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Abstract

It is shown explicitly how to construct a novel (to our knowledge)
realization of the Poincare superalgebra in 2D. These results can be ex-
tended to other dimensions and to (extended) superconformal and (anti)
de Sitter superalgebras. There is a fundamental difference between the
findings of this work with the other approaches to Supersymmetry (over
the past four decades) using Grassmannian calculus and which is based on
anti-commuting numbers. We provide an algebraic realization of the anti-
commutators and commutators of the 2D super-Poincare algebra in terms
of the generators of the tensor product Cl1,1(R)⊗A of a two-dim Clifford
algebra and an internal algebra A whose generators can be represented
in terms of powers of a 3 × 3 matrix Q, such that Q3 = 0. Our real-
ization differs from the standard realization of superalgebras in terms
of differential operators in Superspace involving Grassmannian (anti-
commuting) coordinates θα and bosonic coordinates xµ. We conclude in
the final section with an analysis of how to construct Polyvector-valued ex-
tensions of supersymmetry in Clifford Spaces involving spinor-tensorial su-
percharge generators Qµ1µ2.....µn

α and momentum polyvectors Pµ1µ2....µn .
Clifford-Superspace is an extension of Clifford-space and whose symmetry
transformations are generalized polyvector-valued supersymmetries.

KEYWORDS : Clifford algebras; Supersymmetry; Polyvector-supersymmetry;
M, F theory superalgebras.

1 Clifford algebra realization of Supersymmetry

Clifford algebras have been a very useful tool for a description of geometry and
physics [4], [5]. In [5],[3],[6] it was proposed that every physical quantity is in fact
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a polyvector where the arena for physics is no longer the ordinary spacetime, but
a more general manifold of Clifford-algebra-valued objects : polyvectors. Such
a manifold has been called a pan-dimensional continuum [3] or C-space [1], [2].
The latter describes on a unified basis the objects of various dimensionality:
not only points, but also lines, surfaces, volumes,.., called 0-loops (points), 1-
loops (closed strings) 2-loops (closed membranes), 3-loops, etc.. It is a sort of
a dimension category, where the role of functorial maps is played by C-space
transformations which reshuffles a p-brane history for a p′-brane history or a
mixture of all of them, for example.

The above geometric objects may correspond to the well-known physical
objects, namely closed p-branes. Technically those transformations in C-space,
that reshuffle objects of different dimensions, are generalizations of ordinary
Lorentz transformations of spacetime events to C-space. In that sense the C-
space is roughly speaking a sort of generalized Penrose-Twistor space from which
the ordinary spacetime is a derived concept. Penrose’s twistor theory has been
generalized to Clifford algebras by [7] where the basic geometric forms and
their relationships are expressed algebraically. In addition, by means of an
inner automorphism of this algebra, it is possible to regard these forms and
relationships as emerging from an underlying pre-space.

In this section we show explicitly how to construct a novel (to our knowledge)
algebraic realization of the Poincare superalgebra in 2D. These results can be
extended to other dimensions and to (extended) superconformal and (anti) de
Sitter superalgebras. There is a fundamental difference between the findings
of this work with the other approaches to Supersymmetry (over the past four
decades) using Grassmannian calculus, and which is based on anticommuting
numbers. We provide an algebraic explicit realization of the anticommutators
and commutators of the super-Poincare algebra in terms of a two-dim Clifford
algebra generators and an internal algebra A, whose generators can be repre-
sented in terms of powers of a 3×3 matrix Q, such that Q3 = 0. The realization
differs from the standard realization of superalgebras in terms of differential
operators in Superspace involving Grassmannian (anti-commuting) coordinates
θα and bosonic coordinates xµ.

It is well known that the particle content of supersymmetric theories fall
under irreducible representations of Clifford algebras. The N extended super-
symmetry algebra in 4D Minkowski spacetime is based mainly on the anticom-
mutators {Qi

α, Qj
β} = 2δij(Cγµ)αβPµ, for i, j = 1, 2, 3, ...N ; and C is the charge

conjugation matrix. In the rest frame for massive particles m 6= 0, the anticom-
mutator takes the form of an algebra of 2n fermionic creation and annihilation
operators isomorphic to the Clifford algebra Cl(4n). Its unique irreducible rep-
resentation is 22n dimensional and contains both boson and fermions as required
by supersymmetry. In the massless case, there is no rest frame and there are
only 2n states that are classified according to helicity, rather than spin. In
ordinary Poincare supersymmetry, the anti-commutator is

