric variables and some of their properties are introduced (that is the 

metric and the connection; gauge group generators will be introduced latter on chapter 7). A postulate 

is proposed on how to build the theory’s Lagrangian based on them. An alternative to the known 

Lagrange’s equation is also given which results helpful for obtaining the field’s equations. Finally a 

derivative operator is introduced for achieving a more compact notation when expressing the resulting 

equations. 

 

On chapter 3 it is shown that Einstein’s General Relativity can be obtained following the previous 

postulate when using the Einstein-Hilbert Lagrangian. The concept of compatible theory is 

introduced. Observations are made with respect to those limitations found when trying to introduce 

additional fields like Electromagnetism. 

 

On chapter 4 an alternative Lagrangian is given for obtaining a theory compatible with General 

Relativity. The solution-conditions for achieving such compatibility are given. It is shown how a 

stress-energy tensor can be obtained out of geometric components. Two solutions are given as 

examples: one for the vacuum and another representing a relativistic perfect fluid. Some insight is 

obtained about the nullity of the Cosmological Constant. 

 

On chapter 5 the previous Lagrangian is extended for including Electromagnetism. The corresponding 

field equations are obtained as well as the known compatible set. It is explained why currents can’t be 

introduced with the usual action terms.  

 

On chapter 6 the invariance that allows introducing Electromagnetism is analyzed in more detail. It is 

seen how it affects tensors and derivative operators. Rules are given to restrict tensor algebra 

according to this invariance. Some insight is obtained about the possibility of introducing mass terms 

based on vector potentials when modeling bosonic contributions on a particle-field Lagrangian. 

 

On chapter 7 it is explained how other gauge fields can be introduced. The corresponding group 

generators become fields representing the Homogenous Lorentz group and will be taken as 

fundamental variables like the metric and the connection. The Lagrangian is modeled to grant their 

known properties and some additional one. An analysis is carried out on how the torsion can be 

represented by independent internal components and for which internal symmetry are they 

responsible. Based on that a suggested interpretation is given for matching this scheme with the 

Standard Model’s structure which can be used as a guidance in future research related to the 

introduction of particle-fields within the current theory. Also a more fundamental set of elementary 

particles is proposed which may find its place in such extended theory. 

 

On chapter 8 the Lagrangian is given for introducing gauge fields in a way that compatibility is 

granted on the resulting solution set. Field equations are displayed and a partial sight is given on the 

equivalent compatible set. 

 

On chapter 9 a resume is done on the conclusions obtained and some suggestions are given for future 

research based on this paper. 



On the Geometrical Unification of Gravitation and Gauge Fields                         Juan Andrés Musante Apolo 

  
      5 

 
  

2 Geometrical Objects and Postulate 

 

2.1 Metric and Generalized Connection 

This field theory will be started on a generic n -dimensional real manifold 
nM containing a Riemann 

Metric 
ijg  which will be used as usual for measuring lengths, angles and any other relevant geometric 

quantity (distance, surface, volume, etc.): 
 

(2.1.1)    
ijg  )(Xg ij

 / ijg  jig        Riemann Metric 

(2.1.2)   )(Xgij     /  kj

ik gg .  i

j  

The manifold will also contain a General Affine Connection  jk
i

~
 which allows performing parallel 

transport operations between contiguous tangent spaces )(XTp , and the corresponding tensor 

covariant differentiation. This connection will be in general non-symmetric in its lower index pair. 

It will be useful to express it as the sum of a Symmetric Connection jk
i  and a Torsion tensor jk

i̂ : 
 

(2.1.3)   jk
i

~
 jk

i
jk

i  ˆ  / jk
i  kj

i         Symmetric-Connection 

(2.1.5)     jk
i̂  kj

i ˆ        Torsion 

(2.1.6)    )(XV i   ,  )(XWi    
i

jV
~

 k
kj

ii

j VV .
~
              Covariant Derivative 

ijW
~

 kij
k

ij WW .
~
  

Notice that this Torsion is half of the standard torsion tensor:   
 

(2.1.6) jk
i̂  )

~~
.(

2
1

kj
i

jk
i   jk

iT.
2
1  

 

When the so called Compatibility Condition is imposed to the metric the Standard Riemann 

Connection can be obtained from it and its first derivatives: 
 

(2.1.7) 
ij

k g  ir
rk

jrj
rk

iij

k ggg ..   0        Compatibility Condition 

 

(2.1.8)       ij
k  }.{.2

1
ijr

kr gg   ).(.
2
1

ijrirjrji

kr gggg          Standard Connection 

The general connection can be expressed as the sum of the standard one plus a Delta Tensor jk
i  

which in turn can be decomposed into a Symmetric-Delta tensor and the Torsion:  
 

(2.1.9) jk
i

~
 jk

i
jk

i   jk
i

jk
i

jk
i  ˆ       /      jk

i  kj
i      Symmetric-Delta tensor 

     

    jk
i̂  jk

i̂       Torsion 

 

2.2 Connection’s derived tensors 

The following vector fields can be defined from the general connection by self contractions: 

(2.2.1) i  ik
k                Symmetric-Connection Trace 

(2.2.2) i̂  ik
k̂                Torsion Trace 

(2.2.3) i

~
 ik

k
~

 ii  ˆ          Right-Connection Trace 

(2.2.4) j

~

 kj
k

~
 jj  ˆ             Left-Connection Trace

   
















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Also the trace of the standard connection can be identified with the following metric’s gradient: 
 

(2.2.5) i  ik
k  ))(ln(  gi  

With the general connection ij
k

~
 and its first-order derivatives a Curvature tensor can be defined 

along with two related ones obtained from it by self-contraction: 
 

(2.2.6) jkl
iR

~
 jk

r
rl

i
jl

r
rk

i
jk

i

ljl
i

k 
~
.

~~
.

~~~
     Curvature 

(2.2.7) jlR

~

 jkl
kR

~
 jk

r
rl

k
jl

r

rjljl
k

k 
~
.

~~
.

~~~


              Ricci Tensor 

(2.2.8) klR

~

 jkl
jR

~
 kllk 


~~

                                     Segmental Tensor 

 

By construction the following identities hold: 

(2.2.9) jkl
iR

~
 jlk

iR
~

  

(2.2.10) ljk
i

klj
i

jkl
i RRR

~~~
  )ˆ.ˆˆ.ˆˆ.ˆ.(4)ˆ~ˆ~ˆ~

.(2 kj
r

lr
i

lk
r

jr
i

jl
r

kr
i

kj
i

llk
i

jjl
i

k   

(2.2.11) jmk
i

ljlm
i

kjkl
i

m RRR
~~~~~~

  )ˆ~ˆ~ˆ~
.(2 ... kl

r
jmr

i
mk

r
jlr

i
lm

r
jkr

i RRR   

(2.2.12) jlR

~

 jlrl
k

jk
r

jl
k

k 

~~~

.
~~

  

(2.2.13) ijR

~
 jiR


~

  

Curvatures corresponding to different connections defined over the same manifold (that is 

connections differing on a generic tensor jk
iD ) become related by the following expressions: 

 

(2.2.14) jk
i


 jk

i
jk

i D
~

   

(2.2.15) jkl
iR


 jk

r
rl

i
jl

r
rk

i
jk

i

ljl
i

k 


..             

           jk
r

rl
i

jl
r

rk
i

jr
i

kl
r

jk
i

ljl
i

kjkl
i DDDDDDDR ...ˆ.2

~~~
   

         jk
r

rl
i

jl
r

rk
i

jr
i

lk
r

kl
r

kl
r

jk
i

ljl
i

kjkl
i DDDDDDDDDR ..).ˆ.2(

~



 

 

Let’s introduce a compact notation for the rotational of any vector, shown with the previous traces: 

(2.2.16) ij
ˆ  ijji  ˆˆ  

 

(2.2.17) ij

 ijji 


 

 

(2.2.18) ij

 ijji 


 

Also some symbols will be defined for the components of the right-contracted curvature and the 

associated contraction against the metric: 
 

(2.2.19) ijR

~

 )
~~

.(
2
1

jiij RR


                        Symmetric Ricci Tensor 

(2.2.20) ijR
~̂

 )

~~
.(2

1
jiij RR


  ijij

k

k 

~

.ˆ~
2
1                        Skew-Symmetric Ricci Tensor 

(2.2.21) R

~
 kr

kr Rg

~

.            Generalized Curvature Scalar 

From (2.2.20) and considering (2.2.3), (2.2.4) and (2.2.8) the following identity can be obtained: 

(2.2.22) ijij RR

~

.
~̂

2
1  ijij

k

k  ˆˆ~
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2.3 The Geometrical Postulate  

Geometry will be imposed into the theory by considering the fundamental geometric objects (the 

metric, the generalized connection and later the gauge group generators) as dynamic variables which 

vary independently from one another. Their usage and variational independence comes from the fact 

that they represent conceptually independent attributes characterizing the containing manifold. Other 

dynamic variables will be allowed as far as they introduce geometrical constraints on the previous 

ones (i.e. index symmetries, differential relations, etc.). The Lagrangian will only contain first 

derivatives of those fundamental variables combined up to conforming second order differential 

terms: 
 

(2.3.1) Geometrical Theory                          I    















D
yxx

dCEEggLk ).
~

,,,
~

,
~

,,(.
)()()(

 

(2.3.2)           )(Xg    ,  )(
~

X
   ,  )(

)(
XE

x

          Fundamental Variables 

(2.3.3)        /        )(
~

)(
XC

y
              Constraining Variables 

(2.3.4)         L  ),,
~

,
~

,,(.
~

),,
~

,
~

,,(
)()()()()()( xxyyxx

EEggCEEgg 




























    

(2.3.5)          
)(

~

y
C   ),,

~
,

~
,,(

)()()( xxy

EEgg 













   0      Constraining Equations 

 

2.4 Variational Principle and Noëther Currents 

The Variational Principle states that the action integral must remain stationary with field variations 

having fixed values on any hypervolume-domain’s boundary. This leads to the usual Lagrange’s 

equations: 
 

(2.4.1) I   
D

xx

dqqLk ).,(.
)()(

             /         

)( x

q , 
)( x

q         Generic fields and first order derivatives 

(2.4.2) 

)(x

q ,  D    /   0)(
)(

Dq
x

    I  0       

)()( xx
k

k
q

L

q

L

























  0   

 

If the action admits symmetries such that remains stationary under certain parameter-variations then 

by Noëther’s theorem a conserved current can be defined based on them: 
 

(2.4.3) 

)(x

q    /    I  0     
k

k J  0  / iJ 
)(

)(

.
x

x
i

q
q

L





  

This last equation turns into a charge-conservation law if the corresponding charge is defined as 

usual: 

(2.4.4) D       Q  0. 


k

D

k dJ  

Because of the Geometrical Postulate the constraining variables won’t generate any current at all so 

no physical conserved attribute will be associated to them. 

 

The Lagrangian function ),(
)()( xx

qqL    is a scalar-density so the resulting field equations obtained by 

using the standard equation (2.4.2) will inevitably involve tensor-densities.  
























