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• ABSTRACT: We give a possible interpretation of the Xi-function of Riemann as the 

Functional determinant  ( )det E H−  for a certain Hamiltonian quantum operator in 

one dimension  
2

2 ( )
d

V x
dx

− +  for a real-valued function V(x) , this potential V is 

related to the half-integral of the logarithmic derivative for the Riemann Xi-function, 
through the paper we will assume that the reduced Planck constant is defined in units 
where 1=h  and that the mass is 2 1m =  
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RIEMANN FUNCTION AND SPECTRAL DETERMINANTS 
 
 
The Riemann Hypothesis is one of the most important open problems in mathematics, 

Hilbert and Polya [4] gave the conjecture that would exists an operator 
1
2

iL+  with  

†L L=  so the eigenvalues of this operator would yield to the non-trivial zeros for the 
Riemann zeta function, for the physicists one of the best candidates would be a 

Hamiltonian operator in one dimension  
2

2 ( )
d

V x
dx

− +  , so when we apply the 

quantization rules the Eigenvalues (energies) of this operator would appear as the 
solution of the spectral determinant  ( )det E H−  , if we define the Xi-function by  
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( ) / 2( 1)
( )

2 2
ss s s

s sξ ζ π −−  = Γ  
 

, then RH (Riemann Hypothesis) is equivalent to the fact 

that the function 
1
2

iEξ  + 
 

 has REAL roots only , and then from the Hadamard 

product expansion [1] for the Xi-function , then 

1
2 det( )
(1/ 2

iE
E H

ξ

ξ

 + 
  = −  is an spectral 

(Functional) determinant of the Hamiltonian operator, if we could give an expression 
for the potential V(x) so the eigenvalues are the non-trivial zeros of the zeta function, 
then RH would follow, we will try to use the semiclassical WKB analysis [8] to obtain 
an approximate expression for the inverse of the potential. 
 
Trough this paper we will use the definition of the half-derivative 1/ 2

xD f  and the half 

integral 1/ 2
xD f−  , this can be defined in terms of integrals and derivatives as 

 
1/ 2

1/ 2
0

( ) 1 ( )
(1/ 2)

xd f x d dtf t
dx dx x t

=
Γ −∫            

1/ 2

1/ 2
0

( ) 1 ( )
(1/ 2)

xd f x f t
dt

dx x t

−

=
Γ −∫    (1) 

 

The case 3/ 2
xD f  we can simply use the identity  ( )3/ 2 1/ 2

x x

d
D f D f

dx
= , these half-integral 

and derivative will be used further in the paper in order to relate the inverse of the 
potential V(x) to the density of states g(E) that ‘counts’ the energy levels of a one 
dimensional (x,t) quantum system. 
 

o Semiclassical evaluation of the potential V(x) : 
 
Unfortunately the potential V can not be exactly evaluated, a calculation of the potential 
can be made using the semiclassical WKB quantization of the Energy, in order to get 
the boundary condition for our Quantum system  (0) 0Ψ = , we impose the extra 
condition that for negative values of ‘x’ the potential becomes infinite (the particle can 
not penetrate in the regions whenever x <0 due to an infinite potential wall) ( )V x = ∞  
for x<0 , then in the WKB approximation we have the fractional-differential equation. 
 

( ) 1
3/ 2

0 0

( )
2 ( ) 2 ( ) 2

a a E E

x

dx dV x
n E E V x dx E V D

dV dx
π π

= −
−  

= − → − =  
 

∫ ∫      (2) 

 
Here we have introduced the fractional integral of order 3/2 , for a review about 
fractional Calculus we recommend the text by Oldham [11] for a good introduction to  
fractional calculus , a solution to equation (2) can be obtained by applying the inverse 
operator 1/ 2

xD  on the left side to get 
 

1/ 2
1

1/ 2

( )
( ) 2

d n x
V x

dx
π− =         

1/ 2
1

1/ 2

( )
( ) 2

d g x
V x

dx
π

−
−

−=       ( )
0

( ) n
n

dn
g x x E

dx
δ

∞

=

= = −∑      (3) 
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Here n(E) or N(E) is the function that counts how many energy levels are below the 

energy E , and g(E) is the density of states  
0

( ) ( )n
n

g E E Eδ
∞

=

= −∑  , for the case of 

Harmonic oscillator ( )
E

N E
ω

=  so using formula (2) and taking the inverse function we 

recover the potential   
2 2

( )
4
x

V x
ω

= ,which is the usual Harmonic potential for a mass 

2 1m =  a similar calculation can be made for the infinite potential well of length ‘L’ 
with boundary conditions on  [0, )∞ to check that our formula (3) can give coherent 

results. In many cases (Harmonic oscillator) the quantization condition 
1

( )
2

N E +  gives 

better results than simply setting N(E) so our relation between the inverse of the 
potential and the counting function for states (Energies) of the 1-D Hamiltonian with a 

general mass of ‘m’ takes the form 
2 1/ 2

1
1/ 2

2 1
( ) ( )

