
Why We Should Favor Heavier 
Vehicles for Highway Driving

John Michael Williams
jwill@BasicISP.net

2010-06-26

Copyright © 2010, John Michael Williams

All Rights Reserved



v. 4.1

ABSTRACT

Elementary calculations show that the mass of the passenger's vehicle should 
have an important influence on risk of injury, greater mass yielding greater 
protection independent of the other mass(es) in the collision.   This holds for 
collisions treated either as purely elastic, or as quasi-inelastic.   Passengers in more 
massive vehicles thus would seem better off no matter what the size or weight of 
other vehicle(s) in a collision.

The approximations used suggest that highway vehicles should be at least 20 
times the mass of the average passenger, or injuries in a collision will be 
disproportionately grave.

INTRODUCTION

Ross and Wezel [1] state that the role of mass and crush space on passenger 
injury in an automobile collision are not understood.   However, a related and vital 
concern for the safety of the passenger can be approximated in an enlightening way: 
We shall show that, for automobiles, the less massive the vehicle occupied by a 
passenger, the greater the momentum transferred, and so the greater the risk of 
injury, other things being equal.   This argues for mass as a safety factor 
independent of considerations of the relative masses of two colliding vehicles.

PROBLEM ANALYSIS

The problem can be solved in the most general terms only by elementary 
methods.

Consider three masses, MX, M, and m, lined up left to right in that order, with M 
and m slightly separated and at rest with respect to one another.

We shall let M and m represent the passenger's vehicle and the passenger, 
respectively (see Fig. 1).   

Let the other vehicle, of mass MX, approach the passenger’s vehicle at the 
collision velocity VX.

We wish to know the 
velocity v imparted to the 
passenger of mass m in the 
rest frame of M; it is the 
impulse to this velocity 
which will cause all injury 
directly caused by the 
collision.

We are concerned only with the change in velocity of the passenger, which change 
will represent momentum transferred to the passenger by the passenger’s vehicle; 
the new velocity v of the passenger will be relative to the passenger's vehicle.   So, 
our calculations will hold regardless of whether the  MX  or M vehicles, or both, 
began in motion relative to the road.   Of course, ejection of the passenger would 
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have other effects -- all more serious than those calculated here -- depending on the 
speeds of the vehicles on the road.

We first approximate the mechanics by assuming an elastic collision in which 
momentum is distributed among the vehicles and the passenger, but in which no 
energy is lost during the collision.   We then modify the analysis to account for 
energy absorbed by the vehicles; we call the result a quasi-inelastic analysis, 
because it represents an inelastic collision with energy losses represented only as 
totals for each vehicle.   Finally, we propose a correction to the quasi-inelastic 
analysis for the special case in which the passenger's vehicle is very light, 
approaching zero mass; this correction is approximately rigorous and allows the 
quasi-inelastic analysis to be applied for insight into cycling or even pedestrian 
collisions.

ELASTIC ANALYSIS.    The one-dimensional formula for final speed of an elastic 
body colliding with another is easily derived from conservation laws and may be 
found in elementary physics texts.   We first derive this general formula, because it 
is useful and can be applied to other general problems as well as to object-by-object 
detailed simulations.   Then, we apply the general formula to our  collision problem.

Assume an object of mass m1 initially in motion and another of m2 at rest; after a 
collision, we seek the final velocity of m2.   Let subscripts i and f refer to initial 
(before collision) and final (after collision) states, respectively.  Then, we may define 
the total initial momentum as pi = m1v1i.   Using conservation of momentum, after 
collision the final momentum pf will be equal to the initial and will be distributed 
between both masses so that pi = pf = m1v1f + m2v.   We seek v (same as v2f) and 
immediately may write

m v m v m v2 1 1= −1i 1f                                                                                   (1)

We are not interested in the impulse on m1, so we want to eliminate v1f in Eq. (1); 
we use conservation of energy for this:   The initial kinetic energy will be, m1v1i

2/2. 
The final energy will be equal to the initial and will be distributed between both 
masses; so, m1v1i

2 = m1v1f
2 + m2v2; and, thus, v1f

2 = (m1v1i
2 - m2v2)/m1.   If any energy 

were lost, the collision would not be elastic.   Substituting into (1), we get m2v = 
m1v1i - m1[(m1v1i

2 - m2v2)/m1]1/2; which reduces to,

( )m v m v m v m m v1 2
2

1
2 2

1 2
2

1i 1i− = − ;                                                          (2)

so,

v m v m m= +2 1 1 21i ( ) .                                                                              (3)

This general formula gives the velocity v added to a second body of mass m2 after 
collision at relative velocity v1 with the first body of mass m1.

