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Abstract

A single mathematical model encompassing both quark and lepton mixing is described. This

model exploits the fact that when a 3×3 rotation matrix whose elements are squared is subtracted

from its transpose, a matrix is produced whose non-diagonal elements have a common absolute

value, where this value is an intrinsic property of the rotation matrix. For the traditional CKM

quark mixing matrix with its second and third rows interchanged (i.e., c – t interchange), this

value equals one-third the corresponding value for the leptonic matrix (roughly, 0.05 versus 0.15).

By imposing this and two additional related constraints on mixing, and letting leptonic ϕ23 be

maximal, a framework is defined possessing just two free parameters. A mixing model is then

specified using values for these two parameters that derive from the solution to a simple equation,

where this solution also accurately reproduces the fine structure constant. The resultant model,

which is entirely free from parameters adjusted to fit the mixing data, possesses the following

angles θ23 = 2.367442◦, θ13 = 0.190986◦, θ12 = 12.920966◦, ϕ23 = maximal, ϕ13 = 0.013665◦, and

ϕ12 = 33.210911◦, which fit the experimental quark and lepton mixing angles. At the time of

its introduction in 2007, this model had a 7.0 σ disagreement with the value for |Vub|, whereas a

revised value for |Vub| from the same source now yields a disagreement of just 1.6 σ.

PACS numbers: 12.15.Ff, 14.60.Pq
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I. INTRODUCTION

The phenomenon of mixing [1–3] has been explored with the aid of a wide variety of

physical models [4]. However, an alternative approach to understanding mixing is available:

the mathematics of rotation matrices, on the one hand, and the quark and lepton mixing

data, on the other, may be analyzed apart from the Standard Model to see what they can

reveal about each other. As this article will show, even this limited approach may produce

results worthy of note. Specifically, we will demonstrate that if a 3 × 3 rotation matrix

whose elements are squared is subtracted from its transpose, a matrix is produced whose

non-diagonal elements possess a common absolute value, where this value is an intrinsic

property of the rotation matrix. For the mixing matrices determined by experiment this

value in the leptonic sector measures three times its value in the quark sector.

However, generally speaking, the above property has not been discussed in the mixing

literature. Why should this be so? It is perhaps because it is only if one builds the CKM

quark mixing matrix with its c- and t-quarks interchanged relative to convention, that this

distinguishing property for leptons (roughly 0.15) [3] is readily seen as three times that

for quarks (roughly 0.05) [2]. When the quark mixing matrix is built in the traditional

manner, no such obvious relation presents itself. Of course, the above relation might be

coincidental, but given that the traditional assignment of the c-quark to the 2nd generation

and the t-quark to the 3rd is arbitrary, there is no reason such an exchange should not be

made.

In this article, a single mathematical model encompassing both quark and lepton mixing

will be described. The model is defined with the aid of, and distinguished by, three con-

straints that each exploit the property described above. This allows all six model angles

to arise naturally within a common mathematical framework. This method follows earlier

work by the author, which predicted mixing angles identical to those of this article [5]. At

the time of its introduction in 2007, this model had a 7.0 σ disagreement with the value for

|Vub|, whereas a revised value for |Vub| from the same source now yields a disagreement of

just 1.6 σ.
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II. QUARK AND LEPTON MIXING MATRICES

A mixing matrix without phase is a merely a 3 × 3 rotation matrix. Let

R =



r11 r12 r13

r21 r22 r23

r31 r32 r33


 (1)

be such a matrix, so that squaring its elements gives



r2
11 r2

12 r2
13

r2
21 r2

22 r2
23

r2
31 r2

32 r2
33


 .

Given that a rotation matrix with its elements squared has rows and columns that sum to

one, the above matrix can also be written



r2
11 1 − r2

11 − r2
13 r2

13

1 − r2
11 − r2

31 r2
11 + r2

13 + r2
31 + r2

33 − 1 1 − r2
13 − r2

33

r2
31 1 − r2

31 − r2
33 r2

33


 .

When this matrix is subtracted from its transpose it gives




0 r2
31 − r2

13 r2
13 − r2

31

r2
13 − r2

31 0 r2
31 − r2

13

r2
31 − r2

13 r2
13 − r2

31 0


 ,

a matrix whose non-diagonal elements all equal

± (
r2
31 − r2

13

)
.

It follows that r2
31 − r2

13 is an intrinsic property of the rotation matrix R.

