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Abstract

In this paper, we investigate the asymptotic theory for U -statistics based
on sample spacings, i.e. the gaps between successive observations. The
usual asymptotic theory for U -statistics does not apply here because spacings
are dependent variables. However, under the null hypothesis, the uniform
spacings can be expressed as conditionally independent Exponential random
variables. We exploit this idea to derive the relevant asymptotic theory both
under the null hypothesis and under a sequence of close alternatives.

The generalized Gini mean difference of the sample spacings is a prime
example of a U -statistic of this type. We show that such a Gini spacings test
is analogous to Rao’s spacings test. We find the asymptotically locally most
powerful test in this class, and it has the same efficacy as the Greenwood
statistic.

Keywords: Goodness-of-fit tests, Spacings, Order statistics, U -statistics,
Gini mean difference, Pitman asymptotic relative efficiency

1. Introduction

The simple goodness-of-fit problem consists of testing fit to a single fixed
distribution for a given data set. In particular, consider a random sample
X1, X2, . . . , Xn−1 with distribution function F defined on the real line R. In
the statistical literature, much attention has been devoted to the nonpara-
metric problem of simple goodness-of-fit, namely testing the null hypothesis
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H0 : F (x) = F0(x)

where F0 is a completely specified distribution function.

If F is assumed to be continuous as we shall do, by way of the probability
integral transform, the support of F reduces to the unit interval [0, 1], and
this also permits us to equate F0 with the Uniform([0, 1]) distribution. Thus,
the goodness-of-fit problem reduces to one of testing uniformity, i.e. testing
the null hypothesis

H0 : F (x) = x · I(0 ≤ x ≤ 1).

Let X(1), X(2), . . . , X(n−1) denote the sample order statistics. Put X(0) ≡ 0
and X(n) ≡ 1, so that 0 = X(0) ≤ X(1) ≤ X(2) ≤ . . . ≤ X(n−1) ≤ X(n) = 1.
The sample spacings are defined by the random variables

Dk = X(k) −X(k−1), for k = 1, 2, . . . , n. (1.1)

If F is the Uniform([0, 1]) distribution, as under the null hypothesis, we use
the special notation {Uk} for the sample observations, and

Tk = U(k) − U(k−1), for k = 1, 2, . . . , n (1.2)

for the uniform spacings. Tests based on spacings are studied here for testing
the null hypothesis.

Let h : [0,∞) × [0,∞) → R be a symmetric function satisfying some
regularity conditions. Consider the general test statistic

Wn(h) =
1

n(n− 1)

n∑
i=1

n∑
j=1

h(nDi, nDj) (1.3)

which is a second-order U -statistic of the sample spacings and symmetric in
the pairs (Di, Dj). An important example of such a statistic is the generalized
Gini mean difference of the sample spacings, i.e.

Gn(r) =
1

n(n− 1)

n∑
i=1

n∑
j=1

|nDi − nDj|r, r > 0 (1.4)

which is an average over all pairs of absolute pairwise differences of the
sample spacings to the rth power. The special case of Gn(1) is the Gini
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mean difference spacings test, which was proposed in Jammalamadaka and
Goria (2004) for testing goodness-of-fit. There they derive both the exact
and asymptotic distribution of Gn(1) under the null hypothesis, and show
that it has good performance based on Monte Carlo powers. The special case
of Gn(2) will be called the Gini mean squared difference spacings test.

On the other hand, symmetric sum-functions of the spacings, i.e. general
test statistics of the form

Vn(g) =
1

n

n∑
k=1

g(nDk) (1.5)

where g(·) is a real-valued function satisfying some regularity conditions, are
symmetric in {Dk}, and can also be thought of as first-order U -statistics of
the sample spacings. The asymptotic theory for symmetric sum-functions of
the spacings has been studied in Sethuraman and Rao (1970) and Rao and
Sethuraman (1975) via weak convergence of the empirical spacings process.
They show that symmetric sum-functions based on these sample spacings
cannot discriminate alternatives converging to the null hypothesis at a rate
faster than n−1/4 and hence have poor asymptotic performance as compared
to say the Kolmogorov-Smirnov test.

Among the class of symmetric sum-functions of the spacings, the most
common test statistics are:

Jn(r) =
1

n

n∑
k=1

|nDk − 1|r, r > 0 (1.6)

1

n

n∑
k=1

(nDk)
2, (1.7)

1

n

n∑
k=1

log(nDk), (1.8)

1

n

n∑
k=1

(nDk) log(nDk). (1.9)

The test statistics (1.6), (1.7), (1.8) and (1.9) are respectively the generalized
Rao’s spacings test, the Greenwood spacings test, Darling’s log-spacings test,
and the Kullback-Leibler divergence (relative entropy) of the spacings.

The generalized Rao’s spacings test Jn(r) is an average of the absolute
deviations of the spacings to the rth power, and in a sense is analogous to
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the generalized Gini mean difference spacings test Gn(r). The special case
of Jn(1) is the classical Rao’s spacings test (cf. Rao (1969)), which can also
be used to test the uniformity of circular data. Note that the special case
of Jn(2), corresponds to both the Greenwood statistic based on the sum of
squares of the spacings, and also the Gini mean squared difference spacings
test Gn(2).