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The following method avoids working with them: let’s assume the Lagrangian density can be 

represented as the product of a Reference Density   (which can never be null) and a Lagrange 

Scalar function , both depending on the dynamic variables: 
 

 

(2.4.5) ),(
)()( xx

qqL   ),().,(
)()()()( xxxx

qqqq          / ),(
)()( xx

qq                     Reference Density 

       ),(
)()( xx

qq      Lagrange Scalar 

Based on them the Lagrange’s equations can be modified for directly returning tensor expressions: 
 

(2.4.6)              Equivalent Lagrange´s Equations 







k

x
k

k

x
k

k

x
k

xx
k

k

xx
k

k
qqqqqqq



































































 ....)(

)()()()()()()(

 0  

  

(2.4.7) /        )ln(  ,             0                  Density´s Function 

 

Also Noëther’s currents can be rewritten so that the conservation divergence-law becomes tensorial: 
 

(2.4.8) 
k

kk

k

k JJ  ).
~

(
~




 0    

(2.4.9) / iJ  
)(

)()(

..
x

x
i

x
i

q
qq




























              Equivalent Nöether’s Current 

 

2.5 Variational Derivative 

Given a connection let’s define its Variational Derivative by subtracting to the corresponding 

covariant-derivative operator a term containing the difference between the connection right-trace and 

the density-function’s gradient. For a general connection this will be of the form: 
 

 (2.5.1) 
i

kV
~

 i

kk

i

k VV ).
~

(
~




          Variational Derivative 

(2.5.2) 
ij

kW
~

 ij

kk

ij

k WW ).
~

(
~




 

….  

 

This derivative operator appears naturally in those field equations obtained when the varying 

parameter of equation (2.4.6) is the generalized connection jk
i

~
, and also in the current’s divergence 

law (2.4.8): 
 

(2.5.3) 
k

kk

k

k JJ  ).
~

(
~




 0    
k

k J 
~

 0  

 

Notice that because of the term subtracted this operator does not follow the Leibnitz rule. When the 

connection becomes standard this operator reduces to the usual covariant-derivative and the Leibnitz 

rule is recovered: 
 

(2.5.4) jk
i

~
 jk

i    
i

kV
~

 i

kV  

 








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3 Einstein’s Gravitation 

 
3.1 Einstein-Hilbert Action 

As a starting point let’s see how to obtain Einstein’s Gravity equations out of an action that follows 

the Geometrical Postulate. Since the resulting connection is expected to be symmetric in its lower 

index pair such condition must be imposed through a suitable Lagrangian: 
 

(3.1.1) GI   







 

D

rs
krs

kckr

kr

k
c dCRgg

g
.ˆ.

~
.2

~
...

..16

3





           Einstein-Hilbert Action 

(3.1.2) / )(
~

XC
ij

k  )(
~

XC
ji

k           Lagrange’s Multiplier 

 

The action is written in terms of the metric and the generalized connection as the only fundamental 

variables. The first two terms in the Lagrangian are those from the Einstein-Hilbert action with a 

cosmological term. The third one is a Lagrange’s multiplier which forces the torsion to be null.  

On this action a reference density and a Lagrange’s scalar can be easily identified: 
 

(3.1.3) )( g    g  

(3.1.4) )
~

,
~

,
~

,(






  Cg  rs

krs

kckr

kr CRg  ˆ.
~

.2
~

. 


 

 

The resulting density’s function has the following non-null derivatives: 
 

(3.1.5)   )ln(  g    
ijg


 ijg.2

1   , i  i  

The equivalent Lagrange’s equations for this kind of action become: 
 

(3.1.6) 

)()()(

.

x
k

k

xx
k

k
qqq 



























  0   / 

)( x

q  ijg  

 

(3.1.7) 



..

2
1

ijij
g

g
 0     / 

)( x

q  ijg  

 

3.2 Field Equations 

The field equations obtained for the action (3.1.1) are: 
 

(3.2.1) jk

iC
~

  jk
i̂  0  

 

(3.2.2) ijg   ijrs
krs

kcij gCRR ).ˆ.
~

.2
~

.(
~

2
1  


 0  

 

(3.2.3) jk
i

~
  

jr
ir

kjr

r

k

i

jk

i ggg .ˆ.2
~

.
~

  
jk

iC
~

 

Since the torsion is null this equation set can be further simplified into the following: 
 

(3.2.4)  ijij gRR .
~

.
~

2
1


  ijc g.  

 

(3.2.5)  
ij

k g  0  

  

(3.2.6)  
ij

kC
~

 0  
















On the Geometrical Unification of Gravitation and Gauge Fields                         Juan Andrés Musante Apolo 

  
      10 

 
  

Equation (3.2.5) turns into the Compatibility Condition if the following connection’s extension exists: 

 

 (3.2.7)  jk
i        / 

jk
ir

rjr
ri

krk
ri

j ggg ...   0  
 

(3.2.8) jk
i

~
 jk

i
jk

i     
jk

i g  0  

 
Such extension turns out to be null due to index symmetries so the field equations reduce exactly to 

General Relativity for the vacuum with a given cosmological constant: 
 

(3.2.9) ijij gRR ..
2
1  ijc g.  

 

(3.2.10) 
jk

i g  0  

 
With this approach it was shown that General Relativity can be obtained by following the proposed 

Geometrical Postulate although the result is limited to the vacuum case. The parameter tensor 
jk

iC
~

 is 

a geometric-auxiliary object that imposes an index-symmetry constraint on the resulting connection. 

It does not participate in the final equations since it cancels to cero. 

 

3.3 Compatible Theories 

A theory compatible with General Relativity will be one were the solutions for the later become a 

particular case in the former solution set. One way for obtaining such a theory from the previous one 

would be to introduce constraining fields in the action (3.1.1) with terms like the following: 
 

(3.3.1) GI   







 

D

rs
krs

kckr

kr

k
c dCRgg

g
.ˆ.

~
.2

~
...

..16

3





 

 

(3.3.2)       /   )
~

,
~

,,().(
~

)
~

,
~

,,(
)()(



















  ggXCgg
yy
  

 

Although this takes to a metric-equation like (3.2.9) with an additional stress-energy tensor derived 

from the   function and its variables, the components   and   should generate a connection-

equation like (3.2.3) which admits the standard connection jk
i  as a solution. This demands the 

following condition to hold: 
 

(3.3.3) 

)(

jk

iE 
jk

i

r

r
jk

i
jk

i

r

r





















 ~.~~


   

)(

jk

iE 
)(

kj

iE  

 

Very restricting is the fact that derivatives are not allowed for the constraining variables making it 

impossible to obtain second order differential equations on them. This excludes the chance to 

introduce field-potentials as constraining variables by using derivative terms like with 

Electromagnetism. Since the connection reduces to the standard one the only way to introduce vector 

potentials would be through the metric by following the Kaluza-Klein construct [8]. This last 

procedure will be depreciated in favor of a better one. 

 

For overcoming the previous limitations another compatible action will be proposed without the null-

torsion constraint. This will allow introducing additional fields (potentials) through the general 

connection and not through the metric. At the same time it will fix the manifold’s dimensionality 

while enabling a conformal symmetry which will be useful for the theory’s interpretation. 
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4 Four-Dimensional Conformal Gravitation 

 
4.1 Conformal Gravity Action 

By removing the null-torsion constraint and the cosmological term, and by squaring the Generalized 

Curvature scalar in action (3.1.1) the resulting one becomes invariant under conformal 

transformations when applied to the metric tensor: 

(4.1.1) CGI   







 

D

kr

kr

k
c dRgg

g
.

~
...

2

..16

3



          Conformal Gravity Action 

A conformal transformation on the metric can be expressed as: 
 

(4.1.2) 
ijg  ijg.e .2

  , jk
i

~
 jk

i
~

 

 
This action remains invariant only when the manifold is four-dimensional: 

 

(4.1.3) CGI    






  

D

kr

kr

k
c dRgg

g
.

~
...

2

..16

3



   

           







 



D

kr

krn

k
c dRgg

g
.

~
..e..

2

)4.(

..16

3





 

 

(4.1.4)       )(X         ,        CGI   CGI          n  4  

 

Under such conditions if a metric is a solution of the resulting field equations then those obtained 

from it by a conformal transformation will also be solutions. So the metric will be determined up to a 

conformal factor. A four-dimensional manifold will be assumed from now on in order to allow this 

symmetry. 

 

4.2 Field Equations 

The corresponding field equations become:  

(4.2.1) ijg   







 ijij gRRR .

~
.

~
.

~
4
1


 0  

(4.2.2) jk
i

~
  ).

~
.(ˆ.2).

~
(

~
.).

~
(

~ jr
ir

kjr

r

k

i

jk

i gRgRgR


   0  
fg 

4.3 Two Solution Sets 

Solutions to the previous field equations can be classified in two separate sets which will be called 

Compact and Standard:  

 

(4.3.1) R

~
 0                   Compact Set 

 

(4.3.2) R

~
 0                  

 

(4.3.3) ijij gRR .
~

.
~

4
1


  0                         Standard Set 

 

(4.3.4) 
jr

ir
kjr

r

k

i

jk

i ggg .ˆ.2
~

.
~

   )
~

(ln.)
~

(ln.. RgRg i

jk

r

jrk

i


    

 






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
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




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From equation (4.3.4) the following equality can be deduced: 
 

(4.3.5) )(
~

XR


 ),(
~

e..4 XC

c

       Curvature- Phase Equation 

 

(4.3.6) / ),(
~

XC  s

C

s

rk

ksr dXgg .)ˆ.
~

.(
3
2

             Global Phase 

The function ),(
~

XC  will be called Global Phase. It depends on a curve C  which ends at the point 

X where the equation (4.3.5) is being evaluated. 

 

For the compact set the unique field equation just fix one degree of freedom among those existing 

within the metric and the Symmetric Ricci tensor. This allows lots of solutions which can strongly 

depart from General Relativity ones.  
 

4.4 The Uniqueness Constraints 

The Curvature-Phase equation (4.3.5) involves a generic curve C  which ends at the point in space 

where the equation is being evaluated. The generic Curvature scalar should be determined by the field 

equations up to an arbitrary conformal transformation. But the election of the curve has far more 

degrees of freedom than a simple conformal transformation. This implies both sides of equation 

(4.3.5) can’t compensate each other to leave a unique well defined function. That’s why some extra 

condition should be imposed in order to calculate a unique solution: either a prescription is given for 

considering only one curve ending at each point or the theory is tailored to depend as less as possible 

on these curves.  

Based on that one choice has to be made between the following two constraints:  
 

(4.4.1) Path Dependence Constraint 

For each point X  there exists a prescription for defining a single curve C ending at it for 

which a unique solution can be calculated. 

 

This converts the Global Phase into a well defined function which becomes dependent on the 

family of curves considered. An example of such rule would be the following: define for each 

point 0X  a family of open curves }{C  starting at it which can reach every point X  in a 

neighborhood around it with a unique parameterization set. This could be for example a 

family of geodesics starting at 0X  (Gaussian normal coordinates) and the neighborhood will 

extend to the surface of first intersections. For covering the whole Universe many of these 

patches would have to be considered with the corresponding boundary conditions for 

preserving the result’s continuity when going from one neighborhood to a contiguous one. 
 