{Qα, Qβ } =
1
2
CγµPµ (1.1)
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In D = 4 , with signatures −,+,+,+ one can find a charge conjugation matrix
C and its transpose CT obeying the properties

(Cγµ)T = (Cγµ). (Cγµν)T = (Cγµν) (1.2)

CT = −C, CγµC−1 = −γT
µ . C†C = CC† = 1, C−1γµνC = −γT

µν . (1.3)

The crux of our findings is that in D = 2, for example, one may find a
realization of the 2D Poincare superalgebra in terms of two-dim Clifford alge-
bra generators, and an additional algebra A, by expressing the supercharges
Qα, Qβ , α, β = 1, 2 as

Q1 = i Γ1 ⊗Q, Q2 = Γ2 ⊗Q (1.4)

and such that the anti-commutators are

{ Qα, Qβ } = { Γα ⊗Q, Γβ ⊗Q } = 2 δαβ ( 1⊗Q2 ) (1.5)

where Q, (Q)2 ≡ Q2 = P are two 3 × 3 matrix generators associated with the
second factor algebra A defined below in eqs-(1.18, 1.19). The representation
of the gamma matrices in 2D is a Majorana one given by purely imaginary
matrices Γ1,Γ2 (as opposed to real matrices)

Γ1 =
(

0 i
i 0

)
, Γ2 =

(
0 i
−i 0

)
, Γ1Γ2 = Γ3 =

(
1 0
0 −1

)
. (1.6)

The momentum operators can be represented as the tensor products

Pµ = Pµ ⊗ P =
1
2
Γµ(1− Γ3)⊗ P, µ, ν = 1, 2 (1.7)

where P = Q2 is one of 3 × 3 matrix generators of the algebra A described in
eqs-(1.18, 1.19) below. Using the relations in (1.7)

Γ1Γ1 = g11Γ1Γ1 = g11g11 1 = 1, Γ2Γ2 = g22Γ2Γ2 = g22g22 1 = 1 (1.8)

and {Γµ,Γ3} = 0, allows to evaluate

Γµ Pµ + Pµ Γµ = (1− Γ3) + (1 + Γ3) =
(

2 0
0 2

)
(1.9)

One should remark that because Pµ = 1
2Γµ(1 − Γ3) are now represented as

matrices in terms of a Cl1,1(R) algebra generators, one then has that ΓµPµ 6=
PµΓµ, and it is for this reason that one may choose the following ordering
procedure

2 Γµ Pµ ↔ Γµ Pµ + Pµ Γµ (1.10)

such that one can write the anti-commutators as

{ Qα, Qβ } = 2 δαβ (1⊗Q2) = (ΓµPµ + Pµ Γµ)αβ (1⊗ P) (1.11)
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since (ΓµPµ + Pµ Γµ)αβ = 2 δαβ , and Q2 = P, as displayed in the Appendix.
The most salient feature of the above equation is that eq-(1.11) has a one-
to-one correspondence with an ordinary anti-commutator relation of the form
{Qα, Qβ} = 2(ΓµPµ)αβ .

The explicit derivation of the other commutators

[ Pµ, Qα ] = 0, [ Mµν , Qα ] = (Γµν Q)α. (1.12)

[ Pµ, Pν ] = 0; [Mµν , Pρ ] = − gµρ Pν + gνρ Pµ. (1.13)

[ Mµν , Mρτ ] = gνρ Mµτ − gµρ Mντ + gµτ Mνρ − gντ Mµρ. (1.14)

and the verification of the graded super Jacobi identities ensuring the closure
of the superalgebra will be presented in the Appendix. We shall display in full
detail all the calculations showing how the 2D Poincare superalgebra can be
realized as the tensor product of two algebras Cl1,1(R)⊗A. In a way this is not
surprising since the Poincare superalgebra entails both bosonic and fermionic
generators and this explains the need to extend the Clifford algebra Cl1,1(R) (
with four generators) to the tensor product algebra Cl1,1(R)⊗A involving more
generators.

This procedure differs from the constructions based on Grassmannian vari-
ables. For example, in 4D one has the expression for chiral (anti-chiral) super-
charges, written in two-component spinor notation

Qα =
∂

∂θα
− iσµ

αα̇ θ̄α̇ ∂

∂xµ
. Q̄α̇ = − ∂

∂θ̄α̇
+ iθασµ

αα̇

∂

∂xµ
(1.15)

in terms of the matrices σµ
αα̇, µ = 0, 1, 2, 3, given by the unit and three Pauli spin

matrices, respectively; the Grassmannian (anti-commuting) coordinates θα, θ̄α̇

and the bosonic coordinates xµ.
To conclude, with the inclusion of the Appendix, we have found explicitly an

algebraic realization of the (anti) commutators of a 2D super-Poincare algebra
given entirely in terms of the generators of Cl1,1(R) ⊗ A and that differs
from the standard realization in terms of differential operators in Superspace
involving the Grassmannian (anti-commuting) coordinates θα and the bosonic
coordinates xµ.

