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Abstract: A geometrical/mechanical model of the electron has been developed based 

on the measured fine structure constant, anomalous magnetic moment, and a solution of 

Einstein's equations of general relativity applied to electromagnetism.  Properties such as 

charge, mass and spin have been explained from a classical viewpoint, and then α and µ 

calculated in agreement with experiment. 
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1. Introduction 

 Physicists would be more comfortable with a real physical electron model, rather 

than the point-electron favoured by QED theory which employs a number of questionable 

techniques. Logically, if everything came from an original primeval particle consisting of a 

single material substance, then geometric extension and shape must be the distinguishing 

features between all observed bodies.  So it would be improbable for the electron itself to 

have zero size and infinite density, while protons and atoms and everything else are 

extended. 
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 For many years, there has been good reason to believe that electrons and nucleons 

have complex internal structures, although they may never be decomposed into stable, 

separate parts.  For example, the measured spin and magnetic moment of an electron are 

real evidence for structure, even if in quantum theory they have been reduced to abstract 

parameters. Several investigators have proposed a spinning ring model of the electron with 

varying success and limitations; see a review with references at Wiki 1), including papers by 

Bergman & Wesley 2), and Bostick 3). 

The toroidal ring electron model presented here is based on the universal solution of 

Einstein's equations of general relativity (Wayte)4) applied to electromagnetism.  Clearly, 

an electron with structure needs a more complicated description than a point-electron.  

However, the physical concepts required are very simple and everything is done with 

positive energy, forward running time and 3-dimensional empty space, from a 

geometrical/mechanical point of view. Overall, the electron has the appearance of a 

helically wound hollow torus, wherein the winding material is itself a thinner continuous 

helix, see Figure 1. Electron mass is the matter/energy which constitutes and runs through 

this structure at the velocity of light. This means that an electron behaves like a light-clock 

and undergoes relativistic time dilation and length contraction. The natural fine structure 

constant value will be defined by a formula which describes electron structure and its 

creation processes. 

 Characteristics of a good electron model will now be discussed briefly as a prelude 

to understanding the subsequent detailed model which satisfies experimental observation.  

It will be assumed that the classical laws of conservation of energy and momentum hold 

continuously with no failure periods, and the electron as a whole must behave in 

accordance with relativity theory. All physical constants and electron parameters have been 

taken from http://physics.nist.gov/constants and http://pdg.lbl.gov.                   

http://pdg.lbl.gov/
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Fig 1  (a) General illustration of toroidal electron, with its helix-upon-helix structure. (Not to scale). 

           (b) Schematic diagram of the overall electron model, with half the electron energy in  

                 a spinning torus and the other half in a radial electromagnetic field. (Not to scale) 

 

1.1  Charge and the electromagnetic field. Charge is regarded as being due to the 

existence of a real electromagnetic field of energetic quanta emitted by a particle. These 

quanta are tied to their particles to conserve energy, but propagate out and back at the 
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velocity of light.  When a field quantum from one particle interacts with a field of another 

particle it is either deflected away or attracted towards that particle, according to whether 

the two particles are of similar charge or opposite.  This deflection causes momentum 

exchange and epitomises the force mechanism, (see Wayte 19834), p.358, for the 

gravitational analogue). 

 The field quanta of opposite charges do not sink in each other's particles, as lines of 

force are often depicted.  That would result in depletion of the far field strength and lead to 

disagreement with the standard dipole field calculation.  Consequently, a neutral hydrogen 

atom must have superimposed positive and negative electromagnetic fields which neutralise 

in force but add in energy density. 

 

1.2  Mass, potential energy, and kinetic energy. For opposite charges, the field is only 

inductive and causes motion but no energy exchange occurs, as was found in gravitation 

theory.  Then for example, a positron and electron at rest kilometres apart may attract each 

other and fall together by converting their own rest mass energy to kinetic energy.  Upon 

collision, two identical photons are emitted of total energy 2hν = mo(+)
 c2 + mo(-) c2.  During 

the fall, at separation r we have (in cgs units for simplicity): 
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where mr = mo(1-e2/moc2r) is the coordinate rest mass. Evidently, potential energy is the 

same thing as rest mass energy, and may convert to kinetic energy of the same particle. 

 To make charges of the same sign approach each other, it is necessary to increase 

their kinetic energy by means of a separate external field.  In a head-on collision, this KE 

converts to rest mass energy as the particles slow during flight to zero velocity.  Then at the 

distance of closest approach (R) we have: 
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where the left side is total rest mass energy, and on the right side is the relativistic initial 

rest mass plus kinetic energy.  Again, potential energy (e2/R) represents rest mass energy.  

Equation (1.2) is very interesting because R may decrease as necessary when v1 approaches 

c in particle accelerators.  However, the electron radius also decreases as its kinetic energy 

increases, (ro1 = e2/m1c2). In addition, during a high energy collision, the effective electron 

charge increases to cause apparent running of the fine structure constant. This all makes the 

electron behave point-like, in spite of its finite structure. 

 Given that an electron and positron may be created as a pair from pure energy, and 

they are identical except for charge, then only their shape in the form of helicity can 

distinguish between them.  This means that their field quanta have opposite helicity, left for 

electron and right for positron.  For compatibility, their internal mechanisms probably have 

the same helicity as their fields.  According to general relativity theory (Wayte pp.349-

353)4), field quanta have equal radial and tangential momenta, therefore unitary helicity; as 

follows. 

  If we let the electric potential energy function be )rmc/e1( 22−=γ , and define γ2 

as the metric tensor component, then Einstein's field equations for the electric field of a 

spherically-symmetric static electron may be written: 
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where √E = (e/m) is the electronic charge/mass ratio. Upon substituting γ, these simplify to: 
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The negative sign for 2
2T  means that the electric field quanta have tangential momentum 

which is orthogonal to the radial direction. The radial momentum density 1
1T  is equal to the 

energy density 4
4T  because the field quanta travel at the velocity of light c, with unitary 

helicity. Total energy of the field may be found by integration from the classical electron 

radius )mc/er( 22
o =  to infinity: 
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The other half of the electron's energy resides in its complex core mechanism, which is the 

source of the field.  This agrees with the classical result for work done in assembling an 

electron from elemental charges, assuming that this work is retained to constitute field 

energy: 
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Such a result explains why renormalisation in quantum electrodynamics theory is effective 

using the classical electron radius ro .  Of course, the need for renormalisation in a point-

electron theory should be taken as evidence that the electron is not really a point, see 

Landau and Lifshitz  p.90 5). 

 

1.3  Spin angular momentum. We shall find that a ring electron body has the shape of a 

spinning torus, of principle radius ( re = 137 ro ) and cross-section radius ro .  The spin 

radius is re but only half the electron energy is in this torus and spinning at velocity c, 

because the other half is in the non-spinning radial electromagnetic field, see Fig.1. Angular 

momentum of the electron is therefore: 

  2/cr)2/m(s e h==  ,        (1.7) 

as measured by experiments, and predicted by Dirac's theory6) which does not cover 

structure.  Evidently, electron mass is non-other than localised energy, of which half is in 

the torus, spinning at the velocity of light, and half is in a radial field of tied energetic 

quanta. Higgs bosons are unnecessary. 

 

1.4  Magnetic moment. For the basic electron model of Eq.(1.7), the spin-loop would be 

expected to produce a magnetic moment of 1 Bohr Magneton, 
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This value also comes from Dirac's electron theory, even though electron structure was not 

included therein. 
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 When measured, the magnetic moment µe is found to be slightly greater than µB , the 

latest result being: 

  .218111(74)1.00115965   / Be =µµ        (1.9) 

A great deal of effort has gone into explaining this ratio for the point electron in quantum 

electrodynamics theory.  Our electron model in Section (3) produces an accurate expression 

which is relatively concise and easy to comprehend. For this summary, it will be 

approximated to: 

  ]}1372/[11{2181511.00115965   / Be ×π+≈=µµ ,     (1.10) 

which is explained as follows. In order to keep the charge particles in the spinning torus 

from flying apart due to mutual repulsion and centrifugal force, a guidewave quantum is 

predicted to exist around the torus as a continuous loop capable of confining them.  This 

quantum interacts with any externally applied magnetic field in the same way as the charge, 

so the curly bracket on the right of Eq.(1.10) covers total effective circulating charge. The 

self-interaction energy of the electron around the spin-loop, as calculated by using the 

method of Eq.(1.6), will be attributed to the guidewave field. When normalised, this 

amounts to [(e2/2πre)/mc2 = 1/(2π137)]. 

 

1.5  Heisenberg's uncertainty principle and the Dirac electron. This extended electron 

has an average centre of mass, but its electromagnetic field quanta are emitted 

spontaneously from charge travelling around its periphery at the velocity of light.  

Consequently, interactions with other particles cannot be defined exactly, and it is possible 

to understand the meaning of Heisenberg's uncertainty principle. The two forms of the 

principle are usually stated: 

  hh ≥∆∆≥∆∆ tEand,xp  .       (1.11) 

From the previous sections, ∆p could be (m/2)c, and ∆x the spin-loop radius (re), then: 

  2/cr)2/m( e h=  .        (1.12) 

This is the same as the minimum uncertainty product for a free wave packet in one 

dimension, see Schiff, p60 7).  The helical motion of material around the spin-loop prevents 

the location of the electron from being defined accurately during an interaction.  Since the 
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material velocity is always c, this would explain why the Dirac electron analysis produces ± 

c, (Dirac, p.262 6). 

