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ABSTRACT: In this paper we review some results on the regularization of divergent integrals of 
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Regularization of divergent integrals:

In QFT (Quantum field theroy) there are mainly two kinds of divergent integral , the 
UV (ultraviolet) divergence, that happens whenever an integral is divergent when 
x  and the IR (infrared) one that occurs if the integral is divergent as 0x  ,a few 
examples of these integrals are
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      a R     or     a Z        (1)

The first two integrals have an UV divergence, whereas the last ones have an IR 
divergence,the names IR and UV divergences come from the fact that if we use the 

Wave-particle Duality in QM 
| |

h

p
  setting x=p we find that UV divergence is 



2

equivalent to have small wavelengths   (ulra violet) and the IR divergence happens for 
big wavelengths (infrared) so the name is not casual, for more details [5] and [9]

To deal with UV divergences on an integral of the form ( )
d

d

R

dk F k on dR we simply 

make a change of variable to d- dimensional polar coordinates , to rewrite the integral

1 1
1
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
   

 
            

      
    
                                                                                                                                        (2)

With the constants 
 

1 ( , )
( )

2 1n

dzF z
a

i z


 
    , here  means that we must integrate 

over the angular variables , in case F is invariant under rotations on the d-dimensional 

plane the angular part of the integral can be calculated exactly as 
/ 22

( / 2)

d

d
d





 
  , the 

idea of expanding our function into a Laurent series , is to isolate the UV divergencies 

of the form 
0

kdrr


 so they can be ‘cured’ using the zeta regularization algorithm.

Choosing any c >1 , since the integral has a UV divergence , after expanding the 
integrand 1( , ) dF r r  into a convergent Laurent series for |r| >1 there will be only a 

finite number of divergent integrals of the form 
0

kdrr


 plus a logarithmic divergent 

integral (this is another example of UV divergence) 
0

dr

r c



 , now to get finite results 

from the divergent integrals we will apply the recurrence deduced in our previous paper 
[4 ]  when discussing the zeta regularization applied to integrals 

1 22

10 0 0

!( 2 1)
( )

2 (2 )!( 2 1)!
m m m rr

r

B m m rm
x dx x dx m x dx

r m r


  
 



 
   

          (3)

Equation (3) is a ‘regularization’ in the sense that if we had the upper limit N-1 instead 

of  the expression (3) would give the well-known result 
1

0 1

N k
k N

dxx
k




 k >0 or k=0 , 

for the case 
0

kdxx


 , the series 
0

k

n

n



 is no longer convergent and must be given a finite 

value in the spirit of Zeta function regularization [ 4] so 
0

( )k
R

n

n k




  , this is why 

the term ( ) ( )R m m    apperas inside (3) , note that (3) is a recurrence formula with 

initial term 
0

1 1 1 1 1 1 (0) 1/ 2dx 


         and allows to calculate or assign a 
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finite value to every divergent integral of the form 
0

kdrr


 for ‘k’ a positive integer , (the 

main problem for the logarithmic divergence is the pole of the Zeta funciton at s=1) the 
first terms are

 

0

0

22
21

0

32
21 2 31

0

(0, ) (0) 1/ 2

(0, )
(1, ) ( 1)

2

1
(2, ) (0, ) ( 1) (0, )

2 2

3 1
(3, ) (0, ) ( 1) (0, ) ( 3) (0, )

2 2 2

I dx

I
I xdx

B
I I a I x dx

B
I I a I B a I x dx







 









    


    

         
 

             
 









(4)

Notation ( , )I m  stands for 
0

lim kdxx




 
 
 
 , being ‘Lambda’ a cut-off with certain 

physical meaning.

This example is valid for UV divergences but what would happen to the case of 

‘singular integrals’ 
c

a

dx

x b    a <b<c  or to the logarithmic divergence 
0

dr

r c



 ?

o Regularization of divergent integrals using Distribution theory:

As a first example, let us suppose we want to calculate the integral ( ) ( )ndxf x D x a




 , 

for n=0 we know that in spite of the ‘pole’ of the delta function at x=a we have that 

( ) ( ) ( )dxf x x a f a




  for any test function f(x) , then we can use two method

 We perform integration by parts avoiding the singular point at x=a  so 

( ) ( ) ( ) ( ) ( ) ( ) ( )n n ndx D f x x a dxf x D x a D f a 
 

 

          (5)

 We integrate n-times (no matter if n is non-integer) with respect to ‘a’ 

( ) ( ) ( ) ( ) ( )( 1) ( ) ( 1) ( )n n n n
aI a dxf x D x a D I a dxf x x a f a 

 


 

         (6)
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Both methods are equivalent since if we recall the identity  ( ) ( )n n
a aD D I a I a  we yield 

to the same result, no matter if we integrate/differentiate with respect to the parameter 
‘a’ or if we integrate by parts.

