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Abstract

Quantum theory is a probabilistic theory, where certain variables are hidden or non-accessible.
It results in lack of representation of systems under study. However, I deduce system’s represen-
tation in probabilistic manner, introducing probability of existence w, and quantize it exploiting
Schrödinger’s quantization rule. The formalism enriches probabilistic quantum theory, and en-
ables systems’s representation in probabilistic manner.

keywords Schrödinger Operators • Probability • Hidden Variables

PACS 03.65.-w; 02.30.Tb; 02.50.Cw

Contents

1 Introduction i

2 Probability Eigenvalue Formalism ii

3 Quantum Dynamical Equations iii

A Unit Operator iv

1 Introduction

Classical physics is based on mechanistic perspective, where no contingencies appear [1, 2]. It results
in a deterministic theory, where no chances appear, and systems are governed by mechanistic laws.
On the contrary, quantum theory is a probabilistic theory [3, p. 260]. So is its interpretation [4].
Quantum theory is not based on mechanistic order [2]. Indeterminism, an ingredient part of the
theory, appears due to some hidden variables [5, 6, 7]. In a non-deterministic (acausal) theory (like
QM) certain variables are (hidden) non-accessible. It persists in lack of representation of the system
under study.

However, we define system’s existence in probabilistic manner. We assign a probability (w) in
order to define a system in isolation. For w = 1 system is in pure state and all its variables are
accessible, for w ε (0, 1) it is in mixed state as certain of variables are hidden or non-accessible (e.g.
in presence of many type of interactions [8]). For w = 0 the system is in forbidden state and all
its variables are hidden and system can be represented by none. We quantize this observable using
Schrödinger’s quantization rule and obtain ŵ = −i}∂/∂s . Exploiting usual formalism of QM [9,
10, 11] we further deduce quantum dynamical equations, based on non-commutativity between
probability w and dynamicals A.
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2 Probability Eigenvalue Formalism

We have a general form of Schrödinger’s wavefunction1 [10] belonging to system’s Hilbert space H,
in generalized perspective

ψ(s(qi, t)) := R(qi, t) exp
(
i

}
s(qi, t)

)
, i = 1, 2, 3, . . . , f , (2.1)

which is orthonormalizable

〈ψα|ψβ〉 =
∫ +∞

−∞
ψ∗α(s(qi, t))ψβ(s(qi, t)) dτ = δαβ , (2.2)

where dτ (=
f∏
i=1

hidqi , h being scale factor and f is degrees of freedom) is generalized volume element

of the configuration space. [The system has all these variables, except ψ (and tacitly its space H) in
Praxic perspective [12]]. Differentiate (2.1) partially w.r.t. Action to obtain

∂ψ(s(qi, t))
∂s(qi, t)

=
i

}
ψ(s(qi, t)) . (2.3)

We propose a unit (zero-order differential) operator that satisfies for an ordinary function f as
well as for wavefunction (See Appendix A)

If = f ; Iψ(s(qi, t)) = ψ(s(qi, t)) . (2.4)

Following deduction (2.4) for (2.3), we obtain

Iψ(s(qi, t)) + i}
∂ψ(s(qi, t))
∂s(qi, t)

= 0 , (2.5)

which is in the form of eigenvalue equation. We deduce Schrödinger unit operator Î [in the sense of
Schrödinger’s quantization rule] satisfying unit eigenoperator equation [13, Dwivedi 2005]

Î|ψ〉 = I|ψ〉 ; Î = −i} ∂

∂s
. (2.6)

Its expectation value is given by inner-product

〈Î〉 = 〈ψ|Î|ψ〉 =
∫ +∞

−∞
ψ∗(s(qi, t))

(
−i}∂ψ(s(qi, t))

∂s(qi, t)

)
dτ

=
∫ +∞

−∞
|ψ(s(qi, t))|2 dτ = Prob. (−∞,+∞) .

(2.7)

[it could also be obtained alternatively using (2.4) and (2.6) in inner-product (2.7).] The operator
Î, having trace Prob. (−∞,+∞), entails properties of our probability operator ŵ . For a system in
isolation: 

Prob. (−∞,+∞) = wpure = 1 for pure state;
Prob. (−∞,+∞) = wmixed ε (0, 1) for mixed state;
Prob. (−∞,+∞) = wforbidden = 0 for forbidden state.

(2.8)

Thus Î is essentially ŵ that satisfies probability eigenvalue equation

ŵ|ψw〉 = w|ψw〉 ; ŵ = −i} ∂

∂s
. (2.9)

Or

wψw(s(qi, t)) + i}
∂ψw(s(qi, t))
∂s(qi, t)

= 0 , (2.10)

1It’s remarkable that it could be treated as function of qi and t as well as function of s explicitly.
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having solution

ψw(s(qi, t)) = A exp
(
i

}
ws(qi, t)

)
. (2.11)

For now and later on we will treat ψ as function of s explicitly. For orthonormalization we have
the inner-product,

〈ψw′ |ψw〉 =
∫ +∞

−∞
ψ∗w′(s)ψw(s) ds = |A|2

∫ +∞

−∞
exp

(
i

}
(w − w′)s

)
ds

= |A|22π}δ(w − w′) .
(2.12)

For A = 1/
√

2π}, we have

ψw(s) =
1√
2π}

exp
(
i

}
ws

)
(2.13)

that follows Dirac orthonormality
〈ψw′ |ψw〉 = δ(w − w′) . (2.14)