(4.4.2) Path Independence Constraint 

The Global Phase 
~

holds the following property: 

 

(4.4.3)   
~

  /    i

rk

kir gg  ˆ.
~

.
3
2  

~
i          Path Independence Constraint 

 

With this constraint equation (4.3.5) will depend only on the starting and ending points of the 

curve considered, assuming that the manifold is a connected one. Then only a prescription for 

determining the starting point is needed. 
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4.5 GR-Compatible Field Equations 

The solutions for the standard set have a special significance: they will take us back on the track of 

General Relativity. For achieving this lets notice that for the following general connection equation 

(4.3.4) simplifies very close to the standard Compatibility Condition: 

 

(4.5.1)    jk
i

~
 jk

i
jk

i    , jk
i  kj

i  

(4.5.2) /                        Connection Compatibility Condition 
 

 
jr

ir
kjr

r

k

i

jk

ii

sp
sp

r

ir

jr
ri

krk
ri

j ggggggg .ˆ.2.ˆ..).ˆ...(..
3
2

3
2  


  0   

 

(4.5.3)   (4.5.2)   , (4.3.4)      
rp

pir

jkjk

i gggg  ..  0  

 

From this last equation the metric Compatibility Condition (2.1.7) cannot be deduced even though 

both equations share the standard connection as a solution: 
 

(4.5.4)    jk
i    /        

jk

i g  0    
rp

pir

jkjk

i gggg  ..  0  

 

This happens due to the conformal invariance of equation (4.3.4), inherited by (4.5.3) but missing in 

Einstein’s equations. The condition (4.5.2) will be called Connection Compatibility Condition and can 

be decomposed into the following two independent ones: 
 

(4.5.5) jk
i̂  )ˆ.ˆ..(

3
1

j

i

kk

i

j  
   

   

              Connection Compatibility Conditions 

(4.5.6) ).( jr
r

r
r

j

k

iij
k

j
k

i    0  

 

One more condition is necessary for obtaining compatibility with General Relativity:   
 

(4.5.7) R

~
 c.4             Relativistic Conformal Gauge 

 

This condition will be called Relativistic Conformal Gauge and stands for a special choice on the 

metric’s conformal gauge. Since the Lagrangian is invariant under conformal transformations, 

imposing this condition won’t affect the field equations or the physics of their solutions. 

With conditions (4.5.5), (4.5.6) and (4.5.7) when identifying jk
i with jk

i , the standard equation 

set can finally be transformed into:  
 

(4.5.8) jk
i̂  )ˆ.ˆ..(

3
1

j

i

kk

i

j  
 

 

(4.5.9) ).( jr
r

r
r

j

k

iij
k

j
k

i    0  

 

(4.5.10) 
jk

i g  0  

 

(4.5.11) ijij gRR ..
2
1  ijcijc

k
gTg ..4

..8



          

 

(4.5.12)  ijT  )....( 2
1

..8

4

ijkr

kr

ijk
c gg

g



  

 / 

(4.5.13)  ij


 rij
r

ijjijijk
r

ir
k

ij
k

k 


.).(ˆ.ˆ..
2
1

3
1

 
















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This is General Relativity having a stress-energy tensor and a cosmological term so its solutions are 

also solutions of the current theory which proves its compatibility. 

 

A stress-energy tensor (4.5.12) is obtained out of components coming from the general connection in 

(4.5.13) so it can be said such tensor is the manifestation of some geometric aspect of the manifold.  It 

can be used for modeling continuous-matter fields based on the Geometrical Postulate (…”some 

wood out of marble”…) gaining this way a strong geometrical foundation. 

 

A non-null torsion (4.5.8) is admitted whose trace contributes to the resulting stress-energy tensor in 

(4.5.13). 
 

4.6 The Compatible Family of Curves 

According to (4.3.5) and (4.5.7) the Relativistic Conformal Gauge (and so the possibility of having 

compatible well defined solutions) is equivalent to setting the Global Phase to cero: 
 

(4.6.1) ),(
~

XC  0  
 

This can be achieved in a variety of ways and the type of family-curve considered becomes relevant. 

If any curve is to be allowed then the previous condition translates into: 
 

(4.6.2) s

rk

ksr gg  ˆ.
~

.
3
2  0   

 

But the family of curves can be constrained resulting in different compatibility conditions. 

For example it’s possible to consider only closed curves. In such case condition (4.6.1) becomes 

equivalent to the Path Independence Constraint mentioned in (4.4.2): 
 

(4.6.3) i

rk

kir gg  ˆ.
~

.
3
2  

~
i       ),(

~
XC   

C

k

k dX.
~
  0  

This constraint may also apply to open curves holding: 
 

(4.6.4) )(
~

X  )(
~

0X  

 

The bigger the family of curves the smaller will be the set of compatible solutions.  
 

4.7 Vacuum solutions 

Vacuum solutions are obtained for the following Vacuum Connection: 
 

(4.7.1) jk
i

~
 k

i

jjk
i a.               Vacuum Connection 

Where ia  is an arbitrary vector field that will be called Vacuum Potential.  

Conditions (4.5.8) and (4.5.9) hold for this connection while the stress-energy tensor (4.5.12) becomes 

null. Equality (4.6.2) is also true so these solutions live in the Relativistic Conformal Gauge’s domain. 

The simplified equation set becomes the one for General Relativity’s vacuum as in (3.2.9) and 

(3.2.10):  

 

(4.7.2) ijij gRR ..
2
1  ijc g.  

(4.7.3) 
jk

i g  0  

Connection (4.7.1) is commonly known as being a projective transformation of the standard one. 
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4.8 Perfect Fluid’s Stress-Energy Tensor 

As an example of a geometric-like matter field let’s see how a Killing vector field can generate the 

standard stress-energy tensor for a perfect fluid: 

 

(4.8.1)  )(Xi  / ijji    0  

With this field the following delta-tensor can be constructed for the general connection:  
 

(4.8.2) jk
i  )....( j

i

kk

i

j

i

jkgi  
 

Such tensor hold conditions (4.5.8) and (4.5.9) as it should be.  

The corresponding stress-energy tensor can be derived following equations (4.5.12) and (4.5.13):  

 
 

(4.8.3) ijT  ijji gpVVp ..).( 
  

 

(4.8.4)
  iV  ik

k  .).( 2
1

       Velocity
 

 

(4.8.5) /    k

k

k
c

g



...3

..8

4

                   
Mass Density 

  

(4.8.6)  p  k

k

k
c

g



..

..8

4


       

Pressure 

Where 
iV  is the fluid’s relativistic velocity field corresponding to the direction of vector i  and   

and p  the mass-density and pressure respectively, both depending on the field’s module.  

It’s interesting to notice that a complex-value connection is needed for modeling matter. This strongly 

suggests that the current theory may be well extended to the complex domain. The resulting 

connection (standard plus (4.8.2)) looks similar in shape to the one considered by Weyl in his 

unification theory [8]. 

 

4.9 The Cosmological Constant can’t be Null 

From (4.3.2) and (4.3.5) it can be seen that the cosmological constant becomes associated to the 

standard solution set which is the one leading to General Relativity. Such constant can’t be taken to 

have a cero value because in that case the solution set would become the compact one. Although 

compatible solutions may exist under this last set they would not be completely determined by the 

corresponding field equation. So when talking about General Relativity as being well defined by the 

theory the cosmological constant should be assumed to be different than cero: 
  

(4.9.1)        General Relativity    c  0  

 

4.10   Relation between Standard Differential Geometry and General Relativity 

While the metric is being scaled by conformal transformations, distance vectors and the affined 

connection are not. That’s why not all geometric measurements remain invariant under those 

transformations. For example angles between invariant vectors are conserved but vector modules are 

not.  

 

 (4.10.1) ijg   ijg.e .2
  , 

iA  iA   , 
iB  iB  

 

 (4.10.2) 

2
A  rk

kr AAg ..      
2

A 
2.2 .e A 

2
A  

 

 (4.10.3) ).cos( BA 
11

....


BABAg rk

kr    ).cos( BA   ).cos( BA  













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The space-time interval results to be non-invariant and so do the velocity vector: 
 

  (4.10.4) 
2dS  rk

kr dXdXg ..     
2Sd   2.2 .e dS  2dS  

 

 (4.10.5) 
iV 

dS

dX i

     
iV   iV.e  iV  

 

For such reasons most geometric measures under the actual conformal theory depends on the gauge 

selected. General Relativity physics is recovered after adopting the Relativistic Conformal Gauge and 

so do the standard measurement essentials (up to a constant scaling factor). Here it can be seen that 

the standard differential geometry becomes a special case on a more elaborated one where the 

geometric objects defined should be invariant under conformal transformations of the metric. The fact 

that the geometry simplifies with the Relativistic Conformal Gauge is the reason why General 

Relativity becomes a very special (preferred) reference for describing reality. The relation is similar to 

the one Special Relativity maintains with General Relativity being the first a special case of the 

second: when defined on a neighborhood small enough with respect to the existing curvature and an 

inertial coordinate-system is being used as a reference. 
 

4.11  Nöether Currents 

The Nöether currents for each geometric variable result: 
 

(4.11.1) ijg           
i

g
J

)( 
 0  

 

(4.11.2) jk
i

~
  

i
J

)
~

( 


 )
~

 .
~

..(
~

.2 k

ik
kr

ikr ggR 


  

So far the currents associated to the metric become null which implies that no “metric charge” can be 

considered. On this respect the fundamental variable behaves as a constraining one. This wouldn’t be 

the case if the action is constrained for example by introducing the following Lagrange’s term which 

depends on the metric and its first order derivatives: 
 

(4.11.3) 
lmrs

sir

jkjk

ijklm
i gggggCg )....(

~
.    / ij

k  }.{.2
1

ijr

kr gg   

 

Such term turns the Connection Compatibility Condition into a field equation.  

The payoff for such change would be a theory having non-null metric currents and a stress-energy 

tensor containing the parameter jklm
iC

~
 which becomes a real physical field. The solutions for the 

theory will be stretched in range while the compatibility with General Relativity remains untouched. 

Terms like this one will be considered later on this paper. 
 

