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Abstract

Solitary-particle quantum mechanics’ inherent compatibility with special relativity is implicit in Schrö-

dinger’s postulated wave-function rule for the operator quantization of the particle’s canonical three-

momentum, taken together with his famed time-dependent wave-function equation that analogously treats

the operator quantization of its Hamiltonian. The resulting formally four-vector equation system assures

proper relativistic covariance for any solitary-particle Hamiltonian operator which, together with its canon-

ical three-momentum operator, is a Lorentz-covariant four-vector operator. This, of course, is always the

case for the quantization of the Hamiltonian of a properly relativistic classical theory, so the strong corre-

spondence principle definitely remains valid in the relativistic domain. Klein-Gordon theory impairs this

four-vector equation by iterating and contracting it, thereby injecting extraneous negative-energy solutions

that are not orthogonal to their positive-energy counterparts of the same momentum, thus destroying the

basis of the quantum probability interpretation. Klein-Gordon theory, which thus depends on the square

of the Hamiltonian operator, is as well thereby cut adrift from Heisenberg’s equations of motion. Dirac

theory confuses the space-time symmetry of the four-vector equation system with such symmetry for its

time component alone, which it fatuously imposes, thereby breaching the strong correspondence principle

for the free particle and imposing the starkly unphysical momentum-independence of velocity. Physically

sensible alternatives, with external electromagnetic fields, to the Klein-Gordon and Dirac equations are

derived, and the simple, elegant symmetry-based approach to antiparticles is pointed out.

Introduction: quantum mechanics’ inherent compatibility with relativity

The inherent compatibility of solitary-particle quantum mechanics with special relativity is a straightforward
consequence Schrödinger’s two basic postulates for the wave function [1, 2], i.e., for the quantum state vector in
the Schrödinger picture in configuration representation, namely 〈r|ψ(t)〉. The first Schrödinger wave-function
postulate is his rule for the operator quantization of the particle’s canonical three-momentum,

1



−ih̄∇r(〈r|ψ(t)〉) = 〈r|p̂|ψ(t)〉, (1a)

which is as well, of course, a result of Dirac’s postulated canonical commutation relation [3]. The second
Schrödinger wave-function postulate is his famed time-dependent wave equation [1, 3, 2],

ih̄∂(〈r|ψ(t)〉)/∂t = 〈r|Ĥ |ψ(t)〉, (1b)

which formally treats the operator quantization of the particle’s Hamiltonian in a manner analogous to the way
Eq. (1a) treats the operator quantization of the particle’s canonical three-momentum. The straightforward

theoretical physics implication of Eqs. (1a) and (1b) is simply that the operators p̂ and Ĥ are the generators

of the wave function’s infinitesimal space and time translations, respectively. Therefore, in anticipation of the
restriction on such generators which special relativity imposes, these two equations are usefully combined into
the single formally four-vector Schrödinger equation for the wave function,

ih̄∂(〈r|ψ(t)〉)/∂xµ = 〈r|p̂µ|ψ(t)〉, (1c)

where the contravariant four-vector space-time partial derivative operator ∂/∂xµ is defined as ∂/∂xµ
def
=

(c−1∂/∂t,−∇r), and the formal “contravariant four-vector” energy-momentum operator p̂µ is defined as

p̂µ def
= (Ĥ/c, p̂). Since special relativity requires the contravariant space-time partial derivative four-vector

operator ∂/∂xµ to transform between inertial frames in Lorentz-covariant fashion, it is apparent from Eq. (1c)

that the Hamiltonian operator Ĥ will be compatible with special relativity if it is related to the canonical
three-momentum operator p̂ in such a way that also makes the energy-momentum operator p̂µ a contravari-
ant four-vector which transforms between inertial frames in Lorentz-covariant fashion. This property of the
Hamiltonian operator will, of course, be satisfied automatically if it is the quantization of the Hamiltonian of

a properly relativistic classical theory. Therefore the strong correspondence principle definitely remains valid

in the relativistic domain.
Now for a completely free solitary particle of nonzero mass m, the logic of the Lorentz transformation

from its rest frame, where it has four-momentum (mc,0), to a frame where it has velocity v (where |v| < c)
leaves no freedom at all in the choice of its classical Hamiltonian. That Lorentz boost takes this particle’s
four-momentum to,

(mc(1 − |v|2/c2)− 1

2 , mv(1 − |v|2/c2)− 1

2 ) = (E(v)/c, p(v)), (2a)

which, together with the identity,

mc2(1 − |v|2/c2)− 1

2 =
√
m2c4 + |cmv|2(1 − |v|2/c2)−1, (2b)

implies that,

E(v) =
√
m2c4 + |cp(v)|2 = Hfree(p(v)). (2c)

Therefore, for the completely free relativistic solitary particle of nonzero mass m, theoretically systematic,
conservative adherence to the strong correspondence principle flatly determines the relativistic Hamiltonian
operator to be the square-root operator,

Ĥfree =
√
m2c4 + |cp̂|2. (3)

This conclusion even extends to the free spin- 1

2
particle of nonzero mass: notwithstanding that spin- 1

2
itself

is a nonclassical attribute, the nonrelativistic Pauli Hamiltonian operator for such a particle automatically

reduces to the usual nonrelativistic purely kinetic-energy Hamiltonian operator in the free-particle limit, and
one can always find an inertial frame of reference in which a free particle of nonzero mass is completely

nonrelativistic, i.e., for the completely free particle one can always find an inertial frame of reference in which
the nonzero-mass relativistic free-particle Hamiltonian operator

√
m2c4 + |cp̂|2 arbitrarily well approximates

mc2+ |p̂|2/(2m), which is the Pauli free-particle Hamiltonian operator, offset by the merely constant rest-mass
energy term mc2.
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Since, as we shall shortly see, the Dirac free-particle Hamiltonian operator is very much at odds with

the relativistic free-particle square-root Hamiltonian operator of Eq. (3) [2], even notwithstanding the complete

compatibility of Eq. (3) with the free-particle Pauli theory, it will be imperative to understand exactly how and

why the Dirac Hamiltonian operator comes to be in conflict with the fundamental requirement of relativistic

quantum mechanics, namely that p̂µ = (Ĥ/c, p̂) must transform between inertial frames as a Lorentz-covariant

four-vector. First, however, we turn to analysis of the Klein-Gordon theory, which rejects the fundamental

quantum mechanical Eq. (1c) in that precise form, instead substituting in its place Eq. (1a) together with a
once-iterated and Lorentz-contracted version of Eq. (1c).