 

1.6  Relationship to positrons, photons, neutrinos and neutrons. As stated previously, 

the positron and electron have equal status and are identical except for their helicity and are 

therefore mirror-images of each other.  Both have positive mass /energy as can be 

confirmed by careful solution of Dirac's equations to exclude unphysical negative energies.  

A neutrino has spin (½) and is thought to be essentially like an electron with no field, hence 

charge.  Its shape is expected to be toroidal, of radius ( νν = E2/cr h ), where Eν is its energy.  

A photon has unitary spin and is thought to be toroidal in shape with all its electric field 

energy wrapped around its periphery, except for an external guide quantum as suggested by 

interference phenomena.  Major radius is ( E/c2/rph h=πλ= ), so the rotating photon field 

will modulate the fields of any surrounding charges at frequency (c /λ).  A following paper 

will show how the empirical value for neutron magnetic moment may be accurately 

calculated from a model in which a proton is placed at the centre of a toroidal electron. 

 

1.7  Wave/particle duality, de Broglie and Compton wavelengths. Charge particles spin 

around the electron toroidal periphery at the velocity of light in period (τ = 2πre /c).  So the 

periphery is equal to the Compton wavelength (λC = h/mc), and the electron's field will be 

modulated at frequency (νC = c /λC ). These are the characteristic wavelength and frequency 

of an electron.  However, guidewave quanta are emitted in addition to standard field quanta 

and these also have the Compton wavelength, but a de Broglie wavelength (λB = h/mv) may 

be generated from this for a moving electron.  A derivation will be presented elsewhere, 

showing how Doppler-shifted Compton frequencies may interfere to produce beating at the 

de Broglie frequency [νB = νC(v/c)].  The beat wavelength is that of de Broglie, (λB = c/νB), 

and this real modulated guidewave is described by the quantum wavefunction ψ, in 

addition to any statistical interpretation of ψ. 

 

1.8  1.8  1.8  1.8  Fine structure constant. Comprehension of the fine structure constant (α ≈ 137.036-1) 

will be concomitant with the detailed magnetic moment analysis and will lead to a unique 
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structure for the inner mechanism of an electron. The ring electron grows by a radial factor 

137 from a seed, and has the overall appearance of a continuous closed helix or toroidal 

coil, wherein the 137 turns themselves consist of a miniature helix. The turns of the toroidal 

helix grow like particles and for visualisation purposes, the word 'particle' is used loosely in 

describing the quantised behaviour of each turn of any continuous helix around a 

circumference. The major toroid is the spin-loop of radius re discussed above, and consists 

of 137 helical turns which are of radius ro . Each of these turns or core 'particles' then 

consists of 137 smaller pearl 'particles' around its periphery.  These likewise have 37 

smaller grain particles around their peripheries, such that each of these has 24 smaller mite 

particles around it; and finally, each of these has 50 elemental particles around it.  Every 

'particle' periphery consists of the turns of an open continuous helix and has an 

electromagnetic guidewave to confine the material of these helixes in orbit.  It is necessary 

to postulate all these consecutive stages because one stage leads to another in the magnetic 

moment analysis. For comparison, QED theory starts simplistically with a point electron, 

then introduces a very large number of perturbation correction terms in addition to 

questionable postulates. And it is common knowledge that mathematical singularities are 

expediently interpreted without physical rigour, for the sake of some quick but temporary 

solution. The apparent success of the QED point electron is partly due to the fact that a 

uniform sphere of charge behaves like a point source because of the inverse square law; and 

limiting integrals to the classical radius is physically correct in a real electron model. 

 In each stage here, the turn of a helix or 'particle' will be shown to grow from a 

smaller seed into its final size, starting with the spin-loop (re) so as to make room for the 

next smaller species (ro), and so on downwards. Ultimately, only the very smallest species 

is the actual source of electromagnetic field quanta, so the electronic charge e consists of a 

single filament of (137 x 137 x 37 x 24 x 50) elemental charges along a string of matter, 

wound into 5 sizes of helix.  

 

2. Fine structure constant   )036.137/1c/e( 2 ≈=α h ) 

 This dimensionless constant appears everywhere in atomic physics, determining the 

energies of photon emission and absorption.  For example, the emission energies from 

hydrogen are given by: 
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This is the result of a particle energy equation being subjected to a de Broglie wave 

condition. The value of α is not specified at all, but it does relate the first Bohr orbit radius 

(r1 = ћ2/me2) to the electron Compton wavelength (λC = h/mc). We shall infer that α must 

be determined by the electron structure, in terms of a particle energy value (mc2 = e2/ro) and 

a wave condition (2πre = h/mc). Thus given that α is dimensionless, it will be taken to 

represent the ratio of the classical electron radius ro to the spin radius re , independent of 

mass: 
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The reason for the particular value of α has never been explained, so an interpretation of 

the number itself will now be founded upon material structure of the electron, developed 

from first principles. This will entail a series of diminishing helical sub-structures, denoted 

as a circumference of a spin-loop 'Oe of radius re ; core-segment 'O0 of radius ro ; pearl 'O1 

of radius r1' ; grain 'O2 of radius r2' ; mite 'O3 of radius r3 ; and final element 'O4 of radius r4 . 

 

2.1 Creation of an electron core-segment: spiralling first stage 

 Consider the formula  

                          )]00002.1(exp[)137ln1/(137 π≈+   .  (2.1.1) 

Here, the remarkable simplicity of this, in which α, π and natural logarithm base en are 

closely bound, indicates an absolute condition for α.   

 It is interesting to know which components of Eq.(2.0.2) can vary to satisfy 

Eq.(2.1.1). Thus, if an electron is created in a spherically symmetric gravitational field with 

its spin axis aligned in the radial direction, then ro and re are not contracted by the field. 

Acton h is an invariant quantity in the field but e2, c, and mc2 are contracted by the same 

factor as time. Planck's constant is also fundamental in determining a photon's energy (E = 

hν), within or outside a field. It follows that in free space, the value of α may be set by e2 

and c only; and in a high energy collision it may appear to run with e2. 



 11

 Creation of an electron is largely described by formula (2.1.1), according to our 

model, as follows. It will be interpreted as the result of some specific physical process, so 

we have to work back to find the original general description.  Let zR be the ratio of two 

lengths z and zos , with maximum value (zRmax = zo /zos ≈ 137).  The proposed general form of 

Eq.(2.1.1) may then be reduced, by taking logarithms, to: 

  [ ]  /2     )]z~ln  + ln(1 - z~[ln 2
0

137
1

πθ≈ ,     (2.1.2) 

where θ is some angle.  Differentiation of this equation yields: 
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These are finite integrals only, so that the integrands need not necessarily be equal for any 

instantaneous values of zR or θ.  Substitution of (z /zos = zR) , and multiplying through by (e2/c 

= mcro) produces a recognisable potential energy factor (e2/z): 
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That is, e2/z represents the potential energy of an electron in the field of another electron, 

distance z away.  Now for (dz = vdt), this looks like a kind of action integral, where action 

= energy x time or angular momentum x angle, [Landau and Lifshitz (1983), Section 16]. 

 Unfortunately, we can get no further with our model until z is defined more 

specifically.  It is therefore postulated that Eq.(2.1.4) describes part of the creation of the 

electron core (ro) mentioned in Eq.(1.5) above, such that the maximum value of z is the 

circumference of a free circular orbit, (zo = 2πro),and this core is the effective source of 

electronic charge e.  Then z is to be the instantaneous length of a loop of electromagnetic 

material which swells smoothly from a seed with circumference (zos = 2πros ) to its final 

size (zo = 137.036xzos), see Fig. 2.1.  The material of the expanding loop also has an 

instantaneous orbital velocity vz ≤ c, so that every part describes a locus which is a 

logarithmic spiral given by: 

  )2/exp(rr os πβ= .       (2.1.5) 

Here, β is the spiral angle starting from β = 0 at time t = 0, and increases to 4.92 complete 

revolutions while satisfying a further relationship: 
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  ctr =β   .        (2.1.6) 

Now (z = 2πr) is the instantaneous circumference of the expanding loop, and the tangential 

velocity of its material is: 
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which is the rate of increase in the loop circumference.  In addition, from Eqs.(2.1.5) and 

(2.1.6) we can derive: 
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Fig 2.1    Schematic diagram of the core spiralling process in which the rotating material-loop 

expands exponentially from a seed radius ros to its final radius ro .   

 

 Before returning to Eq.(2.1.4) with this, we note one further aspect that (βr = ct) in 

Eq.(2.1.6) is also the distance around a circumference of radius r, which an electric field 

disturbance would travel at velocity c from t = 0 in order to meet up with the locus of the 

material at time t.  This agrees with the proposal that the loop material continuously emits 
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and keeps in phase with a circulating electromagnetic field which guides and confines the 

material during its travel around the spiral. 

