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Abstract

We quantize the probabilistic interpretation of quantum mechanics using Schrödinger
quantization rule. We describe the probability of getting a quantum object in configuration
space as the eigenvalue (image) of quantum mechanical probability (operator) satisfying
Schrödinger probability eigenvalue equation. The deduction is used to obtain quantum
description of systems which would be used to quantize many classical and quantum (dif-
ferential) problems.
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Probability Eigenvalue Formalism

Schrödinger wave is given by

ψ(s(qα, t)) := exp(
i

~
s(qα, t)) (1)

Its exact derivative w.r.t. action is given by

dψ

ds
=
i

~
ψ (2)

We propose a unity (zero-order differential) operator which satisfy for any function

If = f (3)

as well for Schrödinger wave
I|ψ〉 = |ψ〉 (4)

Following deduction (4) for (2), we obtain

I|ψ〉 = −i~ d
ds
|ψ〉 (5)
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which quantizes unity eigenoperator I to

Î = −i~ d
ds

(6)

satisfying unity eigenoperator equation

Î|ψ〉 = I|ψ〉 (7)

Probability (w) of getting a quantum object in real configuration space is provided unity.
However, in operator representation, we modify this analysis by transforming probability (w) to
unity operator (I). By putting w := I in (5), we obtain probability eigenvalue equation

w|ψ〉+ i~
d

ds
|ψ〉 = 0 (8)

with probability operator

ŵ = −i~ d
ds

(9)

satisfying Schrödinger probability eigenvalue equation

ŵ|ψ〉 = w|ψ〉 (10)

This is probability theory with Schrödinger quantization rule. Now probability is observed as the
eigenvalue (image) of probability operator. Previous description of quantum probability theory
(Born, 1926) is now modified (quantized) with Schrödinger representation

w =

∫
ψ∗ψdτ = ψ−1ŵψ (11)

with ŵ = −i~ d
ds . Here probability is described in both differential and integral representations.

Both descriptions would help us to quantize classical and quantum problems.
Let differentiate

〈Â〉 = 〈ψ|Â|ψ〉 =

∫
ψ∗Âψdτ (12)

exactly w.r.t. action with differential-integral rule

f̂

∫
K(τ, τ ′)dτ =

∫
f̂K(τ, τ ′)dτ (13)

We obtain
d

ds
〈Â〉 = 〈dψ

ds
|Â|ψ〉+ 〈ψ|dÂ

ds
|ψ〉+ 〈ψ|Â|dψ

ds
〉 (14)

Consider probability eigenvalue equation

|dψ
ds
〉 =

i

~
|ŵψ〉, 〈dψ

ds
| = − i

~
〈ŵ†ψ| (15)

We obtain
d

ds
〈Â〉 = 〈dÂ

ds
〉 − i

~
[〈ŵ†ψ|Â|ψ〉 − 〈ψ|Âŵ|ψ〉] (16)

Since the probability is a real aspect of nature, i.e., in operator representation, it must be
hermitian

〈ŵ†ψ|Â|ψ〉 = 〈ψ|ŵÂ|ψ〉 (17)
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which yields

d

ds
〈Â〉 = 〈dÂ

ds
〉 − i

~
〈[ŵ, Â]−〉 (18)

This is first order quantum description of systems which would be used to quantize first order
differential problems. Considering the analogy, we further obtain second and third order quantum
description of systems

d2

ds2
〈Â〉 = 〈d

2Â
ds2
〉 − i

~
〈[[ŵ, dÂ

ds
]− +

d

ds
[ŵ, Â]− −

i

~
[ŵ, [ŵ, Â]−]−]〉 (19)

and

d3

ds3
〈Â〉 = 〈d

3Â
ds3
〉 − 〈[[ŵ, d

2Â
ds2

]− +
d

ds
[ŵ,

dÂ
ds

]− +
d2

ds2
[ŵ, Â]−

− i
~

[[ŵ, [ŵ,
dÂ
ds

]−]− + [ŵ,
d

ds
[ŵ, Â]−]− +

d

ds
[ŵ, [ŵ, Â]−]−

− i
~

[ŵ, [ŵ, [ŵ, Â]−]−]−]]〉 (20)

These are second and third order quantum description of systems which would be used to quantize
second and third order differential problems.

Appendix

Unity Operator

Unity operator (eigenoperator) is deduced as a zero-order (ordinary or partial) differential oper-
ator (irrespective of with respect to what) defined as

I := ∂0x, (x = q, p, t, ...) (21)

We have observed in Mathematical analysis that a zero-order differential operator does not
change the function to which it is applied which leads to deduce it unity operator satisfying
If = f. For example, in Ostrogradsky transformation, zero-order prime of generalized co-ordinate
q(n), (n = 0, 1, 2, 3, ...) for n = 0 is given by q. It may be extended to q(n) = Iq = q for n = 0 with
I := d0t . The deduction is less applicable in Mathematical analysis but is very important to treat

quantum problems. Unity operator is quantized to Î := −i~ d
ds satisfying unity eigenoperator

equation Î|ψ〉 = I|ψ〉 while treating quantum problems. For example, a quantum transformation
with ψ(n), (n = 0, 1, 2, 3, ...) (being n-order exact or partial derivative of ψ w.r.t. any variable x)
is extended for n = 0, ψ(n) = Iψ = ψ with I := ∂0x. This is a quantum problem and we quantize

I to Î which yields ψ(n) + i~dψds = 0 for n = 0.

Conclusion

The work has attempted to deduce probability theory using Schrödinger quantization rule. Quan-
tum probability theory is extended with Schrödinger representation. Probability of getting a
quantum object in (real) configuration space is described as the eigenvalue (image) of probabil-
ity operator. The deduction is used to obtain quantum description of systems which would be
used to quantize (many order) differential problems. An attempt to quantize integral problems
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by using integral description of probability theory may be developed by using integral mathemat-
ical (operator) techniques (such as unity operator being zero-order differential operator). The
operator (eigenvalue) representation of probability would be used to modify quantum probability
theory in differential manner of observation.
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