Klein-Gordon theory’s impairment of quantum mechanics

Very strongly motivated by considerations of perceived calculational ease, which we briefly discuss in the
next section, rather than by those of quantum mechanics, Klein, Gordon and Schrödinger rejected the natu-

ral time-dependent Schrödinger equation of Eq. (1b) in favor of a once-iterated and then Lorentz-contracted
Lorentz-scalar version of Eq. (1c) [2, 4, 5], which yields,

∂2(〈r|ψ(t)〉)/(∂xµ∂xµ) + (〈r|p̂µ p̂µ|ψ(t)〉)/h̄2 = 0, (4a)

where, of course,

p̂µ p̂µ = (Ĥ2 − |cp̂|2)/c2, (4b)

so that in the special case of the free particle, where Ĥ = Ĥfree, which is given by Eq. (3), it is readily seen
that the general Klein-Gordon equation of Eq. (4a) above reduces to,

(∂2/(∂xµ∂xµ) + (mc/h̄)2)〈r|ψ(t)〉 = 0. (5)

To each stationary eigensolution e−i
√

m2c4+|cp|2 t/h̄〈r|p〉 of eigenmomentum p of the natural time-dependent
relativistic free solitary-particle Schrödinger equation, which is Eq. (1b) for the case that the Hamiltonian op-

erator Ĥ is equal to Ĥfree, Eq. (5) adds an extraneous negative-energy partner solution e+i
√

m2c4+|cp|2 t/h̄〈r|p〉
of the same momentum, whose sole reason for existing is the entirely gratuitous iteration of Eq. (1c)! These
completely extraneous negative “free solitary-particle” energies, −

√
m2c4 + |cp|2, do not correspond to any-

thing that exists in the classical dynamics of a free relativistic solitary particle, and by their negatively
unbounded character threaten to spawn unstable runaway phenomena should the free Klein-Gordon equation
be sufficiently perturbed (the Klein paradox) [2]. Due to the fact that the Klein-Gordon equation lacks a cor-
responding Hamiltonian—it depends on only the square of a Hamiltonian, as is seen from Eq. (4b)—it turns
out, as is easily verified, that the two solutions of the same momentum p which have opposite-sign energies,
i.e., ±

√
m2c4 + |cp|2, fail to be orthogonal to each other, which outright violates a key property of orthodox

quantum mechanics! Without this property the probablity interpretation of quantum mechanics cannot be sus-

tained, and the Klein-Gordon equation is unsurprisingly diseased in that regard, yielding, inter alia, negative

probabilities [2].
Furthermore, Klein-Gordon theory, which depends on the square of a Hamiltonian operator (see Eq. (4b))

rather than on the Hamiltonian operator itself, is thereby cut adrift from the normal quantum mechanical
relationship to the Heisenberg picture, Heisenberg’s equations of motion and the Ehrenfest theorem. In a nut-
shell, substitution of the gratuitous iteration of Eq. (1c) for the Eq. (1b) part of Eq. (1c), which is exactly what
Klein-Gordon theory does, grievously impairs and degrades the unexceptionable quantum-mechanical nature of
Eq. (1c) itself ! The need to carefully respect all the components of Eq. (1c) rather than to opportunistically
try to “bend” aspects of its time component (i.e., Eq. (1b)) “at the edges” unfortunately did not register at

all with Dirac ahead of his attempt to “repair” the problems of the Klein-Gordon theory.

Dirac theory’s fatuous imposition of “space-time coordinate symmetry”

The probability disease of the Klein-Gordon theory prompted Dirac to sensibly reinstate Eq. (1b), the time-
dependent Schrödinger equation. Very unfortunately, being motivated above all else by the same non-physics

considerations of perceived calculational ease as Klein, Gordon and Schrödinger [2, 5], Dirac hit upon a com-
pletely misguided but nonetheless plausible-sounding “reason”, ostensibly emanating from the “relativistic
need” for Eq. (1b) to by itself exhibit “space-time coordinate symmetry” [6, 7, 2], to linearize the square-root
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Hamiltonian operator Ĥfree of Eq. (3) for the nonzero-mass free particle [8, 6, 5], notwithstanding the fact that
Eqs. (2) effectively produce the specifically square-root form of Hfree from nothing more than the nonzero-mass
free particle’s Lorentz transformation properties!

Unfortunately not being aware of the specifically four-vector form of Eq. (1c), Dirac focused myopically

on only Eq. (1b), the time-dependent Schrödinger equation, whose theoretical physics essence is, of course,
that the Hamiltonian operator is the generator of infinitesimal time translations of the wave function. This
theoretical-physics core essence of Eq. (1b) is, in isolation, supremely indifferent to the typical space-time
coordinate symmetry that is such an ubiquitous characteristic of special relativity. It is only on contemplating
the whole of the four-vector equation system of Eq. (1c), which Dirac was not aware enough to do, that its global

symmetry between space and time coordinates snaps immediately into focus. Very unfortunately deprived of
this revelation, and intently focused on just Eq. (1b), Dirac “concluded” that it must of itelf be compelled

to manifest the “missing” space-time coordinate symmetry! If Dirac had even been fully cognizant of the
core theoretical physics role of Eq. (1b), i.e., that of putting the Hamiltonian operator in the driver’s seat of
infinitesimal time translations and only time translations, of the wave function, he definitely would have been
very much less certain that forcing Eq. (1b) to manifest space-time coordinate symmetry was at all a sensible
idea! Such salutary doubts and second thoughts were, however, unfortunately never to occur to Dirac.

So because Eq. (1b) is linear in the time partial derivative operator, Dirac shallowly concluded that “space-
time coordinate symmetry” compels it’s relativistic version to also be linear in the space gradient, which implies
that the Hamiltonian operator on its right-hand side is likewise linear in the particle three-momentum. Had
he been thinking at all about the physical implications of this, Dirac would have quickly noticed a plethora

of red flags inherent in any such linearity. In the nonrelativistic limit of small particle three-momentum, it
is obvious that the Hamiltonian must become a quadratic function of the particle three-momentum, which
is a mathematical impossibility for a Hamiltonian linear in the three-momentum! Note, however, that the
relativistic square-root Hamiltonian Ĥfree of Eq. (3), from whose clutches Dirac, like Klein, Gordon, Schrödinger
before him, was very strongly resolved, for non-physics reasons of calculational ease, to escape, in fact passes

this small three-momentum quadratic-dependence test with flying colors! Furthermore, since the square-root
Hamiltonian operator’s classical precursor Hfree is established beyond any shadow of a doubt for a nonzero-