 The velocity vz in Eq.(2.1.8) is of a useful form to substitute in Eq.(2.1.4) and get: 
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On the left, the integrand primary term is suggestive of a Doppler redshifted potential 

energy, due to expansion of the loop material. For this, the local time element [dt' = dt(1– 

vz
2 / c2)1/2 ] has been introduced in place of coordinate time dt. An additional factor (vz /c) 

is necessary because the electromagnetic energy is travelling here at velocity vz rather than 

c, so the required local-time element is (vzdt'/c = dz'/c) rather than dt'. Thus the complete 

integrand has ultimately become an element of local action.  And, given that action is 

Lorentz invariant, the whole integral is also coordinate action of the material potential 

energy throughout its spiralling stage of creation.  On the right is a standard quantity of 

coordinate action for the final core kinetic energy over one internal revolution, of orbiting 

mass energy (m/2) with velocity c at radius ro . 

 However, although at first sight Eq.(2.1.9) is a good description of the spiralling 

process, it is not entirely satisfactory from a physical viewpoint because at the spiral centre, 

the term (e2/zos) is greater than the total electron energy mc2.  This problem does not arise if 

the core material actually consists of 137 core-segment 'particles', each of effective charge 

(e/137).  (They are actually the 137 turns of the toroidal helix described in Section 1.8). 

These core-segments, each of mass m/137, radius ro and period (2πro /c), are to be spaced 

equally around the spin-loop such that the net electronic charge measured external to the 

complete system remains e.   Then Eq.(2.1.9) can be made physically meaningful, and the 

correct action integral for the spiralling stage of creation of an individual core-segment 

becomes: 
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where 'O0 and 'O0s have now replaced zo and zos as the specific nomenclatures for core-

segment creation. To explain this new (e/137)2 charge expression precisely, the material 

loop in the spiralling core-segment should consist of 137 pearl-seeds, which will later grow 
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into pearls. Then, every pearl-seed of charge e/(137)2 interacts with the whole core-segment 

charge (e/137), to produce this given action in total for the core-segment’s 137 pearl-seeds.  

 It is interesting to see how the pearl-seeds travelling at velocity vz are controlled by 

their circulating electromagnetic field throughout the spiralling process.  From Eq.(2.1.8) 

we derive: 

  
CB osos

r2r)2(
λ

π
=

λ
π+β    ,       (2.1.11) 

where (hos = h /1372) is to signify a primitive Planck's constant, so that )mv/h( zososB =λ  is 

a primitive de Broglie wavelength, and )mc/h( ososC =λ  is a primitive Compton 

wavelength.  This expression means that the instantaneous position of each pearl-seed, with 

its emission of the circulating electromagnetic field, obeys a controlling wave equation 

throughout the expansion.     

 It is not obvious why in Eq.(2.1.10), the two independent finite action integrals 

should be equal, but we shall find that quantisation of action is always related to the 

number of quantum wavelengths within a given orbit: for example: 

   )2/h)(/r2(2cr)2/m( ososoo Cλπ=π .     (2.1.12) 

  The core-segment material travels (ln137.036 = 4.92) times around the origin to 

reach its final radius ro .  The time tm taken to do this is derivable from Eqs.(2.1.5) and 

(2.1.6) as: 

  ososm t25.674)036.137ln()036.137(tt ==  ,     (2.1.13) 

where (tos = α2πro /c) is the original core-segment-seed period.  A feature of the creation 

action Eq.(2.1.10) is that it is independent of this creation period tm , for this particular 

spiral shape. 

 Angular momentum of the material increases during the spiralling process by a 

factor of around 23.  This can only mean that spin is introduced as necessary by interaction 

with the other creation participants within the electron, or externally such as a positron. 

 

2.2 Creation of an electron core-segment: accelerating second stage 

 Thus far we have been describing how the electron core-segment material, 

containing 137 pearl-seeds, expands from its original orbit of radius ros to an orbit of radius 

ro by way of a spiralling process.  But while achieving this radius, the material orbital 
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velocity has fallen from c to c /(1+ln137) according to Eq.(2.1.8); so it is necessary to 

continue the creation beyond the spiralling stage by accelerating the material back to 

velocity c while at constant radius ro . 

 The analysis of this accelerating second stage is more easily understood by first 

describing the design of the finished core-segment with its fully developed pearls, as 

follows.  Consider the formula: 

  )2/exp(137 21 π≈≈α−  ,                 (2.2.1) 

or more accurately in logarithmic form: 

  )003.01)(2/()036.137ln( 2 −π≈ .     (2.2.2) 

Again, the simplicity of this formula indicates an absolute foundation for α and it will be 

taken as describing an end result; so once more the problem is to work back to the original 

description of some simple physical model.  Let ỹ be the ratio of two lengths y and yo with 

maximum value (ỹmax ≈ 137), then the proposed general form of Eq.(2.2.2), which will lead 

to the final equilibrium state of the core-segment is: 

  [ ]
π






θ
≈








π

2

0

137
1 2

y~ln
2     .      (2.2.3) 

Here, θ is the azimuthal position angle within the core-segment, of any given pearl, see Fig. 

2.2.  Length yh is to be the orthogonal helical path length for a spinning pearl, starting from 

unit value (yo = 2πr1' = 'O1 ), where the pearl radius is (r1' = (π/2)αro ).  Differentiation of 

Eq.(2.2.3) and multiplying through by (e2/c = mcro) produces: 

  θ






≈
π ∫∫

π

dcr
2
m

)2/(c
dy

y
e

2

0
o

y137

y h

2o

o

   .     (2.2.4) 
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Fig 2.2    Schematic diagram of the core-segment in final equilibrium at radius ro , in which the 137 

pearls of radius r1' spin around the circumference describing a helix as they travel along.   

 

The left hand side is a kind of action-integral for scalar potential energy.  To account for 

factor (π/2) it is proposed that the pearls spin around the core-segment circumference in a 

helix, with velocity (π/2)c orthogonal to the θ plane as they travel along the circumference 

at velocity c.  There are 137.036 turns over the circumference 2πro , in period to , so [dyh = 

(π/2)c dt].  Upon introducing the pearl number 137 and the correct pearl charge (e/1372 ) as 

for Eq.(2.1.10), equation (2.2.4) reduces to an action-integral which describes a core-

segment's complete pearly helix in its final equilibrium state: 
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   .  (2.2.5) 

Here, the left hand side is the scalar potential action involved in taking the 137 charged 

pearls along their helical path around the core-segment periphery 2πro . The right hand side 

is the equivalent kinetic action over the core-segment period (to = 2πro /c), which is 

numerically the same as in Eq.(2.1.10), for the spiralling action. This quantity of action 

must be fundamental because it will occur frequently in the following analysis. 

 

 

θ 
ro 

137 pearls of radius r1′ , 
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velocity c(π/2) = c' 

velocity of pearls along  
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 Although the pearl's rotational velocity (π/2)c may appear to contradict the theory 

of relativity it should be remembered that only the electron as a whole must obey that 

theory.  In fact an electron with any structure whatsoever is bound to contain parts which 

move at velocities greater than c. 

  Given this final state description of a core-segment, it is now possible to advance 

the second stage creation mechanism which follows on from where spiralling equation 

(2.1.10) stops and leads eventually to Eq.(2.2.5).  It will be shown later that the pearl-seeds 

grow into pearls proper during this acceleration period, but this does not influence the 

acceleration itself.  So during this stage, it is proposed that the pearl(-seeds) are accelerated 

by an electromagnetic loop as was emitted throughout the spiralling process, but here the 

loop has constant length 2πro , see Fig.2.3. The velocity is to increase from [uo = c /(1+ ln 

137)] to velocity c, in a simple manner over a time to say. Various ways of doing this may 

be proposed, but one way produces a good overall 'action' result.  Namely, let the 

acceleration A be constant so that the general velocity of the pearl(-seeds) would increase 

linearly with time from zero as: 

  Atu =   ,        (2.2.6a) 

and the corresponding distance travelled would be: 

  2/Atx 2=   .                             (2.2.6b) 

If the acceleration time is actually to from uo to c, then the acceleration must be: 

  





+

=
137ln1

137ln
t
c

A
o

  .       (2.2.7) 
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Fig 2.3    Schematic diagram of the core-segment acceleration process in which the rotating 

material at radius ro accelerates from velocity c/(1+ln137) to c in time to over a distance 

2πro(0.58).  

 

From this we may calculate the scalar potential action of the 137 pearl(-seeds) during the 

acceleration period. Given (dt = dx/u), then the action integral is: 

  ( )
)137ln2(

c137

e
dt

x
137/e

2

2

x

2
×=∫    .     (2.2.8a) 

It is interesting that the acceleration period was set arbitrarily as to , but this integral 

happens to be independent of time. This result is also independent of the pearl's state of 

growth, and we shall see in Section (2.5) how the pearls grow completely during the 

earliest part of this core-segment acceleration stage, as drawn in Fig.2.3. 

