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The observation of emergent particles in condensed matter physics such as phonons, holes, 

and recently magnetic monopoles [1] may lead one to speculate that real particles  

themselves could exist as emergent properties of a space-time lattice. There are many 

examples in the literature of the Dirac equation being supported by a lattice structure 

[2,3,4,5], related, for example, to the physics of ice [6] or of graphene [7]. In particular the 

case of the Dirac equation on the ice lattice is of potential practical interest as ice models 

can now be realised in a variety of new experimental systems, including spin ice materials 

[1] and artificial micromagnetic arrays [8]. We noticed that a Reichenbach causal net [9] 

has the same topology as an ice lattice and hence, if formulated in space-time, might 

support a version of relativistic quantum mechanics. In this paper we explore this idea at 

its simplest level. We propose a causal net for the free motion of a particle based on a 

relational concept of time as an ordered series of possible events that are linked by a 

principle of common cause. The causal net is 1+1 dimensional but applies along the 

direction of motion of the particle in three dimensions. It is reminiscent of the Feynman 

chequerboard [2] and the ice model [6] but differs from both in important respects. The 

causal net appears to support the 3+1 dimensional Dirac equation [10] for a free fermion 

and hence the Schrödinger equation in the low velocity limit. The causal net idea gives an 

intuitive picture of relativistic quantum mechanical motion and the origin of quantization 

although it is not a complete re-derivation of conventional quantum mechanics, partly 

because the space-time is discrete, and partly because it does not automatically imply a 

principle of superposition. If however we identify a causal net as representing a Dirac state 

vector then superposition of nets allows a development more consistent with conventional 

quantum mechanics. We therefore suggest that a more detailed study of effective quantum 

mechanics on causal nets, based on the transparent underlying concepts of causality and 

probability, might be a fruitful exercise. 

The question of whether time is absolute or relational dates back to the days of Newton and 

Leibniz and is enshrined in the Leibniz–Clarke correspondence [11]. Here we adopt a relational 

view of time as an ordered series of closely spaced events. From this perspective a classical 

particle trajectory could appear as a statistically correlated series of events in space-time (for 

example, a series of actual observations). If the correlation is perfect then one may say that an 

event at one point in space “causes” the event at the next point, providing a Newtonian 

trajectory. If the correlation is imperfect, but greater than that resulting from statistical 

independence, then adjacent events in space are implied to have a common cause originating at 

previous time [9]. 
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Reichenbach [9] argued in quite general terms that a satisfactory definition of time could only be 

obtained on the basis of a principle of common cause. By this he meant that if two events (A,B) 

occur repeatedly with greater frequency than complete statistical independence predicts (ie. 

P(A,B)>P(A)P(B)) then there exists an event C at previous time such that the fork ACB is 

“conjunctive”, or has one side open (see Figure 1). A network of such conjunctive forks 

constitutes a causal net in which time is ordered and events may be considered simultaneous only 

when they share a common cause. 

Figure 1: Reichenbach „conjunctive‟ fork linking events A and B with common cause C 

 

It is widely accepted that quantum mechanics cannot be developed from a basic application of 

Reichenbach‟s principle of common cause with a single conjunctive fork since general quantum 

mechanical statistics violate the principle [12]. Here we consider a modified framework where a 

complete causal network of possible events is comprised of conjunctive forks such that each 

possible event has two effective local common causes or screening factors. Adjacent possible 

events on the net that are simultaneous are thus considered to share a common cause. It appears 

that, at least in the simple case we consider, this allows our common cause principle - based on 

the simultaneity of neighboring possible events - to be applied consistently with quantum 

statistics. 

