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Abstract

In this paper, we propose a new test of uniformity on the circle based on
the Gini mean difference of the sample arc-lengths, i.e. the gaps between
successive observations on the circumference of the circle. These sample
arc-lengths are analogous to sample spacings, which are the gaps between
successive observations on the real line. Such a Gini mean difference test is
analogous to Rao’s spacings test, which has been used to test the uniformity
of circular data.

We obtain both the exact and asymptotic distributions of the Gini mean
difference arc-lengths test, under the null hypothesis of circular uniformity.
We also provide a table of upper percentile values of the exact distribution
for small to moderate sample sizes. Some examples of circular data analysis
are also considered. It is also seen that the Gini mean difference arc-lengths
tests is more asymptotically efficient than Rao’s test in the sense of Pitman
asymptotic relative efficiency.

Keywords: Circular statistical inference, Directional data analysis,
Goodness-of-fit tests, Spacings, Rao’s spacings test, Gini mean difference

1. Introduction

Sample observations representing directions in two dimensions can be
modeled as random variables taking values on the circumference of the circle.
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We take this circle to be the unit circle with unit radius and a circumference
of length 2π. A circular probability distribution is one whose support is this
circumference.

The simple goodness-of-fit problem on the circle consists of testing fit to
a single fixed circular distribution for a given data set. In particular, con-
sider a random sample of angular measurements θ1, θ2, . . . , θn with circular
distribution function F defined on the interval [0, 2π). We are interested in
testing the null hypothesis

H0 : F = F0

where F0 is a completely specified distribution function.

Without loss of generality, if F is assumed to be continuous as we shall
do, by way of the probability integral transform, the goodness-of-fit problem
reduces to one of testing circular uniformity, i.e. testing the null hypothesis

H0 : F (θ) = θ
2π
· I(0 ≤ θ < 2π).

Let 0 ≤ θ(1) ≤ θ(2) ≤ . . . ≤ θ(n) < 2π denote the sample order statistics.
The sample arc-lengths are defined by the random variables

Dk = θ(k) − θ(k−1), for k = 1, 2, . . . , n (1.1)

where we take θ(0) = θ(n) − 2π to make D1 the natural gap between the first
and last order statistics that straddle the origin. The sample arc-lengths
{Dk} represent the differences between successive observations on the cir-
cumference of the circle, and thus are analogous to spacings on the real line.
When data are directions in two-dimensions and represented by angles, the
sample arc-lengths {Dk} are said to form the “maximal invariant,” i.e. they
remain invariant under the choice of zero-direction and sense of rotation.
Tests based on these sample arc-lengths are studied here for testing the null
hypothesis.

Under the null hypothesis of circular uniformity, the joint distribution
of (D1, D2, . . . , Dn) is a Dirichlet(1, 1, . . . , 1; 1) distribution on the (n − 1)-
simplex with probability density function

fD1,D2,...,Dn−1(d1, d2, . . . , dn−1)

=
(n− 1)!

(2π)n−1
· I

(
n−1⋂

k=1

(dk > 0),
n−1∑

k=1

dk ≤ 2π

)
. (1.2)
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Moreover, under the null hypothesis, these sample arc-lengths are exchange-
able random variables and have the same distribution as the spacings from
a random sample of (n− 1) random variables from the Uniform distribution
on the line segment [0, 2π). This suggests that spacings tests on the real line,
with some minor modifications, can be used for circular statistical inference.
In fact, spacings tests are the only general class of goodness-of-fit tests that
are directly applicable to both circular and linear data. The spacings or arc-
lengths {Dk} form the maximal invariant statistic under changes in origin
so that every rotationally invariant statistic that is useful for the circular
case can be expressed in terms of {Dk} (cf. Jammalamadaka and SenGupta
(2001)).

Most common among spacings tests are symmetric spacings tests, i.e.
general test statistics of the form

Vn(g) =
1

n

n∑

k=1

g(nDk) (1.3)

where g(·) is a real-valued function satisfying some regularity conditions, and

Wn(h) =
1

n(n− 1)

n∑
i=1

n∑
j=1

h(nDi, nDj) (1.4)

where h : [0,∞) × [0,∞) → R is a symmetric function satisfying some
regularity conditions. Test statistics of the form Vn(g) are symmetric sum-
functions of the sample spacings (e.g. cf. with Pyke (1965), Sethuraman
and Rao (1970), and Rao and Sethuraman (1975)), and those of the form
Wn(h) are U -statistics of the sample spacings (cf. with Tung and Jammala-
madaka (2010)). Moreover, such symmetric spacings tests are known to have
asymptotic Normal distribution.