The test statistic (1.7) was proposed by Greenwood (1946) and will be
called here and throughout the Greenwood statistic. The importance of the
Greenwood statistic is somewhat justified in view of the result established in
Sethuraman and Rao (1970) that among the class of symmetric sum-functions
of the spacings, the Greenwood statistic is the asymptotically locally most
powerful (ALMP) test.

The asymptotic distribution for second-order U -statistics of the spacings
under the null hypothesis is studied in the next section. Section 3 deals with
their asymptotic behavior under a sequence of close alternatives. Section 4
contains results on the ALMP test for the class of U -statistics of the sample
spacings. Section 5 features examples.

2. The Asymptotic Null Distribution

In this section, we obtain the asymptotic distribution for second-order
U -statistics of the uniform spacings, i.e. general test statistics of the form

Wn(h) =
1

n(n− 1)

n∑
i=1

n∑
j=1

h(nTi, nTj) (2.1)

under the null hypothesis. Under the null hypothesis, the uniform spacings
have the well-known conditional representation

(nT1, nT2, . . . , nTn) '
(
Z1

Z̄n
,
Z2

Z̄n
, . . . ,

Zn
Z̄n

)
'
(
Z1, Z2, . . . , Zn | Z̄n = 1

)
(2.2)

where Z1, Z2, . . . , Zn are independent Exponential(1) random variables (e.g.
see Wilks (1962, Sec. 7.7)). Here as elsewhere, we use ' to denote the
distributional equivalence of quantities on the left and right hand sides of
the symbol.

There are at least two known approaches to deriving the asymptotic null
distribution. One approach is by applying a conditional limit theorem for
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U -statistics due to Holst (1981, Theorem 6.2). A second approach is by
way of the well-known Hoeffding decomposition for U -statistics, which con-
nects the asymptotic theory for U -statistics of the uniform spacings with the
asymptotic theory for symmetric sum-functions of the uniform spacings.

Let

Un =
1

n(n− 1)

n∑
i=1

n∑
j=1

h(Zi, Zj) (2.3)

be a second-order U -statistic based on the independent Exponential(1) ran-
dom variables Z1, Z2, . . . , Zn, where the kernel h : [0,∞) × [0,∞) → R is a
symmetric function with Var[h(Z1, Z2)] <∞.

For the case of independent and identically distributed random variables,
the Hoeffding decomposition (cf. Lee (1990, Sec. 1.6)) asserts that a U -
statistic of order k is a linear combination of uncorrelated U -statistics of order
1, 2, . . . , k. The case for k = 2 has been most studied and best understood.
We state the Hoeffding decomposition for Un in the following

Lemma 1. The Hoeffding decomposition of Un has the form

Un = θ +
2

n

n∑
k=1

h(1)(Zk) +
1

n(n− 1)

n∑
i=1

n∑
j=1

h(2)(Zi, Zj) (2.4)

where

θ = E[h(Z1, Z2)] (2.5)

g(t) = E[h(t, Z2)] = E[h(Z1, Z2) |Z1 = t] (2.6)

h(1)(t) = g(t)− θ (2.7)

h(2)(z1, z2) = h(z1, z2)− g(z1)− g(z2) + θ. (2.8)

Moreover, the normalized U-statistic

√
n(Un − θ) =

2√
n

n∑
k=1

[g(Zk)− θ] + n1/2Rn (2.9)

where

n1/2Rn =

√
n

n(n− 1)

n∑
i=1

n∑
j=1

h(2)(Zi, Zj) = oP (1). (2.10)
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The following result provides some useful identities for the expectations,
variances, and covariances of the U -statistic kernels in the Hoeffding decom-
position.

Lemma 2. Let Z1, Z2 and Z3 be independent Exponential(1) random vari-
ables, and let g be defined as in Lemma 1. Then

E[h(Z1, Z2)] = E[g(Z1)] (2.11)

Cov[h(Z1, Z2), h(Z1, Z3)] = V ar[g(Z1)] (2.12)

Cov[h(Z1, Z2), Z1] = Cov[g(Z1), Z1] (2.13)

Cov[h(Z1, Z2), (Z1 − 2)2 + (Z2 − 2)2] = 2 · Cov[g(Z1), (Z1 − 2)2]. (2.14)

The next result gives the asymptotic null distribution for symmetric sum-
functions of the uniform spacings (cf. with Sethuraman and Rao (1970)). We
use the notation N1(µ, σ

2) to denote the one-dimensional Normal distribution
with mean µ and variance σ2.