2
d

V x n x
m dx
π−  = + 

 

h
 . This is a 

consequence of the WKB quantization formula  
1

2
2C

pdq n π = + 
 ∫ h . 

 
o Numerical calculations of functional determinants using the Gelfand-Yaglom 

formula : 
 
In the semiclassical approach to Quantum mechanics we must calculate path integrals of 

the form  [ ] 1

det
H

V

D e
H

φ φφ − =∫  and hence compute a Functional determinant, one of 

the fastest and easiest way is the approach by Gelfand and Yaglom [2] , this technique is 
valid for one dimensional potential and allows you calculate the functional determinant 
of a certain operator ‘H’ without needing to compute any eigenvalue, for example if we 
assume Dirichlet boundary conditions on the interval [0, )∞  

( )
2

2 2 ( )
0

(0)
0

0

( )det ( )
1

det( ) ( )

n z
n

n n
n

n

zH z z L
H L

λ

λλ

∞

∞
=

∞
=

=

++   Ψ
= = + =  Ψ 

∏
∏

∏
        L→∞       (4) 

  
Here the function   ( ) ( )z LΨ  is the solution of the Cauchy initial value problem      
 

2
2 ( )

2 ( ) ( ) 0zd
V x z x

dx
 
− + + Ψ = 
 

          ( ) (0) 0zΨ =        
( ) (0)

1
zd
dx

Ψ
=        (5) 

 
In the following section, we will discuss how to apply this theorem to evaluate 
functional determinants in one dimension plus the quantization condition  

1
( ) ( )

2
N E n E= +  to obtain a Hamiltonian whose Energies are precisely the square of 
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the imaginary part of the Riemann zeros 2
n nE γ=  and so the functional determinant of 

the Hamiltonian is the Riemann Xi-function  

1
det( )2

1 det( )
2

i z
E H

H

ξ

ξ

 +  −  =
− 

 
 

 .  

 
 

o Toy models of Functional determinants: 

As a toy model of this method , let be the Sturm-Liouville problem 
2

2

( )
( )n

d y x
E y x

dx
− =  

with boundary conditions (0) (1) 0y y= =  , this problem can be easily solved to prove 
that the Energies and the functional determinant are the following  
 

2 2
nE n π=      1,2,3,...n =     

( )
2 2

1

sin
1

n

x x
nx π

∞

=

 = − 
 

∏        (6) 

 
If we use the expansion of the cotangent plus the Sokhotsky’s formula 

1 1
( )i x P

x i x
πδ

ε
 = − +  +  

         2 2 2 2
1

cot( ) 1 1
2 2 reg

n

x
x x x n iπ ε

∞

=

− =
− +∑    (7) 

 
The factor iε  is introduced in order (18) to be regular at the points 2 2n π for any positive 
integer ‘n’ bigger than 1 if we take the imaginary part inside (18) we have that  

( )2 2 2
2

1

1 cot( ) 1
2 2 reg n

x
mg x n

x x
δ π

π

∞

=

 
ℑ − = − − 

 
∑   making the substitution x E→  the last 

term is just the derivative of  N(E) in the case of the Infinite potential well so in formal 
sense (theory of distributions) one expects that the number of eigenvalues of the 

problem  
2

2

( )
( )n

d y x
E y x

dx
− =   is given by the following  formal  formula 

1 sin
( )

reg

E
N E Arg

Eπ
 

=   
 

 . Here ‘reg’ means that we should replace the factor  

( ) 1
x a

−
−  (singular at the point a) by the distribution  ( ) 1

x i aε −
+ −  with  0ε →   , hence 

one could hope that the same would be valid for the Riemann Xi-function , so if we 
repeat our same argument for the Riemann Hypothesis we find 
 

1 1
( )

2 reg

N E Arg i Eξ
π

 = + 
 

   2
0

' 1 1
2 2

n

nreg n

a
i x

x ix
ξ ε
ξ ε γ

∞

=

 + + =  + − 
∑   { }na R∈     (8)  

 

Another more complicate example is the differential equation  
2

2 0n

d y dy
x y
dx dx

λ+ + =  

with the boundary conditions (1) 0y =  and with a solution bounded as 0x→ , the 
equation for the Eigenvalues is given by the square of zeros of the Bessel function 

0 ( ) 0nJ λ = , the Eigenvalue counting function is then  ( )0

1
( ) ( )

reg
N E Arg J E

π
= , this 
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is another example of how the Eigenvalues of certain self-adjoint operator are related to 
the roots of a function that has a product expansion over its zeros in the form 