mass free particle (e.g., see Eqs. (2)), Dirac was effectively boxed into the very fraught position of implicitly

disowning the strong correspondence principle in order to cling to his linearized Hamiltonian! Furthermore,
it is an elementary observation from the Heisenberg equation of motion that any Hamiltonian which is linear

in the particle three-momentum operator produces a particle velocity operator (and thus also a particle speed
operator) which is completely independent of the particle three-momentum operator! This obviously cannot

make sense in the free-particle nonrelativistic limit, where it is clear that the particle velocity operator must

be proportional to the particle momentum operator, i.e., dr̂/dt = p̂/m. That free-particle velocity should be
independent of free-particle momentum is in fact totally devoid of physical sense in any regime pertaining to
the relativistic free particle: it is entirely clear that relativistic free-particle velocity and momentum are always

directionally aligned (this even is true for the ultra-relativistic massless photon).
In utter contrast to this miasma of impending physically senseless “predictions” irrespective of what the

coefficients of the three-momentum components in the linearized Dirac Hamiltonian are ultimately chosen
to be, the Heisenberg equation of motion in conjunction with the free-particle relativistic square-root Ĥfree

Hamiltonian operator of Eq. (3) yields only physically impeccable relativistic free-particle results, including, in
particular, the result for the relativistic velocity operator ! We shall, of course, be adhering to Dirac’s choice
of coefficients for the components of the three-momentum in his linearized Hamiltonian, but that particular
choice doesn’t alleviate any of the unphysical results just pointed out; in fact, it turns out to sharpen them,
with the momentum-independent particle speed coming out to be a universal c-number whose value is more
than 70% greater than that of light! As if this were not enough, the Dirac choice of coefficients (which turns
out to involve mutually anticommuting matrices whose squares are unity) results in a staggering violation of

Newton’s first law of motion, with the free electron predicted to have a spontaneous “Compton acceleration”
whose minimum magnitude, of order mec

3/h̄, is around 1028g, where g is the acceleration of gravity at the

earth surface! Almost needless to say, the relativistic free-particle square-root Hamiltonian operator Ĥfree of
Eq. (3), in conjunction with Heisenberg’s equation of motion yields, in flawless contrast, utterly strict adherence

to Newton’s first law of motion!
In fact, the only obvious “success” that the Dirac theory’s completely misdirected imposition of space-time

coordinate symmetry on Eq. (1b) can claim is the non-physics one of calculational ease, which, as we have
pointed out, was its overriding motivation from the very start. In configuration representation, the physi-

cally sensible relativistic free-particle square root Hamiltonian operator Ĥfree of Eq. (3) is a non-local integral
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operator, which certainly quashes any hoped-for “separation of variables for partial differential equations”
technology for solving the relativistic version of the hydrogen atom. Contemplation of this fact of physics
seems to have thoroughly rattled Klein, Gordon, Schrödinger and, in due course, Dirac. Quite desperately

wanting that standard partial differential equation technology to still be applicable in the relativistic domain,
they first invented the quantum-mechanically deficient Klein-Gordon theory and then Dirac’s astonishingly
unphysical linearized Hamiltonian. Schrödinger, the inventor of bound-state perturbation theory, ought to

have realized that his perturbation method is very well suited to the patently small relativistic corrections to
the nonrelativistic model of the hydrogen atom, and called off the jointly shared slighting of theoretical-physics
best practice which was tacit in the above-noted quite desperate efforts to preserve the applicability of standard
partial differential equation solution technologies in the relativistic domain. To be sure, the very calculational

ease that is the key aspect of Dirac’s unphysical linearized Hamiltonian also makes it a relatively easy target
to pick apart in detail!

We turn now to Dirac’s choice of coefficients for his linearized relativistic mass-m free-particle Hamiltonian
operator ĤD and the consequences of that choice. Having rejected the strong correspondence principle in
favor of imposing “space-time coordinate symmetry” on Eq. (1b) and thus linearity in the components of

the three-momentum operator on ĤD, Dirac adopted a severely weakened correspondence principle for ĤD in
relation to the relativistic free-particle square-root Hamiltonian operator Ĥfree of Eq. (3), namely,

(ĤD)2 = (Ĥfree)
2 = m2c4 + c2|p̂|2, (6a)

which ensures that any solutions of the time-dependent Schrödinger equation, i.e., Eq. (1b), with Hamiltonian

operator Ĥ equal to Dirac’s relativistic free-particle ĤD will also be solutions of the free-particle Klein-Gordon
equation, namely of Eq. (5). Now expressing the linearized ĤD in terms of four dimensionless Hermitian matrix

coefficients (β, ~α), where ~α
def
= (α1, α2, α3), in the form,

ĤD = c~α · p̂ + βmc2, (6b)

it is seen that the weak correspondence principle of Eq. (6a) implies that β and all the components of ~α
mutually anticommute and have squares equal to unity. Their anticommutation relations imply that they are
traceless [2], and therefore ĤD is traceless as well, and thus has a negative energy eigenvalue to match every

positive one. So the eigenenergies of Dirac’s linearized ĤD turn out to include all the extraneous negative

energies of the Klein-Gordon equation. While the negative-energy eigenstates of ĤD are properly orthogonal

to their positive-energy counterparts, the other inherent issues which the presence of these negative-energy
solutions raise in the context of a free solitary particle, such as total lack of classical correspondence and the
Klein paradox remain unresolved [4]. Upon applying the Heisenberg equations of motion to the free-particle

Dirac Hamiltonian operator ĤD, as given by Eq. (6b), we obtain the velocity operator,

v̂ = dr̂/dt = c~α, (7a)

which we see, as pointed out above, is completely independent of the three-momentum operator p̂. Since the
three Hermitian matrix components of ~α all have squares equal to unity, we obtain for the free Dirac particle
speed operator the universal c-number value,

|v̂| = c
√

3, (7b)

which exceeds c, the speed of light, by 73%! Also, notwithstanding its nonzero mass m, the free Dirac particle
has no inertial rest frame! These results show conclusively that the imposition on Eq. (1b) of “space-time
coordinate symmetry” with its resulting linearized Hamiltonian operator, that is crystallized as the free-particle
Dirac Hamiltonian operator ĤD of Eq. (6b) upon imposition of the severely weakened correspondence principle
of Eq. (6a), violates special relativity!