Lemma 3. Under the null hypothesis, in the limit as n→∞,

1√
n

n∑
k=1

[g(nTk)− Eg(Z1)] '

(
1√
n

n∑
k=1

[g(Zk)− Eg(Z1)]

∣∣∣∣ Z̄n = 1

)
D−→ N1(0, σ

2(g)) (2.15)

where

σ2(g) = Var[g(Z1)]−
Cov2[g(Z1), Z1]

Var[Z1]
. (2.16)

The next result gives the asymptotic distribution for U -statistics based
on the uniform spacings under the null hypothesis.

Theorem 4. Under the null hypothesis, in the limit as n→∞,

√
n

(∑n
i=1

∑n
j=1 h(nTi, nTj)

n(n− 1)
− E[h(Z1, Z2)]

)
D−→ N1(0, σ

2(h)) (2.17)

where

σ2(h) = 4(σ2
1 − σ2

12) (2.18)

σ2
1 = Cov[h(Z1, Z2), h(Z1, Z3)] (2.19)

σ2
12 =

Cov2[h(Z1, Z2), Z1]

Var[Z1]
. (2.20)
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Proof. From Lemma 1, and the conditional representation of the uniform
spacings (2.2), we have

√
n

(∑n
i=1

∑n
j=1 h(nTi, nTj)

n(n− 1)
− E[h(Z1, Z2)]

)
'
(√

n(Un − θ)
∣∣∣∣ Z̄n = 1

)

'

(
2√
n

n∑
k=1

[g(Zk)− Eg(Z1)]

∣∣∣∣ Z̄n = 1

)
+ oP (1)

' 2√
n

n∑
k=1

[g(nTk)− Eg(Z1)] + oP (1)
D−→ N1(0, 4σ

2(g)).

The convergence in distribution to the N1(0, 4σ
2(g)) distribution follows from

Lemma 3 and Slutsky’s Theorem. By Lemma 2, the asymptotic variance

4σ2(g) = 4

(
Var[g(Z1)]−

Cov2[g(Z1), Z1]

Var[Z1]

)
= 4(σ2

1 − σ2
12) = σ2(h).

This completes the proof. �

3. The Asymptotic Distribution Under a Sequence of Close
Alternatives

In this section, we derive the asymptotic distribution for second-order
U -statistics of the sample spacings under a sequence of close alternatives. In
order to study asymptotic efficiencies, one needs to obtain the asymptotic
distribution of test statistics under a sequence of close alternatives (also
called smooth alternatives), which converges to the null hypothesis. Thus,
we specify the alternative hypothesis by a sequence of distribution functions
{Fn(x) : n ≥ 1} that converges to the Uniform([0, 1]) distribution function,
which corresponds to the null hypothesis, in the limit as n→∞.

For symmetric spacings tests, the appropriate sequence of close alterna-
tives (cf. with Sethuraman and Rao (1970) and Rao and Sethuraman (1975))
is obtained by letting the distribution function

Fn(x) = x+
Ln(x)

n1/4
, for 0 ≤ x ≤ 1 (3.1)
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where Ln(0) = Ln(1) = 0. We further assume that Ln(x) is twice differen-
tiable on the unit interval [0, 1] and that there exists a function L(x) which
is twice continuously-differentiable with L(0) = L(1) = 0 and

n1/4 sup
0≤x≤1

|Ln(x)− L(x)| = o(1) (3.2)

n1/4 sup
0≤x≤1

|L′n(x)− l(x)| = o(1) (3.3)

n1/4 sup
0≤x≤1

|L′′n(x)− l′(x)| = o(1) (3.4)

where l(x) and l′(x) are respectively the first and second derivatives of L(x).

Note that L(x) =
∫ x

0
l(u) du and

∫ 1

0
l(u) du = 0 by the fundamental theorem

of calculus.

The next result gives, under a sequence of close alternatives, the asymp-
totic distribution for symmetric sum-functions of the spacings (cf. with
Sethuraman and Rao (1970)).

Lemma 5. Under the close alternatives (3.1), in the limit as n→∞,

1√
n

n∑
k=1

[g(nDk)− Eg(Z1)]
D−→ N1(µ(g), σ2(g)) (3.5)

where

µ(g) =
1

2

(∫ 1

0

l2(u) du

)
Cov[g(Z1), (Z1 − 2)2] (3.6)

σ2(g) = Var[g(Z1)]−
Cov2[g(Z1), Z1]

Var[Z1]
. (3.7)

Let 0 = ξ0 < ξ1 < ξ2 < . . . < ξn < ξn+1 = 1 form a partition of the unit
interval [0, 1], where

ξk =
k

n+ 1
, for k = 0, 1, 2, . . . , n+ 1. (3.8)

Under the close alternatives, the sample spacings {Dk} are related to the
uniform spacings {Tk} by the relation

nDk = n[F−1
n (U(k))− F−1

n (U(k−1))]

= nTk +

(
−l(ξk)
n1/4

+
l2(ξk) + L(ξk)l

′(ξk)

n1/2

)
(nTk) + oP (n−1/2) (3.9)
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where oP (·) is uniform in k. This follows from the mean value theorem for
differential calculus and a continuity argument found in Rao and Sethuraman
(1975).