Applying the formula of Eq. (3) twice in our collision problem in left-to-right 
order, once for impulse on the passenger's vehicle of mass M, and again for impulse 
on the passenger of mass m, the result is a simple product and may be written,
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v
MM V

M m M M
=

+ +
4 X X

X( )( ) .                                                                           (4)

In an idealized automobile collision, the mass of the oncoming colliding vehicle 
may be taken as, say, somewhere between 10m and 30m.   This means that, for a 75 
kg (165 lb) passenger, the oncoming vehicle would weigh between 750 kg and 2250 
kg--in the passenger car to light truck (or SUV) range.

For generality and convenience of units setting VX = 1 and m = 1, Eq. (4) is plotted 
in Fig. 2 as a function of the mass M of the passenger's vehicle.

It might seem from Fig. 2 that the severity of injury to the passenger should peak 
for a vehicle around three to six times the mass of the passenger; however, the 
initial, rising phase of the curves may be considered an artifact, because, with M 
extremely small, a collision of vehicles of masses MX and M + m really should be 
treated more as a direct collision of objects of mass MX and m.   A correction to the 
curves for M near zero will be made below.

Note that this analysis does not depend on the orientation of the colliding vehicles 
(side versus head-on) or the location of the passenger.   It is a completely general 
center-of-mass result.   Orientation and location factors may be accounted for in the 
relative energy absorption factors of the quasi-inelastic analysis to be considered 
next.

QUASI-INELASTIC ANALYSIS.   It is easy to adapt the above approach to 
account for the energy loss because of inelastic collision.   However, as Ross and 

 
Figure 2.   Speed imparted elastically to a passenger in a vehicle of mass M, struck by a 

vehicle of mass MX moving at relative speed VX = 1. Uncorrected for M < 10 or so.
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Wezel [1] point out, the prolongation of total impulse because of spatial factors, and 
the conditions of crushing injury, are not well understood or easily described. 
These are specific to a particular collision, not general, and we shall not address 
them here.

We may assume that a certain fraction of the kinetic energy will be lost in the MX 

to M vehicle-to-vehicle contact; call this fraction ∆EMM.   This mainly would be 
because of deformation, deflection, or ejection of parts of the two vehicles.   Likewise, 
because of dash padding, air bag inflation, and similar factors, a fraction, ∆EMm, of 
the remaining kinetic energy will not be transferred from the passenger's vehicle of 
mass M to the passenger of mass m.   Kinetic energy is proportional to v2, so we may 
account for inelastic losses simply by scaling each value of changed speed vj by √Ej.

We therefore may write down the quasi-inelastic modification of Eq. (4) as,

v
MM V E E

M m M M
= − −

+ +
4 1 1 1 2

X X MM Mm

X

[( )( )]
( )( )

∆ ∆
.                                               (5)

As a rough estimate, let us assume that half of the vehicle-vehicle collision energy 
was lost and thus became unavailable to injure the passenger; then, ∆EMM = 1/2. 
Likewise, let us assume that the safety apparatus or good fortune of the passenger’s 
vehicle makes ∆EMm = 3/4.   Using Eq. 5, the result is shown in Fig. 3, for the same 
other conditions as in Fig. 2.

 
Figure 3.   Quasi-inelastic speed imparted according to text Eq. (5) to a passenger in a 

vehicle of mass M, struck by a second vehicle of mass MX moving at speed VX = 1. 
Uncorrected for M <  10 or so.
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The curves in Fig. 3 have the same shape as those in Fig. 2, the lost energy only 
causing a scaling down of the whole curve.   The peaks near M = 0 remain 
uncorrected; but, no matter how much energy is absorbed by the vehicles or 
otherwise diverted to protect the passenger, the shapes of the curves do not change 
between the elastic and quasi-inelastic cases:  Only the relative heights change as a 
function of the fraction of energy lost.   Therefore, the present analysis, at least 
away from M = 0,  will be valid regardless of the actual energy loss during a 
collision.   The uppermost peak value in Fig. 3 is near 1.0 by coincidence.

The advantage of a very massive vehicle, such as a multiaxle truck, bus, or train, 
is obvious in Fig. 3.   Using the peaks of the curves in Fig. 3 as the worst case, even 
when the colliding vehicle is very light compared to the passenger (curve MX = 10), a 
mass M of at least 25 times the mass of the passenger would be required to reduce 
by 1/2 the impulse to the passenger.   The farther out to the right the passenger 
vehicle's mass, the less the potential injury to the passenger.

Notice that even with about 7/8 of the energy absorbed by the vehicles, a 
passenger in a light vehicle can be accelerated to a speed equal to that of the 
collision itself (curve MX = 30, peak).

Considering the point of greatest upward curvature of the curves in Fig. 3, the 
result implies that a vehicle weighing less than about M = 20 times that of an 
average passenger, or 1,500 kg (1.7 English tons), puts the passenger at an inherent 
disadvantage in a collision, regardless of the nature of other vehicles involved. 
Lighter vehicles disproportionately increase the risk of injury; heavier vehicles more 
gradually mitigate this risk.