To better grasp this point, let us note that if we use the relativistic square-root Hamiltonian operator Ĥfree

instead of ĤD in the Heisenberg equations of motion, we obtain,

v̂ = c2p̂/(m2c4 + |cp̂|2) 1

2 ,

which is a momentum-dependent velocity operator whose magnitude is always strictly smaller than the speed
of light c, and which will have the value zero for an eigenstate of p̂ which has three-momentum eigenvalue
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equal to 0. So the particle rest frame certainly exists. We are actually in a position to now repeat the Eqs. (2)
Lorentz boost of a nonzero-mass free particle’s four-momentum from its rest frame to an inertial frame in
which it has nonvanishing velocity, but this time using for that velocity the operator value v̂ that arises from

Ĥfree, which operator v̂ is displayed just above, instead of using for that velocity the c-number value v of
Eqs. (2). If we simply follow the steps of Eqs. (2), albeit using this particular operator v̂, we end up with

the operator four-momentum ((m2c2 + |p̂|2) 1

2 , p̂), which accords perfectly with the three-momentum operator

p̂ and the Hamiltonian operator (m2c4 + |cp̂|2) 1

2 .
Now let us try to emulate the above successful “Lorentz boost of particle four-momentum out of the particle

rest frame using the operator v̂ that arises from Ĥfree” exercise by instead using the simple operator v̂ that
arises from the Dirac ĤD, which of course is v̂ = c~α. For p̂ = 0, we have that ĤD = βmc2. If we now try
to follow the steps of Eqs. (2) from this starting point by using the Dirac v̂ = c~α, we end up with the quite
senseless operator four-momentum (βmc(−i/

√
2 ), β~αmc(−i/

√
2 )) that bears little resemblance to the desired

operator four-momentum result (~α · p̂ + βmc, p̂). In other words, for the Dirac theory Hamiltonian operator

ĤD, the attempt to show Lorentz covariance has ended in disaster. The Dirac theory contravenes special
relativity just as the Klein-Gordon theory contravenes quantum mechanics.

We have pointed out that for the free-particle nonrelativistic Pauli theory the Hamiltonian operator has only
the kinetic energy term |p̂|2/(2m), which implies that orbital angular momentum r̂ × p̂ is exactly conserved.
In contrast, the free-particle Dirac theory has a very strong spin-orbit coupling which almost certainly is not
physically sensible. From Eq. (7a) it is clear that in the free-particle Dirac theory,

d(r̂ × p̂)/dt = c~α× p̂, (8a)

and therefore the magnitude of the spin-orbit torque is,

|d(r̂ × p̂)/dt| = c|p̂|
√

2 , (8b)

Now the particle’s kinetic energy is ((m2c4 + |cp̂|2) 1

2 −mc2). If we take the dimensionless ratio of the particle’s

spin-orbit torque magnitude to its kinetic energy, we obtain ((1+ (mc/|p̂|)2) 1

2 +(mc/|p̂|))
√

2 , which increases
monotonically without bound as |p̂| decreases. This is, of course, not consistent with the free-particle Pauli
theory, where this ratio always vanishes identically. So the Dirac theory does not reduce to the Pauli theory
merely by going to small values of momentum. This was already clear, of course, from the fact that the
Dirac particle’s speed always has the value c

√
3 irrespective of its momentum, which doesn’t accord with the

free-particle Pauli theory at all.
We now present the details of the free Dirac particle’s staggering violation of Newton’s first law of motion.

Using Heisenberg’s equations of motion, the Dirac free-particle Hamiltonian ĤD operator of Eq. (6b), and the
simple Dirac free particle velocity operator v̂ = c~α, we obtain the Dirac free-particle spontaneous acceleration
operator,

â = dv̂/dt = (2mc3/h̄)(iβ~α+ (p̂ × ~σ)/(mc)), (9a)

where,

~σ
def
= (−i/2)(~α× ~α), (9b)

which means,

σi
def
= (−i/2)εijkαjαk. (9c)

Since |iβ~α|2 = 3, |p̂× ~σ|2 = 2|p̂|2, and (iβ~α) · (p̂× ~σ) = −(p̂× ~σ) · (iβ~α), we obtain for the magnitude of the
spontaneous acceleration,

|â| = (2
√

3mc3/h̄)(1 + (2/3)(|p̂|/(mc))2) 1

2 , (9d)

whose minimum value, (2
√

3 mc3/h̄), is, for the case of the electron, well in excess of 1028g, where g is the
acceleration of gravity at the earth’s surface. This dumbfounding spontaneous acceleration certainly drives

home the point that the “free” Dirac particle has no inertial rest frame. Note that matters don’t even improve
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as the Dirac particle is made more massive; the minimum spontaneous acceleration is proportional to the
particle mass! The systematics of this unphysical absurdity show just how profoundly the Dirac theory bungles

special relativity. As previously mentioned, the relativistic free-particle square-root Hamiltonian operator Ĥfree

strictly adheres to Newton’s first law of motion, yielding â = 0.
Finally, it is a built-in property of special relativity that the character of the physics it describes becomes

Galilean/Newtonian if the speed of light c is taken to be asymptotically large. For example, if we subtract

from the relativistic free-particle square-root Hamiltonian operator Ĥfree of Eq. (3) its value at p̂ = 0, which is
mc2, the limit of that difference as c→ ∞ is, of course, the nonrelativistic free-particle kinetic energy operator

|p̂|2/(2m). But if we carry out exactly same steps with the Dirac Hamiltonian operator ĤD, we face formal

divergence as c → ∞! Likewise, if we take the particular velocity operator v̂ discussed in the paragraph
which follows the one in which Eq. (7b) occurs, which is obtained from the Heisenberg equation of motion in

conjunction with Ĥfree, and is explicitly given by,

v̂ = c2p̂/(m2c4 + |cp̂|2) 1

2 ,

it is clear that as c → ∞, v̂ → p̂/m, i.e., in this limit v̂ becomes the nonrelativistic free-particle velocity

operator. On the other hand, for the Dirac free-particle velocity operator v̂ of Eq. (7a) we again face formal

divergence as c → ∞! The clear lesson from these instances is that a linearized Hamiltonian operator such
as the Dirac ĤD is inherently incapable of incorporating the physics of special relativity. It is obvious the
mathematical presence of a square root is essential to correctly capturing the the properties of relativistic

physics. Even in the case of the Klein-Gordon equation, which “squares out” the mathematical presence of
the square root, it is impossible to show that the “physics” it describes becomes properly nonrelativistic as
c → ∞. Looking in detail at the solution space of the Klein-Gordon equation, we readily see that this is due
the gratuitous presence of of the extraneous negative-energy solutions, which are, of course, unphysical detritus.