We assume that h : [0,∞)× [0,∞)→ R is a symmetric function with first
and second-order partial derivatives. We use the notation hx(x, y) = ∂h

∂x
and

hy(x, y) = ∂h
∂y

to denote the first partial derivatives of h, and use hxx(x, y) =
∂2h
∂x2 , hyy(x, y) = ∂2h

∂y2
and hxy(x, y) = ∂2h

∂x∂y
to denote the second-order partial

derivatives of h.

By using (3.9), we prove the following

Lemma 6. Under the close alternatives (3.1), in the limit as n→∞,

√
n

n(n− 1)

n∑
i=1

n∑
j=1

[h(nDi, nDj)− h(nTi, nTj)]

P−→ 1

2

(∫ 1

0

l2(u) du

)
· Cov[h(Z1, Z2), (Z1 − 2)2 + (Z2 − 2)2]. (3.10)

Proof. Using (3.9) in a two-dimensional Taylor expansion of h(nDi, nDj)
around h(nTi, nTj) gives

h(nDi, nDj)− h(nTi, nTj)

=

(
−l(ξi)
n1/4

+
l2(ξi) + L(ξi)l

′(ξi)

n1/2

)
(nTi)hx(nTi, nTj)

+

(
−l(ξj)
n1/4

+
l2(ξj) + L(ξj)l

′(ξj)

n1/2

)
(nTj)hy(nTi, nTj)

+

(
−l(ξi)
n1/4

+
l2(ξi) + L(ξi)l

′(ξi)

n1/2

)
·
(
−l(ξj)
n1/4

+
l2(ξj) + L(ξj)l

′(ξj)

n1/2

)
· (nTi)(nTj)hxy(nTi, nTj)

+
1

2

(
−l(ξi)
n1/4

+
l2(ξi) + L(ξi)l

′(ξi)

n1/2

)2

(nTi)
2 hxx(nTi, nTj)

+
1

2

(
−l(ξj)
n1/4

+
l2(ξj) + L(ξj)l

′(ξj)

n1/2

)2

(nTj)
2 hyy(nTi, nTj)

+ oP (n−1/2). (3.11)
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By summing over all possible pairs, we have

√
n

n(n− 1)

n∑
i=1

n∑
j=1

[h(nDi, nDj)− h(nTi, nTj)]

= − n1/4

n(n− 1)

n∑
i=1

n∑
j=1

l(ξi)(nTi)hx(nTi, nTj)

− n1/4

n(n− 1)

n∑
i=1

n∑
j=1

l(ξj)(nTj)hy(nTi, nTj)

+
1

n(n− 1)

n∑
i=1

n∑
j=1

[l2(ξi) + L(ξi)l
′(ξi)](nTi)hx(nTi, nTj)

+
1

n(n− 1)

n∑
i=1

n∑
j=1

[l2(ξj) + L(ξj)l
′(ξj)](nTj)hy(nTi, nTj)

+
1

n(n− 1)

n∑
i=1

n∑
j=1

l(ξi)l(ξj)(nTi)(nTj)hxy(nTi, nTj)

+
1

2n(n− 1)

n∑
i=1

n∑
j=1

l2(ξi)(nTi)
2 hxx(nTi, nTj)

+
1

2n(n− 1)

n∑
i=1

n∑
j=1

l2(ξj)(nTj)
2 hyy(nTi, nTj) + oP (1). (3.12)

The composite trapezoid rule asserts that there exists a number c ∈ (0, 1)
for which ∫ 1

0

l(u) du =
1

n+ 1

n∑
k=1

l(ξk)−
l′′(c)

12(n+ 1)2
.

Since we have

lim
n→∞

n1/4

(
1

n+ 1

n∑
k=1

l(ξk)−
∫ 1

0

l(u) du

)
= lim

n→∞

n1/4 · l′′(c)
12(n+ 1)2

= 0

then the first two terms on the RHS of (3.12) converge in probability to zero.
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Since (nTi, nTj)
D−→ (Z1, Z2), as n→∞, observe that both

1

n(n− 1)

n∑
i=1

n∑
j=1

[l2(ξi) + L(ξi)l
′(ξi)](nTi)hx(nTi, nTj)

P−→ E[Z1 hx(Z1, Z2)]

∫ 1

0

[l2(x) + L(x)l′(x)] dx = 0

and

1

n(n− 1)

n∑
i=1

n∑
j=1

[l2(ξj) + L(ξj)l
′(ξj)](nTj)hy(nTi, nTj)

P−→ E[Z2 hy(Z1, Z2)]

∫ 1

0

[l2(y) + L(y)l′(y)] dy = 0

because from integration by parts∫ 1

0

L(u) l′(u) du = −
∫ 1

0

l2(u) du.

Observe also that

1

n(n− 1)

n∑
i=1

n∑
j=1

l(ξi)l(ξj)(nTi)(nTj)hxy(nTi, nTj)

P−→
(∫ 1

0

∫ 1

0

l(x) l(y) dx dy

)
· E[Z1Z2 hxy(Z1, Z2)] = 0

because ∫ 1

0

∫ 1

0

l(x) l(y) dx dy =

(∫ 1

0

l(x) dx

)(∫ 1

0

l(y) dy

)
= 0.

