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Abstract. This article represerts an extension of [rabirca, 2000aJ. A new 

equation for upper bOlDlds is obtained based on the Smarandache f-inferior part 

function. An example involving tpper diagonal matrices is given in order to 

illustrate that the new equation provide a better computation. 

1.INTRODUcrION 

Loop imbalance is the most important overhead in many parallel applications. Because loop 

structures represents the main source of parallelism, the scheduling of parallel loop iterations 

to processors can detennine its decreasing. Among the many method for loop scheduling, the 

load balance scheduling is a recent one and was proposed by Bull [1998] and developed by 

Freeman et.al. [1999,2000]. Tabirca [2000] studied this method and proposed an equation 

for the case when the work is distrIbuted to all the processors. 

Consider that there are p processors denoted in the following by Ph P2, ••• , Pp and a single 

parallel loop (see Figure 1.). 

do parallel i= l,n 
call1oop_body(i); 

end do 

Figure 1. Single Parallel Loop 

We also assume that the work of the routine loop_body(i) can be evaluated and is given by 

the function w: N -7 R, where w(i)= Wi represents the nwnber of routine's operations or 

its running time (asswne that w(O)=O). The total amount of work for the parallel loop is 

" L w(i). The efficient loop-scheduling algorithm distributes equally this total amount of 
;=1 
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work on processors sueh that a processor receives a quantity of work equal to ~. t w(i). 
P i=1 

Let I j and h j be the lower and upper bounds, j = 1,2, ... , P , such that processor j executes all 

the iterations between Ijand hj . These bounds are found distributing equally the work on 

processors by using 

hj 1" L w(i) =_. Lw(i) ('Vj= 1,2, ... ,p). 
;=IJ P ;=1 

(1) 

Moreover, they satisfy the following equations 

11 =1. (2.a) 

if we know I j , then hJ is given by tw(i) =~. I,w(i)= w .. (2.b) 
. i..Jj P i=1 

I j +1 =hj + 1. (2.e) 

Suppose that Equation (2b) is computed by a less approximation. This means that if we have 

the value I j' then we find h j as follows: 

II _ '+1 

h j =h <=> Lw(i)~W < Lw(i) . (3) 
/=IJ i=lj 

The Smarandache f-inferior part fimetion represents a generalisation of the inferior part 

function [,]: R --7 Z , [x] = k ~ k ~ x < k + 1. If [: Z --7 R is a strict increasing function 

that satisfies lim [(n)=~ and lim[(n)=oo, then the SmarandacheJ-inferior part 
_--t- II-+-

function denoted by fr.1 : R --7 Z is defined by [see www.gallup.unm.edu/-smarandaehe] 

[n(x)=k ~ [(k)~x<f(k+ 1). (4) 

Tabirca [2000a] presented some Smarandaehe f-inferior part functions for whieh 

l 

f(k) = LiD. They are presented in the follo~ng: 
;=1 

l 

[(k) = Li2 ~ iii (x) = [r(x)]'Vx ~O. 
i=1 

1 3·x where r(X)= __ +3_-
2 2 
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Tabirca [2000] also proposed an equation for the upper bounds of the load balance scheduling 

method based on the Smarandache f-inferior part function. If the work w satisfies certain 

conditions [fabirca. 2000], then the upper bounds are given by 

h(l) -j, (, .W) '-1" j - uV J- ......... p. (7) 

Moreover, Tabirca [2000a] applied this method to the product between an upper diagonal 

matrix and a vector. It was proved that the load balance scheduling method offers the lowest 

running time in comparison with other static scheduling methods n:abirca, 2000b]. 

2. A NEW EQUATION FOR THE UPPER BOUNDS 

In this section, a new equation for the upper bounds is introduced. Some theoretical 

considerations about the new equation and Equation (7) are also made. Consider that 

Ir 

I; N ~ R is defined by I(k) = L, Wi' 1(0) = O. For the work w. we asswne the 

following [Tabirca, 2000]: 

. 1· 
AI: Wj ~-. L,wp j=I,2, ... ,n. 

p i=1 

i=1 

A2: There are equations for the fimctions I, In . 