0 0 2
0

( ) (0) 1
n n

x
J x J

α

∞

=

 
= − 

 
∏  , in case Riemann Hypothesis is true (and the self-adjoint 

operator is a Hamiltonian whose potential is given in (14) ) the Gelfand-Yaglom 
theorem used to compute the quotient of two functional determinants , could be used to 
give a representation of the Riemann Xi-function 
 
 
A HAMILTONIAN WHOSE ENERGIES ARE THE SQUARE OF THE 
IMAGINARY PART OF THE RIEMANN NON-TRIVIAL ZEROS 
 
We can generalize these results to the case of a Hamiltonian whose Energies are just the 
square of the imaginary part of Riemann zeros 2

n nE γ=  , in this case the Energy 

counting function is given by 
1 1

( )
2

N E Arg i Eξ
π

 = + 
 

 (since now we are counting 

squares of the Riemann zeros), using the same reasoning we did in (3) to get the inverse 

of the potential , for this Hamiltonian operator 2
2 2( )x V x H−∂ + =   

2
2

2x

d
dx

∂ =   we get as  

the following expression. 
 

1/ 2
1

2 1/ 2

1 1 1
( ) 2

2 2
d

V x Arg i x
dx

π ξ ε
π

−   ≈ + + +  
  

  0ε →   x > 0    (9) 

 
In this case the functional determinant of this Hamiltonian should be 
 

( ) ( )
( )

2 0
2

02

0

( ) 1/ 2det
1

det( ) 1/ 2

n
n

n n
n

n

E z i zH z z
H E

ξ

γ ξ

∞

∞
=

∞
=

=

− +−  
= = − = 

 

∏
∏

∏
    z > 0   (10) 

 
In this case the Hamiltonian would be bounded so 2

2 0 199.750490..H γ≥ =  since we 
are dealing with 1-D potential the functional determinant inside (15) can be calculated 
using the Gelfand-Yaglom Theorem and it will be equal to 
 

( ) ( )
2

(0)
2

det ( )
det( ) ( )

zH z L
H L

− Ψ
=
Ψ

 with       ( )2 ( )
2 ( ) ( ) 0z

x V x z x−∂ + − Ψ =     (11) 

 

Plus the initial value conditions  ( ) (0) 0zΨ =  and  
( ) (0)

1
zd
dx

Ψ
=  . 

 
Unfortunately , equation (8) can not be solved exactly , and we will have to use the 
WKB approximation in order to obtain the function ( ) ( )z xΨ  
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( ) 1/ 4( )
2 2 2

0 0

( ) ( ) exp ( ) exp ( )
x x

z x z V x C i z V t dt C i z V t dt
−

+ −

     Ψ ≈ − − + − −    
     

∫ ∫   (12) 

 
0C C+ −+ =  since ( ) (0) 0zΨ =  . Another equivalent formulation of Gelfand-Yaglom 

theorem applied to Riemann Hypothesis would include the quotient of 2 functional 
determinants  
 

( )
( )

2 ( )
2

2 ( )
0

1
det ( ) 2
det( ) ( ) 1/ 2

z
x

z
x free

i zV z L
V z L

ξ

ξ

 + −∂ + − Ψ  = =
−∂ + − Ψ

    L→∞  ,  0 0V =       (13) 

With the initial conditions, ( ) ( )(0) 0 (0)z z
freeΨ = = Ψ  and   

( )( ) (0)(0)
1

zz
freedd

dx dx

ΨΨ
= =   

(Also if we add a term 
1
4

 to the potential 2 ( )V x  inside (14) then the eigenvalues wouls 

be 
2 21

4 ns γ= +  the square of the modulus of the Riemann Zeros+) 

The condition for the determinant to be proportional to  
1
2

i Eξ  + 
 

 is a necessary and 

sufficient condtion to prove RH,  due to the self-adjointness of  †
2 2H H= , the condition 

for the potential    0ε →  (given in (14) in an equivalent form) itself is not enough since 
there could still be some imaginary zeros of the Riemann Xi-function that would not 
appear inside the spectrum of the Hamiltonian, note that this is similar what it happened 
with the Quantum mechanical model for the zeros of the sine and Bessel functions 

( )sin x   , 0 ( )J x . As we have pointed out before  ( ) ( )
reg

Argf x Argf x iε= +  , so 

'( ) 1
( )

f x i dn
m

f x i dx
ε
ε π

 +
ℑ = − 

+ 
 is only nonzero for the values  ( ) 0if x = , n(x) here ‘counts’ 

the zeros of f(x). 
 

o Inverse of the Potential for x>0  x=0  and x<0 : 
 
Since (9) is only valid for positive ‘s’ what happens for 0s ≤  ?, the idea is that for 
negative E (or s) the Eigenvalue counting function 