To finalize this section, we should add that a construction of the so-called
”super Clifford algebras” as extensions of superconformal algebras SU(2, 2|N)
based on Z4 gradings of Clifford algebras has been provided by [13]. A Clif-
ford analysis of superspace based on Weyl-symplectic-Clifford and orthogonal-
Clifford algebras can be found in [14]. However, the approaches and results of
[13], [14] to superalgebras and supercalculus are very different from ours.

There are 8 generators in total, the double in the number of generators of
Cl1,1(R), given by

P1 = Γ1(1− Γ3), P2 = Γ2(1− Γ3), M12 =
1
2

Γ3 (1.16)
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corresponding to the two momentum (translation) operators and the 2D Lorentz
generator, respectively; and the additional generators

Q1 = i Γ1 ⊗Q, Q2 = Γ2 ⊗Q, Q, P, 1 (1.17)

such that
Q2 = P, Q P = P Q = Q3 = 0. (1.18)

The generators Q,P admit a representation in terms of the 3× 3 matrices

Q =

 0 1 0
0 0 1
0 0 0

 , Q2 = P =

 0 0 1
0 0 0
0 0 0

 , Q3 =

 0 0 0
0 0 0
0 0 0

 .

(1.19)
The unit operator 1 = (Q)0 of the algebra A can be represented as the unit
3 × 3 matrix, whereas the unit operator 1 of the Cl1,1(R) algebra is the unit
2× 2 matrix.

The authors [17] have studied a Z3 graded extension of supersymmetry, what
has been called hypersymmetry involving ternary algebraic extensions of Clif-
ford algebras and the Grassmanian where now θ3 = 0 (instead of θ2 = 0) and
the exterior differentials instead of obeying d2 = 0 obey now d3 = 0. A gener-
alized cohomology complex Q2

BRST = 0 → Q3
BRST = 0 and Qn

BRST = 0, n ≥ 2
has been analyzed by [18]. It is associated with a higher spin fields cohomology.
W∞ algebras are the higher conformal spins s = 2, 3, 4, .....,∞ extensions of the
Virasoro algebra in 2D and which have been extensively studied over the past
decades.

Our results in 2D can be extended to other dimensions. In particular, one
could try to find realizations of the N = 1 superconformal algebra in D = 4,
and its extensions, like the celebrated N = 4 superconformal algebra due to
the finiteness of the quantum theory resulting from the fact that the β function
for N = 4 super Yang-Mills theory vanishes. The connection among Clifford
algebras, conformal algebras and Twistors [7] deserves to be explored further,
and its supersymmetric extensions, within the algebraic formalism presented
here involving tensor products of a Clifford algebra with a judicious internal A
algebra. Speaking of Twistors, one should say that an intrinsic massless-like
structure is already operating in the choice of momentum operators (1.7) in
2D Minkowski spacetime. It is not difficult to see that the operators Pµ are
nilpotent P1P1 = P2P2 = P1P2 = 0 and that P1 = P2. The last relation is
reminiscent of the on-shell momentum condition for massless particles in 2D
Minkowski spacetime : −(p1)2 + (p2)2 = 0 ⇒ p1 = p2.

To finalize, we should add that the choice for the supercharges Q1 = i(Γ1)α
β⊗

Qa
b and Q2 = (Γ2)α

β⊗Qa
b , after inserting the spinorial indices in the 2×2 Gamma

matrices and the internal indices ( a, b = 1, 2, 3 ) of the 3× 3 matrix generator
Q, is also reminiscent of having quaternionic-valued spinors which carry an
additional internal SU(3) color-like index structure; i.e. 2D spinors whose two
entries are themselves quaternionic valued and which carry additional internal
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color-like labels represented by the indices a, b = 1, 2, 3 of the 3 × 3 matrix
generator Q. A theory of algebraic quark confinement involving a ternary and
non-associative structure (like in octonions) can be found in [17] and references
therein.