A similar idea can be applied to integrals of the form 
c

a

dx

x b and 
a

dx

x a



 first we define

the distribution
( )     for a<x<c

( , )
0 otherwise

sx b
T b x

 
 


, for a regular enough function ( )x we 

can consider (in the sense of distribution) our divergent integral to be the linear 

operator [ ] ( )
( )

c

s
a

dx
T x

x b
 

 for any real ‘s’ , the idea is to perform a differ-integration 

 -times so 1/ 2s   . First we must introduce the concept of differ-integral or 
fractional derivative of any order, there are mainly [6] 3 definitions

1

0

1
( ) ( ) ( )

( )

x
n nD f x dt x t f t dt

n
  

      
0

0

1
( ) lim ( 1) ( ( ) )q m

qh
m

q
D f x f x q m h

mh






 
    

 
 (7)

The first definition inside (7) is the expression for fractional integral (not valid for 
negative ‘n’ ) , the second one is the ‘Grunwald-Letnikov’ differintegral valid for 
positive ‘q’ , the third alternative for the derivative comes from the definition of 

Cauchy’s integral formula  
1

( 1)
( ) ( )

2 ( )
q

q

q dz
D f x f z

i z x 

 


 for any rectificable curve 

 on the complex plane that includes the point z=x

Example: Let be the singular integral ( ) ( )
( )

c

s
a

dx
I b x

x b


 , in order to give it a finite 

value first we differentiate  -times with respect to ‘b’ so 1/ 2s     hence 

(1 )
( ) ( )

(1 )

c

b

a

s dx
D I b x

s x b
 


 


    , we make then the change of variable 2x b u  so 

our integral becomes 22 (1 )
( ) ( )

(1 )

c b

b

a b

s
D I b du b u

s
 







 
 
    , then we define the 

function F so 2( )
dF

b u
du

    this implies 

 2 (1 )
( ) ( ) ( )

(1 )b

s
D I b F c b F a b

s



 

   
  

finally taking the inverse operator we 

can set      2 (1 )
( ) ( ) ( ) ( , )

(1 ) b b

s
I b D F c b D F a b b

s
  


  

    
  

     (8)

Here ‘mu’ is a real number and b

d f
D f

dx









 exists in the sense of a fractional 

derivative/integral  and ( , ) 0bD b   . We set the condition  1/ 2s   because with 

a change of variable we can avoid the pole   1/ 2
x b

 at x=b.



5

The same strategy can be applied to singular integral equation, for example if we 
wished to solve the following equation

 
( ) ( ) ( )n

a

dt
f x g x f t

t x



 
     so   

(1 )
( ) ( ) ( )

(1 )x x

a

n dt
D f x D g x f t

n t x
 



 
 

      (9)

Where 1/ 2n   , making the change of variable 2t x u  so (9) becomes

22 (1 )
( ) ( ) ( )

(1 )x x

a x

n
D f x D g x du f x u

n
 







 
  

        Gamma function   (10)

Now, equation (10) has NO poles at t=x , to solve this integral equation without 
singularity we could use  an iterative process

0 ( ) ( )f x g x          2
1

2 (1 )
( ) ( ) ( )

(1 )x n x n n

a x

n
D f x D g x du f x u

n
 








 
  

      (11)

Where we have supposed that ( , ) 0 ( , )xD x x      in order to simplify the 
calculations of the solution of the integral.

Then one could ask, what happens in the limit b  , in this case the quantity   1
x b


becomes zero for every x , so the I(b) must tend to 0 for ‘b’ big hence we should choose 
the function ( , )b  with the conditions ( , ) 0bD b   and 

 2 (1 )
lim ( ) ( ) ( , ) 0

(1 ) b bb

s
D F c b D F a b b

s
  


 



  
        

             (12)

o Logarithmic divergences

The case of the logarithmic integral is a bit different, since formula (4) can not handle it 
,due to the pole of zeta function at s=1, one of the ideas to apply [4] is just to replace the 

divergent integral  
0

dx

x a



 by a divergent series  
0

1

/n n a h



  with ‘h’ being an step (we 

use Rectangle method ) ,this series is still divergent but can be assigned a finite value 
via ‘Ramanujan resummation’ equal to the logarithmic derivative of Gamma function 

' a

h

  
   

,however this kind of method depends on the value of the step ‘h’ given.
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From Fourier analysis one can interpretate , the integral 
0

dx

x a



 as the following 

convolution   1 ( ) 1 ( )
*

a

H x H x a
H x dx dx dx

x a x x

  


 


  

     with H(x) the ‘Heaviside 

step function’ , using the property of the Fourier transform and the convolution theorem 

 1 ( ) 1
* ( ) ( )

2
iuaH x i

H x dx d u u e I a
x a i u


 



 

                            (13)

