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By considering the gravitational field as an optical medium with a radially-dependent 

index of refraction, we are able to show that a physical model of space being radially 

compressed by mass, rather than curved by mass, as in general relativity, yields the same 

results predicted by Einstein’s theory of general relativity.  We are further able to show 

that this spatial compression is equivalent to the Lorentz contraction of special relativity.  

The predictions of general relativity are all derived with relatively basic mathematics 

without reliance on the grossly complex Riemannian geometry needed for Einstein’s 

curved space-time model. 
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I.  Refractive Index of the Gravitational Field 

 It is relatively easy to show that the gravitational field acts as an optical medium having a 

radially-dependent index of refraction.  The analysis begins with Fermat’s principle for the 

propagation of light in a static gravitational field [1]: 

∫ =− 02/1
00 dlgδ  (1) 

where dl is the local length of a light beam measured by an observer at distance r within a 

gravitational field (where r is also the radial distance from the gravitational mass M), and g00 is a 

component of the metric tensor gμν.  In the above, dlg 2/1
00

−  is an element of the optical path 

length, such that 
τd

dtdlg =− 2/1
00 , where dτ represents time measured by the local observer for the 

light beam passing through length dl, and dt is the time measured by the observer an infinite 

distance away. 

 Equation (1) can then be rewritten as 
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where ds is the length measured by the observer at infinity.  If the scale of both length and time 

measurements made at infinity are set as the standard scale for all of gravitationally-influenced 

space, then propagation of light through the gravitational field satisfies Fermat’s principle with 

space having a refractive index given by 

21nn
ds
dl

d
dtn ==
τ

 (3) 
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where n1 is the time-related index (i.e., the index of refraction component corresponding to time 

dilation), and n2 is the space-related index (i.e., the index of refraction component corresponding 

to length contraction). 

 

Fig. 1:  Light deflection in a radially-dependent index of refraction 

 Fig. 1 illustrates refraction of light through a medium having this refractive index.  In Fig. 

1, the light beam travels from point A to point P, with β being the angle between the position 

vector r and a tangent at point P on the curved light beam, and α being the angle between 

position vector r and the horizontal (from the center of mass M to point A in this Figure).  φ 

represent total angular deflection from the initial point A to the final point P.  Assuming 

spherical symmetry for the most basic gravitational case, then we know that βsinnr must equal 

some constant [2], or  

00sin rnnr =β  (4) 

where n0 and r0 are the index of refraction and the radius at point A, respectively.  Since 

dr
rdαβ =tan , then equation (4) yields: 



4 

 

1
2

00

−







=

rn
nrr

drdα  (5) 

which we may compare to the known solution [3], [4] 
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where R is the radial coordinate of the Schwarzschild metric. 

 

Fig. 2: Light deflection in a gravitational field 

 For a relatively weak gravitational field (i.e., 12 <<
rc
GM ), then 

2/ rcGMreR =  and 

2/2 rcGMen = .  For the light beam passing by massive object M in Fig. 2, the angular displacement 

of radial vector r is given by 

∫
∞

−







=∆

0

1

2
2

00

r

rn
nrr

drα  (7) 

where r0 is the nearest distance to the center of massive body M.  Substitution of n into equation 

(7) yields, to first order, 2
0

4
cr

GM
+=∆ πα .  Thus, the total deflection angle of light in the 
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gravitational field is given by 2
0

4
cr

GM
=−∆=∆ παϕ .  Thus, beginning with the idea that space 

acts like an optical medium with a radial-dependent index of refraction n, the deflection angle of 

the light beam is found to be consistent with that predicted by general relativity [5], [6] and 

confirmed by experiment [7]. 

 

II.  Relative Density of Space 

 In a general optical medium, the refractive index n is related to the fluid density by the 

Clausius-Mosotti equation which, for a gas, reduces to the simpler for of the Gladstone-Dale 

equation, given by 

ρKn =−1  (8) 

where ρ is the gas density and K is the Gladstone-Dale constant (having units of 1/ρ), which is 

specific to the particular gas and depends weakly on the wavelength of the light [8]. 