2 Polyvector Supersymmetry in Clifford Spaces

Clifford-Superspace is an extension of Clifford-space and whose symmetry trans-
formations are generalized polyvector-valued supersymmetries. Polyvector super-
Poincare algebras have been studied within a different context from the point of
view of M,F theory superalgebras in 11D, 12D, superconformal symmetries and
supertwistor dynamics by [8], [9], [15]. For this reason we believe we ought to
explore how to build the novel Polyvector Supersymmetic structures in Clifford
Spaces.

To begin, we shall revert to standard realizations of the superalgebra in
terms of differential operators. As a reminder [30] we recall that a 4D Ma-
jorana spinor ΨM can be written in a Weyl basis in terms of two Weyl spinors
χα, χ̄α̇ where α = 1, 2 and α̇ = 1̇, 2̇. Spinor indices are raised and lower by the
εαβ , εα̇β̇ , .... antisymmetric 2 × 2 matrices. This decomposition of a 4D Majo-
rana spinor into two-component Weyl spinors and the 4× 4 γ matrices in terms
of blocks consisting of σµ Pauli 2 × 2 matrices ( where σ0 is the unit matrix,
up to a sign ) is very convenient. The chiral ( antichiral ) covariant differential
operators in N = 1 superspace are

Dα =
∂

∂θα
+ iσµ

αα̇ θ̄α̇ ∂

∂xµ
. D̄α̇ = − ∂

∂θ̄α̇
− iθασµ

αα̇

∂

∂xµ
. (2.1)

and the chiral ( antichiral ) supersymmetry generators are

Qα =
∂

∂θα
− iσµ

αα̇ θ̄α̇ ∂

∂xµ
. Q̄α̇ = − ∂

∂θ̄α̇
+ iθασµ

αα̇

∂

∂xµ
. (2.2)

πα ≡ ∂

∂θα
, {πα, θβ} = { ∂

∂θα
, θβ} = δβ

α, (2.3)

π̄α̇ ≡ ∂

∂θ̄α̇
, { π̄α̇, θ̄β̇ } = { ∂

∂θ̄α̇
, θ̄β̇ } = δβ̇

α̇. (2.4)

{ ∂

∂θα
,

∂

∂θβ
} = 0, {θα, θβ} = 0, etc.... (2.5)

The Q’s and the D’s anticommute among themselves {Q, D} = 0 and the only
nonzero anticommutators are

{Dα, D̄α̇} = − 2i σµ
αα̇

∂

∂xµ
, {Qα, Q̄α̇} = 2i σµ

αα̇

∂

∂xµ
(2.6)
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Superfields form linear representations of supersymetry algebras. In general
these representations are highly reducible. The extra components can be elim-
inated by imposing covariant constraints like D̄α̇Φ = 0, DαΦ = 0 leading to
chiral ( anti-chiral ) superfields, respectively.

The anti-commutator associated with a Polyvector version of Poincare su-
persymmetry in ordinary spacetime (not in Clifford space) was provided by
[9]

{Sα, Sβ} =
∑

k

(CΓµ1µ2....µk)αβ W
(k)
0 µ1µ2µ2....µk

(2.7)

where α, β denote spinor indices and the summation over k must obey certain
crucial restrictions to match degrees of freedom with the terms in the left hand
side. These algebras [9] have the form g = g0 + g1, with g0 = so(V ) + W0

and g1 = W1, where the algebra of generalized translations W = W0 + W1 is
the maximal solvable ideal of g; W0 is generated by W1 and commutes with
W0 + W1. The matrix C is the charge conjugation matrix. Depending on the
given spacetime and its signature there are at most two charge conjugation
matrices CS , CA given by the product of all symmetric and all antisymmetric
gamma matrices, respectively. In special spacetime signatures they collapse
into a single matrix [8], [9] . These charge conjugation matrix C are essential in
order to satisfy the nontrivial graded super Jacobi identities.

For example, the M -theory superalgebra in D = 11 is

{Qα, Qβ} = (AΓµ)αβPµ +(AΓµ1µ2)αβZµ1µ2 +(AΓµ1µ2....µ5)αβZµ1µ2....µ5 . (2.8)

Pµ is the usual momentum operator; the antisymmetric tensorial central charges
Zµ1µ2 , Zµ1µ2....µ5 are of ranks 2, 5 respectively. The matrix A plays the role of
the timelike γ0 matrix in Minkowskian spacetimes and is used to introduced
barred-spinors. In spacetimes of signature (s, t) A is given by the products
of all the timelike gammas, up to an overall sign [8], [9] . Notice that the
summation over the k indices in the r.h.s is very restricted since the k = 1, 2, 5
sectors of the r.h.s yield in D = 11 a total number of 11 + 55 + 462 = 528
components which precisely match the number of independent components of a
32× 32 symmetric real matrix in the l.h.s given by (32× 33)/2 = 528.

