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Presented herein is a proof of Fermat’s Last Theorem, which is not only short 

(relative to Wiles’ 109 page proof), but is also performed using relatively 

elementary mathematics.  Particularly, the binomial theorem is utilized, which 

was known in the time of Fermat (as opposed to the elliptic curves of Wiles’ 

proof, which belong to modern mathematics).  Using the common integer 

expression nnn cba =+  for Fermat’s Last Theorem, the substitutions iac +=  

and jbc +=  are made, where i and j are integers.  Using a Taylor expansion 

(i.e., in the form of the binomial theorem), Fermat’s Last Theorem reduces to the 

theorem that 1−n n  only has rational solutions for n=1 and n=2.  This proof is 

presented herein, thus proving that  nnn cba =+  only has integer solutions for a, 

b and c for integer values of the exponent n=1 or n=2. 
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1.  Introduction 

Fermat’s Last Theorem famously states that if an integer n is greater than 2, then 

nnn cba =+  has no solutions for non-zero integers a, b and c.  In 1637, Fermat wrote in 

the margin of his copy of Claude-Gaspar Bachet’s translation of Diophantus’ 

Arithmetica:  “I have a truly marvelous proof of this proposition which this margin is too 

narrow to contain.”  (translated from the original Latin) [1] 

 After countless failed attempts to prove the theorem, Andrew Wiles finally 

provided a proof in 1995. [2]  Wiles’ 109 page paper offers a proper proof, however, it is 

unquestionable that this is not the proof Fermat had in mind when he made his marginal 

comment, as Frey curves and the like were unknown in the 1600’s.  Though it is 

unknown if Fermat actually had a proof or not, presented below is a short and 

“marvelous” proof using mathematics which would have been known to Fermat. 

 The following proof is based upon the substitutions iac +=  and jbc += , 

where i and j are integers.  Using a Taylor expansion (i.e., the binomial theorem, which 

was known in the time of Fermat), Fermat’s Last Theorem reduces to the theorem that 

1−n n  only has rational solutions for n=1 and n=2.  Binomial factorization has been 

attempted throughout the centuries to prove Fermat’s Last Theorem, with varying degrees 

of success, by Euler [4], Lagrange [5], Legendre [6] and Kummer [7], amongst others.  

More recently, Ellman was able to derive the expression 1−n n , but was unable to prove 

any conditions on the value of the expression [8].  What follows is a proof that Fermat’s 

Last Theorem reduces to the problem of rational values of n in the expression 1−n n , and 

also the proof that only values of n=1 and n=2 provide such rational values for the 
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expression, thus proving that nnn cba =+  has no solutions for non-zero integers a, b and 

c for n > 2. 

 

2.  Binomial expansions 

Since a, b and c are each integers, we can easily substitute iac +=  and 

jbc += , where i and j are also integers.  Substituting the first expression into 

nnn cba =+           (1) 

yields 

( )nnn iccb −−= .        (2) 

Expansion of equation (2) by the binomial theorem gives us: 

( ) ( )( )






 ±+

−−
−

−
+−−= −−− nnnnnnn icinnncinnnicccb ...

!3
21

!2
1 33221 , (3) 

which reduces to 

( )( ) nnnnn icinnncinnnicb ±−
−−

+
−

−= −−− ...
!3

21
!2

)1( 33221 ,   (4) 

or 

  ( )( )






 ±−

−−
+

−
−= −−−− 13221 1...

!3
21

!2
)1( nnnnn i

n
cinnicncnib .  (5) 

 We now introduce a constant α, such that 
α
nib = .  Since 

b
ni

=α , there is no 

restriction on α other than the fact that α must be rational, since n, i and b are all integers.  

This allows us to write equation (5) as: 

( )( )






 ±−

−−
+

−
−⋅= −−−− 13221 1...

!3
21

!2
)1( nnnnn i

n
cinnicncnib α

α
,  (6) 
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where 
α
nib =  and 

( )( )






 ±

−−
+

−
−= −−−−− 132211 1...