 This action integral happens to be double the scalar potential action of the 

circulating electromagnetic field which propagates at velocity c around the core-segment 

circumference, to confine the 137 pearls in equilibrium: 

core-segment in 
final perpetual 
equilibrium 

period of internal 
growth for pearls 
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xmax  at to 
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t = 0 at x = 0 
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   .    (2.2.8b) 

 The pearls are thus the source of "charge" in that they sustain the electron's 

electromagnetic field while travelling around the core-segments. This motion of pearls 

around each of the 137 core-segments travelling around the spin-loop will produce a nearly 

isotropic electromagnetic field for the electron.  A pearl's circumference is only of length: 

  C11 )2/('r2' 2 λπα=π=Ο  ,      (2.2.9) 

so it follows that the electron characteristic Compton wavelength λC must be produced by 

the core-segments travelling around the spin-loop circumference, which is of length λC , 

thereby modulating the electromagnetic field emitted by the pearls. It might seem that the 

pearls could be designed as the most basic loop of material, spinning at velocity (π/2)c 

orthogonal to the θ- plane, but they are just one stage in a series of sub-structures. 

 

2.3 Sequential creation of electron spin-loop and core-segments 

 Given the previous analysis for the core-segment spiralling and acceleration 

processes, it is an easy matter to scale up the same basic equations for the spin-loop 

creation.  From Eq.(2.1.1) to Eq.(2.1.4) we replace zos by (zes = ze /137.036), where ze is the 

spin-loop final circumference 2πre .  That is, zes is the original circumference of a spin-

loop-seed which contains the 137 original core-segment-seeds zos , see Fig.2.4.  So z now 

represents the instantaneous length of the primeval spin-loop as it spirals open.  Replacing 

ros by res allows the spiral and velocity equations (2.1.5) to (2.1.8) to represent the spin-loop 

growth and lead to an action integral analogous to Eq.(2.1.10): 
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  .     (2.3.0) 

Here, each of the 137 core-segment-seeds of charge (e/137) interacts with the whole spin-

loop charge e to produce the action of potential energy on the left. This is equal to the total 

action of kinetic energy for the 137 core-segments shown on the right. 
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Fig 2.4    Schematic diagram of the spin-loop spiralling process in which the rotating material-loop 

expands exponentially from a seed radius res to its final radius re .   

 

 The spiralling core-segment-seeds are controlled by a circulating electromagnetic 

field (guide-loop) according to Eq.(2.1.11), wherein hos is replaced by (ho = h /137).  The 

total spiralling time is [tm = te ln(137.036)], where (te = 2πre/c = 137to) is the final 

equilibrium spin-loop period . 

 At the end of the spiralling stage, the 137 core-segment-seeds have only velocity 

c/(1 + ln 137.036) around the spin-loop circumference and need to be accelerated back to c.  

This occurs as in Section (2.2), and by analogy with Eq.(2.2.7), the  total acceleration time 

will be set at te , see Fig.2.5. 
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Fig 2.5  Schematic diagram of the spin-loop acceleration process in which the rotating material-

loop at radius re accelerates from velocity c/(1+ln137) to c in time te  over a distance 

2πre(0.58). 

 

 It is thought that the core-segment-seeds only start their own internal spiralling and 

acceleration at the beginning of this spin-loop acceleration stage, and complete in total time 

[tcs = to(1+ ln 137.036)] as previously explained.  

  The original spin-loop-seed may be created from a smaller germ, via Eq.(2.5.15) 

for example. However, correspondence with a classical electron occurs theoretically at the 

level of a spin-loop-seed.  For example, the spin-loop-seed has charge e and radius (res = re 

/137.036 = ro), so Eq.(1.5) would apply for the electron field energy. Nevertheless, 

according to the present model, electron creation does not actually involve compressing 

charge elements; but theoretical dispersion of the charge to infinity would be permitted 

energetically. 
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2.4 Electron spin-loop in equilibrium 

 After the toroidal spin-loop has been created, the turns/core-segments carry on 

whirling around the loop in equilibrium ad infinitum, see Fig.2.6.  The action over one 

period of this loop, due to the 137 core-segments, is given by: 

  2/h2cr)2/m(036.1372cr)2/m( oe =π=π  .     (2.4.0a) 

The spin-loop circumference is equal to one Compton wavelength: 

  Cmc/h)036.137(r2r2O' oee λ==π=π=  ,     (2.4.0b) 

which implies the continued existence of a material guide-loop to confine the core-

segments and ensure the electron's long term stability.  The guide-loop’s own material 

energy will be estimated in Section (3) to be around (α/2π)(m/2)c2. 

 
Fig 2.6    Schematic diagram of the spin-loop in final equilibrium at radius re , in which the 137 

core-segments constitute the helical circumference as they travel along.   

 

 A mathematical expression, describing action in the pearls within core-segments 

during the equilibrium state, may be derived from the following formula: 

  22137ln π≈  .       (2.4.1) 

To develop this, let wR be the ratio of two lengths w and wo with the maximum value (wRmax 

≈ 1372).  Then the proposed general form of Eq.(2.4.1) is: 
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  ( )[ ] [ ] π× θ≈π 2
0

)137137(
1

w~ln/2   .      (2.4.2) 

Differentiation and multiplication through by [e2/c = mcro] gives: 
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Now, from Section (2.2), the radius of a core pearl is [r1' = αro (π/2)], so let (wo = 2πr1' ) be 

a pearl circumference.  Then 137.036wo is the locus of any given point on a pearl 

circumference over a core-segment period to , orthogonal to the core-segment plane.  Since 

in the spin-loop there are 137.036 revolutions of each core-segment, the corresponding 

locus is (137.036)2wo over a complete spin-loop period (te = 137.036to).  Given the pearl 

peripheral velocity (π/2)c, then [dw = (π/2)cdt]. And after introducing the core-segment 

charge (e/137) which interacts with all 137 core-segments in the spin-loop, Eq.(2.4.3) 

changes to: 
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  .   (2.4.4) 

The left hand side is an action integral for scalar potential energy of all the pearls in 137 

core-segments over their total path around the spin-loop.  On the right is the equivalent core 

kinetic action, which is double the spiralling action during creation, see Eq.(2.3.0). 

 One interesting feature of the spin-loop is that the helical circumference (of core-

segments within the electromagnetic guide-loop) has unitary pitch, since the core-segments 

spin and travel along at velocity c.  The torsion modulus is therefore a maximum 

(Sokolnikoff and Redheffer, p.315 8).  Briefly, the torsion represents the rate at which a 

curve twists out of its osculating plane.  For a helix, the parametric equations are: 

  ,pz,sinry,cosrx oo φ=φ=φ=       (2.4.5) 

and the torsion is:  

  
22

o pr

p

+

−
=τ  ,        (2.4.6) 

which has a maximum modulus (1/2ro) when (p = ro).  At the same time, the curvature 

becomes: 
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=χ  .       (2.4.7) 

This condition may signify minimum stress in the guide-loop and spinning pearls 

constituting the core-segment, and help account for the electron's stability. 

 

2.5 Creation of the pearls 

 As described in Sections (2.1) and (2.2), an electron core-segment consists of 137 

pearls, each of charge e /1372, radius [r1' = αro (π/2)], circumference 'O1 and period (t1 = 

'O1/c' ). This pearl radius can exist only in the finished core-segment since the original core-

segment-seed had a radius (ros = αro) prior to spiralling open, which is too small to 

accommodate pearls of radius r1' .  The original pearls were therefore small pearl-seeds 

within the core-segment-seed, which subsequently grew. 

 The creation spiralling process for each pearl may be derived from the formula: 
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Here we have introduced factor 37.7 from the electron-pearl structure constant (δ = 1/12π ≈ 

1/37.7) which is not at all arbitrary, but will appear essential in Section 3 for the magnetic 

moment analysis. To interpret this let ℓR be the ratio of two lengths ℓ and ℓo with a maximum 

value (37.7/en) and minimum value unity.  The proposed general form of Eq.(2.5.0) is then 

analogous to Eq.(2.1.2): 
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which may be differentiated and multiplied through by [(e/1372)2/c = (m/1374)cro] to yield: 
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This is analogous to Eq.(2.1.4) when ℓ is the  instantaneous pearl circumference, and  

[1/(1+ln ℓ� ) = vℓ / c' ] is  for  the  spiralling  velocity, as a pearl-seed  circumference   (ℓo = 

'O1s ) expands to a pearl maximum circumference [ 'O1 = 2πr1' = 'O1s(37.7/en)], and [c' = 

c(π/2)].  So we have an action integral analogous to Eq.(2.1.10) for a rotating loop of 37 

charged material grains, which constitutes the expanding pearl, namely: 
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The right hand side of this is referred to the kinetic energy action of a core-segment as 

standard, but the factor (1/en
2 ) will be linked with quantum wavepackets later. 

 It is possible to derive a spiral-controlling wave equation similar to Eq.(2.1.11) as 

follows.  Given the spiralling velocity: 
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then upon integration we get: 
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which evaluates to: 
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This, with Eq.(2.5.4) and ℓ = 2πr, produces: 

  'rc2v)r2t'c( π=π+ l  ,        (2.5.6) 

which is analogous to Eq.(2.1.11). 

 The instantaneous pearl spiral radius is given by: 

  )2/exp(rr s1 πγ=  ,        (2.5.7) 

where γ is the spiral angle starting from zero at the seed original radius (r1s = 'O1s /2π), when 

t = 0 and vℓ = c'.  Consequently: 

  t'cr =γ  ,         (2.5.8) 

similar to Eq.(2.1.6), implying that the spiralling pearl loop emits a circulating field to 

guide the expansion process. 