To construct the causal net for a particle motion in space-time, we consider a 1 dimensional 

space aligned with the direction of particle motion, and embedded in 3 dimensional space. In this 

1 dimensional space the simplest causal net that satisfies our definition of simultaneity is a 1+1 

dimensional “diamond” lattice with causal links connecting the lattice points as in Figure 2. Note 

that this is topologically similar to an ordered ice type lattice [6]. Each causal connection is 

defined by a connecting arrow giving a definite lineal order and an associated probability. Each 

vertex on the causal net represents a possible event – meaning a possible observation of the 

particle - and has two incoming and two outgoing causal connections so that each point has an 

effective common cause. Starting at a vertex and following an outgoing arrow at random at each 
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subsequent vertex describes a „causal chain‟ as a series of possible events. The causal net thus 

describes the connectivity between all causal connections and can statistically model all future 

possibilities. Measurement or observation at a vertex or a region of the net provides, through 

Bayesian statistics, a re-evaluation of these probabilities after a measurement.  

Figure 2: Causal net with common cause with causal chain from X to Y 

 

 

In this model time and space can be discretely “counted” by attaching an integer to each of the 

vertex points but there is no underlying continuous space-time. To relate to conventional 

mechanics we  interpolate this set of integers by a set of real number coordinates. Expecting that 

space and time have different dimensions we need to introduce a constant c with dimensions 

[space/time]. The net is then made up of elementary triangles labeled with (  ,    ,     ) as 

shown in Figure 3. We have not yet added any specific interpretation to these quantities. To 

guarantee invariance of causality on the net we impose c the speed of light [13]. Since, from 

geometry, 
  

   
        , we then identify    and    as relativistic space-time intervals in an 

observer frame S and     as the particle proper time interval in its rest frame   . The net 

geometry guarantees the invariant space-time interval 

                      

(1) 

Having abandoned the absolute concept of space-time we need to define the observed velocity in 

terms of finite differences. The definition adopted is           which we equate to the 

expectation of the velocity on the causal net. The two time intervals are then related by      

 

X 
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     where   is the Lorentz factor              , specifying the net angles       
 

 
        

 

 
 .  

Figure 3: The space-time „triangle‟ for the causal net 

 

 

We now specialize to the case of the motion of a free particle. Clearly equation (1) can be scaled 

by a factor m which we interpret as the particle rest mass. Rearranging (1) we then have the 

relativistic dispersion relation              where   is the particle energy        and  

      the momentum.  

By construction the net describes only physically admissible motions of the particle. Experience 

shows that real particle trajectories obey a principle of least action – that is the integral      is 

stationary. On our net if the action      differed for different trajectories then this would rule 

some trajectories as physically inadmissible. Therefore we conclude that      is the same on 

the net for all paths between two points which means that     is a constant   for valid nets. The 

possible paths followed by a particle are also analogous to Feynman paths [14] but the geometry 

of the net results in all vertices for constant    having the equivalent action when the relativistic 

Lagrangian           is used. The construction of the net with simultaneous possible events 

occurring for equivalent proper time is also similar to Malament‟s [15] standard simultaneity 

condition where actual simultaneous events lie on a hyperplane orthogonal to the particle world-

line and we shall see that many of the symmetries we derive for the causal net are consistent with 

his conditions for valid hypersurfaces. 

This completes our geometrical description of the causal net. We see that the causal net is 

consistent with special relativity but that mechanical concepts such as mass, momentum and 

energy are projected onto an ordered set of possible observations or events. These events obey 

the normal rules of probability and are imperfectly correlated, hence giving an indeterminism to 

particle motion. Thus a particle in its own rest frame    over interval     moving at a speed     in 
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frame S can move to a position     in time   . This produces a random trajectory in space-time 

(see Figure 2). 

Figure 4: A vertex (1,2) on the causal net with associated probabilities 

 

 

 

Consider an individual vertex on the causal net and label the incoming probabilities on row 1 

     and      and outgoing probabilities on row 2       and      (Figure 4).  Probability is 

conserved at the vertex and the total probability at a vertex is given by               . If the 

average velocity measured on the net is uniform then           and          . This implies 

that the probabilities „cross‟ at each vertex without actually interfering although the probabilities 

are coupled. If we consider normalized branching probabilities at the vertex defined as       

         then the expected velocity at the vertex is 

      
  

  
                 

(2) 

The branching probabilities are then given by 

       
     

  
          

     

  
 

(3) 

From this we can see that in the low velocity limit        then         and          and in 

the high velocity limit       then                  The branching ratio   can be written as a 

function of   or the net angle  . 
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(4) 

Using the branching probability (4) we can write a non trivial matrix equation linking the 

probabilities 

   
    

    
   

  
    

  
    

    
  

(5) 

We now show how this equation is consistent with the quantum mechanics of the particle.  