!3
21

!2
)1( nnnnn i

n
cinnicncb α .  (7) 

 We can also express 1−nb  as 
b

bn
, or 

nn b
ni

b α
=−1          (8) 

( ) 11/1
1

−−
−

























=

nnn
n

ni
bb α        (9) 

( ) 11/1
1

−−
−









































−−=

nnn
n

ni
bccb α ,      (10) 

or 

( ) 11 −− −= nn cb βα ,        (11) 

where 
( )

























−=

−1/1 nn

ni
bcβ . 

 Applying the binomial theorem to equation (11) yields: 

( ) ( )( )






 ±−

−−
+−−= −−−−− 132211 ...

!2
211 nnnnn cnncncb βββα .  (12) 

Matching the (n-1), (n-2), … zero-th order terms in c in equations (7) and (12) results in 

the progression 
!2

i
=β , 

!3!2
1 2

2 i
=β , …, to the zero-th order term: 

( ) 111 1
!

!1 −−− =
−

= nnn i
n

i
n

nβ ,       (13) 
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which can be rewritten as: 

1−⋅= n ni β .         (14) 

 In the long history of attempts to prove Fermat’s Last Theorem, the expression 

1−n n  has been derived many times previously in binomial theorem-based attempts (such 

as in Ellman’s attempt at a proof [8]), but the necessary subsequent proof that 1−n n  only 

has rational values if and only if n=1 or n=2, to the best of the author’s knowledge, has 

not previously been found.  This proof is presented in the following sections.  

 

3.  Restatement of Fermat’s Last Theorem 

Equation (14) above gives us the condition 1−= n ni β .  i, though, must be an 

integer, and though no restrictions have been placed on β, the expression 1−n n   must at 

least be rational, if not an integer, to be able to produce an integer value for i.  Thus, 

Fermat’s Last Theorem reduces to the following:  The expression 1−n n  has rational 

solutions only for n=1 or n=2.   

In the following sections, it will be shown that 1−n n  only has rational values if 

and only if n=1 or n=2.  As will be further shown below, the value of  1−n n  must have 

integer solutions to be rational, and values of n=1 or n=2 also produce the only integer 

values for the expression 1−n n . 

  

4.  1−n n  only has integer values if n=1 or n=2 

 The above theorem stating that 1−n n  only has integer values if n=1 or n=2 is 

proved easily by considering the transcendental equation xy yx = .  This equation only 
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has integer solutions if x=y or for values of (x,y)={(2,4), (4,2), (-2,-4),(-4,-2)}.  The proof 

of this is as follows: 

 Assuming that x and y are both positive, then switching the order of x and y 

allows us to also assume that xy ≥ .  Dividing both sides of xy yx =  by xx  yields 

x
xy

x
yx 





=− .         (15) 

For integer x and y, the left-hand side of equation (15) must be an integer.  If the left-hand 

side is an integer, then the right-hand side must also be an integer.  However, raising a 

rational non-integer to an integer power yields a non-integer, thus 
x
yk =  must be an 

integer.  Equation (15) can be rewritten as: 

xxkx kx =−          (16) 

which, when the x-th root is taken on both sides of the equation, yields 

kxk =−1 .         (17) 

 For 2≥x , equation (17) yields four solutions:  a) For k=1, x=y is a solution; b) 

for k=2, x=2 is a solution; c) k=3 implies that kxk >−1  ; and d) by induction for k, 3≥k  

implies that kkkxxxx kk >−≥−>⋅= −− 22)1(21 .  Thus, xy yx =  only has integer 

solutions if x=y or for values of (x,y)={(2,4), (4,2), (-2,-4),(-4,-2)}. 

 Returning to the transcendental equation xy yx = , where x and y are integers, x 

can be written as a multiple of prime factors (or as a single prime):  mxxxxx ⋅⋅⋅⋅= ...321 .  

