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Abstract

Atomic structure model was proposed as a rotating stratified fluidic matter field
with the particles corresponded to solitary waves in the field. Mathematical formu-
lation of the proposed structure was constructed on the model of thermal convection
in rotating spherical shells of conducting fluids using magnetohydrodynamic Navier-
Stokes Equations. Acceleration term was derived using Coulomb potential. Novel
model showed that internal structure of atoms is subjected to complex fluid dynam-
ics.

Classical atom model proposed by Bohr [1] is based on the idea of electrons orbiting
around the nucleus and the energy levels of ∆E = hν. The model was achieved an
excellent success and led to modern chemistry and quantum mechanics. Quantum me-
chanics revolutionized our views about atomic systems and brought important concepts
in scientific knowledge such as the Schrödinger equation [2] for dynamics of particles,
wave-particle duality Ψ(r, t) and probability density ρ := |Ψ(r, t)|2. Quantum optics,
ultracold fluids, Standard Model, quantum chemistry, nanoscience and other numerous
scientific and technological achievements have been obtained using quantum mechan-
ics. However, during the progress, serious problems have arisen especially related with
ontological paradoxes [3] and analysis of the many-body systems.

Since the beginning alternative scenarios for quantum phenomena have been sug-
gested trying to overcome the above mentioned difficulties. One of the most important
of them, hydrodynamic approach and its applications [4, 5, 6] has given brilliant results in
different areas such as density functional theory, quantum transport, superfluids, Bose-
Einstein condensation, ultracold fermions, atom optics, BCS superconductivity etc. In
this approach which assumes the particles as ”quantum fluid” one can easily calculate
the physical parameters of the systems containing large number of particles in a superior
agreement with the experimental observations. Applicability and success of hydrody-
namic viewpoint of quantum mechanics are valid for wide ranging scales from predicting
the properties of bulk materials to molecular structures, even to chemical bonds. Re-
cently, in two different studies, researchers modeled individual chemical bonds using
electron flux [7, 8]. In [7] Okuyama and Takatsuka theoretically pictured the ”electron
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Figure 1: Stratified spherical matter field as proposed atomic structure model (not to
scale). QN is the total charge of nucleus; Gaussian surface is spherically symmetric and
concentric with the nucleus.

flow” around sodium and chlorine nuclei while Barth et al. [8] used H+
2 as a model

system with a similar technique and acquired quite promising results.
Hyrodynamic interpretation of quantum mechanics mathematically stems from the

Madelung transformation ψ =
√
ρ exp [iφ] in the time-dependent Schrödinger Equation

[4]:

ih̄
∂

∂t
ψ(r, t) = − h̄2

2m
52 ψ(r, t) + V (r, t)ψ(r, t) (1)

Denoting ψ(r, t) as wavefunction, m as particle mass, h̄ = h
2π with Planck constant h

and V (r, t) as external potential. After some mathematical manipulation, taking velocity
potential field as u(r, t) = h̄

m∇φ(r, t) and separating the real and imaginary parts of the
resulting equation we obtain [4, 9, 10]:

∂

∂t
ρ(r, t) = −∇ · ρ(r, t)u(r, t) (2)

∂

∂t
u(r, t) + u(r, t) · ∇u(r, t) = −∇µQ −

1

m
∇V (r, t) (3)

It is obvious from the above equations that the time-dependent Schrödinger Equa-
tion is equivalent to Euler equations of fluid dynamics. Connection of these equa-
tions to quantum mechanics is through the ”quantum chemical potential” term: µQ =

− h̄2

2m
1
ρ

(
∇2ρ− 1

2ρ(∇ρ)2
)

. ρ is also not classical density but it is the probability density

ρ = |ψ(r, t)|2 in a phase space.
We begin to construct the mathematical formulation of our model by presenting

some important assumptions. Now, let us suppose that all the particles are the excita-
tions (solitary waves) in a matter field. Main proof for this assumption can be found
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in Unruh’s seminal work [11] revealing that the field equations of phonons in a nonho-
mogeneous fluidic matter correspond to the relativistic field in a 4D curved space-time
[11, 12]. Such a matter field would be defined by density, temperature and composi-
tion Ψ := F(ρ, T,X). Composition is relevant to the flavor concept of particle physics
and probability density of quantum mechanics, in contrast to the standard definition, is
exactly the classical matter density given in the field definition.

Seeing above theorems, we can build the mathematical equations governing the dy-
namics of our model. We will assume that the fermionic matter field surrounding the
nucleus is a rapidly-rotating stratified spherical shell of electrically conducting Boussi-
nesq fluid (see Fig. 1) moved under the magnetohyrodynamic and thermally convective
actions i.e. Lorentz, buoyancy and Coriolis forces. Additionally, thermophysical and
magnetic properties of the fluidic matter will be constant [13].