2

( ) 1
E

N E
γ ≤

= ∑  is equal to 0 (there are 

no negative eigenvalues) in this case the equation for the inverse potential and the 
potential turn out to be of the following form 
 

   

1/ 2

1 1/ 2

2 1 1
rg   x>0

( ) 2 2

0                                           x 0

d
A i x

V x dx
ξ

π−

   + +   =    
 ≤

   so  ( ) 0V x =  for   x 0≤    (14) 
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And for positive ‘x’ we have to invert the function 
1/ 2

1/ 2

1 1 1
2 rg

2 2
d

A i x
dx

π ξ
π

  + +  
  

 

, from (36) we get that there is a potential barrier at x=0 so we must impose the 
eigenvalue conditions for our Schröedinguer equation as  (0) 0 ( )y y= = ∞ . 
 
From equation (14) and after inversion , we will get that for negative ‘x’ there is an 
infinite potential barrier so  ( )V x = ∞   for 0x <  , so the wave function of the system is 
0 at x =0 , this is not the unique possibility another alternative is to consider that the 
potential is EVEN  ( ) ( )V x V x= −  in this case the density of states will be a slightly 
different and the inverse of the potential will be defined for every ‘x’ in the form  

1/ 2
1

1/ 2

1 1 1
( ) rg

2 2
d

V x A i x
dx

π ξ
π

−   ≈ + +  
  

 , in this case there are 2 inverses, we must 

take the one with  ( ) 0V x ≥  x R∈ , so all the energies are positive  

0nH E
φ
= > .However if we make the potential ‘even’  ( ) ( )V x V x= −  the 

eigenfunctions will be odd or even  ( ) ( )( 1)nn nx xΨ = Ψ − −  and for even Eigenfunctions 
we can not warrant that  (0) 0Ψ =  so we are losing a boundary condition. 
  

o Riemann Weyl formula, Primes  Riemann zeros and the inverse of 1
2 ( )V x− : 

 
In Analytic Number Theory there is a formula now named the Riemann-Weyl formula, 
relating a sum over primes and prime powers to a sum involving the imaginary part of 
the Riemann zeros 
 

1

( ) 1 ' 1
( ) 2 2 (log ) ( ) (0) log

2 2 4 2n

i n ir
h h g n drh r g

nγ

γ π
π

∞∞

= −∞

Λ Γ   = − + + −   Γ   
∑ ∑ ∫    (15) 

 
If we insert inside ( )  the function 2( , ) ( )h r s s rδ= −  and use the Zeta regularization 
algorithm to avoid the problem  that the first sum on the right of ( ) is divergent 

log

1

( ) ' 1
2

i s n
reg

n

n
e i s

n
ζ
ζ

∞

=

Λ  = − + 
 

∑  we find the formula 

 

( )2 1 1 ' 1 1 log
2 22 2 2

' 1 1 ' 1 1
( )

4 2 4 24 4

regs i s i s
s s s

s s
i i s

s s

γ

ζ ζ ππδ γ
ζ ζ

ρ

   − = + + − −   
   

   Γ Γ
+ + + − =      Γ Γ   

∑
    (16) 

 

Where we have used the property of the Dirac delta function ( ) ( )
( )

'( )
n

n

x n

x x
f x

f x

δ
δ

−
=∑  

with  ( ) 0nf x =  inside (35) . Integration over ‘s’ gives the zeros counting function   

1 1
( )

2
n E Arg i Eξ

π
 = + 
 

, also if we approximated the sum ( )2 s
γ

πδ γ −∑  by an 
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integral over the phase space  ( )2
V

E H dpdqδ −∫  in 1-D we find the Abel integral 

equation  for the inverse of the potential  
1

2

0

( )
E dVdu

E C
duE u

ρ
−

=
−∫  , C R∈ , a similar 

equation can be obtainedusing differentiation with respect to ‘E’ inside  the Bohr-
Sommerfeld quantization conditions. 
 

o Smooth and oscillating part of the inverse 1
2 ( )V x−  : 

 
Also if we make use of the Zeta regularization technique and the Riemann-Von 
Mangoldt formulae [ ] , for big positive –x- the inverse of the potential can be written as  

1/ 2
1

2 1/ 2

1
2 ( )

2 smooth oscillating

d
V N x N

dx
π−  ≈ + + 

 
 , with 

 

2

1 ' 1 7 1
( ) log

4 2 2 4 2 8smooth

x x x x
N x Arg i x O

xπ π π π π
 Γ   = + − ≈ − + +     Γ     

   (17) 

 
(This smooth density of states fullfills Weyl’s law with dimension 1d ε= + (due to the 
logarithmic term inside the asymptotics) namely / 2( ) ( )d

smoothN E O E≈  ) 
 

( )
2

sin log1 1 ( ) 1
( )