The same is, of course, true for y.  According to the fundamental theorem of arithmetic, 

this factorization is unique and the expression yx  has the same factorization (simply 

raised to the y power).  Similarly, xy  has the same factors as y, but raised to the x power. 
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 If xy yx = , then the left-hand side of the equation must contain the same factors 

as the right-hand side of the equation, with both sides being raised to the same power.  

This, however, is only true if x=y (as we’ve already proven) or if mxy =  with mx=y.  

Simple substitution and reduction of these last two expressions yields: 

mxm =−1 ,         (18) 

or 

1−= m mx .         (19) 

 Equation (19), however, is the same expression from equation (14), and we have 

already proven that for integer x (and y), either x=y (which produces a value of m=1) or 

x=2, which produces a value of m=2.  There are no other values for m. 

The above is important, since 1−n nβ  must form an integer value (namely, the 

integer i).  We have now proven that 1−n n  only has integer values for n=1 and n=2.  

What we still seek to prove is that 1−n n also only has rational values for n=1 and n=2 

(which will be proven in the following section).   

 

5.  1−n n  only has rational values if n=1 or n=2 

Now, we examine which values of x and y are rational in the transcendental 

equation xy yx = .  We have already seen that the only integer solutions are of the form 

(x,y)={(2,4), (4,2), (-2,-4),(-4,-2)}.  For rational x and y, then 
x
yr =  must also be rational.  

If we set 
d

r 11+= , then d must also be rational.  If d is rational, then 
d

d
x 






 +=

11 is 

rational if and only if d is an integer. 
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Letting 
g
fd = , where f and g are relatively prime (i.e., d is a fraction in its lowest 

terms), then 
gfd

f
gf

d

/
)(11 






 +
=






 + , which is rational only if g = 1.  If g > 1, then, 

since f and g are relatively prime, (f + g) and f are also relatively prime.  Therefore, for  

gf

f
gf

/
)(







 + to be rational, both (f + g) and f must be perfect g-th powers of integers.  

However, this is impossible.  For example, if g = 2, then (f + 2) and f cannot both be 

perfect squares, because the difference between two positive perfect squares is at least 3. 

More generally, if u, v and w are positive integers, with w > 1, then using the 

binomial theorem, ( ) wvvwuuvu wwww >++=−+ − ...1 .  Thus, two distinct perfect g-th 

powers cannot differ by g.  Therefore, 
gfd

f
gf

d

/
)(11 






 +
=






 + cannot be rational if g > 

1. 

Thus, 
d

d






 +

11  is rational if and only if d is a positive integer.  Therefore, all 

rational solutions are of the form 
d

d
x 






 +=

11 and 
111
+







 +=

d

d
y , where d = 1, 2, ... .  

Rational solutions are only within the bounds of 2  x < e < y 4.  

We have already seen that the only integer values for x and y occur either when 

x=y or for x=2 and y=4, and now we have shown that these are also the only rational 

integer values.  Since the only restriction on i is that it be an integer, 1−n n  must have a 

rational value, and the only rational values allowed are n=1 or n=2. 
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In the above, what we are obviously interested in is the expression 1−n n  being 

rational.  However, in general, p N  is irrational unless N is the p-th power of an integer z 

[3].  Thus, the only rational values for 1−n n  must also be integer values.  The only integer 

values for 1−n n  are n=1 and n=2, thus the only rational values for 1−n n  are also only 

found at n=1 and n=2. 

  

6.  Conclusion 

 Section 4 above proves that 1−= m mx  only produces an integer value for x if m=1 

or m=2.  Section 5 goes on to show that these two solutions also provide the only rational 

values for x.  Equation (14) provided that 1−= n ni β , with no restrictions being made on 

i,  n or β, other than that i and n must be integers.  The expression 1−n n  must be a rational 

number (which also must be an integer, as described above in Section 5) in order to 

produce an integer value for i.  However, we have now proven that 1−n n  only has rational 

integer values if n=1 or n=2.  Thus, the equation nnn cba =+  only has integer solutions 

for a, b and c when the integer exponent n has a value of n=1 or n=2.   

 

Q.E.D.
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