However, these eigenfunctions form complete set (ψ =
∑
w
cwψw) . For (square-integrable) func-

tion ψ(s) ,2

ψ(s) =
∫ 1

0

c(w)ψw(s) dw =
1√
2π}

∫ 1

0

c(w)exp
(
i

}
ws

)
dw . (2.15)

The expansion coefficient is obtained by Fourier’s trick

〈ψw′ |ψ〉 =
∫ 1

0

c(w)〈ψw′ |ψw〉 dw =
∫ 1

0

c(w)δ(w − w′) dw = c(w′) , (2.16)

or
c(w) = 〈ψw|ψ〉 . (2.17)

Exploiting completeness (2.15), the amplitude R in (2.1) is obtained

R =
1√
2π}

∫ 1

0

c(w) exp
(
i

}
s(w − 1)

)
dw . (2.18)

3 Quantum Dynamical Equations

Dynamics is a law relating physical quantities in course of time (or some internal observables [15]).
In Praxic theory Action is a fundamental physical entity [14]. However, it could often be customary
to deduce dynamics in course of Action. Let differentiate the inner-product,

〈Â〉 = 〈ψ|Â|ψ〉 =
∫ +∞

−∞
ψ∗Âψ dτ , (3.1)

exactly w.r.t. Action with differential-integral rule

f̂g(κ) = f̂

∫ +∞

−∞
φ(τ)K(κ, τ) dτ =

∫ +∞

−∞
f̂ {φ(τ)K(κ, τ)} dτ , (3.2)

we obtain (using chain rule for f̂ := ∂
∂s )

∂

∂s
〈Â〉 = 〈∂ψ

∂s
|Â|ψ〉+ 〈ψ|∂Â

∂s
|ψ〉+ 〈ψ|Â|∂ψ

∂s
〉 . (3.3)

Considering probability eigenvalue equations

|∂ψ
∂s
〉 =

i

}
|ŵψ〉 , 〈∂ψ

∂s
| = − i

}
〈ŵ†ψ| , (3.4)

2As Probability does not exist in the domain (−∞, 0) U (1, +∞) , we have omitted integration over this domain.
It does not create trouble in formalism.
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we obtain
∂

∂s
〈Â〉 = 〈∂Â

∂s
〉 − i

}
[〈ŵ†ψ|Â|ψ〉 − 〈ψ|Âŵ|ψ〉] . (3.5)

Here A, defined by A = 〈ψ|Â|ψ〉, is a dynamical [15] — an observable-valued-function of system’s
variables — A(qi, t) as distinct from observables. Since probability is a real aspect of nature, i.e., in
operator representation, it must be hermitian3,

〈ŵ†ψ|Â|ψ〉 = 〈ψ|ŵÂ|ψ〉 , (3.6)

which yields
∂

∂s
〈Â〉 = 〈∂Â

∂s
〉 − i

}
〈[ŵ, Â]−〉 . (3.7)

This is first order quantum dynamical equation. Following the analogy, we further obtain second and
third order quantum dynamical equations

∂2

∂s2
〈Â〉 = 〈∂

2Â
∂s2
〉 − i

}

〈{
[ŵ,

∂Â
∂s

]− +
∂

∂s
[ŵ, Â]− −

i

}
[ŵ, [ŵ, Â]−]−

}〉
, (3.8)

and

∂3

∂s3
〈Â〉 = 〈∂

3Â
∂s3
〉 −

〈{
[ŵ,

∂2Â
∂s2

]− +
∂

∂s
[ŵ,

∂Â
∂s

]− +
∂2

∂s2
[ŵ, Â]−

− i

}

(
[ŵ, [ŵ,

∂Â
∂s

]−]− + [ŵ,
∂

∂s
[ŵ, Â]−]− +

∂

∂s
[ŵ, [ŵ, Â]−]−

− i

}
[ŵ, [ŵ, [ŵ, Â]−]−]−

)}〉
.

(3.9)

For operators (∂
n bA
∂sn , n = 0, 1, 2, ...) compatible with ŵ, these equations follow Ehrenfest’s theorem

∂n〈Â〉
∂sn

= 〈∂
nÂ
∂sn
〉 . (3.10)

It holds good for observables having simultaneous eigenstates with probability w.

Appendix

A Unit Operator

Unit operator (eigenoperator), analogous to identity matrix, is deduced as a zero-order (ordinary or
partial) differential operator (irrespective of with respect to what) defined as

I := ∂0
x =

∂0

∂x0
; (x = q, p, t, ...) . (A.1)

We have observed in mathematical analysis that a zero-order differential operator does not change
the function to which it is applied which leads to deduce it unit operator satisfying If = f . For

example, in Ostrogradsky transformation, zero-order prime of generalized co-ordinate
(n)
q , (n =

0, 1, 2, 3, ...) for n = 0 is given by q. It may be extended to
(n)
q = Iq = q for n = 0 with

I := ∂0
t . The deduction is less applicable in mathematical analysis but is very important to deal

with quantum problems. Unit operator is quantized to Î := −i} ∂
∂s satisfying unit eigenoperator

equation Î|ψ〉 = I|ψ〉 while treating quantum problems. For example, a quantum transformation

with
(n)

ψ , (n = 0, 1, 2, 3, ...) (being nth-order partial derivative of ψ w.r.t. any variable x) is extended

for n = 0 ,
(n)

ψ = Iψ = ψ with I := ∂0
x . This is a quantum problem and we quantize I to Î which

yields
(n)

ψ + i}∂ψ∂s = 0 , for n = 0 .
3It also follows from counter-intuitive behavior of probability operator bw.
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