2 logoscillating
n

x nn
N x Arg i x

n n

π
ζ

π π

∞

=

+Λ = + ≈ 
 

∑     x >0  (18) 

 
The last Fourier series is DIVERGENT , in order to obtain a correction to the smooth 
part of the inverse of the potential, we could approximate this sum by using only the 
first 10 20 or 100 primes in order to obtain a finite correction to the smooth part, the 
idea is that for big ‘x’ and in the sense of distribution theory the inverse of the potential 

should be almost equal to ( ) 1/ 21
2

0

( )n n
n

V A H x E x E
∞

−−

=

≈ − −∑  for some real A. The 

Fourier series inside (18) is divergent , so perhaps we can take only the first 10 20 or 
100 first primes in order to obtain a finite result for (18). 
 
Then by the Gelfand-Yaglom theorem the functional determinant of ( )2Det E H−  with 

energies 2
nE γ−  will be proportional to the Riemann Xi-function on the critical line 

( )2

0

1
2i

i

E i Eγ ξ
∞

=

 − ≈ + 
 

∏  , this determinant can be obtained by solving the initial 

value problem    ( )2
2 ( ) ( , ) 0x V x z z xφ−∂ + − =   with  ( ,0) 1x zφ∂ =  ,  ( ,0) 0zφ =  

 
So, from our method we can deduce that 

a) The Eigenvalue counting function ( )
0

( ) 1
n

n
E E n

N E H E E
∞

≤ =

= = −∑ ∑  with 2
n nE γ=  , 

is proportional to 
1 1

2
Arg i xξ

π
 + 
 

 by using Riemann-Weyl formula 
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b) The inverse of the potential inside 2
2 2( )x V x H−∂ + =  is proportional to the half-

derivative of  ( )
0

( ) n
n

N E H E E
∞

=

= −∑  , this is obtained by WKB analysis. 

c) The factor ( )
0

( ) n
n

N E H E E
∞

=

= −∑  can be approximated by the sum  

( ) ( ) ( )smooth oscillatingN E N E N E= +  , the smooth part obeys an asymptotic law 

called Weyl’s law ,namely  1/ 2( ) ( )smoothN E O E ε+=  for any real and positive 
epsilon, the oscillating part can be approximated by truncation of the divergent 

Fourier series 
( )

2

sin log( ) 1
logn

x nn
n n

π

π

∞

=

+Λ
∑  

d) The quotient of the two functional determinants  2( )Det E H−  and 2( )Det H−  

will be proportional ( for E >0 ) to the function 
1
2

i Eξ  + 
 

 , with   

2
2 2( )x V x H−∂ + =  and     

1/ 2
1

2 1/ 2

1
2 ( )

2
d

V N x
dx

π−  ≈ + 
 

 

e)  In our method , if we write the Energies as  2
n nE k=  , then in the WKB 

approximation the allowed values of the momentum operator ˆ d
p i

dx
→−  are 

given by  
2 2

logn n
n

n
p

n
π πγ
λ

= ≈ ≈  , with  
1

0
2 niζ γ + = 

 
  ( and ‘n’ integer )  

n Rγ∀ ∈ , the quantizied values of the momentum are the Riemann zeros, this is 
similar to the case of the infinite potential well ,where the momentum was 
quantizied and only the values np nπ=  n= 0,1,2,...  were allowed 

 
 
NUMERICAL CALCULATIONS AND THE LINK BETWEEN THE 
RIEMANN-WEYL FORMULA FOR PRIMES AND THE DENSITY OF 
STATES OF OUR HAMILTONIAN H2 

 
In this section we will explain why this method works, also we will compare our trace 
with the explicit formula of Riemann and Weyl relating a sum involving primes to 
another sum involving the imaginary part of the zeros. 
 

o Why this method should  work ?: 
 
Using the semiclassical approach we have stablished that the inverse of potential V(x) is 
related to the half-derivative of the eigenvalues counting function N(E) , for the case of 
the infinite potential well ( V=0 and L=1 ) the linear potential and the Harmonic 

oscillator, using the semiclassical WKB approach together with 
1/ 2

1
1/ 2

( )
( ) 2

d n x
V x

dx
π− =  
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(Half)- Harmonic oscillator  
2( )

4
x

V
ω

=     ( )
2
E

N E
ω

=          1 2
( )

E
V x

ω
− =     (19) 

 

Linear potential   V kx=        
3/ 22

( )
3
E

N E
kπ

=               1( )
x

V x
k

− =     (20) 

 

Infinite potential well  0V =    ( )
E

N E
π

=           1( ) 1V x− =        (21) 

 
(We assume that in (19) (20) and (21) the potential ( )   0V x x= ∞ <  ) 
 
In all cases and for simplicity we have used the notation  2 1m L= = =h  , here ‘L’ is the 
length of the well inside (21) , (19) and (20) are correct results that one can obtain using 
the exact Quantum theory , (21) gives 1 instead of the expected result  0V = , in order 
to calculate the fractional derivatives for powers of E we have used the identity 

1/ 2
1/ 2

1/ 2

( 1)
( 1/ 2)

k
kd E k

E
dE k

−Γ +
=
Γ +

 [11] , a similar formal result can be applied to Bohr’s atomic 

model for the quantization of Energies inside Hidrogen atom 2

13.6
E

n
= − . 