Thus, the original pearl-seed has a circumference ['O1s = 'O1(en /37.7)], and 

rotational velocity c', the same as the final equilibrium pearl's rotation velocity employed in 

Eq.(2.2.5).  But  according  to  Eq.(2.5.4),  the pearl  material   velocity  has  dropped to    

(c'/ ln 37.7) by the end of the spiralling period; therefore it is necessary to accelerate the 

material back to velocity c' around the final pearl circumference.  By analogy with 

Eq.(2.2.6b) then, a given grain(-seed) of the pearl material may have a position x1 on the 

pearl circumference such that: 
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 2/tAx 2
11 =  ,         (2.5.9) 

and the instantaneous velocity is (u1 = dx1 /dt ), which increases from [u1o = c'/(1+ln 

(37.7/en)] to c' in time t1 say.  Then, by analogy with the core-segment acceleration action 

Eq.(2.2.8a,b), the scalar potential action of the grain(-seeds) during the pearl acceleration 

stage is independent of time and given by: 
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The integral on the right is equal to double the scalar potential action of the controlling 

electro-magnetic field propagating at velocity c' around the spiralling pearl, as implied by 

Eq.(2.5.8).   

Concomitant with Eq.(2.5.0) there is an interesting expression analogous to 

Eq.(2.2.2) for action of the grainy charge helix around each pearl: 

 n
2 e/7.37ln π≈  ,         (2.5.11) 

which develops to: 
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Specifically, this expression applies to each pearl in equilibrium following creation, when 

there are 37 grains of charge (each of radius r2') travelling around the pearl, describing 37.7 

helical turns in the pearl's circumference; ( ξο = 2πr2' = 'O2 , and 37.7ξo = 'O1).  The 

orthogonal velocity around this helix is [c' = c(π/2)], which is the same as the pearl rotation 

velocity so the helical locus has unitary pitch and maximum torsion similar to the electron 

spin-loop Eq.(2.4.6). The factor (1/en) is interesting and will be linked with quantum 

mechanical wavepackets shortly.   

 Equation (2.5.3) covers the pearl spiralling process very well but there is an 

alternative wider expression which includes the original pearl-seed action just prior to 

spiralling: 
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The third term looks like Eq.(2.5.10) but has a different interpretation in this present 

context.  Upon differentiation of this term, then reduction as for Eq.(2.5.3), we get: 
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This represents the scalar potential action of the charged circumference 'O1s of the original 

pearl-seed itself (where dℓ = c'dt). However, at this stage of development the 37 grains are 

only grain-seeds of circumference 'O2s , as explained in the next section.  The right hand 

side of Eq.(2.5.13) reduces to the same as for Eq.(2.5.12), except en is replaced by 2.  So 

here, the action of creation spiralling plus the original pearl-seed action is neatly quantised 

in total. Consequently, an interesting interpretation of Eq.(2.5.13) is that pearl-seeds do not 

exist in any detail until they suddenly take form with their circumferential grain-seeds, then 

spiral open immediately into pearls just after the core-segment has spiralled open 

 Given that Eq.(2.5.13) has shown how the pearl-seed structure may be created in 

situ just prior to spiralling open to form a pearl, it is appropriate to question how the core-

segment-seed of Section (2.1) came into being.  An accurate formula applicable to this is: 
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The third term may be developed, like Eq.(2.5.14a) but with reference to Eq.(2.2.2), into 

the scalar potential action of the pearly circumference around the original core-segment-

germ itself.  This germ then spirals outwards by a radial factor (37.7/en) to form the core-

segment-seed.  However, one essential feature of Eq.(2.5.15) is that the whole integrated 

process involves the velocity of light c, rather than [c' = c(π/2)] used in the separate 

processes of Eqs.(2.2.4) and (2.5.2).  Therefore after this spiralling, the pearl-seeds must 

accelerate to spin velocity c' and also accelerate to propagation velocity c around the core-

segment-seed. 

 It is correspondingly possible that the spin-loop-seed of Section (2.3) may be 

created from a spin-loop-germ in situ, according to Eq.(2.5.15) again.  The spin-loop-germ 

would then have a charged circumference of 137 core-segment-germs created just prior to 

spiralling into the spin-loop-seed structure. .  This could imply by analogy that the original 

seed-electron has 137 core-segment-seeds around the spin-loop-seed, but no fully-formed 
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smaller particles.  So the series of different particle sizes is originally very short, but 

increases as space becomes available. This would obviate the problem of ''lesser fleas upon 

little fleas ad infinitum''. 

 The question arises as to how the pearl creation interacts with the core-segment 

creation.  A most appropriate time for the pearl creation would be during the beginning of 

the core-segment acceleration stage because the core-segment material must change state 

here to switch from spiralling to acceleration.  A link between constants 137.036 and 37.7 

may be derived from: 

  )]e/7.37ln(1[7.37137 n+≈  .       (2.5.16) 

This is unlike any of the previous action expressions, which related potential energy action 

to kinetic energy action of the core-segment through (e2/c = mcro).  Upon introducing the 

grain mass m2 and the pearl rotation period t1 plus the velocity of light c, Eq.(2.5.16) 

becomes: 

  1212 t)]e/7.37ln(1)[cm7.37(t137cm n
22 +≈   .    (2.5.17a) 

The first term on the right is the pearl total mass energy m1c2, and the second term is the 

pearl total creation period τ1.  Consequently, given that 137t1 on the left is the acceleration 

period t0 in a core-segment creation process, then: 

  1102
22 cmtcm τ≈  .       (2.5.17b) 

Thus, the action of a single grain mass m2 over the core-segment acceleration period t0 is 

numerically equal to the action of pearl creation. This is a significant link between 3 

electron features showing that adjacent components do actively cooperate via real material 

processes. There is an analogous expression linking pearl action over the spin-loop creation 

period with the core-segment action over its creation period: 

  001
2

e
2 cmcm τ≈τ  .       (2.5.18) 

 Finally, a connection with quantum wavepackets is indicated by the presence of 

amplitude factor en in the right hand side of Eqs.(2.5.3) and (2.5.12), as follows. It is 

believed that the confining guidewaves around the various circumferences may sometimes 

be harmonics of the fundamental frequency. There are then 2 or 3, etc. wavelengths around 

the circumference, rather than just one; and this causes the action of the material confined 

by these harmonics to be decreased by en , en
2, etc. We are able to calculate the theoretical 
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spectrum of material quanta and guidewaves which perform this function. For example, 

consider a spectrum of wavenumbers comprising a theoretical wavepacket of some 

characteristic wavenumber ( ka = 2π/λa ), which is given by: 
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Fourier transformation of this spectrum yields the wavepacket amplitude as a function of a 

position x:  
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For our calculation, the wavepacket should circulate continuously around the reference 

circumference (zo = 2πro ) employed in all the action equations, and be at resonance when 

there are an integral number of wavelengths around this path.  So, let x be a characteristic 

distance zo /2π, and we have (ka = 2π/λa) as specified above.  Then for (k1x = 1), wavelength 

λ1 occupies one circumference length zo and represents a fundamental frequency (f1 = c/λ1).  

Consequently, the right side of Eq.(2.5.20) has unit value, as required for the weighting of 

the action on the right of Eq.(2.1.9).   

 To satisfy amplitude factor (en
-2) in Eq.(2.5.3), we need to let ka be k3 , with (k3 x = 

3) in Eq.(2.5.20); then there are three wavelengths λ3  around zo .  That is, frequency (f3 = 

c/λ3 ) is the third harmonic of f1 .  Similarly, to satisfy amplitude factor (en
-1) in Eq.(2.5.11), 

we put (k2 x = 2) in Eq.(2.5.20), then frequency (f2 = c/λ2 ) is the second harmonic of f1 , 

and there are  two wavelengths λ2  around zo . In general therefore, there are an integral 

number of wavelengths around zo and the spectrum amplitude or quantum energy decreases 

with increasing ka according to Eq.(2.5.19). 

 An interesting expression for the action of the guidewavepacket around a pearl-seed 

circumference may be proposed from the formula: 
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  which may be reduced to: 
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Here, 'O2s is the grain-seed circumference, and there are 37 of these grain-seeds around the 

pearl-seed 'O1s . The square bracket represents the coefficient of guidewavepacket action 

which is (2π37.7)(c/c') times less than the pearl helix material action of Eq.(2.5.12).  On 

the right, the geometric series is the sum of all possible harmonic frequency components of 

the guidewavepacket, from the second harmonic upwards. 

 There is an analogous expression for the action of the guidewavepacket around a 

core-segment-seed circumference: 
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which may be reduced to: 
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Here, 'O1s is the pearl-seed circumference, and there are 137 pearl-seeds around the core-

segment-seed 'O0s . The square bracket represents the coefficient of guidewavepacket action 

which is (2π137c/c') times less than the core-segment helix material action of Eq.(2.2.5). 

On the right, the series covers all harmonic frequency components of the guidewavepacket 

from the fundamental upwards. 