Among spacings tests of the form Vn(g), Rao’s spacings test (cf. with
Rao (1969), Rao (1976))

Jn =
1

n

n∑

k=1

|nDk − 2π|
2

=
1

2

n∑

k=1

∣∣∣∣Dk − 2π

n

∣∣∣∣ =
n∑

k=1

(
Dk − 2π

n

)

+

(1.5)

which corresponds to taking g(t) = |t − 2π|/2, has a nice interpretation for
the circle. Since (1.5) is a modification of Rao’s spacings test for the circular
case, we will refer to it as Rao’s arc-lengths test. Suppose n arcs, each of
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fixed length (2π)/n, are placed starting with each of the sample observations
on the circumference. The uncovered part of the circumference contributed
by observation θk is given by

(
Dk − 2π

n

)
+

whereas Jn gives the total uncov-
ered portion of the circumference. The circumference is completely covered
by these fixed arcs, resulting in Jn = 0, whenever the sample observations
are uniformly distributed on the circumference. Large values of Jn indicate
clustering of sample observations or evidence for directionality, and rejec-
tion of the null hypothesis of circular uniformity. Rao’s test is a powerful
statistic that can discriminate between uniform (isotropic) and concentrated
(anisotropic) circular distributions, regardless of whether the distributions
are unimodal or multimodal.

Under the null hypothesis of circular uniformity, the probability density
function of Jn is

fJn(u) =
n−1∑

k=1

(
n

k

) ( u

2π

)n−k−1 ψk(nu) · (n− 1)! · I[0 ≤ u ≤ 2π(1− 1/n)]

nk−1(n− k − 1)!

(1.6)
where

ψk(x) =
1

2π(k − 1)!

∞∑
j=0

(−1)j

(
k

j

) ( x

2π
− j

)k−1

+
. (1.7)

A table of upper percentiles of the exact distribution for Jn was first given
in Rao (1976), and extended tables of these critical values can be found in
Russell and Levitin (1995).

Under the null hypothesis, Jn has an asymptotic Normal distribution, i.e.
in the limit as n →∞,

√
n

(
Jn − e−1

)
=
√

n

(
1

2

n∑

k=1

∣∣∣∣Dk − 2π

n

∣∣∣∣− e−1

)

D−→ N1

(
0, 2e−1 − 5e−2

)
. (1.8)

We introduce the Gini mean difference arc-lengths test in the next sec-
tion and obtain both its exact and asymptotic distributions under the null
hypothesis. Section 3 contains examples of circular data analysis featuring
Rao’s test and the Gini mean difference test, and Section 4 discusses their
Pitman asymptotic relative efficiencies.
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2. The Gini Mean Difference Arc-Lengths Test

Analogous to Rao’s test is the Gini mean difference arc-lengths test

Gn =
1

n(n− 1)

n∑
i=1

n∑
j=1

|nDi − nDj|
2

=

∑n
i=1

∑n
j=1 (nDi − nDj)+

n(n− 1)
(2.1)

which corresponds to taking h(u, v) = |u − v|/2. The statistic Gn is of the
form Wn(h) and an average over all pairs of absolute pairwise differences
of the sample arc-lengths. The Gini mean difference spacings test was first
proposed in Jammalamadaka and Goria (2004) for testing goodness-of-fit
on the real line. There, under the goodness-of-fit null hypothesis (i.e. linear
uniformity on [0, 1]), they derive both the exact and asymptotic distributions,
and show that it has good performance based on Monte Carlo powers.

Under the null hypothesis of circular uniformity, the sample arc-lengths
between successive observations should be approximately evenly spaced, about
(2π)/n apart, and Gn should be close to zero. Large values of Gn resulting
from unusually large arc-lengths or unusually short arc-lengths between ob-
servations, are evidence for directionality, and rejection of the null hypothesis
of circular uniformity.

Like Rao’s test, the Gini mean difference test Gn is one of the few
spacings-type tests for which both the exact and asymptotic distributions
are known, under the null hypothesis. Here, we will adapt both the exact
and asymptotic null distributions for the Gini mean difference spacings test
on the real line to the case of the unit circle with circumference of length 2π.