The 12-dim Euclidean generalized supersymmetric F algebra was

{Qα, Qβ} = (CΓµ)αβPµ + (CΓµ1µ2)αβZµ1µ2 + (CΓµ1µ2....µ5)αβZµ1µ2....µ5 . (2.9)

together with its complex conjugation [8] . Other Hermitian versus holomorphic
complex and quaternionic generalized supertranslations ( ” supersymmetries” )
of M -theory were classified by [8]. The classification of the family of symmetric
matrices (Cγµ1µ2....µn)αβ is what restricts the type of terms that appear in the
{Qα, Qβ} anticommutator and depends on the number of space time dimensions
D, the signatures (s, t) and the rank n. A table of the allowed values of D, s, t, n
can be found in [15] .
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In particular, when D = 4 = 3 + 1, the {Qα, Qβ } is a symmetric matrix in
α, β with 10 independent components and which matches the degrees of freedom
of the Clifford-space momentum vector Pµ and the momentum bivector Pµν

given by 4 + 6 = 10, respectively. Therefore, in D = 4 one can postulate the
anticommutators in Clifford space of the form

{Qα, Qβ } =
1
2

(C Γµ Pµ + C Γµν Pµν )αβ . (2.10)

since there is an exact match in the number of degrees of freedom in the left
and right hand side and the matrix products yield a symmetric matrix in α, β.

The graded Jacobi identities are satisfied ensuring the closure of the super-
algebra

[Jµ1µ2 , Pρ1ρ2 ] = −ηµ1ρ1Pµ2ρ2 ± ... ; [Jµ1µ2 , Qα] = −(γµ1µ2)
δ

α Qδ (2.11)

{ Qα, Qβ } =
1
2
CγνPν +

1
2
Cγν1ν2Pν1ν2 (2.12)

[ Jµν , Jρτ ] = gνρ Jµτ − i gµρ Jντ + gµτ Jνρ − gντ Jµρ. (2.13)

and involves terms containing Pµ and Pµν . If one works with anti-Hermitian
generators there is no need to introduce i factors in the right hand side of the
above equations because the commutators of two anti-Hermitain operators are
anti-Hermitian. The closure of the superalgebra (2.10-2.13) was shown in [16].

A naive polyvector valued extension of a supercharge operator Qα =

∂

∂θα
− C (ΓµPµ + Γµ1µ2Pµ1µ2 + Γµ1µ2µ3Pµ1µ2µ3 + Γµ1µ2µ3µ4Pµ1µ2µ3µ4 )αβ θβ .

(2.14)
furnishing the putative anti-commutator

{Qα, Qβ} = −2 C (ΓµPµ + Γµ1µ2Pµ1µ2 + Γµ1µ2µ3Pµ1µ2µ3 + Γµ1µ2µ3µ4Pµ1µ2µ3µ4 )αβ .

(2.15)
will not work since there is no exact match in the number of degrees of freedom
in the left and right hand side of (2.15), and not all of the matrix products
in (2.15) are going to yield a symmetric matrix in α, β, after evaluating the
anti-commutator.

The momentum polyvectors in natural units of h̄ = c = 1 can be realized in
terms of differential operators as

Pµ =
∂

∂xµ
, Pµ1µ2 =

∂

∂xµ1µ2
(2.16)

Pµ1µ2µ3 =
∂

∂xµ1µ2µ3
, Pµ1µ2µ3µ4 =

∂

∂xµ1µ2µ3µ4
(2.17)
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The Clifford polyvector extension of a chiral superfield in 2D has the form
Φ(s, x1, x2, x12; θ1, θ2) where s, x1, x2, x12 are the scalar, vector and bivector co-
ordinates, respectively, associated with a polyvector in 2D. The chiral superfield
field can be expanded in powers of θ as

Φ(s, x1, x2, x12; θ1, θ2) = φ(s, x1, x2, x12)+ θα Ψα(s, x1, x2, x12)+θ1θ2 F (s, x1, x2, x12).
(2.18)

the powers of θ’s terminates due to the Grassmanian nature of the coordi-
nates θ1θ1 = θ2θ2 = 0; {θ1, θ2} = 0; θα is a 2D Majorana spinor with real
Grassmanian-valued (anticommuting) entries θ1, θ2 . After some straightfor-
ward algebra and using the Grassmanian integration rules in chiral superspace
, the action becomes