First notice that identifying the net constant    with Planck‟s constant h provides the de Broglie 

relation       [16] with        , and a Heisenberg like relation          [17,18]. 

Now a general way of forming the probabilities      for the branch (i,j) is through a vector dot 

product                  with                
          with real components that depend on the 

proper time    at the net vertices. The probability is invariant in the rest frame of the particle and 

equivalent to a gauge relationship that conserves probability in    so using the relativistic 

invariance                 we can write the vector as  

            
     

     
        

             

             
        

               
               

  

(6) 

Where x and t are defined at the discrete net vertices. We can rewrite equation (5) as 

   
    

    
    

   

     
      

    

    
  

(7) 

which can be alternatively expressed in terms of a unique transformation matrix   

   
    

    
        

    

    
  

(8) 

where 
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(9) 

Here we recognize    as the Dirac Hamiltonian for a free particle[19] with defined momentum 

p.  

We see that the relational concept of time gives rise to many of the features of relativistic motion 

both at the classical and quantum mechanical level. To connect with the complete quantum 

mechanics we note that equation (9) can be put in the conventional form [10,19] by assuming 

that space-time is locally differentiable at the vertex allowing us to use the usual matrix operator 

      to replace the momentum eigenvalues p writing  

 
         

                   
  

  
 

(10) 

where we have replaced the real vector    with  the complex Dirac spinor   for the free particle. 

The net is consistent with the Foldy-Wouthuysen representation [20] where the positive and 

negative energy states are decoupled through a rotation of   of the Dirac Hamiltonian. In the 

above discussion we have considered only the positive energy states and the net effectively 

propagates a pair of 2 component spinors 

    
 

 
                                           

  

           
 

 
                                             

(11) 

corresponding to      spin and these two states are weighted by the branching probabilities on 

the net. From this representation we can see how the 3+1 dimensional problem reduces to a 1+1 

dimensional space-time, since the causal net is constructed parallel to the momentum direction 

      in space. The Foldy-Wouthuysen states correspond with our framework where the 

Hamiltonian and velocity operator satisfy their classical analogues. Importantly, in this 

representation, establishing an exact particle position is impossible (there is only a mean position 

operator) and a particle is viewed as spread out over a finite region of about a wavelength which 

is consistent with our net picture since we cannot localize a particle between two adjacent net 

vertices without an averaging over net vertices being performed in a measurement. 
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Note that the matrix   above is a unitary, orthogonal matrix which provides an SU(2) group 

transformation corresponding to an improper rotation – that is a rotation preceded by an 

inversion. It is not the same as the transfer matrix derived in [6] for ice-type models, and relates 

to proper time rather time in the observer frame as considered there. The matrix provides the 

transformations for the probabilities          and  probability amplitudes       . 

Importantly because      there automatically exists only two levels of symmetry at the 

vertex and the causal net provides a dual existence to both the probabilities and the underlying 

probability amplitudes. Since it is an improper rotation the symmetry determines a preferred axis 

which provides helicity along the axis of movement. This provides the property of spin when 

projected onto different spatial axis through the operator      . 

It is worth emphasizing that the full Dirac equation arises only when we impose a continuous 

space-time and complex probability amplitude on the causal net. In contrast the quantization is 

automatically provided by the net and does not rely on the formalism of quantum mechanics. To 

illustrate this consider the relativistic particle in the (1 dimensional) box problem. For a potential 

well of depth V and width L bound states exist for a “forbidden zone” given by imaginary 

momentum states in the potential region. Now from the causal net model we can consider there 

to be an integer number n of net vertices to be contained in the well. This provides the 

quantization condition       giving quantized momentum states        . This 

corresponds to the solution of the 1+1 dimensional Dirac equation [21] and reduces to the 

Schrödinger particle in the box problem in the non relativistic limit. Thus for the particle in say 

its n=2 state then there are 2 space events on the net that can occur at the same time with equal 

probability. 