 Exploring the idea that space might have a “density” associated with it, substitution of 

2/2 rcGMen = , derived in section I, yields a density of 
Krc

GM
2

2
=ρ .  We must now consider what 

this “density” represents.  In a gas, the density is a representation of compression of the gas 

molecules.  In the gas of a gravitational field, there are no “molecules” to consider, however 

there is a compression that we are familiar with:  the spatial compression (and corresponding 

time dilation) of general relativity.  
Krc

GM
2

2
=ρ  can be considered an “effective density” of space 

if space is “compressed”. 
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 If we consider a distance measurement x0, made in a region of space with no gravitational 

effects, and a distance measurement x representing the measurement made under gravitational 

spatial compression, then a corresponding unitless “density”, measuring the degree of 

compression, can be given by 
x

xx −
= 0ρ .  If we substitute a wavelength of light into this 

expression, we get 
λ
λλ

ρ
−

= 0  or 

Krc
GM
2

0 2
=

−
λ
λλ  (9) 

where λ is the “compressed” wavelength of light in the gravitational field, and λ0 is the 

wavelength of the same light beam under no gravitational field (i.e., at infinity). 

 Equation (9), however, can be rewritten as 

12
2

0

+
=

Krc
GM
λ

λ   (10) 

which is the exact formula for gravitational redshift given by general relativity if K is equal to 2. 

 Both gravitational redshift and gravitational lensing, exactly as predicted by general 

relativity, have been reproduced above from the perspective of a radially-dependent optical 

medium consisting of radially-dependent compressed space.  In other words, rather than space 

being “curved” under the influence of a massive body, the same results may be produced by 

considering space as “compressed” by mass.  It should be noted that the third “prong” of general 

relativistic predictions, the advance of the perihelion of Mercury, can also be predicted by a 

purely optical analog for space, independent of the concept of spatial curvature [9]. 
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III.  Lorentz Contraction and Relation to Special Relativity 

 From the above, we can see that a length measurement x made at a radius r from a 

massive body M is given by 

12

0

+
=

rc
GM

x
x  (11) 

where x0 is the length measurement when M is zero (or if r is at infinity).  In other words, the 

mass M can be viewed as causing a radially-dependent spatial compression, resulting in the same 

effects as those predicted by the geometric curvature of space of general relativity.  Although it 

is common in relativity to discuss the variation in lengths of a theoretical “meter stick” (or 

variation in rates of time of a “clock”), it is important to keep in mind that it is not a physical 

meter stick which is contracting in length, it is space itself which experiences the compression 

(or time itself experiencing dilation) and not the physical body of the test object. 

 The gravitational situation is not the only place in relativity where spatial contraction can 

be found, of course.  Special relativity provides Lorentz contraction following 2

2

0 1
c
Vxx −= , 

where x0 represents the rest mass of the body and V is its velocity.  The body in a gravitational 

field (relating to equation (11)) obviously has a potential energy associated with it, and this 

potential energy is linked to the spatial contraction.  The body under motion, experiencing 

Lorentz contraction, obviously has a kinetic energy associated with it, and this kinetic energy is 

also linked to the spatial contraction.  If we consider that the gravitational spatial contraction is 

the same effect as Lorentz contraction, and both are the result of the energy of the body, then we 

find that an object in a gravitational field caused by massive body M, at a distance r, but not 
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moving in that field, experiences an equivalent length contraction if the object is moving at a 

velocity of 
r

GMV 2
=  outside of gravitational effects.  This comes from setting the potential 

energy of the former, given by 
r

GMm  equal to the kinetic energy of the latter, given by 2

2
1 mV , 

where m is the mass of the object. 

 From special relativity, we expect a mass increase for the moving body.  Approaching 

this mass increase from the view that the increase in measured mass is actually the mass-

equivalent of the object’s kinetic energy, we can write 







+= 2

020 2
11 Vm

c
mm  (12) 

where m0 is the object’s rest mass.  If we substitute 
r

GMV 2
=  into equation (12), the result is 

rc
GMm

mm 2
0

0 +=  (13) 

which is exactly what we expect (since equation (10) is equivalent to 





 +=

rc
GM

20 1νν , where ν 

is the frequency corresponding to wavelength λ, and ν is directly proportional to the photon’s 

energy, which is also directly proportional to its mass equivalent). 

 We can further write equation (13) as 





 +=

rc
GMmm 20 1 , but we have shown above that 

there is an equivalence between the contraction of equation (11) with the Lorentz contraction 
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−=γ  for the gravitational 
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, which yields the familiar special relativistic equation 
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2
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1
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V
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−
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IV.  Conclusion 

 Thus, we have shown that treating a massive body as radially compressing space, rather 

than causing a curvature in space, yields the same results as those predicted by general relativity.  

However, this compression of space is further shown to be equivalent to the Lorentz spatial 

contraction of special relativity, thus bringing both special relativity and gravitation into 

conformance by relying solely on relatively simple physical principles, rather than the immense 

mathematical complexities of Riemannian geometry. 
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