Now assume that R is produced by rotations through the angles ψ23, ψ13, and ψ12, so

that

R =




c12c13 s12c13 s13

−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13

s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13


 , (2)
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where s12 ≡ sinψ12, c12 ≡ cosψ12, etc. For R define

∆Pψ23,ψ13,ψ12 = r2
31 − r2

13

= (s12s23 − c12c23s13)
2 − (s13)

2 , (3)

its degree of “coupling asymmetry.”

Additionally, define the quark mixing matrix [2]

V =




c12c13 s12c13 s13

−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13

s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13


 , (4)

where, now, s12 ≡ sin θ12, c12 ≡ cos θ12, etc., and where θ23, θ13, and θ12 are the quark mixing

angles.

Similarly, define the leptonic mixing matrix [3]

U =




c12c13 s12c13 s13

−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13

s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13


 , (5)

where s12 ≡ sinϕ12, c12 ≡ cosϕ12, etc., and where ϕ23, ϕ13, and ϕ12 are the leptonic mixing

angles. Note that, above, phase is omitted for both matrices.

With the aid of the above definitions we can now illustrate how ∆Pψ23,ψ13,ψ12 will be

exploited in this article; note that in this section the values of all matrix elements are

approximate. Consider first the mixing matrix that arises if the usual CKM quark mixing

matrix with its elements squared [2]

d s b

u

c

t




0.95 0.05 0

0.05 0.95 0

0 0 1.00




has its second and third rows (i.e., its c- and t-quarks) interchanged

d s b

u

t

c




0.95 0.05 0

0 0 1.00

0.05 0.95 0



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(equivalent to applying an π/2 offset to θ23). Subtracting this second matrix from its trans-

pose gives




0.95 0.05 0

0 0 1.00

0.05 0.95 0


 −




0.95 0 0.05

0.05 0 0.95

0 1.00 0


 =




0 +0.05 −0.05

−0.05 0 +0.05

+0.05 −0.05 0


 (6)

where

∆Pπ
2
+θ23,θ13,θ12 = 0.05 . (7)

In the same way, consider the mixing matrix that arises if the usual leptonic mixing

matrix with its elements squared [3]

ν1 ν2 ν3

νe

νµ

ντ




0.70 0.30 0

0.15 0.35 0.50

0.15 0.35 0.50




has its second and third rows (i.e., νµ and ντ) interchanged

ν1 ν2 ν3

νe

ντ

νµ




0.70 0.30 0

0.15 0.35 0.50

0.15 0.35 0.50




(equivalent to applying an offset of, say, −π/2 to ϕ23). Subtracting either of these matrices

from its transpose gives




0.70 0.30 0

0.15 0.35 0.50

0.15 0.35 0.50


 −




0.70 0.15 0.15

0.30 0.35 0.35

0 0.50 0.50


 =




0 +0.15 −0.15

−0.15 0 +0.15

+0.15 −0.15 0


 (8)

where

∆Pϕ23−π
2
,ϕ13,ϕ12 = 0.15 . (9)

(So, as it happens, for the leptonic mixing matrix, interchanging the second and third rows

has little or no effect on ∆P .)
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In this way, the calculation of ∆P for quark and lepton mixing leads to Eqs. (7) and (9),

which combine to suggest the relation

∆Pϕ23−π
2
,ϕ13,ϕ12 = 3 ×∆Pπ

2
+θ23 ,θ13,θ12 . (10)

This, in turn, raises the question of whether Eq. (10) constitutes a precise physical law.

III. IMPOSING SIX INDEPENDENT CONSTRAINTS ON THE SIX MIXING

ANGLES

We will now show how to specify a particular set of six mixing angles by imposing on

them six independent constraints, three of which will assume the form of Eq. (10).

Firstly, let

ϕ23 =
π

4
+
π

2
, (11)

and note that the addition of the offset π/2 to ϕ23 distinguishes its use here from convention

[3].

Secondly, following Eq. (10), let

∆Pϕ23−π
2
,ϕ13,ϕ12 = N × ∆Pπ

2
+θ23 ,θ13,θ12 (12)

to constrain all six mixing angles, where N = 3.

Lastly, generate four mixing angles with the aid of g12 and g13, model parameters whose

possible values will be examined later in detail. Their subscripts were chosen because g12

helps define the mixing angles ϕ12 and θ12, whereas g13 helps define the mixing angles ϕ13

and θ13:

sinϕ12 =
√
g12N , (13)

sin θ12 =
√
g12 × sinϕ23 , (14)

sin θ13 =
√
g13/N , (15)

sinϕ13 =
√
g13 × sin θ23 . (16)

Equations (11)–(16) together supply the six constraints needed to determine the quark

and lepton mixing angles. Given that ϕ23 has its value explicitly assigned by Eq. (11), the

three angles specifed by Eqs. (13)–(15) are readily calculated. In contrast, Eq. (16) must

be solved simultaneously with Eq. (12).
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It is important to recognize that Eqs. (13)–(16) were chosen only because they auto-

matically impose the following additional two constraints on quark and lepton coupling

asymmetry

∆Pϕ23,0,ϕ12 = N × ∆Pπ
2
,0,θ12 , (17)

∆P−π
2
,ϕ13,0 = N × ∆Pθ23,θ13,0 . (18)

It is these twin constraints in combination with the related constraint, Eq. (12), that

constitute the conceptual key to the parameterization described by this article.