For the general case of the potentials  
   x 0

( )
     x<0

mCx
V x

 ≥
= 

∞
  with m being a Natural 

number our formula , 
1/ 2

1
1/ 2

( )
( ) 2

d n x
V x

dx
π− =  predicts that the approximate number of 

energy levels below a certain Energy E will be (approximately) 

1
1 1

2

1
1

( ) .
1 34

2

m
mC mN E E

m
π

−
+

 Γ + 
 =
 Γ + 
 

 , see [11] for the definition of the half-integral for 

powers of ‘x’ . It was prof. Mussardo [10]  who gave a similar interpretation to our 

formula  
1/ 2

1
1/ 2

( )
( ) 2

d n x
V x

dx
π− =  in order to calculate the Quantum potential for prime 

numbers, he reached to the conclussion that the inverse of the potential inside the 

Quantum Hamiltonian  
2

2 ( )
d

V x H
dx

− + =  giving the prime numbers as 

Eigenvalues/Energies of H , should satisfy the equation  
1/ 2

1
1/ 2

( )
( ) 2

d x
V x

dx
ππ− =  , here  

( ) 1
p x

xπ
≤

=∑  is the Prime counting function that tells us how many primes are below a 

given real number x , there is no EXACT formula for  ( ) 1
p x

xπ
≤

=∑  so Mussardo used the 

approximate expression for the derivative given by the Ramanujan formula  
1/ 2 1/

1/ 2
1

( ) ( )
log

n

n

d x n d x
dx n dx x
π µ −∞

−
=

 
=  

 
∑   [10]  , where  ( )nµ  is the Mobius function , a number-
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theoretical function that may take the values -1,0, 1  ( see Apostol [1] for further 
information ). 
 
A formal justification of why the density of states is related to the imaginary part of the 

logarithmic derivative of  
1
2

izξ  + 
 

 can be given as the following, let us suppose that 

the Xi-function has only real roots , then in the sense of distribution we can write 
 

2
0

' 1 1
2 2

n

n

n

a
i z

z iz
ξ
ξ ε γ

∞

=

 + =  + − 
∑              

'
Re ,n na s z

ξγ
ξ

 
= = 

 
              (22) 

 
Here, 0ε →  is an small quantity to avoid the poles of (16) at the Riemann Non-trivial 
zeroes  { }nγ  ,taking the imaginary part inside the distributional  Sokhotsky’s formula  

1 1
( )i x a P

x a i x a
πδ

ε
 = − − +  − + − 

 one gets  the density of states   

 
1 1

( ) log ( )
2E n

n

g E m iE Eξ δ γ
π

∞

=−∞

 = ℑ ∂ + = − − 
 

∑                 (23) 

 

Integration with respect to E will give the known equation  
1 1

( )
2

N E Arg iEξ
π

 = + 
 

 , a 

similar expression can be obtained via the ‘argument principle’ of complex integration  

( )
( )

1 '
( )

2 D E

N E z dz
i

ξ
π ξ

= ∫  , with D a contour that includes all the non-trivial zeros below 

a given quantity E , the density of states can be used to calculate sums over the Riemann 
zeta function (nontrivial) zeros, for example let be the identities 
 

0

1 1
( ) '( )

2
f dsf s Arg is

γ

γ ξ
π

∞
 = − + 
 

∑ ∫             log

1

' 1 ( )
2

is n

n

n
iz e

n
ζ
ζ

∞

=

Λ − + = 
 

∑         (24) 

 
Combining these both [6] we can prove the Riemann-Weyl summation formula 
 

1

( ) 1 ' 1
( ) 2 (0) log 2 (log ) ( )

2 2 4 2n

i n is
f f g g n dsf s

nγ

γ π
π

∞∞

= −∞

Λ Γ   = − − + +   Γ   
∑ ∑ ∫      (25) 

With  ( ) ( )f x f x= −  and ( ) ( )g x g x= −  and  
0

1
( ) cos( ) ( )g y dx yx f x

π

∞

= ∫  , if we are 

allowed to put  cos( )f ax=  into (20) ,then the Riemann-Weyl formula can be regarded 
as an exact Gutzwiller trace for a dynamical system with Hamilton equations  
 