5. Conformal Electromagnetic Gravitation 

So far the Four-Dimensional Conformal Gravitation proved to be a theory compatible with General 

Relativity, but something important is missing: it does not contain Electromagnetism. By following 

the Geometric Postulate there is no way to introduce such field only with this action and additional 

constraining terms. As discussed in (3.3) with the Einstein-Hilbert Lagrangian, the solution will be 

reached by adding new fundamental terms. For knowing what terms to add a good starting point will 

be to consider the Vacuum Potential as a candidate for the Electromagnetic one. Doing so prevents 

the current action term to generate any unreal Electromagnetic stress-energy tensor. The good one 

would be generated by new terms which should preserve the existing compatibility with General 

Relativity. Only this way Gravitation and Electromagnetism will be able to merge seamlessly. 
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5.1 Conformal Electromagnetic Gravity Action 

Let’s consider the Vacuum Connection plus a compatible symmetric delta-tensor and identify the 

vacuum potential with the Electromagnetic one: 
 

(5.1.1) jk
i

~
 k

i

jjk
i

jk
i Ac ..1                  EM-GR Connection 

 

(5.1.2)  jk
i  kj

i  

 / 

(5.1.3)  ).( jr
r

r
r

j

k

iij
k

j
k

i     0   

 

This will be called the Electromagnetic Gravity Connection, where kA  is the usual Electromagnetic 

potential and 1c  the corresponding coupling constant. The torsion of such connection depends entirely 

on the Electromagnetic potential: 
  

(5.1.4) jk
i̂  )...(. 12

1
j

i

kk

i

j AAc    )ˆ.ˆ..(
3
1

j

i

kk

i

j         EM-GR Torsion  

 

Introducing the potential this way is also supported by the fact that the curvature tensor for any 

connection remains invariant when the connection is modified in the following way: 
 

 (5.1.5)     )(X  ,  jk
i

~
                jk

i
~

  k

i

jjk
i  .

~
            jkl

iR
~

 jkl
iR

~
 

 

This change which was called Lambda Transformation by Einstein breaks the index-symmetry on any 

symmetric connection making this property to lose relevance. It motivated him to look for unification 

between Gravitation and Electromagnetism using a non-symmetric field theory. Although such theory 

did not succeed this transformation found to be useful in the current paper. 

 

For the EM-GR connection the lambda function can be seen as representing the gauge freedom of 

Electromagnetism. Latter this will be proved to be correct under the appropriate conditions.  

 

For finding the correct Electromagnetic terms for the Lagrangian only those connection-derived 

tensors being invariant under lambda transformations will be considered. This ensures that after 

constraining the generalized connection to the EM-GR one, the correct equations can emerge. There 

are only two independent tensors that can be formed from the general connection and its first order 

derivatives which are lambda-invariant: 

 

 (5.1.6) jkl
iR

~
    , ij

ˆ  

All other invariant terms can be derived from them by tensor operations.  

For preserving the Lagrangian’s conformal symmetry the additional terms should have the form: 
 

 (5.1.7) krsl

slkr Xggg ...  

Where ijklX  is a generic expression for quadratic combinations of lambda-invariant tensors obtained 

from those in (5.1.6). Such combination of first order differential terms will generate the expected 

second order differential equations for Electromagnetism. 

 

Also those quadratic combinations should not break compatibility with General Relativity achieved 

by the current action term. This rule out many combinations leaving the following terms to be 

combined: 

(5.1.8) ijR
~̂


 , ijR

~

 , klj
i

ljk
i

jkl
i RRR

~~~


 
, ij

ˆ  








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This is consistent with the fact that all of these terms must vanish when constraining to the standard 

connection in order to preserve compatibility: 

(5.1.9) jk
i

~
 jk

i    ijR
~̂


 ijR

~
 ij

ˆ  0  , klj
i

ljk
i

jkl
i RRR

~~~
  0  

By following those rules a first tentative for the action would be: 
 
 (5.1.10)          

GeneralI   



 

D

rlksrlksrlksslkr

slkr kRRkRRkRRgggk ˆ.ˆ.
~

.
~

.
~̂

.
~̂

.
~

.
~

.... 3210


    

           rlksrlksrlks RkRkRRk ˆ.
~

.ˆ.
~̂

.
~

.
~̂

. 654



 
 

               )
~~~

).(
~~~

.(7 lmr
o

mrl
o

rlm
o

sok
m

oks
m

kso
m RRRRRRk

 

                             



 dRRRRRRggk r

p
nrl

p
r

p
smk

o
mks

o
ksm

o

op

mn .)
~~~

).(
~~~

.(.. lnln8

 

Within this action some extra conditions called EM-GR Splitting Conditions must be met by the 

constants k  for preserving compatibility and obtaining a neat separation between Gravity and 

Electromagnetism: 
 

 (5.1.11) 2k  14
1 .k  , 4k  1k  

           
EM-GR Splitting Conditions 

 

 6k  52
1 .k  , 7k  858

3
12

1 .3.. kkk 
 

   

 (5.1.12) 


~
 - field equation   

jk

i g  0  , 
jk

k F  0  

 

When the EM-GR connection is in use these conditions will generate the splitting of the field equation 

analog to (4.2.2) into the standard Compatibility Condition and the second pair of Maxwell’s 

equations. They become mandatory for maintaining compatibility with General Relativity. The 

resulting Lagrangian and field equations will be those from the Four-Dimensional Conformal 

Gravitation with extra torsion-dependent terms (that is, they vanish if the torsion does). By this way 

Electromagnetism becomes a direct manifestation of torsion and preserves its independence from 

Gravitation. Finally after adopting the splitting-values and renaming the constants  

by (1,3,5,8)   (1,2,3,4)  the candidate action for unification results: 

 

(5.1.13)                       Conformal Electromagnetic Gravity Action 

CEMGI   



 

D

rlrlksksslkr

slkr RRRRkRRgggk ).
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.
~
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2
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2
1
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
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.
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2
1
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o
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).(.3..( 438
3

12
1

 

(5.1.14) /         32.3 kk   2
1

4 ..3

..32

cc

k cg 
 

That the new terms are torsion-dependent can be seen by considering identities (2.2.10) and (2.2.22).  
 






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5.2 Field Equations 

The corresponding field equations become:  
 

 (5.2.1) ijg  ).
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This last equation can be shortly written as: 
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From this the following expression can be deduced: 
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If the generalized connection is expressed as the standard one plus as delta tensor the following identity 

holds: 
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This delta expression corresponds to the Connection Compatibility Condition (4.5.6). 

Using this (5.2.4) translates into: 
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Starting with equation (5.2.3) by contraction of the index pair (ij) the following one can be derived: 
 

(5.2.8) 
iQ




ri

rQ  0   
  

sr
sr

iri

r  ˆ.ˆˆ~
 0

 
 

By contraction of indexes (ik) on (5.2.3) this other is obtained: 
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From this identity it can be seen that for adopting the Relativistic Conformal Gauge the following 

condition should be reached: 
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According to (5.2.4) if the Connection Compatibility Condition (4.5.6) is met then the first equation 

can be decomposed into the following set which will be useful in later analysis: 
 

(5.2.11) 
rp

pir

sksk

i gggg 
~

..
~

 0             Generalized Compatibility Condition 

 

(5.2.12)  
k

ijQ 
k

jiQ
  

 

(5.2.13)   )ˆˆˆ.(
~

.2
i

jkj
i

kjk
iR 


 )( j

i

kjk
ii

jk QQQ 
 

 

(5.2.14)  )ˆˆ)ˆ.ˆ..(.(
~

.2
3
1 i

jkj
i

kj

i

kk

i

jR  


 jk
i

j
i

kj

i

kk

i

j QQQQ  )...(
3
1




 
 

Considering (5.2.8), equality (5.2.12) implies the following one: 
 

(5.2.15)   
iQ


 iQ


  0

 
  

5.3 GR-Compatible Field Equations 

When considering the Electromagnetic Gravity Connection the following identities hold: 

 

(5.3.1) jk
i

~
  k

i

jjk
i

jk
i Ac ..1                EM-GR Connection 

 

(5.3.2)  
rp

pir

jkjk

i gggg 
~

..
~

 0  

   

(5.3.3)  i

rp

pir gg  ˆ.
~

.
3
2  0   , 

iQ

 0  

 



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With connection (5.3.1) equation (5.2.8) transforms directly into the second pair of Maxwell’s 

equations for null currents:  

(5.3.4) (5.2.8)   
jk

k F  0  

 

All conditions (5.2.10), (5.2.11) and (5.2.12) are met: 
 

(5.3.5)   
k

ijQ 
k

jiQ
 

,    j
i

kjk
ii

jk QQQ   0
   

,    jk
i

j
i

kj

i

kk

i

j QQQQ  )...(
3
1


  0

 
 

The first pair of Maxwell’s equations is obtained as an identity coming from the definition of the 

Electromagnetic field as the rotational of a vector potential, which was introduced with the EM-GR 

Connection: 

 

(5.3.6) ijF  ijji AA     jkikijijk FFF   0  

With identities seen on (5.3.3) equation (5.2.10) shows that for this connection the Relativistic 

Conformal gauge holds: 

(5.3.7) (5.2.10)   R

~
 c.4  

Considering all of this and doing the corresponding substitutions the resulting compatible field 

equations become:  
 

(5.3.8) jk
i  kj

i   , ).( jr
r

r
r

j

k

iij
k

j
k

i     0   

 

(5.3.9) 
jk

i g  0  

 

(5.3.10) 
jk

k F  0  

 

(5.3.11) jkikijijk FFF   0  

 

(5.3.12) ijij gRR ..
2
1   ).....(...

4
1

.4
1..8..8

44 ijkr

kr

jk

k

ic

k

ijcijc

k
gFFFFgT gg 






 
 

(5.3.13)  ijT   ijkr

kr

ijk
c gg

g
....

2
1

..8

4





  

 / 

(5.3.14)  ij


 rk
k

ij
r

ik
k

jjk
k

ijk
r

ir
k

ij
k

k  .).(.
2
1

 

 

The absence of current terms in (5.3.10) under the EM-GR connection is taken to be a consequence of 

a missing representation for particle fields. Such topic is a pending issue and requires a thinner 

analysis to be done in future research. 
 

5.4 About the Current Term 

For including the missing current in equation (5.3.10) one may be tempted to add to the Lagrangian a 

term of the form: 
 

(5.4.1) lkrs

slkr Jkggg  
ˆ..... 5  /  ijkJ  jikJ  

After selecting appropriately the corresponding  5k  constant the desired result would be obtained: 

 

(5.4.2) 
jk

k F  j

c
J..4    /  iJ  ki

kJ  





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Also a corresponding term would be added to the Einstein’s stress-energy equation: 
 

(5.4.3) ijij gRR ..
2
1  ).ˆ..)ˆ.ˆ..(ˆ..(.....

2
1

2
1

5

1

8
1

ijr

r

ijjik

k

ijc gJJJJk 


  

The term (5.4.1) can’t be considered to be a constraining variable because that would force the nullity 

of the torsion’s trace which in this context represents the Electromagnetic vector potential: 

 

(5.4.4) ijkJ   i̂  0     Null  Electromagnetic  field ??? 

Then currents should depend on the fundamental variables and demand new terms to be included in 

the current Lagrangian. 

 

6 The Gauge Unification 

 
6.1  Beyond Weyl’s Theory 

So far it was shown how the action proposed based on the Geometrical Postulate allows obtaining 

Gravitation and Electromagnetism together. Conformal invariance acting on the metric and lambda-

invariance acting on the connection were introduced because the first imposes a four-dimensional 

manifold and permits recovering compatibility with General Relativity while the second allows to 

correctly introduce the Electromagnetic potential and field. The most interesting thing about having 

those single-object symmetries is this: they can be combined to represent the manifestation of a )1(U  

gauge symmetry acting on a specific set of objects on the manifold (other than the metric and the 

connection) in a “geometric-like” transformation.  

