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Abstract 

 A comparison of the attractive motion experienced by masses due to gravitational interaction over 

relatively short distances with the recessional motion of masses at relatively large distances (that adhere to 

the velocity increases described by Hubble’s v = Hr relation) is presented to demonstrate the similarities 

between the two motions.  Based on the similarities of the two motions, and the observation that 

gravitational acceleration decreases as distance increases while recessional acceleration decreases as 

distance decreases the distance at which the two accelerations are equal in magnitude but in opposite 

directions resulting in zero net acceleration is calculated and compared to similar results provided by 

Chernin et al. [1]. The summation of the attractive gravitational acceleration and the recessional acceleration 

is presented and plotted depicting a smooth, continuous transition from gravitational attraction to universal 

expansion.  The underlying cause of these accelerations is not addressed. 
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1.  INTRODUCTION 

This paper examines the similarities between two types of spontaneous motion: gravitational 

acceleration and the recessional acceleration associated with universal expansion.  Based on the similarities 

between these two types of motion the interaction between the two motions is considered.  Specifically, 

since gravitational acceleration decreases as distance increases and recessional acceleration decreases as 

distance decreases the distance at which the two accelerations are equal in magnitude but in opposite 

directions resulting in zero net acceleration is calculated and compared to similar results provided by 

Chernin et al. [1].  A single equation is presented and plotted that depicts the summation of the attractive 

gravitational acceleration as well as the recessional acceleration. 

2.  BACKGROUND 

 Edwin Hubble showed us that when examining a group of distant heavenly bodies at some instant 

in time such bodies are receding away from us and that the rate of recession of the individual bodies 

increases in proportion to their distances from us.  Does this mean that, for a given body, as that body 

moves away from us over a period of time the recessional velocity of that individual body increases?  In 

other words, are distant bodies accelerating away from us?  The recessional acceleration consistent with 

Hubble’s v = Hr relation is derived below and is assumed to be in effect for the remainder of this paper. 

But first, consideration of the spontaneous recessional acceleration of distant bodies away from us 

as described above calls to mind another type of spontaneous acceleration – one characterized by 

accelerated motion towards us – namely, gravitational acceleration.  The two types of motion – 

gravitational and recessional – are in opposite directions but they share a number of similarities so, while 

the underlying causes of these motions are not a subject of this paper, a comparison of the observable 

characteristics of the two motions is in order. 

3.  SIMILARITIES 

The two types of motion discussed above – gravitational and recessional - share the following 

characteristics:   

1.)  The motions are accelerations.  2.) The accelerations change as a function of distance. 3.)  The 

accelerations are inertial.   



 

 
 

3 

3.1  The Motions are Accelerations   

Clearly, gravitational free fall motion towards the Earth is an acceleration.  As far as the distant 

motion away from Earth goes, in order to adhere to the relationship discovered by Hubble, since velocity 

increases as a function of distance, and since distant bodies are increasing their distance from us over time, 

the velocity of these distant bodies will increase over time.  That is, for constant H, in order to adhere to 

Hubble’s law the distant bodies must accelerate.  The following mathematical derivation will illustrate 

further. 

The well known Hubble’s Law 

Hrv =   (1) 

results in an acceleration Ah of 

dt
dHr

dt
drH

dt
dvAh +==  (2) 

where for constant H we have 

Hv
dt
drHAh ==   (3) 

and from Equation (1) above 

rHAh
2=   (4) 

which describes the acceleration corresponding to Hubble’s Law for constant H.  Thus both 

attractive gravitational motion and recessional motion are described as accelerations. (Note: The discovery 

of non-constant universal expansion [2] is acknowledged but does not materially contribute to the main 

observations in this article.) 

 3.2.  The Accelerations Change as a Function of Distance   

As Equation (4) above shows, the recessional motion described by Hubble is an acceleration 

which varies as a function of distance r.  The well known equation describing the gravitational acceleration, 

Ag, of some small test mass near some much larger attracting mass M is  

2

)(
r

GMAg =   (5) 
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Thus both attractive gravitational acceleration and recessional acceleration are shown to vary as a 

function of distance.  

3.3.   The Acceleration is Inertial 

Observers in an imaginary “opaque box” (an imaginary container with walls through which no 

information of any kind can pass) reference frame in free fall towards the Earth cannot tell they are 

accelerating towards the Earth (Subtleties, such as the fact that point masses in a free falling box will move 

towards each other as they move towards the same center of mass point of the Earth are noted, but do not 

contribute to this discussion.).  Similarly, observers in an “opaque box” reference frame encompassing the 

entire planet Earth cannot tell they are accelerating away from distant heavenly bodies.  Put another way, 

inhabitants of the Earth or of some distant celestial body don’t “feel” any accelerations away from each 

other just as occupants of a free falling reference frame cannot “feel” an acceleration towards Earth.  Thus 

both attractive gravitational acceleration and recessional acceleration are shown to inertial. 