Theorem I. The upper bounds of the load balance scheduling methcd are given by 

hy) =In(r(hj~)+W)j=I,2, ... ,p. (8) 

Proof. For easiness we denote in the following h.i = h;2) • Equation (3) gives the upper 

bounds of the load balance scheduling method. We start 

~ 
and add I( h j_l) = L Wi to all the sides 

;=1 

II II +1 f w(i) ~/(hj_1)+W < fw(i) . 
i=1 i=1 

Based on the definition of In' we find that h j = In V(h j_l) + w). 

The following theorem illustrates how these bounds are. 

Theorem 2. hy) ~ h;ll,j = 1,2, ... ,p. 

Proof. Recall that these two upper bounds satisfy 
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from the equation 

• 

(9.a) 



(9.b) 

All the sums from Equation (9.b.) are added finding 

• ~ it.':.l i .L w. ~ j. W ~ 1: Wi ~ j. w . 
i=1 It=!}" i=1 

Because h;ll is the last index satisfying Equation (9.a) we find that hyl ~ h;ll holds. • 

C • f(h(2l) <f(h(1l)< ··W '-12 onsequence. j _. j -J ,j - , , ... ,p. 

This consequence obviously comes from the monotony off and the definition of the bounds. 

Now, we have two equations for the upper bounds of the load balance scheduling method. 

Equation (8) was obtained naturally by starting from the definition of the load balance. It 

reflects that case when several load balances are performed consecutively. Equation (7) was 

found by considering the last partial sum that is under j. W . This option does not consider 

any load balance such that we expect it to be not quit efficient Moreover, it is difficuh to 

predict which equation is the best or is better to use it of a given compu1ation. The best 

practical advice is to apply both of them and to choose the one, which gives the lowest times. 

3. COMPUTATIONAL RESULTS 

In this section we present an example for the load balance scheduling method. This example 

deals with the product between an upper diagonal matrix and a vector [Jaja, 1992]. All the 

computations have been perfonned on SGI Power Challenge 2000 parallel machine with 16 

processors. The dimension of the matrix was n=300. 

00 PARALLEL i=l,n 

Yi =ai.1 ,xI 

OOj=2,i 

Yi = Yi +a;.i ,xi 
END DO 

END DO 

Figure 2. Parallel Computation for the Upper Matrix - Vector Product. 

Recall that a = (a;,i\i=!;. E M ,,(R) is upper diagonal if ai,j = O,i < j. The product 

Y = a . x between an upper diagonal matrix a = (a i J-) _ ---I EM. (R) and a vector 
~ J,J-" 

XE R" is given by 

Yi = ±a;.j . Xj Vi =1,2, ... n. 
j=1 

(10) 
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The parallel computation of Equation (lO) is shown in Figure 2. 

The work: of iteration i is given by w(i) =i,i = 1,2, ... ,n. We have that the total work is 

f(n) = Ii = n· (n + 1) and W n· (n + 1). The Smarandache f-inferior function is 
;=1 2 2·p 

f(](X)=[ -1+.J~+8.x ]'v'X~O. Therefore, the upper bounds of the load balance 

scheduling method are given by 

[ 

1 ~1 4 . n.(n+I)] - + +. }" -'-----'-
(1)_ p._ 

h) - 2 ,J -l,2, ... ,p or (11) 

[

_L+ 1+4·h(2) . (h(2) +1)+4· n.(n+l)j 
)-4 )-1 

h(2) - p '-1,2 
J

o - ,J - •... ,p. 2 ° 

(12) 

The running times for these two types of upper bounds are presented in Table 1. Figure 3 

proves that these two types of bounds for the load balance scheduling are comparable the 

same. 

p=! P=2 P=3 P=6 P=8 

h~l) 1.847 1.347 0.987 0.750 0.482 
J 

h~2) 1.842 1.258 0.832 0.639 0.412 
J 

Table 1. Times of the computation. 

4. FINAL CONCLUSSION 

An important remark that can be outlined is the Smarandache inferior part function was 

applied successfully to solve an important scheduling problem. Based on it. two equations for 

the upper bounds of the load balance scheduling methods have been found. These equations 

have been used to solve the product between an upper diagonal matrix and vector and the 

computational times were quite similar. The upper bounds given by the new equation have 

provided a better computation for this problem. 
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Figure 3. Graphics of the Running Times. 
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