Although the causal net appears to support the Dirac equation for free particle motion the net 

concept itself does not naturally imply a principle of superposition. We briefly consider how a 

principle of superposition might be achieved. The projection of a causal net of events onto space-

time in our model is qualitatively similar to the projection of a Dirac state vector onto space-time 

to give a wavefunction [22]. Since we can add an arbitrary phase in equation (6) for    whilst 

preserving the probabilities (a gauge invariance) we can define a complete set of possible causal 

nets for a specified momentum state. These nets are adjacent, with non overlapping vertices, and 

map out a wavefunction defined in continuous space-time         for a macroscopic observer 

(who views space-time as virtually continuous). An ensemble of causal nets with different 

momentum states corresponds to superposition of the wavefunction in quantum mechanics, and 

thus, by summing probability amplitudes of overlapping vertices from nets is equivalent to 

superposing different probability amplitudes. This analysis can be extended to an EPR type 

experiment with parallel spin settings [12] and recent similar experiments [23]. For two particles 

there exists a set of possible pairs of nets corresponding to different experimental setups and if a 

particular spin measurement direction is chosen at one detector then a unique pair of nets is 

selected which is mutually exclusive to all the other pairs of nets existing in the initial set. 
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We can perhaps consider a common physical analogy for the causal net. Combining the vectors 

  or probability amplitudes in a linear manner is analogous to combining AC currents in an 

electrical circuit linearly to preserve phase before calculating power emitted. For the case of a 

free particle we previously noted that           and           so the causal net is analogous 

to electrical currents „crossing‟ in wires at each vertex and the probability corresponding to the 

total instantaneous power. 

The case we have considered is that of a free particle but we could include a potential V on the 

causal net since E can be replaced by E-V in the construction of the net and the branching ratios.  

Between two media with different potentials the net is compressed or stretched in space in the 

potential region with a form similar to Snell‟s Law                    . We can write (9) 

as 

 
          

           
   

 

   
 
     

          
  

   
 

(12) 

The probability current is conserved at a potential barrier if we consider the relativistic change in 

probability across the barrier arising from Lorentz contraction/expansion.  

It is interesting to consider the transition from quantum to classical behaviour.  For massive 

objects since         from the uncertainty relations when p is large – true for high mass or 

virtually any velocity - then    is small and uncertainty in x is small relative to the size of the 

object. The object can be well localized or resolved on the net and is effectively non quantum 

although it can be relativistic.  

In summary we have explored the possibility that a Riechenbach-like causal net can generate a 

form of relativistic quantum mechanics that includes emergent Dirac particles and many of the 

usual observed quantum phenomena. The causal net accommodates a transition from classical to 

quantum behavior and the quantum measurement process reduces to Bayesian statistics when net 

vertex states are irreversibly measured, providing an order to the flow of time. The casual net 

model provides a relational space time similar to that envisaged by Liebniz [11], though differing 

in the sense it considers ordering of possible, as well as real, events. Since causal net vertices 

represent possible events, it is impossible to say whether a particle itself has local reality between 

events when it is observed and only when an actual measurement occurs can we definitely say 

that the region of space-time has reality and an existence.  Interestingly this provides a model for 

the universe in which the next time „slice‟ of possible reality is simply computed [24] from the 

probabilities held in the previous time slice. Obviously this is an essentially realist interpretation 

of space-time – that both space and time exist outside the human mind. We feel that the value of 

our causal net approach lies mainly in the clear, conceptual outline it suggests for combining 
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special relativity and quantum mechanics and the possible description it provides for many 

quantum phenomena on the fundamental basis of causally linked events.  
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