S = − i

4π

∫
[dsdx1dx2dx12] [d2θ] D̄αΦ(s, xµ, xµν ; θ1, θ2) DαΦ(s, xµ, xµν ; θ1, θ2) =

− 1
2π

∫
[dsdx1dx2dx12] [ (∂µφ) (∂µφ)− iΨ̄γµ∂µΨ− FF + ........ ]. (2.19)

where the ellipsis ..... terms involve the additional contribution due to the scalar
and bivector derivatives

(
∂φ

∂xµν
)2, (

∂φ

∂s
)2, Ψ̄ γµν ∂Ψ

∂xµν
, Ψ̄

∂Ψ
∂s

. (2.20)

terms.
The natural supersymmetric extension of the Clifford space polyvector co-

ordinates involves the introduction of spinor-polyvectors coordinates

Xµ ↔ Ψµ
α, X [µ1µ2] ↔ Ψ[µ1µ2]

α , ......., X [µ1µ2....µn] ↔ Ψ[µ1µ2....µn]
α (2.21)

and such that the generalization of the anti-commutators to Clifford spaces
(when D ≥ 1) is given by the anti-commutators involving spinor-vectorial (
spinor-tensorial ) charges

{Qα
µ, Qβ

ν} = {Qα ⊗ Γµ, Qβ ⊗ Γν} =
1
2
{Qα, Qβ} ⊗ {Γµ, Γν} +

1
2

[Qα, Qβ ]⊗ [Γµ, Γν ] = {Qα, Qβ} ⊗ gµν 1 + [Qα, Qβ ]⊗ Γµν (2.22)

where {Qα, Qβ} is given by an expression like eq-(2.7) symmetric in the α, β
indices, and [Qα, Qβ ] must be given by a combination of matrix products which
furnish an overall antisymmetric matrix in the α, β indices.

In addition, for arbitrary dimensions one has the anti-commutators of spinor-
tensorial charges of arbitrary rank r = 1, 2, ......., D given as
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{Qα
µ1µ2....µn

, Qβ
ν1ν2....νm

} = {Qα ⊗ Γµ1µ2.....µn
, Qβ ⊗ Γν1ν2....νm

} =

1
2
{Qα, Qβ}⊗ {Γµ1µ2....µn

,Γν1ν2....νm
} +

1
2

[Qα, Qβ ]⊗ [Γµ1µ2....µn
,Γν1ν2....νm

].

(2.23)
The (anti) commutators of the antisymmetric products of the Gammas are well
known. The relevant terms are once again {Qα, Qβ}, [Qα, Qβ ] and which are
given in terms of suitable products of gamma matrices which furnish an overall
symmetric and anti-symmetric matrix in the α, β indices, respectively. The clas-
sification of the family of symmetric and antisymmetric matrices (Cγi1i2....im)αβ ,
(Cγj1j2....jn)αβ depends on the number of space time dimensions D, the signa-
tures (s, t) and the ranks m,n. A table of the allowed values of D, s, t, m fur-
nishing a symmetric matrix can be found in [15] . One just needs to look at the
table for the allowed values of D, s, t, n furnishing an antisymmetric matrix, in
addition to the symmetric cases. Once this is done one can write the expressions
for {Qα, Qβ}, [Qα, Qβ ] in terms of momentum polyvectors as

{Qα, Qβ} =
∑

k

(Cγi1i2....im)αβ Pi1i2....im ,

[Qα, Qβ ] =
∑

k

(Cγj1j2....jn)αβ Pj1j2....jn
(2.24)

and where the choice of the allowed values of k in the respective summations is
obtained from the tables. To conclude this section, eqs-(2.21-2.24) encode the
proper procedure to generalize ordinary supersymmetry in ordinary spacetime
(superspace) to polyvector-valued supersymmetry in Clifford (super) spaces
involving both (antisymmetric) tensorial coordinates and spinor-tensorial ones.

APPENDIX : CLOSURE OF THE POINCARE SUPERALGEBRA

To show the closure of the 2D superalgebra provided by eqs-(1.11-1.14) one
needs to find the proper representation of the operators via the addition of an
extra ”internal” A algebra whose generators 1,Q,P obey the defining relations

Q2 = P, P Q = Q P = Q3 = 0 ⇒ [ P, Q ] = { P, Q } = 0 (A.1)

An explicit 3× 3 matrix realization of the algebra (A.1) was given by eq-(1.19).
In this fashion we will provide a realization of the operators of the 2D Poincare
superalgebra in terms of the tensor product algebra Cl1,1(R)⊗A. The momen-
tum operators are represented as