Moreover, we have

1

2n(n− 1)

n∑
i=1

n∑
j=1

l2(ξi)(nTi)
2 hxx(nTi, nTj)

P−→ 1

2

(∫ 1

0

l2(x) dx

)
· E[Z2

1 hxx(Z1, Z2)]
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and

1

2n(n− 1)

n∑
i=1

n∑
j=1

l2(ξj)(nTj)
2 hyy(nTi, nTj)

P−→ 1

2

(∫ 1

0

l2(y) dy

)
· E[Z2

2 hyy(Z1, Z2)]

with

E[Z2
1 hxx(Z1, Z2) + Z2

2 hyy(Z1, Z2)] = Cov[h(Z1, Z2), (Z1 − 2)2 + (Z2 − 2)2].

This completes the proof. �

By combining Theorem 4 with Lemma 6 we have the following

Theorem 7. Under the close alternatives (3.1), in the limit as n→∞,

√
n

(
1

n(n− 1)

n∑
i=1

n∑
j=1

h(nDi, nDj)− E[h(Z1, Z2)]

)
D−→ N1(µ(h), σ2(h))

(3.13)
where

µ(h) =
1

2

(∫ 1

0

l2(u) du

)
· Cov[h(Z1, Z2), (Z1 − 2)2 + (Z2 − 2)2] (3.14)

σ2(h) = 4(σ2
1 − σ2

12) (3.15)

σ2
1 = Cov[h(Z1, Z2), h(Z1, Z3)] (3.16)

σ2
12 =

Cov2[h(Z1, Z2), Z1]

Var[Z1]
. (3.17)

Proof. Observe that

√
n

(∑n
i=1

∑n
j=1 h(nDi, nDj)

n(n− 1)
− E[h(Z1, Z2)]

)

=
√
n

(∑n
i=1

∑n
j=1 h(nTi, nTj)

n(n− 1)
− E[h(Z1, Z2)]

)

+

√
n

n(n− 1)

n∑
i=1

n∑
j=1

[h(nDi, nDj)− h(nTi, nTj)]
D−→ N1(µ(h), σ2(h)).

12



The convergence in distribution follows from Slutsky’s Theorem, where the
first term on the RHS converges to the N1(0, σ

2(h)) distribution by Theorem
4, and the second term converges in probability to µ(h) by Lemma 6. This
completes the proof. �

4. The Asymptotically Locally Most Powerful Test

Recall that µ(g) and σ2(g) denote the asymptotic mean and asymptotic
variance corresponding to the general test statistic

Vn(g) =
1

n

n∑
k=1

g(nDk)

under the sequence of close alternatives. Here it is assumed that Vn(g) has
been normalized to have asymptotic mean zero and finite variance under the
null hypothesis. The Pitman asymptotic relative efficiency (ARE) of Vn(g1)
relative to Vn(g2) is given by

ARE(g1, g2) =

(
e2(g1)

e2(g2)

)2

=

(
µ2(g1)
σ2(g1)

)2

(
µ2(g2)
σ2(g2)

)2 . (4.1)

The quantity

e2(g) =
µ2(g)

σ2(g)
(4.2)

is called the efficacy of the test Vn(g). A test with maximum efficacy is
the asymptotically locally most powerful (ALMP) test. In order to find the
ALMP test, for symmetric sum-functions of the spacings, against the close
alternatives, one needs to find a function g(·) which maximizes

e(g) =

(∫ 1

0
l2(u) du

)
Cov[g(Z1), (Z1 − 2)2]

2
{

Var[g(Z1)]− Cov2[g(Z1), Z1]
}1/2

. (4.3)

As mentioned before, the importance of the Greenwood statistic is some-
what justified by the next two results, which were established in Sethuraman
and Rao (1970). The Greenwood statistic is the ALMP test among the class
of symmetric sum-functions of the spacings.
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Lemma 8. The functional e(g) is maximized by taking g(t) = t2, which in
turn gives

max e(g) =

∫ 1

0

l2(u) du. (4.4)

Lemma 9. For symmetric sum-functions of the spacings, the asymptotically
locally most powerful (ALMP) test of the null hypothesis against the sequence
of close alternatives is to reject the null hypothesis when

n∑
k=1

(nDk)
2 > C(α)

where the critical value C(α) is determined by the level of significance α. The
asymptotic distribution of this optimal statistic under the sequence of close
alternatives (3.1) is given by

1√
n

n∑
k=1

[(nDk)
2 − 2]

D−→ N1

(
2

(∫ 1

0

l2(u) du

)
, 4

)
. (4.5)

The asymptotic distribution under the null hypothesis is obtained by taking
l(u) = 0 in the above.