Let U1, U2, . . . , Un−1 be independent Uniform([0, 1]) random variables,
and let {Xk} = {(2π)Uk} define (n − 1) independent Uniform([0, 2π)) ran-
dom variables. We define the uniform spacings on the unit interval [0, 1] by
the random variables

Tk = U(k) − U(k−1), for k = 1, 2, . . . , n (2.2)

where 0 ≡ U(0) ≤ U(1) ≤ U(2) ≤ . . . ≤ U(n−1) ≤ U(n) ≡ 1.

Under the null hypothesis, the sample arc-lengths {Dk} are related to the
uniform spacings {Tk} by the relation

Dk ' X(k) −X(k−1) = (2π)[U(k) − U(k−1)] = (2π)Tk. (2.3)
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Here as elsewhere, we use ' to denote the distributional equivalence of quan-
tities on the left and right hand sides of the symbol. Since

n∑
j=1

n∑
j=1

|Ti − Tj| ' 2
n−1∑

k=1

Uk (2.4)

then
n∑

i=1

n∑
j=1

|Di −Dj| ' (2π)
n∑

i=1

n∑
j=1

|Ti − Tj| ' 2
n−1∑

k=1

Xk. (2.5)

Thus, we have

Gn =
1

2n(n− 1)

n∑
i=1

n∑
j=1

|nDi − nDj| ' Sn−1

n− 1
(2.6)

where Sn−1 =
∑n−1

k=1 Xk is the sum of (n − 1) independent Uniform([0, 2π))
random variables. The probability distribution of Sn−1 is a variation of the
classical Irwin-Hall Uniform sum distribution, which was first derived by
P.S. Laplace in 1814 (cf. Wilks (1962), Feller (1971, Theorem 1, I.9)). The
probability density function of Sn−1 has the form

fSn−1(s) =
I[0 < s < 2π(n− 1)]

(2π)n−1(n− 2)!

n−1∑

k=0

(
n− 1

k

)
(−1)k(s− 2πk)n−2

+ (2.7)

and can be derived via the Fourier inversion formula, and Cauchy’s integral
formula from complex analysis. The cumulative distribution function of Sn−1

is

FSn−1(s) =
I[0 < s < 2π(n− 1)]

(2π)n−1(n− 1)!

n−1∑

k=0

(
n− 1

k

)
(−1)k(s− 2πk)n−1

+ . (2.8)

Under the null hypothesis of circular uniformity, the probability density
function of Gn is

fGn(y) =
(n− 1) · I(0 < y < 2π)

(2π)n−1(n− 2)!

n−1∑

k=0

(
n− 1

k

)
(−1)k [(n− 1)y − 2πk]n−2

+

(2.9)
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with cumulative distribution function

FGn(y) =
I(0 < y < 2π)

(2π)n−1(n− 1)!

n−1∑

k=0

(
n− 1

k

)
(−1)k [(n− 1)y − 2πk]n−1

+ (2.10)

and characteristic function

ϕGn(t) =

∫ ∞

−∞
eity dFGn(y) = (n− 1)n−1

(
exp

(
2πit
n−1

)− 1

2πit

)n−1

, (i =
√−1).

(2.11)

Under the null hypothesis, Gn has an asymptotic Normal distribution
which is applicable to large sample situations. From the classical Central
Limit Theorem, in the limit as n →∞,

√
n

(
1

n− 1

n−1∑

k=1

Uk − 1

2

)
D−→ N1

(
0,

1

12

)
. (2.12)

Since Gn ' Sn−1

n−1
= (2π)

n−1

∑n−1
k=1 Uk, therefore we have in the limit as n →∞,

√
n(Gn − π) =

√
n

(∑n
i=1

∑n
j=1 |nDi − nDj|

2n(n− 1)
− π

)
D−→ N1

(
0,

π2

3

)
. (2.13)

Let α be the upper-tail probability corresponding to the critical value yα

of the test statistic Gn. Then

α = P(Gn > yα) = 1− FGn(yα). (2.14)

In Table 1, we give the upper percentiles of the exact distribution function
for the statistic Gn for testing the null hypothesis of circular uniformity.
The table gives these critical values, which have been given in degrees for
immediate applicability, for small to moderate sample sizes. If for a given
sample size n and significance level α, the observed value of the test statistic
Gn, say yobs, is greater than the tabulated critical value yα, i.e. yobs > yα,
then we reject the null hypothesis of circular uniformity.