4.  THE BREAK EVEN POINT 

 The comparisons above reveal several similarities that lead one to wonder how the two 

accelerations interact.  Firstly, the rates at which the two types of acceleration vary as a function of distance 

differ in that the gravitational acceleration varies as 1/r2 while the recessional acceleration varies linearly 

with r.  However, as a result of the shared similarities described above, there is a smooth transition from 

one acceleration to the other as distance increases without any discontinuity.  In fact, the only significant 

difference between the two types of motion is the direction in which the acceleration occurs. Consider that 

when looking out into space from our vantage point on planet Earth we see the Hubble recessional 

acceleration decrease as the distance from Earth decreases while the gravitational acceleration decreases as 

distance from Earth increases.  That is, if we imagine moving in from some relatively large distance 

towards some point in space closer to Earth the spontaneous (recessional) acceleration decreases towards 

zero while if we imagine moving out from Earth to the same point in space the spontaneous (gravitational) 

acceleration also decreases towards zero.  The decreasing acceleration towards the same point in space, and 

the overall similarities of the two accelerations described above leads one to wonder:  Will the two 

accelerations “cancel one another out” at some point in space?   
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Viewed another way, one must wonder - Are there any remnants of the recessional tendencies 

present at relatively short distances?   Are there remnants of the gravitation tug we observe locally in 

operation over relatively large distances?  There must be some relationship between gravitational and 

recessional acceleration – What is that relationship?   

In order to find where the two accelerations “cancel each other out” consider again Equation (4) 

rHAh
2=   (4) 

and Equation (5) 

2

)(
r

GMAg =   (5) 

We can now set Ah equal to Ag and solve for the distance r = Rc, the critical distance at which the 

two accelerations would have to be equal. 

hg AA =   (6) 

From (4) and (5)  

c
c

RH
R
GM 2

2 =   (7) 

Solving for Rc 

cR
H
GM

=



 3

1

2   (8) 

This is the distance beyond which gravitational acceleration is exceeded by recessional 

acceleration.  (As an aside, it is interesting step back and consider how such fundamental constants as G 

and H can be combined with mass as in Equation (8) to produce a parameter with units of length, that is, a 

distance.  Also, if the exponent 1/3 is left out of Equation (8) a volume is produced.) 

To put Equation (8) into some kind of perspective consider Rc for a mass the size of the Milky 

Way galaxy.  For 

G = 6.672x10-11 Nm2/kg2 

M = Mass of the Milky Way galaxy, 1.2x1042 kg 

H =  72 km s-1 megaparsec-1 

we have 
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≈cR 2.6 Million light years (9) 

As mentioned above, Chernin et al  [1] calculate an equivalent to Equation (8), but they approach 

the matter from a general relativistic consideration of dark energy.  Specifically, they describe a “zero-

gravity surface” of radius Rv where 

vRM
=







 3
1

8
3

νπρ
 (10) 

and where νρ  is the local dark energy density.   So, how does Equation (8), which is derived from the 

assumption that Hubble’s Law arises from a recessional acceleration, compare to Equation (10), which is 

derived from a consideration of the local dark energy density?  Specifically - How do Equations (8) and 

(10) compare numerically for some arbitrary mass M?  This boils down to determining whether the 

following relation is true: 

     
νπρ8

3
2 =

H
G

   (11) 

   

For G and H defined as above we have 

25
2 101.2254x

H
G

=    (12) 

 

On a global scale current estimates give νρ  = 10-29, which yields 

251.1937x10
8

3
=

νπρ
   (13) 

The close agreement (less than 3% difference) of Equations (12) and (13) above demonstrates that the zero-

gravity surface can be computed based on G and H without resorting to any general relativistic 

considerations. 

 5.  A SINGLE EQUATION FOR BOTH GRAVITATIONAL AND RECESSIONAL 

ACCELERATIONS 
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Consider two relatively nearby masses adrift in space such that they are free to spontaneously 

move towards each other due to gravitational interaction.  Application of Equation (5) alone to this system 

would indicate that as the distance between the two masses was continuously increased the tendency of the 

masses to move towards each other would become weaker and weaker - eventually going to zero only as 

the distance between the two masses approached infinity.  Similarly, two masses with a very large distance 

between them would tend to spontaneously accelerate away from each other and an application of Equation 

(4) alone would indicate that this tendency would go to zero only as the distance between the masses went 

to zero.  In order to examine the interaction between the two accelerations consider a summation of 

Equation (4) and Equation (5) to produce a resultant total acceleration Atotal as follows:  

2
2 )(

R
GMRHAtotal −=   (14) 

An application of Equation (14) to the system of two masses that are initially relatively close to 

each other would indicate that as distance increases the tendency to move towards each other gets weaker 

and weaker only until the distance Rc <<∞  is reached, at which point the tendency goes to zero per 

Equation (7), and beyond which there is a tendency to accelerate again, but now in the opposite direction, 

i.e., away from each other. 

A plot of the combined gravitational and recessional accelerations described by Equation (14) for 

various distances R where M equals the mass of the Milky Way galaxy is provided as Figure 1.  A plot of 

the corresponding gravitational acceleration only is included for reference. 

The representation of Equation (14) by Figure 1 shows that for small R, that is for relatively small 

distances, the total acceleration is dominated by the gravitational term   GM/R2 while for relatively large 

distances the total acceleration is dominated by the recessional term H2R.  Of particular note is the lack of 

dependence of the recessional acceleration term on mass.  Mass only comes into play at relatively short 

distances to generate a local deviation from the more generally observed recessional motion. 
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Figure 1.  Recessional Acceleration vs. Distance 

6.  CONCLUSION 

 The similarities between gravitational acceleration and recessional acceleration are used 

to illustrate a continuous transition from one type of motion to the other as shown in Figure 1.  The results 

presented compare favorably to the “zero-gravity surface” proposed by Chernin et al. [1].
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