Recall that µ(h) and σ2(h) denote the asymptotic mean and asymptotic
variance corresponding to the general test statistic

Wn(h) =
1

n(n− 1)

n∑
i=1

n∑
j=1

h(nDi, nDj)

under the sequence of close alternatives. It is assumed that Wn(h) has been
normalized to have asymptotic mean zero and finite variance under the null
hypothesis. The Pitman ARE of Wn(h1) relative to Wn(h2) is given by

ARE(h1, h2) =

(
e2(h1)

e2(h2)

)2

=

(
µ2(h1)
σ2(h1)

)2

(
µ2(h2)
σ2(h2)

)2 (4.6)

and the quantity

e2(h) =
µ2(h)

σ2(h)
(4.7)
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is the efficacy of the test Wn(h).

In order to find the ALMP test, for U -statistics of the spacings, against
the sequence of close alternatives, we need to find a function h which maxi-
mizes the functional

e(h) =

(∫ 1

0
l2(u) du

)
· Cov[h(Z1, Z2), (Z1 − 2)2 + (Z2 − 2)2]

4
{

Cov[h(Z1, Z2), h(Z1, Z3)]− Cov2[h(Z1, Z2), Z1]
}1/2

. (4.8)

Lemma 10. The functional e(h) is maximized by taking the symmetric func-
tion h(z1, z2) = (z1 − z2)

2, which in turn gives

max e(h) =

∫ 1

0

l2(u) du (4.9)

which corresponds to that of the Greenwood statistic.

Proof. It is enough to find a function h which maximizes the numerator in
(4.8). By the Cauchy-Bunyakovsky-Schwarz inequality, we have

e(h) =

(∫ 1

0
l2(u) du

)
· Cov[h(Z1, Z2), (Z1 − 2)2 + (Z2 − 2)2]

4
{

Cov[h(Z1, Z2), h(Z1, Z3)]− Cov2[h(Z1, Z2), Z1]
}1/2

≤

(∫ 1

0
l2(u) du

)√
Var[h(Z1, Z2)]

√
Var[(Z1 − 2)2 + (Z2 − 2)2]

4
{

Cov[h(Z1, Z2), h(Z1, Z3)]− Cov2[h(Z1, Z2), Z1]
}1/2

. (4.10)

The inequalities become equalities if and only if h(z1, z2) = a[(z1 − 2)2 +
(z2− 2)2] + b, for some real numbers a 6= 0 and b. In this particular case, the
functional e(h) attains the upper bound in (4.10), i.e.

e(h) =

(∫ 1

0
l2(u) du

)
a · Var[(Z1 − 2)2 + (Z2 − 2)2]

4
√
a2 · Var(Z1 − 2)2 − a2 · Cov2[(Z1 − 2)2, Z1]

=

(∫ 1

0
l2(u) du

)
2a · E[Z2

1 + Z2
2 ]

4
√

4a2

=

∫ 1

0

l2(u) du.
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On the other hand, since Cov[Z1Z2, (Z1 − 2)2 + (Z2 − 2)2] = 0, then the
maximum of the functional e(h) is attained by taking h(z1, z2) = (z1 − z2)

2,
and directly from (4.8) we have

max e(h) =

(∫ 1

0
l2(u) du

)
· Cov[(Z1 − Z2)

2, (Z1 − 2)2 + (Z2 − 2)2]

4
{

Cov[(Z1 − Z2)2, (Z1 − Z3)2]− Cov2[(Z1 − Z2)2, Z1]
}1/2

=

(∫ 1

0
l2(u) du

)
· 2 · E[Z2

1 + Z2
2 ]

8

=

∫ 1

0

l2(u) du.

This completes the proof. �

By combining Theorem 7 and Lemma 10, we have the following

Theorem 11. For U-statistics of the spacings, the asymptotically locally
most powerful (ALMP) test of the null hypothesis against the sequence of
close alternatives is to reject the null hypothesis when

n∑
i=1

n∑
j=1

(nDi − nDj)
2 > C(α)

where the critical value C(α) is determined by the level of significance α. The
asymptotic distribution of this optimal statistic under the sequence of close
alternatives (3.1) is given by

√
n

(
1

n(n− 1)

n∑
i=1

n∑
j=1

(nDi − nDj)
2 − 2

)
D−→ N1

(
4

(∫ 1

0

l2(u) du

)
, 16

)
. (4.11)

The asymptotic distribution under the null hypothesis is obtained by taking
l(u) = 0 in the above.
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5. Some Examples

To illustrate the results of this paper, specifically Theorems 7 and 11,
we present several noteworthy examples, and obtain their asymptotic dis-
tributions under the sequence of close alternatives (3.1). We also compare
the efficacies of the generalized Gini mean difference spacings test and the
generalized Rao’s spacings test.

Example (Gini Mean Difference Spacings Test). Under the null
hypothesis of uniformity, the Gini mean difference spacings test

Gn(1) =
1

n(n− 1)

n∑
i=1

n∑
j=1

|nDi − nDj| '
2Sn−1

n− 1
(5.1)

where Sn−1 =
∑n−1

k=1 Uk is the sum of (n − 1) independent Uniform([0, 1])
random variables. The probability distribution of Sn−1 is known as the Irwin-
Hall Uniform sum distribution, and was first derived by P.S. Laplace in 1814
(cf. Wilks (1962), Feller (1971, Theorem 1, I.9)).