Below, the constraints imposed by Eqs. (12), (17), and (18) are expressed in a way that

makes it easier to compare the angles they employ. Observe, particularly, that the angles of

the first row equal the sum of the angles of the second and third rows:

∆P for ( ϕ23 − π

2
, ϕ13, ϕ12 ) equals N times ∆P for (

π

2
+ θ23, θ13, θ12 ) ,

∆P for ( ϕ23 , 0, ϕ12 ) equals N times ∆P for (
π

2
, 0, θ12 ) ,

∆P for ( − π

2
, ϕ13, 0 ) equals N times ∆P for ( θ23, θ13, 0 ) .

Finally, consider that, above, the value for ∆P in the lepton sector consistently equals

N times ∆P in the quark sector, just as the electric charge of the lepton sector is N times

that of the quark sector

−1 + 0 = N ×
(

1

3
+ −2

3

)
, (19)

where N = 3. Given that N = 3 reflects the number of quark colors needed to balance the

amount of electric charge possessed by the two sectors, it is reasonable to conjecture that

it may fulfill an equivalent role with regard to coupling asymmetry. That is to say, it may

balance the amount of coupling asymmetry possessed by the leptonic sector against that

possessed by the quark sector.

IV. THE SECONDARY COUPLING CONSTRAINTS

To see how Eqs. (17) and (18) derive from Eqs. (13)–(16), consider that according to

Eq. (3)

∆Pψ23,ψ13,ψ12 = (sinψ12 sinψ23 − cosψ12 cosψ23 sinψ13)
2 − sin2 ψ13 . (20)
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Substitution reveals that

∆Pϕ23,0,ϕ12 = sin2 ϕ12 sin2 ϕ23 , (21)

∆Pπ
2
,0,θ12 = sin2 θ12 , (22)

∆Pθ23,θ13,0 = (− cos θ23 sin θ13)
2 − sin2 θ13

= sin2 θ13 × (cos2 θ23 − 1) ,

= − sin2 θ13 sin2 θ23 , (23)

∆P−π
2
,ϕ13,0 = − sin2 ϕ13 . (24)

Equations (13) and (21) give

∆Pϕ23,0,ϕ12

sin2 ϕ23

× 1

N
= g12 , (25)

and Eqs. (14) and (22) give

∆Pπ
2
,0,θ12

sin2 ϕ23

= g12 , (26)

so that Eqs. (25) and (26) recover Eq. (17). Equations (15) and (23) give

∆Pθ23,θ13,0
sin2 θ23

×N = −g13 , (27)

and Eqs. (16) and (24) give
∆P−π

2
,ϕ13,0

sin2 θ23

= −g13 , (28)

so that Eqs. (27) and (28) recover Eq. (18).

In this way Eqs. (13)–(16) assure that various g12 and g13 produce mixing angles that

fulfill the secondary coupling constraints represented by Eqs (17) and (18). However, the

values chosen for g12 and g13 must also fulfill Eq. (12), the primary coupling constraint,

while simultaneously fulfilling Eq. (16).

V. THE MIXING MODEL

With the aid of the set of Eqs. (11)–(16), one need only specify g12 and g13 in order to

single out a particular set of six mixing angles. As trial values, let

g12 =
1

9
(29)
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and

g13 = 0 . (30)

Observe that in the leptonic sector these values produce the following magnitudes

ν1 ν2 ν3

Ug12= 1
9
,g13=0 =




√
2/3

√
1/3 0√

1/6
√

1/3
√

1/2√
1/6

√
1/3

√
1/2



νe

ντ

νµ

, (31)

which equal those of the well known “tri-bimaximal” mixing matrix [6]. Given that ϕ23 is

defined with a π/2 offset relative to convention (see Eq. (11)), νµ and ντ are interchanged

above [3]. Equations (11)–(16) reveal that θ23 = θ13 = ϕ13 = 0.