2p x= &          
V

p
x

∂
= −

∂
&        

1 1
( )

2
n E Arg i Eξ

π
 = + 
 

    
1/ 2

1
1/ 2

( )
( ) 2

d n x
V x

dx
π− =    (26) 
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Then the Gutzwiller trace for this dynamical one dimensional system (x,t) is  

1

( )
( ) ( ) cos( log )smooth

n

n
g E g E E n

n

∞

=

Λ
= +∑  , for big E the smooth part can be 

approximated by  
log

( )
2smooth

E
g E

π
≈  . The sum involving the Mangold function  ( )nΛ  

is divergent, however it can be regularized in order to give the real part of  the 

logarithmic derivative of Riemann Zeta   
' 1

2
iE

ζ
ζ
 − + 
 

 

 
 

o Numerical solution of Schröedinguer equation: 
 

In order to solve our operator  
2

22 ( )
d

V x H
dx

− + =  with boundary conditions  

(0) ( ) 0y y L= =   610L =  we need to calculate the potential 2 ( )V x  , first since 
1/ 2

1
2 1/ 2

2 1
( )

2
d

V x Arg i x
dx

ξ
π

−  ≈ + 
 

 we may use the Grunwald-Letnikov definition of 

the half-derivative to write the inverse of the potential in the form 
 

1
2

0

1/ 22 1 1
( ) ( 1)

2 2
m

m

V x Arg i x m
m

ξ ε
πε

∞
−

=

    ≈ − + + −         
∑      (27) 

 
Here ‘ε ’ is an small step used to define the fractional derivative and  

( 1)
( 1) ( 1)

n n
m m n m
  Γ +

=  Γ + Γ − + 
 are the binomial coefficients , giving values of ‘x’ inside 

(27) we can compute the inverse of the potential 2 ( )V x , in order to get 2 ( )V x , we 

simply reflect every point  1
2( , ( ))j jx V x−  obtained in formula (27) across the line y x=  

to get the numerical values for the potential 2 ( )jV x  , we have solved numerically the 

Schröedinguer equation for 2 ( )V x  using this method to obtain 
 
 

n 0 1 2 3 4 
Roots2 199.7897 441.9244 625.5401 925.6684 1084.7142 

Eigenvalues 198.8351 441.9101 625.5950 925.6398 1084.6789 
 
The final step is to solve the initial value problem  ( )2 ( ) ( ) 0x zf x z y x−∂ + − =  with 

(0) 0zy =  and  
(0)

1zdy
dx

=  for 2( ) ( )f x V x= and for  ( ) 0f x =  (free particle) in order to 

obtain the functional determinant ( )
2

0 ( )

( )1 1
1

2 2 ( )
z

n n z free

y Lz
i z

y L
ξ ξ

γ

∞

=

    + = − =    
     

∏   L→∞  

 
Although we have considerEd an operator in the form  2 ( )x V x−∂ + , there exists a 
Liouville transform of variables that converts any second order Self-adjoint operator 
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( ) ( ) ( ) ( ) ( )
d dF

p u q u F u w u F u
du du

λ − + − 
 

 into an operator of the form  2 ( )x V x−∂ +  by 

using a new redefinition of the dependent and independent variables by usign the 
Liouville transform: 
 

0

( )
( )

u

u

w t
x dt

p t
= ∫             ( ) ( )

2
1/ 4 1/ 4

2

( )
( ) ( ) ( ) ( ) ( )

( )
d q x

V x w x p x w x p x
dx w x

−
= −    (28) 

 

And ( )1/ 4
( ) ( ) ( ) ( )x w x p x F xΨ = ,also the operator in the form 2 ( )x V x−∂ +  plus boundary 

condition is the easiest to work with , so we can apply the foundations of the Quantum 
mechanics to the case of the Riemann Hypothesis. 
 
 
 
APPENDIX A: FACTORIZATION OF A SECOND ORDER LINEAR 
DIFFERENTIAL OPERATOR INTO A PRODUCT OF TWO 
DIFFERENTIAL LINEAR OPERATORS. 
 
From the theory of the Ajoint linear operators, is easy to prove that any second order 
differential linear operator 2 ( )x V x−∂ +  can be expressed as the product  
 

( )
d

L A x
dx+ = +        ( )

d
L A x

dx− = − +      so   2 ( )x V x L L+ −−∂ + =  and    ( )†L L+ −=   (A.1) 

 
Where the potential V(x) is related to the function ‘A’ by the Ricatti equation  

2( ) ( )
dA

V x A x
dx

= +  , also the energies of  2 ( )x V x−∂ +  will be Real (since the operator is 

Hermitian) and positive since 
 

2 2 2| | | | | || || 0x xV L L L L V φφ φ φ φ φ φ+ − − −−∂ + = = = −∂ + ≥       (A.2) 