The probability density function of Sn−1 has the form

fSn−1(s) =
1

(n− 2)!

n−1∑
k=0

(
n− 1

k

)
(−1)k(s− k)n−2

+ · I(0 < s < n− 1)

and can be derived via the Fourier inversion formula, and Cauchy’s integral
formula from complex analysis. It follows that Gn(1) has probability density
function

fGn(1)(y) =
n− 1

2(n− 2)!

n−1∑
k=0

(
n− 1

k

)
(−1)k ((n− 1)y/2− k)n−2

+ · I(0 < y < 2).

Let the kernel h(z1, z2) = |z1 − z2|, so that

hxx(z1, z2) = hyy(z1, z2) = 2 δ(z1 − z2)

where δ(·) is the Dirac delta function. Then

E[h(Z1, Z2)] = E|Z1 − Z2| = Γ(2) = 1.

17



The asymptotic mean

µ(h) =
1

2

(∫ 1

0

l2(u) du

)
· Cov[|Z1 − Z2|, (Z1 − 2)2 + (Z2 − 2)2]

=
1

2

(∫ 1

0

l2(u) du

)
· E[(Z2

1 + Z2
2) · 2δ(Z1 − Z2)]

=

(∫ 1

0

l2(u) du

)∫ ∞
0

(∫ ∞
0

[u2 + v2] e−u δ(u− v) du

)
e−v dv

=

(∫ 1

0

l2(u) du

)
· 2
∫ ∞

0

v2 e−2v dv

=
1

2

∫ 1

0

l2(u) du.

The asymptotic variance

σ2(h) = 4

(
Cov[|Z1 − Z2|, |Z1 − Z3|]−

Cov2[|Z1 − Z2|, Z1]

Var[Z1]

)
= 1/3.

Thus, under the close alternatives, in the limit as n→∞,

√
n(Gn(1)− 1) =

√
n

(
1

n(n− 1)

n∑
i=1

n∑
j=1

|nDi − nDj| − 1

)
D−→ N1

(
1

2

(∫ 1

0

l2(u) du

)
, 1/3

)
. (5.2)

Example (Gini Mean Squared Difference Spacings Test). From
Theorem 11, under a sequence of close alternatives, the Gini mean squared
difference spacings test

Gn(2) =
1

n(n− 1)

n∑
i=1

n∑
j=1

(nDi − nDj)
2 (5.3)

is the ALMP test for U -statistics of the spacings. This also means that the
Gn(2) is the best test among the generalized Gini mean difference spacings
tests Gn(r), r > 0. Moreover, by Lemma 10, the Gini mean squared difference
spacings test has efficacy

e2(h) =

(∫ 1

0

l2(u) du

)2

18



which is the same as that of the classical Greenwood statistic.

Let the kernel h(z1, z2) = (z1 − z2)
2, so that

hxx(z1, z2) = hyy(z1, z2) = 2.

Then
E[h(Z1, Z2)] = E(Z1 − Z2)

2 = Γ(3) = 2.

The asymptotic mean

µ(h) =
1

2

(∫ 1

0

l2(u) du

)
· Cov[(Z1 − Z2)

2, (Z1 − 2)2 + (Z2 − 2)2]

=
1

2

(∫ 1

0

l2(u) du

)
· 2 · E[(Z2

1 + Z2
2)]

= 4

∫ 1

0

l2(u) du.

The asymptotic variance

σ2(h) = 4

(
Cov[(Z1 − Z2)

2, (Z1 − Z3)
2]− Cov2[(Z1 − Z2)

2, Z1]

Var[Z1]

)
= 16.

Under the close alternatives, in the limit as n→∞,

√
n(Gn(2)− 2) =

√
n

(
1

n(n− 1)

n∑
i=1

n∑
j=1

(nDi − nDj)
2 − 2

)
D−→ N1

(
4

(∫ 1

0

l2(u) du

)
, 16

)
. (5.4)

Example (Kullback-Leibler Divergence Spacings Test). Under the
close alternatives, the Kullback-Leibler divergence measure of the spacings
has the asymptotic distribution,

1√
n

n∑
k=1

[(nDk) log(nDk)+(γ−1)]
D−→ N1

(
1

2

(∫ 1

0

l2(u) du

)
,
π2

3
− 3

)
. (5.5)

Here, the constant γ = E[− log(Z1)] = 0.57721... is the famous Euler-
Mascheroni constant.
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As a toy example, take h(z1, z2) = log(zz11 · zz22 ) = z1 log z1 + z2 log z2.
Then under the close alternatives, in the limit as n→∞,

√
n

(∑n
i=1

∑n
j=1 log

[
(nDi)

nDi · (nDj)
nDj
]

n(n− 1)
+ 2(γ − 1)

)
D−→ N1

((∫ 1

0

l2(u) du

)
, 4

(
π2

3
− 3

))
. (5.6)

However, there really isn’t anything new, because this U -statistic is simply
a linear transformation of the Kullback-Leibler divergence statistic, i.e.

n∑
i=1

n∑
j=1

log
[
(nDi)

nDi · (nDj)
nDj
]

= 2n
n∑
k=1

(nDk) log(nDk).