Here |x| is the absolute value function that takes the value x or –x depending on if ‘x’ is 
either positive or negative, solving Fourier transform (13) we can solve the logarithmic 
UV divergence. If we can solve (13) for a fixed a then for another value ‘b’ so b is 

different from 0 or inifinite we have  
0 0

log ( )
dx b dx

I a
x a a x b

        

Another simpler method is that if we have 
0

1
( )I a dx

x a




 divergent integral , we 

differentiate with respect to ‘a’
2

0

1 1
'( )

( )
I a dx

x a a



   
 so integrating again with 

respect to ‘a’ 1( ) log( ) ( )I a a c a c    , with  1c an universal divergent 

1
0

( 1) 1
( ) ( 1) ( 1) ( 1)

( )aD I a dx
x a a

  
 

 




 
     

        0            (14)

So  ( ) ( 1) ( 1) ( , )aI a D a a          , with 0  and ( , ) 0aD a   , one of the 

problems is the apparent absurdity since due to the term  1
 there is a complex 

contribution to an integral with real-valued integrand. An alternative formulation based 
on Hurwitz Zeta function is the following

0 0

1
log( )dx x a dx

a x a

 
 

     and     
(0, )

log ( ) log 2H a
a

a

 
  


   0a  (15)

For the sum 
0

l g( ) (0, )s H
n

o n a a




   , this is the Zeta-regularized definition for the 

Determinant of an operator , a combination of the 2 expressions inside (15) gives the 

regularized value for the Harmonic sum  
0

1 '
( )dx a R

x a

 
  

  (in case a=1 we get 

the Euler-Mascheroni constant) , this is the analogue result to simply using ‘Ramanujan 

resummation’ for the series 
0

s

n

n



 s >0 , and s=-1 , ‘R’ stands for the Remainder term 

inside Euler-Maclaurin summation formula and is  
2 1

2
2 1

1 0

1 1

2 (2 )!

r
r

r
r x

B
R

a r x x a




 

       

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Appendix: Convolution theorem

In this paper we have introduced and used the ‘Convolution theorem’ , if we have the 
convolution of 2 functions or distributions f(x) and g(x) defined as 

( ) ( ) ( )h z dxf x g x z




  then  ( ) ( ) ( )H u F u G u   with F, G and H the fourier 

transform respectively of  h(z) f(x) and g(x).

Proof:= if we define  ( ) ( ) ( )iuz iuzdze h z dze dxf x g x z
  

 

  

      ( ) ( )iuxdxe f x F u








and ( ) ( )iuxdxe g x G u






 , we make the change of variable y x z  so dx = -dz into 

the first integral so we have the following identities

( )( ) ( ) ( ) ( ) ( ) ( )iuz iu x y iux iuydze dxf x g x z dye dxf x g y dye dxf x g y e
     

   

     

         
  (16)

The first integral on the left is just H(u)  and using Fubini’s theorem to interchange the 
order of integration we have been able to proof that  ( ) ( ) ( )H u F u G u   .

If we name ( ) ( )g x H x and ( ) kf x x , then ( )k k

a

dxx H x a x dx
 



   , hence 

applying convolution theorem and the Fourier transform 

( ) ( )k k k iua

a

i
dxx i du u D u e

u
 

 



   
     k > 0                    (17)

Unfortunately there are some oddities with defining product of distributions 
1kD
x

  , 

kD   ,     within distribution theory, however if the integral ( )
a

f x dx


 makes 

sense as a Riemann integral , if we define F(u) as the Fourier transform of f(x) then the 

Convolution theorem gives the regularized result  
(0)

( ) ( )
2

a

c

F
dtf t f c   for some 

Real ‘c’ , for the case of  
1

( )f x
x

 with Fourier transform 
| |d x

dx
the integral is 

divergent in the Riemann sense but can be attached a finite value  0

1 | |
log( )

2 x

d x
a

dx  

, since |x| is even its derivative will be odd so the mean value of the derivative near x=0 
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will be 0  and we have  1 log( )
a

x dx a


   . The last method would be to use the Euler-

Maclaurin summation formula to get

2 1
2

02 1
0 10

1 1 1 1

2 (2 )!

r
r

xr
n r

B d
dx

x a n a a r dx x a

  


 

        
               (18)

The problem is that 
0

1
(1, )H

n

a
n a







 is still divergent , although using Ramanujan-

summation we can attach this series the finite value 
0

1
(1, ) ( )H

n

a a
n a







  

  and 

plug this result into (17) , In both cases the approximation of the integral by a sum  

0

1
( )

n

a
n a






 

  and the result 
0

log( ) a

dx
a c

x a



  
 are equivalent for a  (big 

a) since using the Stirling’s approximation for log ( )x and taking the derivative we get 

the asymptotic result    
'( ) / ( )

lim 1
log( )a

a a

a

 

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