 
Formula (A.2) tells us that for 1-D systems ALL the energies of the Hamiltonian will be 
Real (since it is a Hermitian operator) and positive, then it can not exist an Unbounded 
Hamiltonian operator in one dimension , for the case of our Hamiltonian whose 
Energies are the square of the imaginary part for the non-trivial zeros of the Riemann 
Zeta function  2

2 2( )x V x H−∂ + =   , 2
n nE γ=  then we have the auxiliar Eigenvalue 

equation  ( ) ( ) ( ) ( )
df

L f A x f x i f x
dx

γ± = ± + = ±  . If we introduce the cahnge of variable 

inside (A.1)  logx u=  and put 
1
2

A =   the first term becomes the Theta operator  

u

d
u
du

Θ =  , if we also multiply all by  i− h  , we find that  i L+− h  is just the Berry-

Keating Hamiltonian   
1
2BK

d
i L H i u

du+
 − = = − + 
 

h h  whose Eigenvalues are the 

imaginary parts of the Riemann Zeta  zeros. The Theta operator appear inside the Berry-



 14 

Keating Hamiltonian because it is conjectured that the imaginary part of the zeros can 
be obtained by the quantization of a dynamical system that violates time-reversal 
symmetry so  ( , ( )) ( , ( ))u ut u t t u tΘ ≠ Θ − − , however for the square of the Berry-Keating 

(classical) Hamiltonian  2 2 2
bkH x p=  the time reversal symmetry is conserved under the 

change t t→− , the commutator of the 2 ladder operators involved in our definition of 

the Hamiltonian is  [ ], 2
dA

L L
dx+ − =  it only vanishes for the case of the A being a 

constant function of ‘x’ , for example in a Berry-Keating model. 
 
 
APPENDIX B: A CALCULATION OF THE POTENTIAL V(x) IN THE 
SEMICLASSICAL APPROXIMATION 
 
For big energies ‘E’ the number of Eigenvalues nE  less than E is given by the 

approximation  ( ) log
2 2
E E

N E
eπ π

 
≈   

 
, with 

0

1
!n

e
n

∞

=

=∑  , we can express the logarithm 

as 
1

log( )
x

x
ε

ε
−

≈  for some small ε  , now if we apply our formula  

1/ 2
1

1/ 2

2 ( )
( )

d N x
V x

dxπ
− ≈  to evaluate the potential , then we find 

 

( ) / 2
1 2 ( )
( )

e A x B
V x

επ ε
πε

− −
≈      so   

2

2 2( ) 4
( )
x B

V x e
A

εε ππ
ε

 +
≈   

 
   0ε →      (B.1) 

 

With the constants   

3
2

1
2

A

ε

ε

+ Γ  
 =
 Γ + 
 

   and 
3
2 2

B
π = Γ = 

 
 . Unfortunately we do not 

know how to obtain a closed expression for (B.1) in the limit 0ε → , so in general this 
expression (B.1) will depend on the value of epsilon chosen to define the logarithm 

(basis e)  
1

log( )
x

x
ε

ε
−

≈  , this potential  

2

2 2( ) 4
( )
x B

V x e
A

εε ππ
ε

 +
≈   

 
 behaves almost as 

a contant in the limit 0ε → , and also will be more accurate whenever x→∞ , for ‘x’ 
positive the derivative of the potential is positive , so for big ‘x’ the potential is almost 
constant although it grows , by solving the Schröedinguer equation  for our potential 

2
2

2 2
2 4

( ) n

d x B
e E

dx A

εε ππ
ε

 Ψ +
− + Ψ = Ψ  

 
, then the limit  2lim 1n

n
n

E
γ→∞

=  , with  

1
0

2 niξ γ + = 
 

 so the energies of the Quantum Hamiltonian  

2

2 2 24
( )
x B

p e
A

εε ππ
ε

 +
+   

 
 

should be asymptotic to the square of the Riemann (non trivial) zeros . 
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In order to improve this result , we should also take into account the half-derivative of 

the oscillating part of the zeros  
1

arg (log )
2

i s O sζ  + = 
 

 , if we could prove that  

1/ 2 1/ 2

1/ 2 1/ 2

1 1
arg log

2 2 2
d d x x

i x
dx dx eπ π π

  + <<<        
 for x→∞ , or that the half derivative of 

1
arg

2
i xζ  + 

 
 tends to 0  for x→∞  , this would make our approximation better for 

big Energies. For the boundary conditions we set (0) 0 ( )Lφ φ= = , with L will depend 

on epsilon ( ) ( )A B
L L

εε
ε π

−
= =  , since for this value the potential will become almost 

infinite , teh condition  (0) 0φ =  comes from the fact that for negative ‘x’ the potential 
is ∞  (infinite potential well)  
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