Example (Log-Spacings U-Statistic). Under the close alternatives,
Darling’s log-spacings test has the asymptotic distribution,

1√
n

n∑
k=1

[log(nDk) + γ]
D−→ N1

(
−1

2

(∫ 1

0

l2(u) du

)
,
π2

6
− 1

)
. (5.7)

To avoid the trivial example where the U -statistic is a linear transformation
of Darling’s log-spacings test, we let h(z1, z2) = log(z1 + z2) so that

hxx(z1, z2) = hyy(z1, z2) = −(Z1 + Z2)
−2.

We have
E[h(Z1, Z2)] = E[log(Z1 + Z2)] = 1− γ.

The asymptotic mean

µ(h) =
1

2

(∫ 1

0

l2(u) du

)
· Cov[log(Z1 + Z2), (Z1 − 2)2 + (Z2 − 2)2]

=
1

2

(∫ 1

0

l2(u) du

)
· E
[
−(Z2

1 + Z2
2)

(Z1 + Z2)2

]
=
−1

3

∫ 1

0

l2(u) du.
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The asymptotic variance

σ2(h) = 4

(
Cov[log(Z1 + Z2), log(Z1 + Z3)]−

Cov2[log(Z1 + Z2), Z1]

Var[Z1]

)
=

4π2

3
− 13.

Thus, under the close alternatives, in the limit as n→∞,

√
n

(∑n
i=1

∑n
j=1 log(nDi + nDj)

n(n− 1)
+ (γ − 1)

)
D−→ N1

((
−1

3

∫ 1

0

l2(u) du

)
,
4π2

3
− 13

)
. (5.8)

Example (Gini vs. Rao). We compare the efficacies of the generalized
Gini mean difference spacings test

Gn(r) =
1

n(n− 1)

n∑
i=1

n∑
j=1

|nDi − nDj|r, r > 0

and the generalized Rao’s spacings test

Jn(r) =
1

n

n∑
k=1

|nDk − 1|r, r > 0.

It will be convenient to define the modified efficacy of a test as

e2M(·) =
e2(·)(∫ 1

0
l2(u) du

)2 . (5.9)

Table 1 lists the modified efficacies of Gn(r) and Jn(r) with respect to
various choices of r > 0, and also the Pitman ARE of Gn(r) relative to
Jn(r). It is seen that the generalized Gini mean difference spacings test
Gn(r) has better efficacy, and is more Pitman efficient than the generalized
Rao’s spacings test Jn(r), except for the case r = 2, when both spacings
tests Gn(2) and Jn(2) correspond to the classical Greenwood statistic. Table
2 summarizes our aforementioned examples.
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r Generalized Rao Generalized Gini Pitman ARE
1 0.572654 3/4 1.715291

3/2 0.892135 0.946889 1.126515
2 1 1 1

5/2 0.93921 0.96137 1.047745
3 0.818649 0.867857 1.123831
4 0.550562 0.615384 1.249337

Table 1. Modified Efficacies for the Generalized Rao’s Spacings Test and
Generalized Gini Mean Difference Spacings Tests with Pitman ARE.

Test Statistic Mean Variance e2M(·)

√
n
(∑n

i=1

∑n
j=1 |nDi−nDj |
n(n−1)

− 1
)

1
2

∫ 1

0
l2(u) du 1/3 3/4

√
n
(∑n

i=1

∑n
j=1(nDi−nDj)

2

n(n−1)
− 2
)

4
∫ 1

0
l2(u) du 16 1

√
n
(∑n

i=1

∑n
j=1 log(nDi+nDj)

n(n−1)
+ (γ − 1)

)
−1
3

∫ 1

0
l2(u) du 4π2

3
− 13 0.697

1√
n

∑n
k=1[(nDk) log(nDk) + (γ − 1)] 1

2

∫ 1

0
l2(u) du π2

3
− 3 0.862

1√
n

∑n
k=1[log(nDk) + γ] −1

2

∫ 1

0
l2(u) du π2

6
− 1 0.388

1√
n

∑n
k=1 [|nDk − 1| − 2e−1] e−1

∫ 1

0
l2(u) du 8e−20

e2
0.573

Table 2. Some Examples of Symmetric Spacings Tests.

6. Conclusion

We derived the general asymptotic theory for U -statistics based on spac-
ings and found the ALMP test in this class under a sequence of close alterna-
tives. Extension of these ideas to U -statistics based on higher-order spacings
and to two-sample problems involving “spacing-frequencies” (see e.g. Holst
and Rao (1980)) will be investigated elsewhere.
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