It is notable in Fig. 2 that the elastic-model speed imparted by impulse to the 
passenger always exceeds that of the collision itself, unless the passenger's vehicle is 
at least three times the mass of the colliding vehicle.   Energy absorption by the 
vehicles is an extremely important safety factor, as confirmed by the present 
analysis.

Also interesting is that when two vehicles are exactly of the same mass, the risk 
of injury seems to be almost independent of vehicle mass.   This is not a realistic 
interpretation, though, because two colliding vehicles never will be exactly equal in 
mass, even when they are manufactured to the same weight and have all the same 
manufacturer options:  The cargo, if any, will differ, the gas in the tanks will differ, 
and the number and weight of the seat-belted passengers will differ.   Because the 
slopes of all curves in Fig. 3 increase with decreasing mass (M or MX), lighter 
vehicles amplify vehicle weight differences more than do heavier vehicles.   Thus, 
there is a reduced risk of injury in collision of two relatively massive vehicles, for all 
passengers, even when the vehicles are only slightly different in mass.

CORRECTION FOR VERY LIGHT VEHICLES.   The calculations shown in Figs. 
2 and 3 assumed always two vehicle masses and one passenger mass.   For very 
light passenger vehicles, the impulse curve approached zero for values of M near 
zero, implying that perhaps extremely light vehicles such as bicycles, motor 
scooters, or motorcycles somehow might be safer than more massive ones.   This is 
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an artifact of the assumption that the passenger's vehicle absorbs energy and 
transfers all momentum received by the passenger, an assumption which clearly is 
false when the passenger is exposed more and more to direct contact with the 
colliding vehicle.

So, the curves in Fig. 3 can not be correct at values of M close to 0.   To correct 
these curves at very low values of M, we shall assume no passenger vehicle, 
estimate the quasi-inelastic impulse on a passenger of unit mass, and then patch 
the result in to the high-mass curves in Fig. 3.

With no passenger vehicle, the total initial momentum again is pi = m1v1i.   The 
derivation was done already above, so Eq. (3) is replaced by,

v
m v

m m
=

+
2 1

1

1i =
+

2 M V
M m

X X

X
.                                                                            (6)

The small passenger vehicle, of vanishing mass not shown in Eq. 6, still may be 
assumed to absorb some energy ∆EMM in contacting the colliding vehicle.   The quasi-
inelastic formula for an exposed passenger on a very light vehicle then may be 
written,

v
M V E

M m
= −

+
2 1 1 2

X X MM

X

( )∆
.                                                                       (7)

Eq. (7) is plotted in Fig. 4 as a function of colliding vehicle mass for several values 
of ∆EMM.   Notice that the passenger's impulsive speed approaches 2 (twice the speed 
of the collision) for the elastic case ∆EMM = 0 as the mass MX of the colliding vehicle 
increases.

 
Figure 4.   Quasi-inelastic relative impulse at unit speed on a passenger in a vehicle of 

negligible mass.   Text Eq. 7 as a function of colliding-vehicle mass.
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Comparing Fig. 2 with Fig. 4, it might seem strange that, in an elastic collision 
with a vehicle of mass 30m, a passenger in a vehicle of mass 25m could be 
transferred the same impulse speed (v = 2) as a passenger on a bicycle or other 
negligibly light vehicle.   This is a peculiarity of the elastic model of transfer of 
momentum.

The results in both figures are correct, as may be understood by a simple analogy: 
Imagine two identical, hard, perfectly elastic steel balls which can roll in a 
horizontal trough so they collide always dead center.   Leave one at rest in the 
trough and roll the other one into it: the first one will stop while the second one 
carries off all the momentum.   If something is to be hit by a ball at the end of the 
trough, it doesn't matter whether just one ball was rolled or the first ball was rolled 
into the other:  The ball arriving at the end will have the same momentum.

Similarly for the Fig. 2 elastic collision model presented here:  In the elastic case, 
the colliding vehicle transfers all its momentum to the passenger's if M equals MX; it 
still transfers  a substantial fraction of it if M is somewhat different from MX.   Thus, 
in an elastic collision, where nothing absorbs any energy, the passenger might as 
well be hit by the colliding vehicle directly, if the passenger vehicle has about the 
same mass as the colliding one.   Of course, real collisions never are perfectly elastic, 
at least ones which cause damage.

What is important in Fig. 2 or 3 is that, when examining the relative effect of the 
mass of the passenger's vehicle, a comparison which can not be done in Fig. 4, the 
mass of the passenger's vehicle visibly has a protective effect whenever the mass is 
substantially greater than that of the passenger.