In the light of this scheme, combining magnetohydrodynamic Navier-Stokes equa-
tions, Maxwell’s equations and the heat equation we arrive at following system of differ-
ential equations governing our model:

∂u

∂t
+ u · ∇u + 2Ωk× u = −1

ρ
∇p+ αΘaCr +

1

ρµ
(∇×B)×B + ν∇2u (4)

∂Θ

∂t
+ u · ∇Θ + u · ∇Ts = κ∇2Θ (5)

∂

∂t
B + u · ∇B = B · ∇u + λ∇2B (6)

with the condition of incompressibility : ∇ · u = 0 (7)

where u is velocity field, Ω is angular velocity, k is rotation unit vector, ρ is density,
p is pressure, α is thermal expansion coefficient, Θ is temperature field, aC is Coulomb
acceleration, r is position vector, µ is magnetic permeability, B is magnetic field, ν is
kinematic viscosity, Ts is steady temperature, κ is thermal diffusivity and λ is magnetic
diffusivity.

Rewriting the equations of (4-6) via nondimensionalization would be convenient since
in computation, experimental testing or other analysis studies scaled equations is ex-
tremely functional. We define required dimensionless parameters in such a manner that
D = r0 − ri is length, D2

ν is time, ν
D is velocity, ρνΩ is pressure and ∆Θ is average

gradient of temperature Ts [14]. In fluid dynamics, the Rayleigh, Ekman, Prandtl and
magnetic Prandtl dimensionless numbers are highly useful for the problems especially
the ones resembling discussed here. Denoting the numbers respectively as Ra, E, Pr
Pm:

Ra =
αaC∆ΘD3

κν
(8)

E =
ν

ΩD2
(9)
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Pr =
ν

κ
(10)

Pm =
ν

λ
(11)

Derivation of the nondimensional form of the equations (4-6) can be accomplished by
applying the dimensionless numbers. The Rayleigh number is described as the ratio of
buoyancy force to viscous dissipation; the Ekman number is the ratio of the viscous force
to Coriolis force; the Prandtl number corresponds to the ratio of momentum diffusivity to
thermal diffusivity while magnetic Prandtl number is the ratio of momentum diffusivity
(viscosity) and magnetic diffusivity.

Fermionic fluid surrounding the atomic coordinates is affected by Coulomb potential
originating from nucleus. This effect is expressed in Coulomb acceleration, aC term of
equation (4). aC can be derived in a straightforward way using Gauss’s law. Let Er be
electric field acting on Gaussian surface of Figure 1:

Er =
1

4πε0

QN
r2

=
meaC
q

WhereQN is the total charge of nucleus, ε0 is vacuum permittivity (electric constant),
r is the radius of the sphere enveloped by Gaussian surface, q is the total charge of
fermionic field at Gaussian surface and me is the mean field mass of fermionic matter
field. Accordingly Coulomb acceleration would be:

aC =
1

4πε0

qQN
mer2

(12)

Developing solutions for equations of (4-6) is a quite tough problem. Computational
techniques are available but they all consist of source consuming procedures. Instead of
that we can assess them in simple terms. Let us deal with a system with no rotation
Ω = 0, no magnetic field B = 0 and inviscid flow ν = 0. These assumptions lead equation
(4) to the form given below:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ αΘaCr (13)

In comparison with equation (3) we can see that there is an evident correspondence
between quantum hydrodynamics and proposed model. Moreover, it is apparent that
quantum chemical potential is related to an intrinsic pressure dominating in quantum
fluid: 1

ρ∇p := ∇µQ(ρ). Another important observation is αΘaCr := − 1
m∇V (r, t) cor-

respondence which gives clues about the physical nature of the external potential of
equation (3). It seems that in the motion of quantum fluidic matter field thermal con-
vective processes play a crucial role.

We suggested and discussed a novel atomic structure model described as a stratified
and spherically symmetric fermionic fluidic matter field around a condensed nucleus.
Relations between Madelung’s equations (Eqs. 2-3) and our model (Eqs. 4-6) pointed
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out the interesting nature of quantum hydrodynamics. Numerical analysis could not be
executed due to complexity of the problem but computational fluid dynamics of rotating
spherical systems is a highly studied topic especially in the field of geophysics and it is
possible to employ the results available in this literature [13, 14, 15]. Al-Shamali et al.
[14] obtained a flow pattern with localized modes in equator of the spherical system
for Pr = 1, Ra = 0 − 13.2 × 10−5, E = 3 × 10−4 and B = 0. Such a localized
flow structure should be involved in the origins of quantum mechanical phenomena for
atoms. However toward a more deeper understanding, further computational analysis
of our model must be carried out. Finally, we can say that proposed atomic model is
more realistic and more consistent with the many-body condensed matter systems such
as solid state structures. Besides, in the attempts of extending quantum mechanics to
cosmology, our model could be beneficial. Recently there is a hugely growing interest
to figure out the gravitational problems using cosmological fluid dynamics especially in
terms of AdS/CFT correspondence [16]. It is clear that hydrodynamic formulation of
quantum mechanics will be more compatible with cosmology.
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