Note that, under the null hypothesis, the so-called “p-value” or observed
significance level can be calculated by

p = P(Gn > yobs) = 1− FGn(yobs). (2.15)

Equivalently, the null hypothesis is rejected, whenever p < α.
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n α = 0.01 α = 0.02 α = 0.03 α = 0.04 α = 0.05 α = 0.10
4 312.25 300.32 291.87 285.12 279.40 258.62
5 296.23 284.63 276.75 270.64 265.57 247.67
6 284.59 273.79 266.61 261.07 256.49 240.31
7 275.90 265.81 259.15 254.02 249.78 234.90
8 269.07 259.57 253.32 248.53 244.58 230.74
9 263.51 254.51 248.61 244.10 240.39 227.40
10 258.88 250.31 244.71 240.44 236.92 224.65
11 254.93 246.75 241.41 237.33 233.99 222.32
12 251.53 243.68 238.57 234.67 231.47 220.33
13 248.55 241.00 236.08 232.34 229.27 218.59
14 245.91 238.63 233.89 230.29 227.33 217.06
15 243.56 236.52 231.94 228.46 225.60 215.69
16 241.44 234.61 230.19 226.82 224.06 214.47
17 239.52 232.90 228.60 225.33 222.65 213.37
18 237.77 231.33 227.15 223.98 221.38 212.36
19 236.16 229.89 225.83 222.74 220.21 211.44
20 234.68 228.57 224.61 221.60 219.14 210.60
21 233.32 227.35 223.48 220.55 218.14 209.82
22 232.05 226.21 222.44 219.57 217.22 209.10
23 230.86 225.16 221.46 218.66 216.37 208.42
24 229.76 224.17 220.55 217.81 215.56 207.79
25 228.72 223.24 219.70 217.01 214.81 207.20
30 224.36 219.36 216.13 213.67 211.67 204.74
35 220.99 216.36 213.37 211.10 209.24 202.84
40 218.29 213.96 211.16 209.04 207.30 201.32
45 216.04 211.98 209.34 207.34 205.70 200.07
50 213.87 210.25 207.78 205.90 204.35 199.01

Table 1. Upper Percentiles of the Exact Distribution for the Gini Mean
Difference Arc-Lengths Test Gn.

3. Some Circular Data Analysis Examples

In this section, we present a couple of examples of circular data analysis
featuring Rao’s test Jn and the Gini mean difference test Gn.

Example (Hospital Birth Times Data). Suppose one wants to know
whether or not birth times at a hospital are uniformly distributed throughout
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the day. The alternative hypothesis is that there is a time (or times) when
births are more frequent. Table 2 displays hypothetical data for delivery
times collected across several days. This data can be found in both Russell
and Levitin (1995) and Levitin and Russell (1997).

k Delivery Time θ(k) Dk

1 12:20 am 5 34
2 12:40 am 10 5
3 12:40 am 10 0
4 12:48 am 12 2
5 1:08 am 17 5
6 5:40 am 85 68
7 6:00 am 90 5
8 6:36 am 99 9
9 6:40 am 100 1
10 7:20 am 110 10
11 10:12 am 153 43
12 3:32 pm 233 80
13 3:40 pm 235 2
14 7:44 pm 296 61
15 10:04 pm 331 35

Table 2. Hospital Birth Times Data.

These observed event times are modeled as realizations from a continuous
circular distribution. The observations can be converted to angles around a
circle in an obvious way, e.g. if we want the angular units in degrees, we use
1 hr. = 360 deg.

24
= 15 deg. and 1 min. = 360 deg.

24 hr.
· 1 hr.

60
= 0.25 deg. Thus, 12:00

am = 0 deg., 6:00 am = 90 deg., 12:00 pm = 180 deg., 6pm = 270 deg., and
9:15 am = 138.75 deg., etc.

Rao’s arc-lengths test statistic gives an observed value of J15 = 177 with a
p-value between 0.01 and 0.05. At the 5% significance level, this is sufficient
evidence to reject the null hypothesis of circular uniformity and conclude
that there are times when births are more frequent.

On the other hand, the Gini mean difference arc-lengths test statistic
gives an observed value of G15 = 224.86 with a p-value of 0.053. The results
from the Gini test are borderline significant, and may possibly indicate there
are times when births are more frequent.
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Example (Homing Pigeon Data). 13 homing pigeons were released
one at a time in the Toggenburg Valley in Switzerland under sub-Alpine
conditions. They did not appear to have adjusted quickly to the homing
direction, but preferred to fly in the axis of the valley, indicating a somewhat
bimodal distribution. The vanishing angles are arranged here in increasing
order as follows:

20, 135, 145, 165, 170, 200, 300, 325, 335, 350, 350, 350, 355.