 

The effect on the action variables can be described by this transformation law: 
 

(6.1.1) 
ijg  ijg.e .2

  , jk
i

~
  k

i

jjk
i  .

~
 

This conjugation of symmetries does not eliminate any of them: is just a particular case but it will 

prove to be a useful one since it allows introducing the abelian gauge group needed. The 

transformation on the metric and the Lagrangian in use looks quite similar to those in Weyl’s 

unification theory [8] (first and third terms of the Lagrange’s scalar (5.1.13)) except that in this case a 

general connection with torsion is allowed and other terms related to Electromagnetism are 

considered. Also a different interpretation is given to the associated symmetry and the way it operates 

on tensors and it is shown on what conditions the compatibility with General Relativity can be 

recovered. This transformation won’t be carried out on all tensors since some of them should remain 

invariant. For understanding this lets introduce the necessary concepts. 
 

6.2  Diffeomorphisms and Parallel Transport 

Consider a coordinate system change where each point X  is taken to a nearby one X   by a linear 

transformation defined by a vector field 
idX : 

      
j

i

X

X




 i

j

i

j dX  

(6.2.1) 
iX   )(XdXX ii      

j

i

X

X






i

j

i

j dX  

The representation for any covariant vector field 
iV  in the new coordinate system can be obtained by 

applying the usual coordinate-transformation law: 

 

(6.2.2) )(XV i   )(. XV
X

X k

k

i




 i

k

ki dXVV  .  








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This expression relates representations of the same vector field evaluated at different points with 

different coordinate systems. It is not an identity between tensors evaluated at the same point.  

I will become “tensorial” once the first operand is expressed in the initial coordinate system: 

 

(6.2.3) )( iii dXXV   ...)().()(  XVXdXXV i

k

ki
 

 

(6.2.4)   
iV   i

dX

i VLV
)(

  

(6.2.5) /     i

dX
VL

)(
 i

k

ki

k

k dXVVdX  ..                  Lie’s derivative along
idX  

              

Expression (6.2.4) is equivalent to (6.2.2) and have all the fields evaluated on the initial coordinate 

system. The transformation’s operator results to be the Lie derivative. 

 

The diffeomorphism considered corresponds to a change of coordinates where the tensor fields are not 

being modified. In that sense it’s a “passive” transformation.  

Now consider the following “active” one: take a vector field 
iV  and parallel-transport it using the 

manifold’s generic connection ij
k

~
 along a given displacement field 

idX : 
 

(6.2.6) )( dXXV i   )(
~

).()( XVXdXXV i

k

ri   

For extracting a tensorial equation out of this expression a coordinate change is done so that the 

starting point X  is taken to the ending one )( dXX   along 
idX : 

 

(6.2.7) )(XV i 
kr

rk
ii

k

i VdXdXV )..ˆ.2
~

(   

 

This active transformation up to a first differential order becomes characterized by the product of the 

vector field with the following tensor operator: 
 

(6.2.8) 
iV   k

k
i VU .   / j

iU  r
rj

ii

j

i

j dXdX .ˆ.2
~

  r
rj

ii

j

i

j dXdX .̂  

The resulting linear operator j
iU  only contains elements associated to the transformation itself and 

will be the same no matter the transforming vector considered. It’s interesting to notice that this 

operator depends on a connection having an opposite torsion with respect to the original one. 

 

6.3  Loop Transformations 

If the parallel transport of a vector field is done along a closed infinitesimal curve C  the ending point 

becomes the original one so there is no need to apply any coordinate system change since the equation 

obtained results tensorial. In that case the transformation will be called Loop Transformation. 

Such change will depend on the curve considered and translates into a tensor operator involving the 

general connection and tensors derived from it. The simplest case is obtained when the curve is a 

“parallelogram” defined by two infinitesimal vector fields 
idX  and 

idY  (simplest kind of loop) 

which were parallel transported along each other for obtaining the opposite sides and the gap caused 

by the torsion was appended for having the necessary closure. 

 

The resulting operator can then be expressed using the corresponding curvature tensor: 
 

(6.3.1) 
iV   k

k
i VU .   / j

iU  sr
jrs

ii

j dYdXR .
~

  
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6.4  Absolute and Relative Transformations 

Looking to the previous transformations two kinds can be distinguished: those that depend on the field 

being transformed and those do not. The firsts are linear operators containing derivatives to be 

evaluated on the transformed field. Here they will be called Relative Transformations. The seconds 

become tensor fields depending only on the transformation agents and will be referred as Absolute 

Transformations.  

 

Among this terminology the first example (6.2.4) becomes a relative transformation while the other 

two (6.2.8) and (6.3.1) result to be absolute. 
 

6.5  Absolute Transformations as a Group 

Absolute transformations are the most interesting entities since they exist as independent stand-alone 

fields. They interact with all transformed fields in a homogeneous way and can be generally 

represented as the following sum: 
 

(6.5.1) j
iU  .........

)()()()()()()()()(


cbaabc

j
i

baab

j
i
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j
ii

j dddTddTdT   
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)..()()(

,..,,
za

j
i

ab

j
i

a

j
i TTT  are arbitrary tensors which define the transformation and 

)(a
d  a finite set of 

infinitesimal scalar-functions acting as driving parameters.  

These transformations are invertible since an inverse can always be found: 

(6.5.2)     

1

j
iU      /     

1

.


j
k

k
i UU  i

j  
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j
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j
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j
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j
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j
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j
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b

j
k

a
k

i

ab

j
i TTT   

(6.5.6)  
)(abc

j
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)()()()()()()()(

....
c

j
r

b
r

k

a
k

i

c

j
k
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k

i
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j
k

a
k

i

abc

j
i TTTTTTTT   

 …. 

 

They represent a transformation group which will be called Absolute Transformation Group. 
 

6.6  Absolute Transformations as the Key Invariance Symmetry 

In the plan of constructing a field theory based on the manifold’s geometric structure only absolute 

transformations based on geometrical objects will be considered. As shown in the previous examples 

they can be defined by combining parallel displacements and loop transformations which are well 

understood geometrical operations but in principle any transformation build out of geometrical objects 

will be good even if it doesn’t have a direct interpretation as a composition of known “moves”. Of 

course knot-based loops will generate absolute loop transformations and in that case the resulting 

transformations may be classified according to the corresponding loop-invariants. 

 

Invariance under the action of absolute transformations will be the key principle of the theory.  

For being generic enough the geometrical objects considered will be displacement fields, the metric, 

the general connection and gauge group generators which will be introduced later: 
 
(6.6.1)    

 

AT-Geometrical Field Theory        Field equations are covariant under ),
~

,,(
)(x

EgdXAT 







  . 
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6.7  Invariant Tensors 

During absolute transformations some tensors remain unchanged.  

The manifold’s points remain invariant under an absolute loop transformation (ALT) so any 

displacement vector field linking two points will remain the same: 
 

(6.7.1) 
iX   iX    )(XXd i  )(XdX i

   (ALT) 

 

Any scalar field also remains the same under an ALT and so do the contraction between a covariant 

and a contravariant vector fields. If both are transforming fields this implies that the contravariant 

transforming tensor should be the inverse of the covariant one: 
 

(6.7.2) 
iV   k

k
i VU .     )(X  )(X     k

k WV  .  k

k WV .    … 

 iW   ki
k WU .


  …  j

k
k

i UU .


 i

j     j
iU




1

j
iU  

 

The Kronecker-delta or Identity tensor remains invariant under any absolute transformation (AT) since 

covariant and contravariant transforming tensors are inverses from one another:  

(6.7.3) 
i

j  
1

..


j
rk

rk
i UU   i

j    (AL) 

From (6.7.1) and (6.7.2) results that the gradient of a scalar function is also invariant under any ALT: 

  

(6.7.4) )(Xd  )(Xd   (ALT) 

 

 )(XXd i  )(XdX i
 (ALT)    )(Xi  )(Xi  (ALT) 

 

d  k

k dX.  

 

It will be seen that gauge fields will be included into the theory by imposing its Lagrangian to be 

absolute-loop invariant under suitable transformations based on the corresponding gauge group 

generators. 
 

6.8  Index Rules and Types 

For being consistent with a different transformation law for transforming and invariant vector fields, 

only vectors (indexes) of the same kind can be added or contracted. The sum or contraction of 

different kind of vectors results in a tensor having an arbitrary transformation law were the absolute 

characteristic of the transformation is lost: 
 

(6.8.1) 
iV   k

k
i VU .    

 

iW   kW     
iY   kk

k
i WVU .  ).( kk

k
i WVU   ii WV   

 

iY  ii WV    ?  k

k WV  .  k

r
r

k WVU ..  k

k WV .  

 

Exceptions to this rule apply to tensors that can be considered to be either transforming or invariant. A 

general case would be those proportional to the identity tensor. A particular case for a given 

transforming operator j
iU would be those tensors commuting with it: 

(6.8.2) j
iA  j

r

r
k

k
i UAU 1.. 

   j
iC  j

rk
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k
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(6.8.3) j
iA  j

r

r
k

k
i UAU 1.. 

    j
iA  j

r

r
k

k
i UAU 1..   j

r

r
k

k
i UUA 1..   j

iA  

 j
k

k
i

j
k

k
i UAAU ..   0  

 

The transforming tensors j
iU when acting on themselves can also be considered as transforming or 

invariant. 

 

Self-contraction is allowed whenever contracted indexes are of the same type: 

(6.8.4) k
kA   k

r

r
s

s
k UAU 1..   k

kA  

To resume there are three kinds of indexes: the Transforming ones, the Invariant ones and those like 

in the identity tensor which act in pairs of mixed indexes (covariant and contravariant) that can be 

considered to be either transforming or invariant. These last will be called Neutral indexes. 

 

6.9  Connection Index Types 

Consider the covariant differential on any vector field: 
 

(6.9.1) 
iVD

~
 ri

r dXV .
~
  rk

kr
ii

r dXVV )..
~

(   

 

(6.9.2) iWD
~

 r

ir dXW .
~
  r

kir
k

ir dXWW )..
~

(   

The connection’s last covariant index is contracted with 
idX  being an ALT-invariant vector so it 

should be also ALT-invariant according to index rules. The other connection indexes may be 

contracted with either transforming or invariant vectors since the same connection is used with all of 

them so they should behave as a neutral-pair.  
 

(6.9.3) jk
i

~
   k- Invariant , i, j – Neutral 

 

6.10 The Connection transformation law  

The transformation law for the connection can be obtained by demanding absolute transformations to 

commute with the covariant derivative operation: 
 

(6.10.1) 
i

jV 
~

 )
~

(  i

jV  

 

There are two possible ways to define such relation depending on the type of vector considered. 