Correct relativistic quantum mechanics with an external electromagnetic field

It is clear that, for the nonzero-mass solitary relativistic free particle, the Klein-Gordon theory, which disrupts
its quantum mechanics, and the Dirac theory, which dumbfoundingly abolishes its rest frame, must both be

abandoned in favor of the straightforward square-root Hamiltonian operator Ĥfree of Eq. (3). For the free
photon, which is massless, the time-dependent Schrödinger equation (i.e, Eq. (1b)) in conjunction with the

zero-mass case of Ĥfree turns out to be already implicit in the source-free case of Maxwell’s equations [5].

We shall now develop the extension of Ĥfree to the case of a particle of charge e and nonzero mass m when
an external electromagnetic potential Aµ(r, t) is present, first for a spin-0 particle and then for a spin- 1

2
particle.

For additional background and detail concerning the derivation of those two Hamiltonians see reference [4].
The guiding concept is that accurate understanding of the physics experienced by a nonzero-mass solitary
particle in an inertial frame where it is instantaneously traveling arbitrarily slowly translates, via a continuous
sequence of successive Lorentz transformations, into the accurate understanding of that physics in an arbitrary

inertial frame. Therefore a tested and trusted nonrelativistic theory of a nonzero-mass solitary particle’s be-
havior ought to always be reasonably straightforwardly upgradable to a correct relativistic one that explicitly
reduces to the underlying nonrelativistic one in any inertial frame in which that solitary particle happens to
be instantaneously moving at nonrelativistic speed. The approach to attempting to carry out such a program
which is followed here is to try to associate individual terms of the solitary particle’s nonrelativistic Hamil-

tonian with fully Lorentz-covariant energy-momentum four-vectors whose time components reduce to those

individual nonrelativistic Hamiltonian terms in inertial frames where that particle is traveling at arbitrarily

slow speed. The individual Lorentz-covariant energy-momentum four-vectors so determined are then, of course,
summed to produce the solitary particle’s Lorentz-covariant relativistic total energy-momentum four-vector.
The resulting solitary-particle relativistic total three-momentum is obviously identified as the generator of the

solitary particle’s space translations and thus as the solitary particle’s relativistic canonical three-momentum.
Of course the solitary particle’s relativistic total energy, when expressed as function of its relativistic canoni-

cal three-momentum, the time, and that particle’s three space coordinates comprises that particle’s relativistic

Hamiltonian. Initially, of course, the individual terms contributing to the solitary particle’s relativistic total
energy-momentum four-vector will be couched in the language of its three space coordinates, the time, and
that particle’s relativistic kinetic three-momentum. Upon identification of the particle’s relativistic canonical

(i.e., total) three-momentum, it is then necessary to solve for its relativistic kinetic three-momentum as a func-

tion of that relativistic canonical three-momentum in order to be able to reexpress its total relativistic energy

as its Hamiltonian. Regrettably, a very conceivable “fly in the ointment” is that there is no guarantee that
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the particle’s relativistic kinetic three-momentum can be obtained as a function of its relativistic canonical

three-momentum in closed form. Thus the solitary particle’s relativistic Hamiltonian itself may conceivably
only be available as a sequence of approximations. Such a state of affairs is obviously not what one would
desire, but unlike Klein, Gordon, Schrödinger and Dirac, the physically-motivated, conservative theorist is,
like Einstein, obliged to coexist with whatever undesirable calculational consequences that physically-based,
conservative theory happens to carry with it. The art of the appropriate approximation, one carefully attuned
to a particular problem at hand, is surely yet another vital skill the theoretical physicist is called upon to hone.

Let us now apply the the above program to a spin-0 solitary particle of mass m and charge e in the presence
of an external electromagnetic potential Aµ(r, t). It will be recalled that all magnetic effects of such a potential
on the particle’s motion vanish entirely in the particle’s rest frame, and are, more generally, of order O(1/c),
whereas in nonrelativistic physics the speed of light c is regarded as an asymptotically large parameter. Thus
the strictly nonrelativistic Hamiltonian operator for this particle involves only the electromagnetic potential’s
time component A0(r, t),

Ĥ
(NR)
EM;0 = |p̂|2/(2m) + eA0(r̂, t). (10a)

Because of the technical issue regarding the choice of ordering of noncommuting operators (whose resolution
we allude to below), it will be convenient to develop the relativistic energy-momentum four-vector as a function
of classical (r,p) phase space rather than as a function of the already quantized (r̂, p̂) phase space of Eq. (10a).
The solitary particle’s nonrelativistic kinetic energy |p|2/(2m), plus its rest mass energy mc2, is well-known
to correspond to c times its Lorentz-covariant free-particle kinetic energy-momentum four-vector pµ,

pµ def
= ((m2c2 + |p|2) 1

2 ,p),

where, of course, p is the particle’s relativistic kinetic three-momentum, which was distinguished in the above
discussion from its relativistic total (i.e., canonical) three-momentum. It is apparent that in the nonrelativistic
limit |p| ¿ mc, the time component times c of pµ does indeed, as just mentioned, behave as,

cp0 ≈ mc2 + |p|2/(2m).

The potential energy term eA0(r, t) of H
(NR)
EM;0, divided by c, is obviously the time component of the Lorentz-

covariant energy-momentum four-vector eAµ(r, t)/c. Therefore adding eAµ/c to pµ produces a fully Lorentz-
covariant total energy-momentum four-vector whose time component times c reduces, in any inertial frame
in which the nonzero-mass charged spin-0 solitary particle instantaneously has arbitrarily small speed, to

that particle’s nonrelativistic classical Hamiltonian H
(NR)
EM;0 (which corresponds to the quantized Hamiltonian

operator Ĥ
(NR)
EM;0 of Eq. (10a)) plus that particle’s rest mass energy mc2. We therefore regard,

Pµ def
= pµ + eAµ/c, (10b)

as that solitary particle’s fully relativistic energy-momentum four-vector. Thus the particle’s relativistic total

three-momentum is,

P = p + eA(r, t)/c, (10c)

and its relativistic total energy is,

E(r,p, t) = cP 0 = (m2c4 + |cp|2) 1

2 + eA0(r, t). (10d)

Here we are in the fortunate position of being able to solve Eq. (10c) for the particle’s relativistic kinetic

three-momentum p as a function of its relativistic total (i.e., canonical) three-momentum P in closed form,

p(P) = P − eA(r, t)/c, (10e)

which result for p(P), i.e., p as a function of P, we must now substitute into Eq. (10d) for the relativistic

total energy in order to reexpress that total energy as the relativistic Hamiltonian H
(REL)
EM;0 (r,P, t), i.e.,