 

2.6 Creation of grains 

 Refinements to theory require the existence of structured grain 'particles' around 

each pearl. These are the individual turns of another smaller helix constituting the pearl 

periphery, as mentioned previously. The exact theoretical pearl structure constant (δ-1 = 12π 

≈ 37.7) is calculable to within 0.11% when using Eqs.(2.5.11), and an exact electron-grain 

structure constant [ε = 1/24 = (π/2)δ],  will now be proposed, as necessary for the magnetic 

moment analysis. 

 For example, consider the expression: 

  π≈24ln  .         (2.6.1) 

To interpret this, let ρ R be the ratio of two lengths ρ and ρo with maximum value (ρ �max ≈ 24).  

The proposed general form of Eq.(2.6.1) is then: 

  [ ] [ ] πθ≈ 2
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After differentiation and multiplication through by [(e/1372 x 37.7)2/c = mcro /(1372 x 

37.7)2] we get: 
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The integral represents action necessary to produce or maintain a charge helix of 24 mites 

around the grain; analogous to the expression for a grainy helix around a pearl in 

Eq.(2.5.12). Here the mite circumference (2πr3 = 'O3= ρo) is (24 x π/2) times less than the 

grain circumference ( 'O2 = 2πr2' ) because the term dρ/c indicates that the mites rotate at 

velocity c even though they are travelling around the grain circumference at velocity [c' = 

c(π/2)].  This may be contrasted with pearls which rotate at velocity c' while travelling 

around the core-segment at velocity c, see Section (2.2).  

There is no obvious expression like Eq.(2.5.0), for the grain creation spiralling 

process alone, but there is one analogous to Eq.(2.5.13), which includes the original grain-

seed action just prior to spiralling: 

 2/24ln)]24ln1ln(24[ln 2π≈++−  ,     (2.6.4a) 

or in general: 
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Differentiation and introduction of the grain charge give: 
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The first term is an action integral covering the grain spiralling process, similar to 

expressions for the spin-loop, core-segment and pearl spirals, when the instantaneous grain 

circumference is ξ which increases from a grain-seed of circumference  'O2s to the final 

grain circumference ( 'O2 = 24 'O2s ), and velocity [vξ ≈ c'/(l + ln ξR)].  The second term 

represents scalar potential action of 24 mite-seeds travelling around the grain-seed 

circumference helix (at velocity c' = dξh/dt) just before the grain spiralling process begins.  

Obviously, these two quantities interact during creation to satisfy the action shown on the 

right.   
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 Again it is possible to derive a spiral-controlling wave equation similar to 

Eq.(2.5.6): 

  'rc2v)r2t'c( π=π+ ξ  ;        (2.6.6) 

so there is an energetic circulating field to guide the exponential expansion analogous to 

Eq.(2.5.8). 

 At the end of the spiralling process the grain material (24 mite-seeds), has dropped 

in velocity to c'/(1 + ln 24), so it has to be accelerated back to velocity c' around the final 

grain circumference.  By analogy with Eq.(2.5.9), a given mite(-seed) may have position x2 

on the grain circumference such that: 

  2/tAx 2
22 =  ,         (2.6.7) 

and the instantaneous velocity is (u2 = dx2 /dt), increasing from [u2o = c'/(1 + ln 24)] to c' in 

time t2 say. Then the scalar potential action of the mite(-seeds) during this grain 

acceleration stage is independent of time, analogous to Eq.(2.5.10) and given by: 
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On the right is double the action integral for the controlling electromagnetic field 

propagating at velocity c' around the spiralling grain. 

 In the last section, it was shown that the pearl creation occurs during the earliest part 

of the core-segment acceleration stage immediately after the spiralling finished.  

Consequently it is proposed that the grain creation occurs during the beginning of the pearl 

acceleration stage. 

  Just as there is a numerical link between the core-segment constant 137.036 and the 

pearl constant 37.7 as shown in Eq.(2.5.16), so there is a link between the pearl and grain 

constants as follows: 

  )24ln1(247.37)e/7.37ln( n +≈×  .      (2.6.11) 

Upon introducing the mite mass m3 and the grain rotation period t2 plus velocity of light c, 

this becomes: 
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The first bracket on the right is the grain total mass energy, and the second term is the grain 

total creation period τ2 .  On the left, (37.7 t2 = t1) so [ln(37.7/en)xt1] is equal to the spiralling 

period of the pearl creation process (τ1S). Thus: 

  22S13
22 cmcm ττ ≈  ,       (2.6.13) 

and the action of a single mite mass m3 during the pearl spiralling period is numerically 

equal to the action of grain creation. This important result links pearl, grain, and mite 

processes during electron creation. 

 

2.7 Creation of mites 

 It is thought that mites contain the ultimate charged particles which emit the 

electron's electric field quanta whereas grains, pearls, core-segments and the spin-loop are 

hierarchical structures.  Each species constitutes the circumferential orbit of the next higher 

species and is held in place by an electromagnetic guide-loop.  Thus an electron consists of 

(1372 x 37 x 24) mites in four types of orbit, emitting field quanta in all directions on 

average, although the mass flow around the spin-loop remains orientated, defining the 

electron spin axis.  A mite 'particle' is one of 24 loops of material (radius r3) around a grain 

and it consists of 50 elemental 'particle' sources. The electron-mite structure constant is 

defined as [µ = (1/16π) ≈ 1/50] according to the magnetic moment analysis in Section 3. 

 The mites may evolve by spiralling from their embryo state according to a formula 

like Eq.(2.6.4), namely: 

  [ ]{ } π≈++− 250ln50ln1ln50ln   ,     (2.7.1) 

or in general: 
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After differentiation and introduction of the mite charge we obtain by analogy with 

Eq.(2.6.5): 
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Here, the first term covers spiralling action for the mite increasing from a seed 

circumference 'O3s to its final circumference ['O3 = 50'O3s]. The second term represents 
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scalar potential action of 50 element-seeds travelling around the mite-seed circumference 

helix at velocity c, prior to the spiralling process. 

 At the end of the spiralling stage the material velocity has dropped to c /(1 + ln50) 

and needs to be accelerated back to c around the final mite circumference.  For an 

acceleration period (t3 = 2πr3 /c) say, the instantaneous position of any element(-seed) on  

the circumference is: 

  2/tAx 2
33 =  .         (2.7.4) 

The instantaneous velocity is (u3 = dx3 /dt), increasing from [u3o = c /(1 + ln50)] to c, in time 

t3 say. The scalar potential action of the mite material during this acceleration stage is 

independent of time and is given by: 
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where the right hand side is double the scalar potential action for the controlling 

electromagnetic field propagating at velocity c around the spiralling mite. 

The helix of 50 elements, spinning at velocity c while propagating at velocity c 

around a mite circumference, may be described by developing the formula: 

  )e/(50ln nππ≈ .                            (2.7.6) 

Factor (π/en ) has been employed elsewhere to account for the confining guidewave energy 

which is associated with the material energy. Thus, the scalar potential action of the 50 

elements is approximately: 
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 Analogous to Eq.(2.5.16), there is a numerical link between the grain and mite 

constants as follows: 

  ( )50ln1)24ln1)(e/( n +≈+π   .      (2.7.8) 

By introducing the element mass m4 and the mite rotation period t3 plus velocity of light c, 

then rearranging, this becomes physically meaningful: 
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The first bracket on the right is the mass energy of 24 mites in a grain, and the second term 

is the mite total creation period τ3 .  On the left, (24t3 = t2), so (1+ln24)t2 is the total grain 

creation time τ2 . Then: 

  3324
22

n cm24cm)e/(50 ττ ≈π  ,     (2.7.10) 

where the action of 50 elements (including the guidewave energy term (π/en)) over one 

grain creation period is equivalent to the creation action of 24 mites. Clearly, every part of 

the electron is actively connected with adjacent parts during the creation processes. 

 The final elements themselves may evolve by spiralling from their own embryo 

state according to a formula like Eq.(2.5.0), namely: 
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or in general: 
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After differentiation and introduction of the element charge we obtain by analogy with 

Eq.(2.5.3): 
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Here, the term on the left covers spiralling action for the element increasing from a seed 

circumference 'O4s to its final circumference ['O4 = 'O4s(50/en)]. This spiralling growth 

begins as soon as the mite has finished its spiralling. Like the other species, these elements 

are simply the turns of material which constitute a continuous helix. 

 Our electron model with five different species of helically-wound 'particles' is 

certainly complex, but satisfies the accurate empirical values of α and anomalous magnetic 

moment. The smaller species are of interest because of the link with quantum wavepackets.  

One consequence of the reduction in particle number per orbit from 137 through 37 to 24 is 

reduced energy density within the particle seeds prior to spiralling. 

 A noticeable feature of the analyses for the 5 systems is their near independence of 

one another.  Each species rotates orthogonally to, but around the next larger species’ 

circumference. It must be fundamental that the structure constants are 12π, 24, and 16π, 
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with links like Eqs.(2.5.16), (2.6.11), (2.7.8), and (2.4.4). And, it is remarkable that the 

numerous processes should all be so individually quantised in their actions, although the 

continuity details remain unknown because the equations only involve finite integrals. 

 

2.8 Electron charge uniqueness 

 Previous calculations of creation action depended upon the charge being divisible 

among the various sub-structures; so we need a formula to describe the fundamental charge 

of the elements in an electron. One has been found which is based upon allocating 3 

fragments of charge ∆q to each element. These may be visualised as 3 localised material 

curls constituting the element circumference. In addition, there needs to be some field 

material holding the 3 charge-curls in place, effectively increasing their weight to 3(π/en). 