Pµ =
1
2
Γµ(1− Γ3)⊗ P, µ, ν = 1, 2 (A.2)

where the generator P belongs to the second algebra A factor.
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The 2D Lorentz generator is represented as

Mµν =
1
2

Γµν ⊗ 1 (A.3)

where 1 is the unit operator of the algebra A. The two supercharges Qα =
Q1, Q2 are represented as

Qα = Qα ⊗Q, α = 1, 2 ⇒ Q1 = i Γ1 ⊗Q, Q2 = Γ2 ⊗Q (A.4a)

leading to the anti-commutators

{ Qα, Qβ } = { Γα ⊗Q, Γβ ⊗Q } = 2 δαβ (1⊗Q2) = 2 δαβ (1⊗ P) =

( ΓµPµ + PµΓµ )αβ (1⊗ P) (A.4b)

after using (Γ3)2 = Γ1Γ2Γ1Γ2 = −(Γ1)2(Γ2)2 = 1; (Γ1)2 = g111 = −1; (Γ2)2 =
g221 = 1. The evaluation of the anti-commutators (A.4b) is explicitly derived
from the above definitions (A.4a) of the supercharges and the following relations
involving the Kronecker tensor products ⊗ of operators (matrices, for example)

(A⊗ C) (B ⊗D) = (AB)⊗ (CD) (A.5)

[ A⊗ C, B ⊗D ] =
1
2

[ A,B ]⊗ { C,D } +
1
2
{ A,B } ⊗ [ C,D ] (A.6)

{ A⊗ C, B ⊗D } =
1
2
{ A,B } ⊗ { C,D } +

1
2

[ A,B ]⊗ [ C,D ] (A.7)

Using (A.5-A.7) one arrives at

[ Pµ, Q1 ] =
i

2
[ Γµ(1− Γ3)⊗ P, Γ1 ⊗Q ] =

i

4
[ (Γµ(1− Γ3), Γ1 ]⊗ {P,Q} +

i

4
{ Γµ(1− Γ3), Γ1 } ⊗ [P,Q] = 0 (A.8)

[ Pµ, Q2 ] =
1
2
[ Γµ(1− Γ3)⊗ P, Γ2 ⊗Q ] =

1
4
[ (Γµ(1− Γ3), Γ2 ]⊗ {P,Q} +

i

4
{ Γµ(1− Γ3), Γ2 } ⊗ [P,Q] = 0 (A.9)

as a direct result of the algebraic relations of eqs-(1.18, A.1) associated with the
algebra A: PQ = QP = Q3 = 0 ⇒ [P,Q] = {P,Q} = 0. It is important to
emphasize that without the presence of the terms involving the second algebra
factors in (A.8, A.9) one would not have been able to obtain a zero commutator
for [Pµ,Qα].

The commutator [ Mµν , Qα ] for α = 1, 2, after using the definitions Q1 =
Γ1 ⊗Q and Q2 = Γ2 ⊗Q, is

i

2
[ Γ3 ⊗ 1, Γ1 ⊗Q ] =

i

4
[Γ3, Γ1] ⊗ { 1, Q } =

11



i (Γ3 Γ1) ⊗ Q = (Γ3 ⊗ 1) (i Γ1 ⊗Q) = (Γ3 ⊗ 1) Q1 (A.10)

and
1
2

[ Γ3 ⊗ 1, Γ2 ⊗Q ] =
1
4

[Γ3, Γ2] ⊗ { 1, Q } =

(Γ3 Γ2) ⊗ Q = (Γ3 ⊗ 1) (Γ2 ⊗Q) = (Γ3 ⊗ 1) Q2 (A.11)

respectively, after using eqs-(A.6,A.7,A.8) and [1,Q] = 0. Hence, as expected,
we arrive in 2D

[M12,Qα] = (Γ12 ⊗ 1) Qα = (Γ3 ⊗ 1) Qα (A.12)

after using the definition M12 = 1
4 [Γ1,Γ2] = 1

2Γ12 = 1
2Γ3.