Now, let us proceed to the correction of Eq. (5) by means of Eq. (7):

It's easy to bound the correction:  First, the impulse at M = 0 in Fig. 3 can not 
possibly exceed 2, because 2 would imply a perfectly elastic collision by an infinitely 
massive colliding vehicle, with all possible energy delivered to the passenger.

Second, consider that in a quasi-inelastic collision, other things being equal, if 
passenger vehicle mass M decreased nearly to 0, the absorbed fractions of the 
kinetic energy, ∆EMM and ∆EMm, would be expected to decrease also.   So, using the 
values of absorbed energy assumed in Fig. 3, we know that the correction must 
make the curves intersect the M = 0 ordinate somewhere above the value in Fig. 4 
corresponding to ∆EMM = 7/8; this means above about v = 0.7.

Therefore, the correction to Eq. (5) must make all curves intersect M = 0 
somewhere between v = 0.7 and v = 2.

The only remaining question in the correction is that of how the decreasing 
absorbed energy should affect the impulse as the passenger vehicle's mass 
approaches M = 0.   The result at M = 0 again is described by Eq. (7), which is 
replotted as a function of absorbed energy in Fig. 5.
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As obvious in Fig 5, the three curves of Fig. 3 must be corrected to intersect the M 
= 0 axis within about 0.1 of one another.

There is a certain arbitrariness in any correction of the present analysis for very 
light vehicles, because the two relevant equations, Eq. (5) and Eq. (7), differ 
fundamentally in that Eq. (7) can include only one energy absorption term.   ∆EMm is 
set to 0 in Eq. (7), but an equally valid way of representing a very light passenger 
vehicle would be to set ∆EMM to 0, or to reduce both of them toward 0 together. 
Actually, there is some arbitrariness in the problem itself, however represented, 
because the same collision masses may be obtained by a variety of different vehicles; 
and, imagining the same passenger in a sequence of less and less massive vehicles, 
down to a mass of 0, necessarily involves discontinuities and an arbitrary variety of 
possible alternatives.

We choose to resolve this arbitrariness by assuming that Eq. (5) is exactly correct 
for passenger vehicle masses of 15m or more, and that Eq. (7) gradually becomes the 
better representation as the mass below 15m approaches 0.   The result is not very 
sensitive to the exact value, 15m, but patching the curves together at a cut lower 
than 15m makes a slight jog in the slope more noticeable than otherwise.

For our correction, we set ∆EMM in Eq. (7) to the total effect of ∆EMM and ∆EMm in 
Fig. 3 at M = 15m, and then we let ∆EMM approach zero proportionally to M.   In 
combination with letting ∆EMM go to zero this way, in the range between M = 0 and 
M = 15m, we sum the contributions from Eq. (5) and Eq. (7) weighted linearly from 
0 to 1 for Eq. (5) and from 1 to 0 for Eq. (7).   The result is given by  Eq. (8), in which 
VX = 1, m = 1 and the high-M ∆E = 7/8:

 
Figure 5.   Quasi-inelastic relative impulse at unit speed on a passenger in a vehicle of 

negligible mass.   Text Eq. 7 as a function of absorbed energy.

9



v. 4.1

v
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,
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.                                                            (8)

Thus, the total vehicular absorbed energy can be made to decline to 0 as M does, 
as one might wish, and the influence of the Eq. (5) result, which includes two vehicle 
masses, also becomes negligible as M goes to 0.   This is an advantage of the way we 
have defined a quasi-inelastic collision.

For comparison with Fig. 3, the Eq. 8 correction is shown in Fig. 6.

Generalizing the correction of Eq. (8), Fig. 7 shows the final result for impulse 
transferred to the passenger as a function both of mass M of the passenger vehicle 
and mass MX of the colliding vehicle.

 
Figure 6.   Quasi-inelastic-model speed imparted to a passenger in a vehicle of mass M, 

corrected for small M as in Eq. (8).   Compare with Fig. 3.
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CONCLUSION

We have attempted to clarify the effect of the mass of a vehicle on the impulse 
transferred to a passenger in that vehicle during purely elastic or quasi-inelastic 
collisions.

The result indicates that there always is extra risk of impulsive injury in riding 
in a relatively light vehicle, no matter what the safety appliances installed, and 
regardless of the weight of the other vehicle or object(s) involved in a collision.

 
Fig. 7.   Impulsive speed delivered to a passenger as a function of vehicle mass.   Collision 
speed VX = 1.   Total energy loss ∆E = 7/8 when M>15m.   Quasi-inelastic generalization of 

Eq. (8) corrected at low M as described in the text.
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This conclusion, even to the steep slope at low passenger vehicle mass M, is borne 
out by data [2] recently released by the U. S. Department of Transportation, 
National Highway Traffic Safety Administration, and based on vehicle weight 
statistics for crashes during the period 1995 through 2000.   The result also is 
consistent with the completely empirical quantification of the problem by Evans [3].
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