H
(REL)
EM;0 (r,P, t)

def
= E(r,p(P), t).
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Therefore Eqs. (10d) and (10e) yield the following fully relativistic classical Hamiltonian H
(REL)
EM;0 (r,P, t), which

corresponds to our original nonrelativistic Hamiltonian operator Ĥ
(NR)
EM;0 of Eq. (10a),

H
(REL)
EM;0 (r,P, t) = (m2c4 + |cP − eA(r, t)|2) 1

2 + eA0(r, t). (10f)

Because of the presence of the square root in Eq. (10f) for H
(REL)
EM;0 (r,P, t), there could conceivably be an

issue regarding the ordering of the mutually noncommuting operators r̂ and P̂ when one attempts quantize this

classical Hamiltonian H
(REL)
EM;0 (r,P, t) to become the Hamiltonian operator Ĥ

(REL)
EM;0 . Use of the Hamiltonian

phase-space path integral [9] with H
(REL)
EM;0 (r,P, t) in its classical form as given by Eq. (10f) provides one defini-

tive solution to any such operator-ordering issue. Another completely equivalent solution to this issue lies with
a natural slight strengthening of Dirac’s canonical commutation rule such that it remains self-consistent [10].
From both of these approaches the resulting unambiguous operator-ordering rule turns out to be the one of
Born and Jordan [11].

It is well worth noting that the relativistic classical Hamiltonian H
(REL)
EM;0 (r,P, t) of Eq. (10f) for the solitary

spin-0 charged particle, when inserted into Hamilton’s classical equations of motion, yields, upon taking proper
account of Eq. (10c), the fully relativistic version of the Lorentz-force law. In other words, the Hamiltonian

H
(REL)
EM;0 (r,P, t) embodies nothing more or less than the well-known classical relativistic physics of the charged

particle developed by H. A. Lorentz [12]. It is truly a lamentable pity that Klein, Gordon and Schrödinger
went off on their tangent which plays such havoc with quantum mechanics instead of simply going forward

in workmanlike fashion with the quantization of Lorentz’ utterly transparent relativistic legacy, namely the

H
(REL)
EM;0 (r,P, t) of Eq. (10f) above. Of course, upon taking the particle charge e to zero, H

(REL)
EM;0 (r,P, t) simply

becomes the Hfree of Eq. (2c), as it indeed must.

We turn now to the spin- 1

2
charged particle, whose nonrelativistic Hamiltonian H

(NR)
EM; 1

2

is the same as H
(NR)
EM;0

except for an additional interaction energy between the particle’s intrinsic magnetic moment and the external

magnetic field, i.e., its Pauli energy. Notwithstanding that this Pauli magnetic dipole energy is customarily
formally written as including a factor of (1/c), it must nonetheless be kept in the nonrelativistic limit because
it fails to vanish in the spin- 1

2
particle’s rest frame,

H
(NR)
EM; 1

2

= |p|2/(2m) + (ge/(mc))(h̄/2)~σ · (∇r × A(r, t)) + eA0(r, t). (11a)

The Pauli magnetic dipole energy contribution to H
(NR)
EM; 1

2

is the only part of this Hamiltonian which is not

a multiple of the two-by-two identity matrix in the spin- 1

2
two-by-two-matrix degrees of freedom. Now the

relativistic energy-momentum four-vectors we shall be developing will of course themselves be two-by-two
matrices, but this should not present difficulties so long as their four components all mutually commute. To
ensure that this is the case, we shall “quarantine” the non-identity Pauli energy matrix into a Lorentz scalar,
which we can furthermore render dimensionless by dividing by mc2. If we now multiply this dimensionless

Lorentz scalar by the particle’s kinetic energy-momentum four-vector pµ = ((m2c2 + |p|2) 1

2 ,p), we will indeed
have the desired energy-momentum contribution whose time component times c reduces to the Pauli energy
matrix in the particle rest frame.

There remains, of course, the challenging problem of turning the complicated Pauli energy term into a
Lorentz scalar. In relativistic tensor language, the magnetic field axial vector (∇r × A(r, t)) that appears
in the Pauli term comprises a certain three-dimensional part of the four-dimensional relativistic second-rank
antisymmetric electromagnetic field tensor F µν(r, t) = ∂µAν(r, t)− ∂νAµ(r, t). If we can manage to reexpress
the three-dimensional axial spin- 1

2
vector (h̄/2)~σ as a “matching” three-dimensional part of a four-dimensional

relativistic second-rank antisymmetric tensor sµν as well, hopefully the Pauli energy will end up being propor-
tional to to their Lorentz-scalar contraction sµνFµν(r, t). As a first step, we define the natural three-dimensional

second-rank antisymmetric spin- 1

2
tensor Sij in terms of the spin- 1

2
axial vector,

Sij def
= (h̄/2)εijkσk,

and take note that the complicated factor in the Pauli energy term neatly reduces to a contraction of S ij with
the well-known magnetic-field three-dimensional part F ij(r, t) of Fµν(r, t),

(h̄/2)~σ · (∇r × A(r, t)) = (1/2)SijF ij(r, t),

which allows us to reexpress the nonrelativistic Eq. (11a) in the relativistically more suggestive form,
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mc2 +H
(NR)
EM; 1

2

= mc2[1 + |p|2/(2m2c2) + (g/2)(e/(m2c3))SijF ij(r, t)] + eA0(r, t). (11b)

It is now time to work out the nonzero-mass spin- 1

2
particle’s fully covariant four-dimensional antisymmetric

spin tensor sµν . In the particle rest frame, namely in the special inertial frame where the particle kinetic three-

momentum p vanishes, the nine space-space components of sµν must clearly be the nine components of Sij ,
and its remaining seven components must be filled out with zeros, i.e.,

sµν(p = 0)
def
= δµ

i δ
ν
j S

ij ,

which ensures that, in the particle rest frame,

sµν(p = 0)Fµν(r, t) = SijF ij(r, t).