Now the total number of elements per electron is: 

  8
e 10x540466.850x24x7.37x137x137n ==   .    (2.8.1) 

The electron total charge is therefore: 

  q10961135.2q)e/(3ne 9
ne ∆×=∆×π×=   .    (2.8.2) 

 Prior to confining them in the electron, let all the charge-curls be situated in a helix 

constituting a single circumferential loop. Then, electromagnetic action over all these will 

be based upon the formula: 

  { } ππ≈π× 2)e/(3)e/(3nln nne   .     (2.8.3) 

Upon introducing (e2/c = mecroe) as previously, the action around this loop material, which 

has the form of a circumferential helix of cross-sectional radius rq and unitary pitch, may be 

expressed: 
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where x varies from 2πrq to 2πrq[nex3(π/en)], and (dt = dx/c). This primeval loop of around 

3x109 charge-curls is a most basic definition of charge e. Factor 3 on the right may indicate 

that electronic charge e could agglomerate into three linked pieces, but empirical evidence 

for (e/3) is unconfirmed. 
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3 Electron anomalous magnetic moment 

 For the basic electron model of Eq.(1.7), the spin-loop would be expected to 

produce a magnetic moment of 1 Bohr Magneton, 
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However, the measured magnetic moment µe is found to be greater than µB , the latest result 

being: 

  .218111(74)1.00115965   / Be =µµ        (3.2) 

Our electron model produces an expression which is relatively concise and easy to 

comprehend: 

  )])]}/2(1[)/2(1(21[1}{]12[1{/ 311
Be πµ+επ+δ+α−+πα+=µµ −−   

   218149(80)1.00115965  =  .     (3.3) 

Here the fine structure constant has been taken as the current measured value: 

  679(94)137.035999   1- =α  ,       (3.4) 

and the theoretical pearl structure constant from Section (2.5) is (δ = 1/12π ∼ 1/37.7), and 

the grain structure constant from Section (2.6) is (ε = 1/24) exactly, and the mite structure 

constant from Section (2.7) is (µ = 1/16π ~ 1/50). In Eq.(3.3) the error term is determined 

by α and demonstrates the paramount importance of its experimental determination. 

 Each part of Eq.(3.3) has a particular function, explicable in terms of the previous 

detailed electron model.   

(a) The most significant term is the first curly bracket on the right which represents 

total electric field energy, including that in the spin-loop guidewave.  It was shown in 

Eq.(1.5) that the total energy of the electron's external electric field is (½)mc2, so that the 

remaining half of the electron's energy must reside in the core-segments and spin-loop 

guidewave.  Now the electric self-interaction energy of the electron due to the spin-loop is 

around e2/(2πre), as calculated by using the method of Eq.(1.6).  But this energy has to be 

supplied by the electron itself, so the self-interaction energy is actually reduced slightly to: 

  )mc/E1)(r2/e(E 2
e

2 ∆−π=∆  ,       (3.5) 

therefore: 
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  112 )12(mc/E −− +πα=∆  ,       (3.6) 

Half this energy returns to the external electric field but the other half constitutes the 

guidewave energy within the spin-loop, which has the same nature as the electric field.  

Consequently, the electron magnetic moment should approach: )m2/)(mc/E1(e 2
h∆+ . 

(b) The second curly bracket contains correction terms due to the finite areas of pearls, 

grains, mites, and elements, which produce their own magnetic moments.  These are all 

effectively antiparallel to the spin-loop, according to the minus sign.  Core-segments travel 

around the spin-loop circumference at velocity c but are oriented orthogonally to the 

circumference, so contribute zero magnetic moment to the electron, see Figs.3.1a,b. 

 

(zoom) 

(a) 

spin-loop consisting 
of 137 core-segments 
(plan-view) 

re 

one of 137 core-segments, 
consisting of 137 pearls. 
(side-view cross-section) one of 137 pearls, 

consisting of 37 grains 
(side-view cross-section) 

one of 37 grains,  
consisting of 24 
mites. (plan-view) 

one of 24 mites 
(side-view  
cross-section) 
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Fig.3.1a,b  Schematic diagrams of a cross-sectional plan-view of the electron spin-loop, showing 

only one of the core-segments, with one pearl containing one grain and one mite. Drawn not-to-

scale, in order to illustrate the orthogonal structure of the assembly and directions of travel for all 

particles. 

 

 The anti-parallel nature of the pearls, grains, mites and elements relative to the spin-

loop magnetic moment has to be attributed to helicity rather than orientation, since these 

particles continually change direction in 3 dimensions during their travels.  As illustrated, 

given left-handed helicity for all the electron particles, the pearls rotate through the centre 

of a core-segment in the same direction as core-segment propagation. Similarly, the grains 

rotate through a pearl centre in the direction of pearl propagation: likewise for mites 

rotating through a grain centre. This kind of co-rotation relative to propagation will be 

taken to represent a minimum energy condition.  A positron has right-handed helicity 

throughout, and its component particles exhibit the same relative alignments as for an 

electron.  Consequently, Eq.(3.3) covers positrons and electrons equally.  Physical meaning 

may be attributed to each part of the second curly bracket, by reduction to its proposed 

original form, as follows: 

re 

(zoom) 
(b) 

spin-loop consisting of 137 
core-segments (plan-view) 

cross-section of one core-
segment (side-view) 

one of 137 pearls, 
consisting of 37 
grains (plan-view) 

cross-section 
 of one grain  
(side-view) 

one of 24 mites 
(plan-view) 



 40

 
( ) ( ) 













































π
+

π

π
+








+













ππ







−
22224

2
2

50

50
)

2
(1

2/24

24
)

2
(1

7.37

7.37
21

/2137

137
)

2
(

137
1

1 .   (3.7) 

              137x137 pearls      37 grains      24 mites    50 elements 

For clarity, approximate forms of α, δ, ε, µ have been shown here. 

 Primary factor (1/137) is believed to represent the interaction coefficient between 

the helical particle orbits and an external magnetic field: that is, 137 times weaker than for 

the standard loop magnetic moment of (current x area). Coupling factor (2/π)2 is to do with 

helicity/perspective, and will be explained more effectively later. 

 The first square bracket describes the total magnetic moment of 1372 pearls in 137 

core-segments around a spin-loop.  Each pearl has area [1372(2/π)]2 times less than the 

spin-loop area.  Current around a pearl is determined to be the same as around the spin-

loop: 

   r2 / ec    'r2 / c'q   i e111 π=π=  ,       (3.8) 

where (q1 = e/1372),  [c' = c(π/2)]  and [r1' = re (π/2)/1372]. 

 The second square bracket contains analogous terms for grains and mites.  Factor 

(37.7/37.72) covers 37.7 effective number of grains per pearl, each of area (37.7)2 times less 

than a pearl area.  Current around a grain is the same as around a pearl: 

   r2 / ec    'r2 / c'q   i e222 π=π=  ,       (3.9) 

since (q2 = q1 /37.7) and (r2' = r1' /37.7) . Coefficient 2 implies that the grain magnetic 

moment is twice the expected value, compared with the pearl magnetic moment.  This 

interpretation is supported by Eq.(2.5.11) which describes action of the grainy charge helix 

around a pearl.  Double energy is denoted on the right there, relating to a second harmonic 

guidewave. 

 Factor 24/(24π/2)2 covers 24 mites per grain, each of area (24π/2)2 times less than a 

grain area.  Current around a mite is also the same as around a pearl: 

     r /2ec    r /2c q    i e333 π=π= ,       (3.10) 

since (q3 = q2 /24),  and [r3 = r2' /(24π/2)]. A possible explanation for the weighting factor 

(π/2), could be connected with the mite helicity since its spin velocity is c while it 

propagates at velocity c' around its grain circumference. 
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 In the third square bracket, factor 50/502 covers the 50 effective-number of elements 

per mite, each of area 502 times less than a mite area. Prefix (2/π) is to cancel the previous 

(π/2) weighting factor, since the element rotation velocity c is the same as its propagation 

velocity around the mite. Current around an element is the same as around a pearl: 

     r /2ec    r /2c q    i e444 π=π= ,       (3.11) 

since (q4 = q3 /50),  and (r4 = r3 /50).  This means that the current flows in series through 

every element, mite, grain, pearl and core-segment: analogous to a light bulb with a 

quintuply-coiled filament. 

 Finally, the attenuation coefficient (2/π)2 at the beginning applies directly to grains, 

mites and elements because of their changes in orientation as they move.  Their areas, 

projected parallel to the spin-loop, are reduced to (2/π) on average in two axes.  Pearls 

however, in their motion around a core-segment, only suffer reduction in projected area by 

(2/π) on average.  Consequently, the additional factor (2/π) could be due to helicity in that 

the pearl spin velocity is c' while its propagation velocity is only c around a core-segment; 

logically similar to the mite multiplier (π/2) just mentioned. 