For transforming vector fields this yields the following law: 

(6.10.2) 
iV   k

k
i VU .    jk

i
~

 )
~
..(
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r
i

krk
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l
ir

j UUU 



1~

.
~ 

 j
r

kr
i

jk
i UU  

For invariant vector fields the law should read: 
 

(6.10.3) 
iW   kW    jk

i
~

 jk
i

~
 

These two transformation laws can coexist if the theory fixes the connection field up to a degree of 

freedom given by the extension 
1~

.


 j
r

kr
i UU  produced by the absolute transformation in play.  

In other words connections differing only on an AT-extension should be regarded as representing the 

same geometrical object which becomes an equivalence class under these AT.  


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The theory’s field equations should only be sensible to the connection’s equivalent class and 

completely invariant to the action of the proposed transformations. So do the resulting fields and all 

the physics involved. As a consequence of this the connection can be considered to follow 

transformation law (6.10.2) and all physics equations should be invariant under these changes. 

 

When considering a transformation up to a first order in the transforming parameters, the connection 

will change as follows: 

(6.10.4) j
iU  ....

)()(


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j
ii

j dT   , 
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j
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(6.10.5)   jk
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~
 ).(

~~

)()( aa

j
i

kjk
i dT   

 

6.11 Conformal Electromagnetic Gravitation as an Absolute Invariant theory  

Conformal and lambda transformations can be conjugated to represent and absolute-loop 

transformation corresponding to a )1(U  gauge group, the one associated to Electromagnetism 

(although particle wave functions and phase invariance were not introduced). The corresponding 

operators and the effects on the connection are: 
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The metric will be considered to be a transforming tensor: 
 

(6.11.3) 
ijg  kr

U
r
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U
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Considering the Lagrangian terms:  

 

 The metric is an absolute-transforming tensor but it changes conformally so it does not affect 

the current Lagrangian nor the physics involved. 

 

 The curvature results invariant since the absolute-transformation produces a lambda one on 

the connection. 

 

 The torsion-trace’s rotational terms are also invariant for the lambda transformation. 

 

Because of these the Lagrangian results invariant and the Conformal Electromagnetic Gravitation 

becomes an absolute-invariant theory with respect to transformations (6.11.1). 

 

The point of having a conformal symmetry in the theory now becomes clear: the Electromagnetic 

gauge effect on the metric can be canceled out by a suitable conformal transformation so the metric 

and the associated geometry may stand still for any observer. 

 

The )1(U  gauge freedom will contribute to the Global Phase when considering the Relativistic 

Conformal Gauge: 
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In that case the metric-conformal gauge will be also compensating the Electromagnetic gauge when 

reaching compatibility.  
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6.12 The Electromagnetic Potential’s transformation law: is the Higgs boson necessary? 

Considering the EM-GR connection, the transformation law for a )1(U  regauging becomes: 
 

(6.12.1) jk
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It looks like the potential is transforming according to the standard gauge rule for Electromagnetism: 
 

(6.12.2) kA    kA  kkA     

 

But due to absolute-invariance index behavior the vector potential comes to be invariant making the 

previous transformation rule not a true one. The good one should be: 
 

(6.12.3) kA    kA  kA    

  

The gauge extension-term appearing in the connection is caused by the connection transformation law 

not by the vector potential one. This enables the vector potential to be placed directly into the  

Lagrangian. The corresponding contributions to the field equations become gauge invariant. This fact 

turns out to be quite interesting since it allows in particle-theory formulation to introduce mass-terms 

based on the field’s potential in order to give mass to the corresponding boson fields. The actual 

Higgs mechanism used for that purpose in the Standard Model [7] may not be necessary at all since 

mass terms can be introduced without breaking any symmetry. That may happen if particle physics 

and the Standard Model can be both reformulated while being based on the present theory. 
 

(6.12.4) Standard Model’s Lagrangian           ..........  rksl

slkr AAmgg      Mass terms are allowed 

 

7 Introducing Other Gauge Symmetries 

 
7.1 Gauge Field components 

Following Yang-Mills steps once Electromagnetism has been addressed the next step is to generalize 

the theory for allowing other gauge groups. Since the Conformal Electromagnetic Gravitation works 

in a four-dimensional manifold it turns out that not all the symmetries of the Standard Model can be 

introduced while using a real domain just because there are not enough dimensions. At least there is 

space for introducing another )2()2( SUSU   representation without having to talk about an extra 

Internal Space. 

 

For introducing the components let’s begin with a generic gauge group. 

The elements defining the group are: 
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Where 
)(a

j
iE  are tensor fields having the role of group generators,  

)(cab
C  are the group’s structural 

constants, 
)(a

jA the field potentials, 3c their corresponding coupling constant and 
)(a

ijH  the associated 

gauge fields. They will be integrated into the generalized connection in the following way: 
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Like in Yank-Mills theory the transforming operator will be: 
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The generator’s trace should vanish causing the operator’s determinant to have a unit value: 

(7.1.7) 
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Properties (7.1.1) and (7.1.7) are absolute-invariant with respect to Electromagnetism (6.11.1) and the 

actual Gauge transformations (7.1.6) so they can be imposed using invariant constraining fields 

)
~~
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As seen in (6.10.5), on any infinitesimal transformation defined by 
)(a

  the connection transforms 

like: 
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This ALT-extension will not leave the Lagrangian invariant unless the group representation and the 

transforming parameters fulfill some extra conditions. 

 

7.2 Metric Constraint and the Homogenous Lorentz Group 

The metric was taken to be a transforming tensor when applying the )1(U  absolute transformation 

associated to Electromagnetism and compatibility with General Relativity was recovered by selecting 

the Relativistic Conformal Gauge. For any other absolute transformation even if compatibility is not 

met the Lagrangian should remain invariant. This will be achieved by granting the invariance of its 

components like the curvature, the torsion-trace’s rotational and the metric. Since there is no other 

symmetry like the conformal one that can be used for compensating changes on this last tensor the 

allowed transformations should be constrained to those of the Homogenous Lorentz Group which are 

the ones leaving the metric invariant. From this the Lorentz constraint results: 
 

(7.2.1)    ijg   krj
r

i
k gUU ..  ijg                                        Lorentz Constraint 

 

This can be traduced into symmetries on the group generator’s indexes. When considering an 

infinitesimal transformation up to a first order this definition turns out to be: 

 

(7.2.2)    

)()( a

ji
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ij EE   0              Group Generator’s Symmetry 

/ }6,5,4,3,2,1{a  

The group generators are six skew-symmetric tensors in their covariant form and their traces become 

null as expressed earlier in (7.1.7).  

 

Conditions (7.2.2) are AT-invariant with respect to Electromagnetism and Gauge transformations so 

they can also be imposed using an invariant constraining field.  
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From an inertial coordinate system these tensors can be taken to be the following set:  

                   Lorentz Group Generators 
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After raising the first index with the metric they become: 
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These tensors can be arranged in two sets: one corresponding to space-time accelerations j
i

x
K
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 and the 

other associated to space rotations j
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x
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Combining these tensors the following complex set of group generators can be formed: 
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These generators splits the Lorentz Group into the direct sum of two )2(SU algebras as it can be seen 

in their commutation rules: 
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The algebra (7.2.10) corresponds to a )2(SU one for a reversed orientation on },,{ zyx . 

They also fulfill the following properties (no contraction is being carried on the space index )(x ): 
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The Lorentz group representation is isomorphic to the algebra )2()2( SUSU   so the Lie-Algebra 

structure of the theory can be taken to be: 
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Where GR  symbolize the Gravity contribution, 
EM

U )1(  the Electromagnetic one and the last two 

correspond to the Lorentz group in its complex representation. 
 

7.3  Group Generators Constraint 

Other important terms in the Lagrangian are those related to the curvature tensor. For any 

infinitesimal absolute transformation (7.1.6) this will remain invariant up to a first order if the 

following differential conditions hold for the group generators: 
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These are conditions not on the group itself but on its tensor representation (since they don’t affect the 

structural constants or the resulting algebra). They will be called Generators Compatibility 

Conditions.  

 

For the particular case of a finite single-dimensional transformation (the one associated with a single 

group generator) the curvature remains invariant up to any order: 
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The Generators Compatibility Conditions also allows the curvature to be expressed in a very simple 

way based on the gauge fields introduced in (7.1.4): 
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In terms of the standard connection and structural constants, conditions (7.3.1) can be expressed in the 

following way: 
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An immediate property emerging from (7.3.1) is the following: 
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This can be seen as a commutation rule between (Gravity – Matter) curvature-difference and the 

group generators: 
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Conditions (7.3.11) are AT-invariant with respect to Electromagnetism and Gauge transformations so 

they can be introduced into the Lagrangian using invariant constraining fields 
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7.4  Invariant Torsion Terms 

The other Lagrangian terms are those associated with derivatives of the torsion-trace ij
ˆ . Such term 

results absolute-invariant for Electromagnetic transformations (6.11.1) but not in general for those 

like (7.1.6). One may be tempted to suppress such terms from the Lagrangian (i.e. by taking 

2k  3k  0 ) but this will exclude Electromagnetism from the resulting theory. Because of this the 

following EM-Gauge-Compatibility Condition will be imposed to the gauge-group’s transforming 

parameters in order to grant invariance to the torsion-trace’s rotational: 
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7.5  The Connection’s Variational Structure 

As mentioned in (2.1.9) the general connection can be decomposed into the sum of independent terms 

as follows: 
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The symmetric connection and the torsion are independent from one another due to their different 

lower index symmetries and different covariant behavior (connection vs. tensor).  

The torsion itself admits an irreducible decomposition in three independent components [9]:  
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By construction the last two have the following properties: 
 

(7.5.6) 
)2(

ˆ
jk

k 
 
0  

(7.5.7) 

)2(

ˆ
ijk 

)2(

ˆ
jik 

)2(

ˆ
kji 

)2(

ˆ
ikj  

(7.5.8) 
)3(

ˆ
jk

k 
 
0  

(7.5.9) 

)3()3()3()3()3()3(

ˆˆˆˆˆˆ
ikjkjijikjkikijijk   0  

Identities (7.5.7) shows that 
)2(

ˆ
ijk  corresponds to the totally skew-symmetric part of the torsion. Both 

(7.5.6) and (7.5.8) implies that 
)2(

ˆ
jk

i

 

and 
)3(

ˆ
jk

i  are traceless so that all the torsion’s trace is contained 

in 
)1(

ˆ
jk

i . Since these components are linearly independent because of their symmetries, for the torsion 

to be null each one has to vanish. That’s why the torsion’s variations can be decomposed into three 

independent ones: 
 

(7.5.10) jk
i̂ 

)3()2()1(

ˆˆˆ
jk

i
jk

i
jk

i  
 

Finally the connection admits at least four independent variations: 
 

(7.5.11) jk
i

~
 

)3()2()1(

ˆˆˆ
jk

i
jk

i
jk

i
jk

i  
 

Using the metric and the Group Generators each of the torsion’s components can be written as a 

function of vector potentials as follows: 
 

(7.5.12) 
)1(

ˆ
jk

i  )...(. 12
1

j

i

kk

i

j AAc    

(7.5.13) 
)2(

ˆ
jk

i  )...(..... 22
1

s

i

mm

i

s

lmrs

jkrl BBgggc     

(7.5.14) 
)3(

ˆ
jk

i  )..2...(.).....(.
)(

)()(
)()()(

32
1

)()()()(
36

1

a

i

a

jk

a

j
a

k
i

a
k

a

j
i

a
r

a

j
ri

k
a
r

a
k

ri

j CECECEcCECEc     

 

/ }6,5,4,3,2,1{a  

The two first vector potentials can be calculated from the torsion by the following expressions: 
 

(7.5.15) iA  ir
kr

kc 
 ˆ...