Once a tensor is fully determined in one inertial frame, it is fully determined in all inertial frames by application
of the appropriate Lorentz transformation to its indices. To get from the particle rest frame to the inertial
frame where the particle has kinetic three-momentum p simply requires the appropriate Lorentz-boost four-
dimensional matrix Λµ

α(v(p)/c) that is characterised by the corresponding dimensionless scaled relativistic
particle velocity,

v(p)/c = (p/(mc))/(1 + |p/(mc)|2) 1

2 ,

and its accompanying dimensionless time-dilation factor,

γ(p) = (1 + |p/(mc)|2) 1

2 ,

so that, in general,
sµν(p) = Λµ

i (v(p)/c)Λν
j (v(p)/c)Sij ,

which, of course, ensures that sµν(p)Fµν(r, t) is a Lorentz scalar that Lorentz-invariantly carries the particle’s

rest-frame value of SijF ij(r, t).
With that, we are in the position to be able to write down the Lorentz-covariant total energy-momentum

four-vector Pµ for the spin- 1

2
particle that corresponds to its nonrelativistic Eq. (11b) in the same way that

the total energy-momentum four-vector of Eq. (10b) for the spin-0 particle corresponds to its nonrelativistic
Eq. (10a),

Pµ def
= pµ[1 + (g/2)(e/(m2c3))sαβ(p)Fαβ(r, t)] + eAµ(r, t)/c. (11c)

From Pµ we obtain the particle’s relativistic total energy,

E(r,p, t) = cP 0 = (m2c4 + |cp|2) 1

2 [1 + (g/2)(e/(m2c3))sµν(p)Fµν(r, t)] + eA0(r, t), (11d)

and also its relativistic total three-momentum,

P = p[1 + (g/2)(e/(m2c3))sµν(p)Fµν(r, t)] + eA(r, t)/c. (11e)

It is obvious from Eq. (11e) that we cannot solve for p(P) in closed form, but we can write p(P) in “iteration-
ready” form as,

p(P) = (P − eA(r, t)/c)[1 + (g/2)(e/(m2c3))sµν(p(P))Fµν(r, t)]−1, (11f)

and, of course, from E(r,p(P), t), we also obtain the schematic form of the particle’s relativistic Hamiltonian,

H
(REL)
EM; 1

2

(r,P, t) = (m2c4 + |cp(P)|2) 1

2 [1 + (g/2)(e/(m2c3))sµν(p(P))Fµν(r, t)] + eA0(r, t). (11g)

If we take the limit g → 0 in Eqs. (11f) and (11g), then H
(REL)
EM; 1

2

(r,P, t) → H
(REL)
EM;0 (r,P, t), as is easily checked

from Eq. (10f). Of course it is nothing more than the most basic common sense that fully relativistic spin- 1

2

theory simply reduces to fully relativistic spin-0 theory when the spin coupling of the single particle to the
external field is switched off, but analogous cross-checking between the Dirac and Klein-Gordon theories is
never so much as discussed! It is certainly possible to add a term to the Dirac Hamiltonian that cancels out it’s
supposed g = 2 spin coupling to the magnetic field, but the result of doing this bears very little resemblance to
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the Klein-Gordon equation in the presence of the external electromagnetic potential! Elementary consistency
checks are obviously not the strong suit of those two “theories”!

It is unfortunate that Eq. (11f) for p(P) is not amenable to closed-form solution, but if we assume that
the spin coupling term, (g/2)(e/(m2c3))sµν(p(P))Fµν(r, t), which is a dimensionless Hermitian two-by-two
matrix, effectively has the magnitudes of both of its eigenvalues much smaller than unity (which should be a
very safe assumption for atomic physics), then we can approximate p(P) via successive iterations of Eq. (11f),
which produces the approximation (P − eA(r, t)/c) for p(P) through zeroth order in the spin coupling and,

p(P) ≈ (P − eA(r, t)/c)[1 + (g/2)(e/(m2c3))sµν(P − eA(r, t)/c)Fµν(r, t)]−1,

through first order in the spin coupling. We wish to interject at this point that since sµν(p(P)) is an anti-
symmetric tensor, the tensor contraction sµν(p(P))Fµν(r, t) is equal to 2sµν(p(P))∂µAν(r, t), which is often
a more transparent form. Now if we simply use the approximation (P − eA(r, t)/c) through zeroth order in

the spin coupling for p(P), we obtain the following approximation to H
(REL)
EM; 1

2

,

H
(REL)
EM; 1

2

(r,P, t) ≈ (m2c4 + |cP − eA(r, t)|2) 1

2 [1 + (ge/(m2c3))sµν(P − eA(r, t)/c)∂µAν(r, t)] + eA0(r, t). (11h)

Antiparticle partners from field theoretic symmetry

If one were to write down a purely electromagnetic (and thus parity-conserving) quantum field theory that

treats only positive-energy electrons and photons, which would be possible via second quantization of Ĥ
(REL)
EM; 1

2

and quantization of the electromagnetic field, it is clear that one would then have a quantum field theory which
exhibits no invariance whatsoever under charge conjugation. Simply imposing charge conjugation invariance
on such a theory forces positrons to exist. This is a very familiar picture indeed : the imposition of symmetries
on quantum field theories not at all infrequently forces families of particles to exist. Note that the positrons
that would be forced into existence by the imposition of charge conjugation invariance would also be purely

positive-energy particles, at least when free. “Reinterpretation” of unbounded-below, free-particle negative-
energy spectra plays no role whatsoever in the existence of these positrons: their existence is driven theoretically
entirely by the enforcement of the symmetry !

The role of symmetries in accounting for and compelling the existence of energy degeneracies has been a
robust and highly fruitful theme of quantum physics since its very earliest days; the names of such pioneers
as Wigner and Weyl come readily to mind. The existence of antiparticles is a classic example of energy

degeneracy in the context of quantum field theory, and there is absolutely no reason whatsoever that it should

not take its rightful place in the theoretical physics pantheon of symmetry-driven phenomena. Unbounded-
below negative energies that require “reinterpretation” are a staggeringly bizarre manifestation of undiluted

metaphysics that physical science would do extremely well indeed to shed forever, especially in light of the fact
that their origin resides in gratuitously-generated entirely extraneous “solutions” (Klein-Gordon theory) or an
equally gratuitous weakening of the correspondence principle that springs from extraordinary insistence on,
for a physically nonviable reason, dealing with the squares of dynamical variables instead of those dynamical

variables themselves (Dirac theory). The “reinterpretation” of the egregiously metaphysical unbounded-below
negative-energy spectra of the Klein-Gordon and Dirac theories is a quintessential instance of the syndrome
that afflicted Einstein’s knight, “who dyed his whiskers green, and then used a large fan so that they should
not be seen.”