 Before leaving this subject, it is interesting to compare Eq.(3.3) with the equivalent 

QED anomaly expression (Gabrielse et al, 9): 

 ...871812414565.1793284789655.05.0)QED(a
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If Eq.(3.3) is expanded as a series in (α/π), without including δ, ε, µ, terms, we get: 
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Clearly, these square and cubic terms differ from Eq.(3.12), which implies that the QED 

method is not compatible with this real model. Our square term comes only from the first 

curly bracket of Eq.(3.3) and is independent of the cubic term. 

 

4 Refinements to creation formulae and fine structure constant 

4.1 Creation formulae 

 For simplicity, all electron structure equations (2.1.1), (2.2.1) and (2.5.0) etc. were 

used in their approximate forms throughout the analyses of previous sections.  However, 
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some small extra terms were neglected, which are thought to represent the interaction of 

different systems during the spiralling and equilibrium states, in addition to any guidewave 

energy corrections.  In Section (3) it was shown that the electron anomalous magnetic 

moment may be partly attributed to the effect of spin-loop guidewave energy, 

approximately ∆E = mc2/(2π137).  So terms of this order are expected to involve 

α, δ, ε, µ, depending on the system described.  Work remains to be done on interpreting 

these correction terms, but in each case a single correction term has been sought, which 

looks familiar and increases the overall accuracy greatly. 

 Accuracy of the electron model is governed by the fine structure constant, and this 

is now very precise: 

  α-1  =  137.035999679(94) .     (4.1.1) 

Then the electron core-segment creation spiral equation (2.1.1) may be much more 

accurately written so as to include a term to increase the action of a core kinetic energy: 

 )2/1()ln1ln(ln 211 πα+π≈α+−α −−  ,      (4.1.2) 

Similarly, the expression for action of the pearly helix, derived from Eq.(2.2.2) may be 

greatly improved in accuracy by subtracting a small term: 

  α−π≈α− 22/ln 21  .        (4.1.3) 

Pearl creation equations (2.5.0) and (2.5.13) may be more accurately written: 
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These small additions could represent interactions between species. Equation (2.5.11) has a 

small correction term, which could be related to guidewave action keeping the grains in 

orbit around a final pearl: 

  )2/(e/7.37ln n
2 πα−π≈   .      (4.1.6) 

Grain creation equations (2.6.1) and (2.6.4a) are more accurately expressed: 

 )2/(24ln 2πα+π≈ .       (4.1.7) 

 )e/()2/(24ln)]24ln1ln(24[ln n
2 πα−π≈++−  ,   (4.1.8) 
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Mite creation equations (2.7.1) and (2.7.6) are greatly improved as: 

 ( )[ ] )2/(250ln50ln1ln50ln 2πα−π≈++− ,    (4.1.9) 

 )4/11)(e/(50ln n π+ππ=   .      (4.1.10) 

Element evolution equation (2.7.11) is accurately: 

  







π

−
π

≈































+−









2
1

1
2e

50
ln1ln

e
50

ln
nn

  ,    (4.1.11) 

Finally, charge uniqueness equation (2.8.3) includes a term like the anomalous magnetic 

moment expression Eq.(1.10): 

  { } ]2/1[2)e/(3)e/(3nln nne πα+ππ≈π×   .    (4.1.12  

            

4.2 Detailed expression for the fine structure constant 

 Electrons are identical, stable and of complex structure, which means that their 

inherent substance is vigorous during expansion from a simpler seed state but this is limited 

to a very precise size and shape. The fine structure constant has been applied to the electron 

creation phenomenon via two theoretical conditions, Eqs.(2.1.1) and (2.2.1). A physical 

relationship which also looks fundamental is that half the electron's energy (E/2) resides in 

its external field, so nominally (E/2 = mc2/2 = e2/2ro).  This had to be introduced arbitrarily 

into Eq.(2.1.4) to make it physically meaningful.  Hence 137.036 is certainly a growth 

factor, which may be controlled by fitting one Compton guidewavelength around the spin-

loop, (2πre = h/mc = hc/E).  This would establish a subjective link [(re /res) = 137.036 = 

(ħc/e2)]. However, a free choice for Planck's constant alone, or of charge, or velocity of 

light, would not guarantee satisfying this link via Eq.(2.1.1). So for electrons to exist, their 

design must satisfy Eq.(2.1.1) primarily as applied to spin-loop creation action, but with 

minor contributions from other species because of their finite sizes.  For empirically 

determined α in Eq.(4.1.1), we may derive a more accurate interpretation of Eq.(2.1.1) in its 

logarithmic or ‘action’ form: 
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Expansion of the right side and introduction of (mcro) produces familiar terms for the 

different species: 
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Approximate forms for α, δ, and ε  have been shown for clarity, only. 

 Since all the creation expressions in previous sections are written as functions of 

[(m/2)cro2π], we will assume that angular momentum is especially involved in the 

correction terms.  The principle term (factor 1) then covers the spin-loop spiralling, and 

could mean that corrections are to be referred to the spin-loop.  If so, the core-segments, 

which travel around the spin-loop orthogonally to it, do not appear to contribute any 

correction term.  In contrast, the pearls are parallel to the spin-loop some of the time and 

could account for the first correction factor, as follows.  There are 1372 pearls per spin-loop 

and their creation action is always reduced by 1374 in Section (2.5).  Factor ( )2 'r'c2/π  is 

taken to cover the pearl's superluminal spin velocity [c' = c(π/2)], plus  its  concomitant  

increase in  radius   [r1' = r1(π/2)].  In the square bracket, (2/π)h is believed to represent the 

helicity coupling coefficient due to the pearl propagation velocity being c while it spins at 

c', (compare with Eq. (3.7)). 

 The next correction term is due to 37.7 grains per pearl, weighted by (α4 δ2) as in all 

creation action expressions in Section (2.6).  Previous factor (π/2)2 applies as for the pearls, 

but the helicity coupling coefficient is unity for grains which spin and also propagate at 

velocity c′. 

The next correction term is due to 24 mites per grain, weighted by (α4 δ2 ε2) as in all 

creation action expressions of Section (2.7).  Factor ( )2cr/2 π is to nullify the earlier (π/2)2 

because mites spin at velocity c and have concomitant reduced radius r3 . Coefficient (-π/2)h 

is interpreted again as being due to helicity, but in this case the mites propagate at velocity 

c' while spinning at c. Factor (π/en) is attributed to the 50 elements in each mite, with their 

confining guidewave energy included. 

The spin-loop equilibrium expression Eq.(2.4.1) defines α perpetually. Obviously, 

this is the fine structure constant we must encounter in physics, when the electron has 

settled into its final state. An accurate definition, again including minor contributions from 

other species, is: 
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Obviously this is more involved than Eq.(4.2.1), but we can roughly interpret what is being 

described. Expansion of the right side and introduction of (mcro) produces familiar terms 

for the different species: 
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The principle term (factor 1) covers spin-loop action, expressed in terms of its 1372 

constituent pearls, as in Eq.(2.4.1). Following this, most correction occurs in the spin-loop 

where there are 137 core-segments, with action reduced by 1372, as in Eq.(2.1.10). Factor 

2
cr)/2( π  recovers the core-segment normal radius and velocity of light, from the previous 

latent pearl values c'r1'. Factor (2/π)a did not appear in Eq.(4.2.2) and is thought to represent 

an average or perspective view of circular motion as in Eq.(3.7). In the following square 

bracket, (-π/2)h is the helicity coupling coefficient, due to the core-segment spinning and 

propagation velocities both being c, contrary to the previous pearl. 

 The next correction term is due to 137 pearls per core-segment, with c'r1' reinstated 

by the factor 2
rc)2/( ′′π , plus a corresponding helicity coefficient (2/π)h . An extra weighting 

factor (1/2) is also necessary, in addition to a further average/perspective factor (2/π)a , in 

the following round bracket. 

 The next correction term is due to 37.7 grains per pearl, weighted by (π/2)h' in the 

following curly bracket to nullify the previous helicity coefficient because grains spin and 

propagate at velocity c'. No change in c'r' is therefore necessary here. 

The final correction term is due to 24 mites per grain, with 2
cr)/2( π  for decrease in 

spin velocity and radius, plus corresponding (π/2)h helicity coefficient. As in Eq.(4.2), 

factor (π/en) is attributed to the 50 elements in each mite, with their confining guidewave 

energy included. 
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 In conclusion, the experimental fine structure constant is governed primarily by the 

electron equilibrium spin-loop equation, but this depends on the creation spiral in addition 

to other species contributing to its exact value. The action of spiralling by itself does not 

define α because it is the electromagnetic guidewave which locks-in to prevent further 

expansion when (2πre = λC ) is reached. 

 

5 Conclusion 

 A detailed model of electron structure in 5 levels has been developed, based on the 

empirical fine structure constant and anomalous magnetic moment.  Properties such as 

charge, mass and spin can now be understood classically in 4-dimensional space-time as 

real physical features.  Calculation of the experimental value of anomalous magnetic 

moment is relatively straightforward in geometrical terms.  Un-natural concepts like 

negative energy, renormalisation, compactification, and Higgs bosons have not been 

necessary in this physical model. 

 Further work on muon, proton and neutron structure, using methods developed here, 

is in progress and appears very encouraging. These particles also consist of localised 

energy/material travelling in helixes at the velocity of light, thereby excluding Higgs 

bosons. 
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