As it turns out, g12 = 1
9

produces a quark mixing matrix whose θ12 is too large, but if we

alter g12 so that

g12 =
1

10
(32)

and

g13 = 0 (33)

the following magnitudes for the quark mixing matrix

d s b

Vg12= 1
10
,g13=0 =




√
0.95

√
0.05 0

√
0.05

√
0.95 0

0 0 1.00



u

c

t

(34)

and leptonic mixing matrix

ν1 ν2 ν3

Ug12= 1
10
,g13=0 =




√
0.70

√
0.30 0

√
0.15

√
0.35

√
0.50

√
0.15

√
0.35

√
0.50



νe

ντ

νµ

(35)

are produced. Note that the above matrix elements are exact and that νµ and ντ are

interchanged. Equations (11)–(16) again require that θ23 = θ13 = ϕ13 = 0.

The above mixing matrices prove close enough to their corresponding experimental values

[2, 3, 7] to suggest that with the right value for g13 it might be possible to generate matrices

that fit all six mixing angles.
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VI. ASSIGNING VALUES TO g12 AND g13

Although the values for g12 and g13 may be adjusted to fit experiment, it is perhaps

significant that a key solution to the following equation

(A3 − x3)

33
+

(
A2 − x3

)
=

(A− y)3

33
+ (A− y)2

=
1

α
(36)

closely reproduces the value of the fine structure constant α, while simultaneously producing

values for x and y that are suitable for g12 and g13, respectively.

To see how this is so, note that for Eq. (36) the expression on the left is very similar

to that on the right, where, for A � 1, solutions exist where x3 and y assume small, but

slightly different, positive values. It is logical, therefore, to consider how x and y interrelate.

As it turns out

y ≈
(

28

18 + A

) (
1

3A

) (
x3

)
(37)

closely approximates y for small x3. So, by way of example, for

A = 9 (38)

and

x =
1

A
=

1

9
(39)

Eq. (37) gives

y ≈
(

28

18 + 9

) (
1

3 × 9

) (
1

93

)
=

1

18980.03 . . .
,

whereas Eq. (36) requires only this slightly different value

y =
1

18979.96 . . .
.

Now, the key point is that in Eq. (37) the expression 28/ (18 + A) equals unity only for

A = 10 . (40)

It follows that if

x =
1

A
=

1

10
(41)
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then Eq. (36) simplifies to

y ≈
(

28

18 + 10

) (
1

3 × 10

) (
1

103

)
, (42)

which reduces to

y ≈ 1

30000
,

while Eq. (36) actually requires that

y =
1

29999.93 . . .
.

We can then take advantage of the above special solution to define

g12 = x , (43)

and

g13 = y , (44)

the values that the mixing model will exploit to generate five of the six experimental mixing

angles, with the remaining angle predefined as ϕ23 = π
4

+ π
2
.

It follows that the above constants are not freely adjusted to fit the mixing data, but

instead arise naturally from the above special solution to Eq. (36). But, as noted earlier,

Eq. (36) simultaneously produces the following excellent approximation of the fine structure

constant reciprocal

103 − 10−3

33
+ 102 − 10−3 =

999.999

33
+ 99.999 = 137.036 , (45)

or, equivalently, from the right side of Eq. (36)

(
10 − 1/29999.93 . . .

3

)3

+ (10 − 1/29999.93 . . .)2 = 137.036 . (46)

(The above value for the fine structure constant inverse differs only slightly from its 2006

CODATA value of 137.035 999 679, with an error of about 2 parts per billion; the fine

structure constant reciprocal is known to 0.68 ppb [9].) Particularly, note that the following

four constants

1/g12N , g13/N , 1/g12 , and g13 ,

which occur in Eq. (46), also arise independently in some form in Eqs. (13)–(16) and

Eqs. (25)–(28). In this way these four constants provide a nexus between the fine structure

constant and the mixing model.
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Accordingly, the above mixing model employs no arbitrary parameters, but rather em-

ploys constants of independent mathematical interest, though at this stage no physical

explanation can be given for the remarkable behavior of Eq. (36) in generating these useful

physical constants.

VII. MODEL PREDICTIONS

The assignments of Eqs. (43)–(44) produce mixing matrices that are close to those

determined by experiment. Omitting phase, the above mixing model predicts the following

magnitudes for the quark mixing matrix elements

d s b

Vg12= 1
10
,g13=

1
30000

=




0.974674 0.223606 0.003333

0.223550 0.973817 0.041308

0.005991 0.041007 0.999141



u

c

t

(47)

while for leptonic mixing it predicts

ν1 ν2 ν3

Ug12= 1
10
,g13=

1
30000

=




0.836660 0.547723 0.000238

0.387157 0.591700 0.707107

0.387439 0.591516 0.707107



νe

ντ

νµ

(48)

again with νµ – ντ interchange. These matrices employ mixing angles of

θ23 = 2.367442◦ , θ13 = 0.190986◦ , θ12 = 12.920966◦ ,

ϕ23 = 135◦ , ϕ13 = 0.013665◦ , ϕ12 = 33.210911◦ ,

with only ϕ23 exceeding convention by 90◦.