The breaking of symmetries has become a very strong theme in the last seven decades, and the breaking of
the antiparticle-associated CP invariance has been empirically firmly established. Indeed a glance at the gross
particle-antiparticle “nonsymmetry” that makes our galaxy’s existence possible powerfully suggests that there
is much that remains to be learned about the breaking of this symmetry. A theory that assigns two independent

fields to the description of the particle and its distinguishable antiparticle makes it far more straightforward

to model what are no doubt extremely important effects pertaining to that symmetry breaking. With two
independent fields one can essay such basics as a slight mass difference between particle and antiparticle, which
is certainly not available if particle and antiparticle are construed as merely somehow reflecting different parts

of the same operator’s energy spectrum.

Conclusion

It has been made very clear in the above that Schrödinger’s simple postulates regarding the solitary particle’s
wave function specify that the generators of that wave function’s infinitesimal space and time translations are,
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respectively, the canonical three-momentum operator and the Hamiltonian operator, and that this fact pro-
vides an extremely satisfactory basis, which is completely compatible with the strong correspondence principle,
for the fully relativistic version of solitary-particle quantum mechanics. From the standpoint of systematic,

conservative physical theory, the utterly clear implication of the above observations, in light of the strong
correspondence principle, is that the correct Hamiltonian operator for the solitary relativistic free particle
is given by the square-root operator of Eq. (3), and that the interaction of a spinless nonzero-mass solitary
charged relativistic particle with an external electromagnetic potential in the context of quantum mechanics
must be described by the quantization of the Hamiltonian that corresponds to the fully relativistic version of
H. A. Lorentz’ electromagnetic force law, specifically the Hamiltonian of Eq. (10f).

Unfortunately, the pellucid implications for the relativistic quantum mechanics of the solitary particle of
Schrödinger’s postulates for the wave function never dawned on Schrödinger himself, nor on Klein, Gordon,
nor Dirac. That this is the case is made painfully clear by Dirac’s simultaneously superfluous and extremely
damaging imposition of “space-time coordinate symmetry” on Schrödinger’s time-dependent wave function
equation (Eq. (1b)), notwithstanding that precisely this particular appearance of space-time coordinate sym-

metry is the most striking feature of Schrödinger’s four-vector wave function equation (Eq. (1c))! Although
these pioneers failed to appreciate even the very existence of Eq. (1c), notwithstanding that it is a mere sum-

mary of Schrödinger’s wave-function postulates, they did have an appreciation of the correspondence principle,
albeit they regarded it as a rather more plastic concept than the definitive strong form which the facts of both
the Hamiltonian phase-space path integral [9] and the completed version of Dirac’s canonical commutation
rule [10] very clearly reveal. But, extremely unfortunately, because of perceived issues of calculational con-
venience, these pioneers gave the correspondence principle short shrift indeed, and instead chose ostensible
“relativistic quantum mechanics” routes that terribly distort the quantum mechanical implications and impact
of the underlying classical special relativistic mechanics of the solitary particle which had been so ably devel-
oped and expounded by Lorentz; the gratuitous injection of totally extraneous unphysical, unbounded-below
negative-energy “solutions” is, of course, a prime example of this. For any half-way serious disciple of the cor-
respondence principle, these patently absurd “solutions”, which are at complete loggerheads with the classical

relativistic solitary-particle mechanics of Lorentz, would of themselves have been reason enough to immediately

call off the attemped tweaking of the time-dependent Schrödinger equation and/or of the ostensibly “relativis-
tic” Hamiltonians being fed to it, and to return forthwith to strictly Lorentzian classical relativistic basics as
the correct physical foundation upon which to erect relativistic quantum mechanics.

Notwithstanding subsequent “reinterpretation” of these unbounded-below negative-energy “solutions” to
“accommodate” the physical existence of mass-degenerate antiparticles, which is universally acclaimed as a
“triumph” [2], it is vastly less conceptually tortuous and equally vastly more in keeping with all of the rest of

known quantum physics to account for the existence of mass-degenerate antiparticles as the utterly straight-

forward consequence of CP invariance of the overlying quantum field theory. Since this invariance is, indeed, a

slightly broken one in the manner of so many other symmetries of physics—a fact that would appear to be of
critical importance to the very existence of the familiar physical world of our experience—it would seem all the
more important to have available the theoretical tool of two completely independent quantum fields (with each
having bounded-below energy, of course) for the descriptions, respectively, of a particle and its distinguishable
antiparticle, which permits their masses, for example, to be very slightly different, instead of being tied to the
“reinterpreted negative energy spectrum” consequence of having certain attributes of particle and antiparticle
being irrevocably identical. It is symmetries and not “reinterpretations” of blatantly gratuitous and absurdly
unphysical equation “solutions” that are reasonably and plausibly held to be responsible for the existence of
mass-degenerate partner particles in all instances other than that of distinguishable antiparticles. It is surely
now well past time for the theoretical physics treatment of mass-degenerate distinguishable antiparticles to be
put on a track which is completely parallel to the sensible symmetry-based handling accorded as a matter of

standard routine to all other ostensibly “understood” particle mass degeneracies.
Departure from the theoretical physics scene of the physically misbehaving Klein-Gordon and Dirac equa-

tions would not only restore physical good sense to relativistic solitary-particle quantum mechanics, it would
unveil physics’ harmonious hierarchical integrity: the underlying physical essence of the relativistic Lorentzian
Hamiltonian of Eq. (10f) is explicitly its simple nonrelativistic counterpart of Eq. (10a), and the same role is
played by the nonrelativistic Pauli theory of Eq. (11a) in relation to its fully relativistic upgrade that is given
by Eqs. (11g) and (11f). Likewise, when the upgrade of these solitary-particle theories to a second-quantized,
fully interacting field theoretic treatment is ultimately made, the physical essence of the now key multi-particle

interactions will be seen to be firmly anchored in those of the merely solitary relativistic particle with an ex-

ternal field, which interactions, in turn, as we have just noted, are no more than the relativistic upgrade of such
nonrelativistic basics as a stationary charged particle’s interaction with an electric potential or a stationary
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magnetic dipole’s interaction with a magnetic field. Likewise, the properties of any quantized Hamiltonian
are highly sensitive to those of its classical precursor, as the key stationary phase path for the path integral

amply attests. And of course both the presence and absence of symmetries is of crucial importance to the
very character of the physics. It is precisely because of the profound underlying linkages inherent in what at
first glance may appear to be very diverse aspects of physics that the fatuous mathematical “modifications”
unwarily introduced into relativistic quantum mechanics by Klein, Gordon, Schrödinger, and Dirac are so very
damaging.
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