1

13
2   ic 

 ˆ..
1

13
2

    
Electromagnetic Potential 

 

(7.5.16) iB  sl
mkrsl

rmik gggc   ˆ......
1

26
1 

                   

Weak Potential 

Taking into account the general form of the 
)3(

ˆ
jk

i
 

component it is clear that any torsion can be 

expressed as a combination of vector potentials associated to the Lorentz Group generators: 
 

(7.5.17) jk
i̂  )...(.

)(
)()()(

32
1

a

j
a

k
i

a
k

a

j
i CECEc 

          

Torsion Lorenz Basis
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All the torsion degrees of freedom are then captured by the 
)(a
iC vector fields which will be called 

Lorentz potentials. Once they are given, the Electromagnetic potential and the Weak one can be 

calculated using expressions (7.5.15) and (7.5.16). 
 

7.6  Duality Transformations 

On a four-dimensional manifold any totally skew-symmetric part of a tensor of order r  can be put 

into a one-to-one correspondence with its Dual of order )4( r  by the following Duality 

Transformation: 

 

(7.6.1) ijkle  ijklg .  , ijkle 
ijklg .

1


           

Levi-Civita Tensor   

(7.6.2) iV
  

  ijkV


 sijk

rs

r egV ..    

(7.6.3) ijV  jiV
 

  ijV


 abij

sbra

rs eggV ....2
1

   Duality Transformations 

(7.6.4) ijkV   ijkV
 

  iV


 abci

scrbka

krs egggV .....6
1

 

(7.6.5) ijklV   ijklV
 

  



V  abcd

ldscrbka

krsl eggggV ......24
1  

 

The transformation is done by contracting with the Levi-Civita totally skew-symmetric tensor-

capacity which was transformed into a tensor by multiplication against the Reference density in use. 

Such transformation can be reversed in the following way: 

 

(7.6.6)  iV  krs
akrs

ia Veg


...
6
1  

(7.6.7)  ijV  kr
abkr

jbia Vegg


....
2
1  abij

sbra

rs eggV ....2
1



 











 ijV  

(7.6.8)  ijkV  rlma

kmjlira egggV ....


 

(7.6.9)  ijklV  abcd

ldkcjbia eggggV .....


 

 

Because such duals can be reversed they contain the same information of their original tensors. 

In this paper the following torsion “dual” will be considered: 

(7.6.10) 



jk
i̂  abjk

sbra
rs

i egg ...ˆ.
2
1 

          
Torsion’s Dual  

 

7.7  The Torsion’s Structural Symmetry 

When the Duality Transformation is applied to the torsion its structure transforms in such a way that 

components  
)1(

ˆ
jk

i  and 
)2(

ˆ
jk

i  interchange their roles at the time component 
)3(

ˆ
jk

i   transforms into 

itself: 

(7.7.1) 



jk
i̂   .ˆ

jk
i    



)1(

ˆ
jk

i 













)2(

ˆ
jk

i

      , 



)2(

ˆ
jk

i 













)1(

ˆ
jk

i

      , 



)3(

ˆ
jk

i 













)3(

ˆ
jk

i

  

 

In terms of the vector potentials this can be expressed as the following interchange-symmetries: 
 

(7.7.2) iA  ic

c
B.

1

2
 ,    iB  ic

c
A.

2

1

  






























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So the Duality Transformation operates as a symmetry transformation between this pair of vector 

potentials. What follows is a suggested identification of the previous structure and symmetry with 

known physical facts. 
 

7.8  Forces, Particles and Symmetries of the Standard Model? 

Four independent variations in the connection according to section (7.5.11) lead to the concept of four 

independent forces acting together. When thinking on elementary particles this traduces into four 

different attributes a particle can have for telling how it interacts with each force-field. These 

attributes are the charges associated to each force. In particle physics every time N particles within a 

closed system can interchange roles it’s because their wave functions conform a multiplet of a given 

)(NSU  symmetry. At the classical level this could correspond to some symmetry taking place 

between the corresponding vector potentials for which particles act as sources. That’s why the 

following identifications are being made: 
 

 The symmetric-connection variation jk
i

 

will be associated with mass as it contributes to 

the matter stress-energy tensor in equations seen on section (4.5). Through Einstein’s 

equation and the Compatibility Condition, Gravity is being determined by the matter tensor 

and corresponding contributions of other torsion (gauge) fields.  

 

 Variations on the torsion’s trace 
)1(

ˆ
jk

i
 

 will be associated as shown in section (5.1) with the 

Electromagnetic potential iA
 

whose rotational generates the Maxwell’s fields. Electric 

charges act as sources for those potentials and transmit the Electromagnetic force back to 

those objects exposing them. Electrons and positrons become particles exposing a pure 

Electromagnetic field which generates only this kind of torsion in it surrounds. 

 

 Variations of the torsion’s completely skew-symmetric part 
)2(

ˆ
jk

i
 

 will be associated to the 

Weak potential iB  with weak charges acting as sources and transmitting the associated force 

back to the containing objects. Neutrinos and antineutrinos will be particles exposing a pure 

Weak field generating this kind of torsion. 

 

 Variations of the torsion’s remaining component 
)3(

ˆ
jk

i
 

 will be associated to the Strong 

potentials generated by the color charges which transmit the Strong force back to the 

containing objects. The three color charges red, green and blue would be associated to the 

Lorentz generators j

i

a
X

)(


 which close under the corresponding 

L

SU )2( algebra. The other 

three generators j

i

a
X

)(


 will be responsible for the associated anti-color charges generating the 

L

SU )2(  algebra.  

 

 Quarks would be particles having a full torsion contribution where the components 
)1(

ˆ
jk

i
 

, 

)2(

ˆ
jk

i
 

and

 )3(

ˆ
jk

i
 

define their attributes (they have the three kind of charges). 
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 If components 
)1(

ˆ
jk

i  and 
)2(

ˆ
jk

i
 

can be interchanged by Duality Transformations then this 

symmetry would be responsible for the Electro-Weak 
D

SU )2(  symmetry between electrons 

and neutrinos or up and down quarks.  

 

 A symmetry (?) related to the cyclic permutation of the Lorentz generators may allow quarks 

to be arranged into 
LG

SU )3(  multiplets of the Strong Force. 

 

Although a particle-field modeling is needed for confirming up to the very end this interpretation it 

looks quite consistent with the Standard Model and may give a geometric support at the classical level 

for what it can be seen at the quantum scale. 

 

Because of this a quark’s wave function could have a 
LGDEM

SUSUU )3()2()1(   gauge symmetry which 

is considered to be the Standard Model’s one.  

 

The suggested identifications should be validated lately with a more complete analysis including 

particle-fields, their spins and most probably a theory based on a complex domain. 
 

7.9  The Connection’s Decoupled Field Equations 

The field equation obtained by a general variation of the connection jk
i

~
  can be decomposed into 

independent equations when varying against its components. In particular this will be true if the 

variation is being carried with those vector potentials in play: 
 

(7.9.1)  (7.5.11)    
)

~
( 



jk

iE 
)ˆ()( 




 


jk

i

jk

i EE  
)ˆ()ˆ()ˆ()(

)3()2()1(











 


jk

i

jk

i

jk

i

jk

i EEEE

  

 

(7.9.2) 

)
~

( 


jk

iE  0           
)( 



jk

iE  0      ,   
)ˆ(

)1(




jk

iE  0     ,    
)ˆ(

)2(




jk

iE  0     ,    
)ˆ(

)3(




jk

iE  0  

 

(7.9.3) 

)( 


jk

iE  0

 

  
)

~
()

~
( 




 


kj

i

jk

i EE  0             Mass Equation  

 

 

(7.9.4) 

)ˆ(
)1(




jk

iE  0

 

  
)ˆ( 



ri

rE  0     Electromagnetic Equation 

 

(7.9.5) 

)ˆ(
)2(




jk

iE  0    
)ˆ( 




ri

rE  0          Weak Equation 

 

(7.9.6) 

)ˆ(
)3(




jk

iE  0

 

  
)ˆ()ˆ()ˆ(

)2()1(








 


jk

i

jk

i

jk

i EEE  0      Strong Equation 

 

 

Where a duality transformation was applied to the upper index-pair in (7.9.5) for simplifying the 

final expression. 
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With respect to those equations seen in (5.2) and considering the torsion’s irreducible components 

(7.5) this decomposition establish the following equation-equivalences under the Relativistic 

Conformal Gauge (5.2.10) and the Generalized Compatibility Condition (5.2.11): 

 

(7.9.7) 

)ˆ(
)1(




jk

iE  0    
iQ


 0   / 

iQ

 0   

(7.9.8) 

)ˆ(
)2(




jk

iE  0    
)2(

ˆ.
~

.2 jk
iR 


 )( j

i

kjk
ii

jk QQQ 
 

(7.9.9) 

)ˆ(
)3(




jk

iE  0    
)3(

ˆ.
~

.2 jk
iR 


 jk

i
j

i

kj

i

kk

i

j QQQQ  )...(
3
1


  

 

7.10 Holotrinos: the Fundamental Particles? 

The Electromagnetic field was identified with the first torsion component 
)1(

ˆ
jk

i  which would be the 

whole torsion generated by an object exposing only and electric charge: 
 

 (7.10.1) jk
i̂  )...(. 12

1
j

i

kk

i

j AAc    

 
According to (7.5.17) such torsion can be expressed as a combination of Lorentz generators and 

potentials. For defining a general Electromagnetic potential iA  the Lorentz ones should have the 

following form: 
 

(7.10.2) )...(. 12
1

j

i

kk

i

j AAc    )...(.
)(

)()()(
32

1

a

j
a

k
i

a
k

a

j
i CECEc 

 

 
)1(
iC  )0,0,,.( 01

3

1 AA
c

c
 , 

)2(
iC  )0,,0,.( 023

1 AAc

c
 , 

)3(
iC  ),0,0,.( 033

1 AAc

c
 

)4(
iC  ),,0,0.( 233

1 AAc

c
  , 

)5(
iC  ),0,,0.( 133

1 AAc

c
  , 

)6(
iC  )0,,,0.( 123

1 AAc

c
  

 

Following the generator definition given in (7.2.5) these Lorentz potentials can be more suitably 

renamed as:  

 

(7.10.3)  

)1(
iC 

)( x
ik  , 

)2(
iC 

)( y
ik  , 

)3(
iC 

)( z
ik  

)4(
iC 

)( x
il  , 

)5(
iC 

)( y
il  , 

)6(
iC 

)( z
il  

 

Then the equality (7.10.2) would read: 
 

(7.10.4) )...(. 12
1

j

i

kk

i

j AAc    )...(.)...(.
)(

)()()(
32

1

)(
)()()(

32
1

a

j
a

k
i

a
k

a

j
i

a

j
a

k
i

a
k

a

j
i lLlLckKkKc   

/ },,{ zyxa  

If each of the Lorentz vector potentials can be associated to an elementary particle then those 

particles should be more fundamental than leptons and quarks.  


