For quark mixing, the model predicts the following sines squared

sin2 θ12 = g12 × sin2 ϕ23 =
1

20
,

sin2 θ23 = 1.706342 × 10−3 ,

sin2 θ13 =
g13

N
=

1

90000
.
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For leptonic mixing the model predicts the following sines squared

sin2 ϕ12 = Ng12 =
3

10
,

sin2 ϕ23 =
1

2
,

sin2 ϕ13 = 5.687808 × 10−8 ,

which can be compared against these 2008 corresponding experimental values [7]

sin2 ϕ12 = 0.304+0.022
−0.016 ,

sin2 ϕ23 = 0.50+0.07
−0.06 ,

sin2 ϕ13 = 0.01+0.016
−0.011 ,

from which they differ by less than one standard deviation.

Finally, for quark mixing, the model also predicts the CKM matrix elements

|Vus| = 2.236 × 10−1 , |Vub| = 3.33 × 10−3 , |Vcb| = 4.13 × 10−2 ,

each of which is unaffected by phase, and each of which derives primarily from a different

mixing angle. Given that the model described by this article was first introduced in 2007

[5], it is logical to begin by comparing these predictions against 2006 CKM mixing data [8],

which was then current.

As it turns out, the model differs from these 2006 data

|Vus| =
(
2.272+0.01

−0.01

) × 10−1, |Vub| =
(
3.96+0.09

−0.09

) × 10−3, |Vcb| =
(
4.221+0.010

−0.080

) × 10−2

by 3.6, 7.0, and 1.1 standard deviations, respectively, a large discrepancy.

However, this same source also offers 2008 data [2]

|Vus| =
(
2.257+0.01

−0.01

) × 10−1, |Vub| =
(
3.59+0.16

−0.16

) × 10−3, |Vcb| =
(
4.15+0.10

−0.11

)× 10−2 ,

from which the model differs by just 2.1, 1.6, and 0.2 standard deviations, respectively. It is

particularly striking that the discrepancy regarding |Vus| is reduced from 3.6 to 2.1 standard

deviations, and that for |Vub| from 7.0 to 1.6, though for this second case the reduction

occurs in part because of a widening of its error bar from ±0.09 to ±0.16.

Finally, it should be noted that if, as before

g12 =
1

10
, (49)
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but g13 is now allowed to occupy the interval

1

100000
< g13 <

1

10000
, (50)

then for any such g13 the model predicts

|Vcb|
|Vub| = 12.4 . (51)

In other words, the ratio |Vcb|/|Vub| is practically unaffected by the exact g13 chosen to fit the

data and must therefore be fit almost solely by g12. It follows that g12 must by itself bear the

burden of fitting no less than three distinct experimental values: θ12, ϕ12, and |Vcb|/|Vub|.
As it turns out, the above 2006 experimental values produce the ratio

|Vcb|
|Vub| =

4.221 × 10−2

3.96 × 10−3
= 10.7 , (52)

while the corresponding 2008 values produce

|Vcb|
|Vub| =

4.15 × 10−2

3.59 × 10−3
= 11.6 , (53)

where this later value is significantly more consistent with Eq. (51).

VIII. SUMMARY AND CONCLUSION

The mixing model described here exploits a non-traditional version of the CKM quark

mixing matrix, a version in which the second and third rows of this matrix appear inter-

changed. It also exploits the fact that when a 3 × 3 rotation matrix whose elements are

squared is subtracted from its transpose, the matrix produced has non-diagonal elements

that possess a common absolute value. For the above non-traditional CKM matrix this

value equals one-third the corresponding value for the leptonic matrix, a fact this article

takes as its starting point for model-building. A framework of three such constraints is then

built, in which the quark and lepton mixing matrices can be specified with just two free

parameters. A realistic mixing model is then specified using values for these two parameters

that derive from a key solution to a simple equation, Eq. (36), where this solution also

accurately reproduces the fine structure constant. This resultant model is, therefore, largely

mathematical in origin; but given that it is entirely free from parameters adjusted to fit the

mixing data, and that it correctly forecast that the 2006 value for |Vub| was significantly

14



in error, its further study is nevertheless justified. In particular, a logical next step is to

examine the physical implications of both the above framework and its derivative mixing

model.
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