The momentum operators commute

[ Pµ, Pν ] =
1
4

[ Γµ(1− Γ3)⊗ P, Γν(1− Γ3)⊗ P ] =

1
8

[ Γµ(1− Γ3), Γν(1− Γ3) ]⊗ {P,P} = 0 (A.13)

since

[P,P] = 0, Γµ (1− Γ3) Γν(1− Γ3) = Γµ Γν (1 + Γ3) (1− Γ3) = 0

Γν (1− Γ3) Γµ(1− Γ3) = Γν Γµ (1 + Γ3) (1− Γ3) = 0 (A.14)

because {Γ3,Γµ} = 0 and (Γ3)2 = 1 for Minkowskian signature in 2D.
The commutator [Mµν , Pρ ] is

1
4

[ Γµν ⊗ 1, Γρ(1− Γ3)⊗ P ] =
1
8

[ Γµν , Γρ(1− Γ3)]⊗ {1, P} =

1
4

(−2 gµρ Γν + 2 gνρ Γµ) (1− Γ3) ⊗ P = − gµρ Pν + gνρ Pµ (A.15)

after recurring to the relations

[1,P] = 0, [Γµν ,Γ3] = 0, [Γµν ,Γρ] = 2 ( − gµρΓν + gνρΓµ ) (A.16)

Finally, the generatorsMµν given by 1
2Γµν⊗1 obey the commutators in eq-(18)

associated with the Lorentz generators in any dimension because the bivectors
1
2Γµν obey the Lorentz algebra commutation relations. In 2D the commutators
are trivially zero since there is only one generator M12 = −M21 = 1

2Γ3 ⊗ 1 ,
which behaves as a dilatation.

Therefore, once we have shown that the (anti) commutators indeed obey
the 2D Poincare superalgebra given by eqs-(1.11-1.14), the graded super Jacobi
identities are satisfied because it is well known that the Poincare superalgebra
closes. For example one can show that

−[ Mµν , {Qα, Qβ} ] + { Qβ , [Mµν ,Qα] } − {Qα, [Qβ ,Mµν ] } = 0 (A.18)
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is satisfied by studying all the cases when α, β = 1, 2 :

−[
1
2
Γ3 ⊗ 1, {iΓ1 ⊗Q, iΓ1 ⊗Q} ] + { iΓ1 ⊗Q, [

1
2
Γ3 ⊗ 1, iΓ1 ⊗Q ] } −

{ iΓ1 ⊗Q, [ iΓ1 ⊗Q,
1
2
Γ3 ⊗ 1 ] } = 0 (A.19)

The first term yields [Γ3⊗1,1⊗Q2] = 0, after using eqs-(A.6, A7), since all the
Gamma matrices commute with the unit matrix and [1,Q2] = 0. The second
and third terms in (A.19) yield expressions of the form {Γ1,Γ3Γ1} ⊗ Q2 = 0,
because

{Γ1, Γ3 Γ1} = Γ1 Γ3 Γ1 + Γ3 Γ1 Γ1 = − Γ3 Γ1 Γ1 + Γ3 Γ1 Γ1 = 0 (A.20)

after using {Γ3,Γ1} = 0. Similar results are found in the other cases

[
1
2
Γ3 ⊗ 1, {Γ2 ⊗Q,Γ2 ⊗Q} ] + { Γ2 ⊗Q, [

1
2
Γ3 ⊗ 1,Γ2 ⊗Q ] } −

{ Γ2 ⊗Q, [ Γ2 ⊗Q,
1
2
Γ3 ⊗ 1 ] } = 0 (A.21)

after using {Γ2,Γ3Γ2} ⊗ Q2 = 0 and [Γ3 ⊗ 1,1⊗Q2] = 0. And finally,

−[
1
2
Γ3 ⊗ 1, {iΓ1 ⊗Q, Γ2 ⊗Q} ] + { Γ2 ⊗Q, [

1
2
Γ3 ⊗ 1, iΓ1 ⊗Q] } −

{iΓ1 ⊗Q, [Γ2 ⊗Q,
1
2
Γ3 ⊗ 1] } = 0 (A.22)

because

{ Γ1, Γ3Γ2 } + { Γ2, Γ3Γ1 } = (Γ1Γ3Γ2+Γ3Γ1Γ2) + (Γ3Γ2Γ1+Γ2Γ3Γ1) = 0
(A.23)

after using {Γ3,Γ1} = {Γ3,Γ2} = 0.
The Jacobi identity

[ Qγ , {Qα, Qβ} ] + cyclic permutation = 0 (A.23)

is satisfied because the term

[ Qγ , {Qα, Qβ} ] = 2 δαβ [ Γγ ⊗Q, 1⊗Q2 ] = 0 (A.24)

after recurring to eqs-(A.6, A.7) since the Γ’s 2× 2 matrices commute with the
2×2 unit matrix operator 1 and [Q,Q2] = 0. Similar results are found with the
other permutation of indices in eq-(A.23). Concluding, the graded super Jacobi
identities are satisfied and the superalgebra closes.
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