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They would be called Holotrinos (from Ho-mogenous Lo-rentz group) and could be arranged in two 

sets of three similar particles called Acceletrinos and Rotatrinos (from Acceleration and Rotation):  
 

(7.10.5) 
zyx kkk ,,   Acceletrinos , 

zyx lll ,,   Rotatrinos   

For an electrically charged object at rest the Electromagnetic potential simplifies to (electrostatic 

case): 
 

(7.10.6) iA  )0,0,0),(( 0 XA  

If the object is a single electron then in the Lorentz base the holotronic potentials should be: 
 

(7.10.7) 

)( x
ik  )0,0,,0.( 03

1 Ac

c
 , 

)( y
ik  )0,,0,0.( 03

1 Ac

c
 , 

)( z
ik  ),0,0,0.( 03

1 Ac

c
 

An electron will then be composed of three different acceletrinos. Since they contribute equally to 

determine the final potential they should have the same electric charge which then becomes e.
3
1 . 

Holotrinos would then combine to give electrons, neutrinos, down and up quarks. This means leptons 

and quarks could be taken to the same footing becoming clearer their interaction as a particle family. 

 

Taking into account Dual symmetries, the final electric and weak charges and the fact that the 

combined spin should be .
2
1 (considering holotrinos as fermions of spin .

2
1 ) the know particles 

would admit the following electro-weak-static composition in terms of these fundamental particles: 
 

(7.10.8) 
e  )1,0,0,0()0,1,0,0()0,0,1,0(

)()()(


zyx
kkk     Electron 

(7.10.9) e  )1,0,0,0()0,1,0,0()0,0,1,0(
)()()(


zyx
lll              Electron-Neutrino 

(7.10.10) Rd  )1,0,0,0()0,1,0,0()0,0,1,0(
)()()(


zyx
llk              Red Down-Quark 

(7.10.11) Gd  )1,0,0,0()0,1,0,0()0,0,1,0(
)()()(


zyx
lkl          Green Down-Quark 

(7.10.12) Bd  )1,0,0,0()0,1,0,0()0,0,1,0(
)()()(


zyx
kll            Blue Down-Quark 

(7.10.13) Ru  )1,0,0,0()0,1,0,0()0,0,1,0(
)()()(


zyx
kkl                 Red Up-Quark 

(7.10.14) Gu  )1,0,0,0()0,1,0,0()0,0,1,0(
)()()(


zyx
klk             Green Up-Quark 

(7.10.15) Bu  )1,0,0,0()0,1,0,0()0,0,1,0(
)()()(


zyx
lkk    Blue Up-Quark 

 

Where the coupling constants and potential units were adjusted for leaving the electron value 1  as 

the unit reference.  

 

When quarks combine for integrating protons and neutrons their electro-weak-static composition 

results opposite to those for electrons and neutrinos respectively: 
 

(7.11.16) 
p  )1,0,0,0()0,1,0,0()0,0,1,0(

)()()(


zyx
kkk     Proton 

(7.11.17) n  )1,0,0,0()0,1,0,0()0,0,1,0(
)()()(


zyx
lll                Neutron 

While acceletrinos would be responsible for the final electric charge the rotatrinos would do the 

same for the weak charge. 
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8 Conformal Gauge Field Gravitation 

When the torsion is allowed to have any value more degrees of freedom are available to introduce 

what will correspond to new gauge field potentials into the theory. The corresponding gauge 

invariance results from the absolute invariance associated to the loop operators in (7.1.6) which 

depend on the Group Generators fields and the corresponding phase-function parameters. The Group 

Generators are new geometrical variables that have to meet the Metric Constraint (7.2.1) and the 

Generators Compatibility Conditions (7.3.1) along with the usual gauge algebra (7.1.1) in order to fit 

into the theory and preserve standard measurements (i.e. intervals) and loop invariance. They are six 

covariant skew-symmetric tensor fields adding the Lie’s algebra of the Homogenous Lorentz Group 

)2()2( SUSU   to the already existing for the Conformal Electromagnetic Gravity represented here 

as )1(UGR . The phase-function parameters are constrained by the EM-Gauge-Compatibility 

Condition (7.4.1) for preserving Electromagnetism. 
 

8.1 Conformal Gauge Field Gravity Action 

The Conformal Gauge Field Gravity action will be the Conformal Electromagnetic Gravity one with 

those extra terms necessary for introducing the Group Generators and their properties. 

Although torsion is relaxed from compatibility condition (4.5.5) for allowing new gauge fields, 

compatibility with General Relativity still requires the delta-condition (4.5.6) to hold. This is 

equivalent to the Generalized Compatibility Condition (5.2.11) which is AT-invariant both to 

Electromagnetic and Gauge transformations so it can be granted as a field equation by introducing the 

following Lagrangian term: 

 

(8.1.1) )
~

..
~

.(
~

.. op

pro
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8.2 Field Equations  

The corresponding field equations become:  
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The connection-equation coming from variation jk
i

~
  was opened in two in order to simplify the 

resulting expressions. Others can be similarly extracted out of (8.2.8) according to (7.9). 

 

Notice that the group generators and the constraining variables don’t add new terms to the stress-

energy equation (8.2.6). All their influence on this equation is being done through the way they 

integrate and define the connection. 
 

8.3 GR-Compatible Field Equations 

With the following Gauge-Field Gravity Connection solutions can be found for the previous equation 

set, which under the Relativistic Conformal Gauge becomes: 
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Terms in (8.3.6) and equations in (8.3.11) were contained for remarking the resulting ones. 

This is again General Relativity having contributions from a matter field ijT , Electromagnetism, other 
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9 Conclusions 

The present theory achieves unification between Gravitation, Electromagnetism and other Gauge 

Fields at a classical level on a real four dimensional manifold. Such dimensionality allows a metric’s 

conformal symmetry which combined with the connection’s lambda invariance enable introducing the 

)1(U  Electromagnetic gauge symmetry through a new transformation called Absolute Loop 

Transformation. 

 

A Geometrical Postulate was given for building the Lagrangian based on fundamental geometric 

objects which characterize the manifold: the metric, the generalized connection and the Gauge 

Group’s Generators. Other fields were introduced solely for imposing symmetries and differential 

constraints on the previous ones. By this all the terms in the Lagrangian become carriers for some 

geometric specification. 

 

One of the main symmetries in the theory was identified as the Absolute Loop Transformation which 

leaves the connection’s equivalent class invariant under its action. While being quite particular it 

allows introducing the gauge group )2()2()1( SUSUU   which may be a projection of the 

Standard Model’s one )3()2()1( SUSUU   seen at the particle level since the following chain 

exists: )2()3( SUSU  . 

 

For the )1(U  gauge corresponding to Electromagnetism it was mandatory for the theory to support 

the metric’s Conformal Symmetry in order to free this fundamental tensor and the involved geometry 

from the influence of an Electromagnetic regauging. This symmetry demanded the manifold to be 

four-dimensional. Because the remaining )2()2( SUSU   comes from the Homogeneous Lorentz 

Group any regauging naturally leaves the metric invariant. 

 

Different gauge potentials were introduced through independent connection components having no 

relation with the metric. In this sense this theory doesn’t follow the Kaluza-Klein construct or need 

any dimensional compactification to reach the space-time dimensionality perceived.  

 

The theory was developed in order to contain General Relativity’s solutions. Compatibility is 

achieved by choosing a given conformal gauge and ensuring the connection meets some internal 

properties. When this happens the field equations are found to be those of General Relativity with a 

stress-energy tensor that can model continuous-matter fields and contains the additional gauge fields 

introduced. 

 

Continuous-matter can be introduced through the symmetric-Delta tensor in the connection so a 

geometric origin can be finally associated to it. If all kind of matter can be modeled following this 

construction and the corresponding thermo-dynamic considerations that is something to be found in 

future analysis. 

 

Under compatibility a non-null cosmological constant is needed. For solutions belonging to the 

Compact Set such constant becomes null. Continuity between those two solution-types can be 

achieved if the Relativistic Conformal Gauge is abandoned in the transition zone (non-compatible 

solutions). This shows that although different physic laws are applied when describing compatible 

and compact solutions some linkage may exist between them. This opens the door for finding out 

what happens to the physical information when relativistic solutions reach extreme limits (like in the 

core of a black hole or at the initial moments of the Big-Bang) because non-compatible and compact 

solutions can be used for describing the continuous evolution of those compatible ones when General 

Relativity cease to be valid. This would be the case if a classical theory is still adequate for describing 

reality at those events. 
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The group generators were introduced as new geometrical fields. This was done in such a way that all 

their usual properties along with those differential conditions needed were determined by the theory 

itself.  

 

Gauge fields were introduced through the torsion tensor. Independent internal components in the 

torsion were expressed using the corresponding vector potentials and gauge group generators. Based 

on them the torsion may expose symmetries like the duality transformation which along with its 

internal structure can be used for understanding those particles contained in a family and forces acting 

between them. This suggests that in the case the theory can be extended to represent particle fields 

there is a chance the torsion symmetries turn out to be a geometric justification for the existing model 

of particles and interactions of the Standard Model. 

 

The actual formulation does not allow introducing currents in the standard way. This is regarded as a 

demand for the missing particle fields mentioned previously. It is understood that particle fields 

should be introduced without violating the Geometrical Postulate so currents have to be composed of 

fundamental variables (existing or new ones). 

 

On section (4.4) it was seen that uniqueness on the solutions of the Curvature-Phase equation  

demanded some constraint to be met for calculating the Global Phase. This lead to the concept of an 

associated family of curves (Path Dependent) or points (Path Independent) which become related to 

them. On section (4.6) it was pointed out that this also was the case when the Relativistic Conformal 

Gauge was considered. The relation between solutions, family of curves and compatibility strongly 

suggest that it may be possible the existence of elementary well defined solutions based on oscillating 

curve-sections which evolve consistently under General Relativity’s conditions. These are no others 

but Strings. Based on collections of such elementary solutions bigger ones could be obtained. In that 

case the image of Strings being the foundation for all know particles would be justified. Since the 

actual manifold is constrained to four dimensions it is not possible to claim that Strings can be 

completely defined in it since the renormalization condition on a quantum-field theory demands the 

containing manifold to have 10 or 26 dimensions. This becomes an additional motivation for 

extending the actual theory to be part of a bigger one where particles can be introduced and the 

Internal Space justified. 
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