Do these homing pigeons have a preferred direction of flight? (This example
can also be found in Jammalamadaka and SenGupta (2001).)

The observed value of Rao’s arc-lengths test statistic is J13 = 161.92 with
a p-value between 0.05 and 0.10 (cf. with the table of upper percentiles of
the distribution for Jn in Rao (1976)). On the basis of Rao’s arc-lengths test,
there is not enough evidence to reject the hypothesis of circular uniformity
at the 5% significance level.

On the other hand, the observed value of the Gini mean difference arc-
lengths test statistic is G13 = 231.67 with an observed significance level or
p-value of p = 0.043. Therefore, the results of the Gini mean difference arc-
lengths test are significant at the 5% significance level and we can reject the
null hypothesis of circular uniformity. On the basis of Gini mean difference
arc-lengths test, there is sufficient evidence that the homing pigeons have a
preferred direction of flight.

4. Asymptotic Relative Efficiencies

In this section, we discuss the Pitman asymptotic relative efficiencies
(ARE) of both the Gini mean difference test Gn and Rao’s test Jn, as well as
generalized versions of these statistics. In the case of large samples, compar-
ing the Pitman ARE’s of two test statistics is a way of making a quantitative
comparison of two distinct tests for a statistical hypothesis of interest. The
Pitman ARE of one sequence of tests against another is defined as the limit
of the inverse ratio of sample sizes required for two tests to attain the same
power at a sequence of alternatives which converges to the null hypothesis.

We define the generalized Rao’s arc-lengths test

Jn(r) =
1

2n

n∑

k=1

|nDk − 2π|r, r > 0 (4.1)
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and the generalized Gini mean difference arc-lengths test

Gn(r) =
1

2n(n− 1)

n∑
i=1

n∑
j=1

|nDi − nDj|r, r > 0. (4.2)

For the special case r = 1, we have Jn(1) = Jn and Gn(1) = Gn. More-
over, the special case of Jn(2) corresponds to both Gn(2) and the statistic
1
n

∑n
k=1(nDk)

2, which will be called the Greenwood statistic.

Sethuraman and Rao (1970) have shown that among spacings tests of
the form Vn(g), the most asymptotically efficient, i.e. the asymptotically
locally most powerful test (ALMP) is the Greenwood statistic. Tung and
Jammalamadaka (2010) have shown that among spacings tests of the form
Wn(h), the ALMP test is the Gini mean squared difference test

Gn(2) =
1

2n(n− 1)

n∑
i=1

n∑
j=1

|nDi − nDj|2 (4.3)

which also has the same efficiency as the Greenwood statistic.

Suppose the Pitman ARE of Jn(2) and Gn(2) is taken to be 1. The
following Table 3, taken from Tung and Jammalamadaka (2010), lists the
Pitman ARE of Jn(r) and Gn(r) with respect to various choices of r > 0. It
is seen that the Pitman ARE’s of Jn(1) and Gn(1) are respectively 0.572654
and 3/4, thus the Gini mean difference test Gn(1) is more asymptotically
efficient than Rao’s test Jn(1). Moreover, it is also seen that the generalized
Gini mean difference test Gn(r) is more Pitman efficient than the generalized
Rao’s test Jn(r), except for the case r = 2, when both tests Gn(2) and Jn(2)
correspond to the Greenwood statistic and have a Pitman ARE of 1.

r Generalized Rao Generalized Gini
1 0.572654 3/4

3/2 0.892135 0.946889
2 1 1

5/2 0.93921 0.96137
3 0.818649 0.867857
4 0.550562 0.615384

Table 3. Pitman Asymptotic Relative Efficiencies for Jn(r) and Gn(r).
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5. Conclusion

We have introduced a new test of uniformity on the circle based on the
Gini mean difference of the sample arc-lengths, and obtained both its exact
and asymptotic distributions under the null hypothesis. The table of upper
percentile values for this test will be of use to applied scientists employing
it for circular data analysis. On the basis of Pitman asymptotic relative
efficiency, the Gini mean difference test is more asymptotically efficient than
Rao’s test.

Extension of the Gini mean difference to the two-sample problem of test-
ing for identical circular distributions involving “spacing-frequencies” (see
e.g. Holst and Rao (1980), Holst and Rao (1981), and Rao and Mardia
(1980)) will be investigated elsewhere.
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