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• ABSTRACT: Using the theory of distributions and Zeta regularization we manage to give 

a definition of product for Dirac delta distributions, we show how the fact of one can be 
define a coherent and finite product of dDirac delta distributions is related to the 

regularization of divergent integrals m s

a

x dx
∞

−∫  a >0 and Fourier series, for a Fourier 

series making a Taylor substraction we can define a regular part  ( )regF u defined as a 

function for every ‘u’  plus a dirac delta series ( )

0

( )
N

i
i

i

c uδ
=
∑ , which is divergent for u=0 , 

we show then how ( ) (0)iδ  can be regularized using a combination of Euler-Mclaurin 

formula and analytic continuation for the series  
0

( )k

i

i kζ
∞

=

= −∑  

 
 
 

PRODUCT OF DIRAC DELTA DISTRIBUTIONS ( ) ( )m xδ x ( ) ( )n xδ  
 

One of the problems with distributions , as proved by Schartz  (see ref [1] ) is that we 
can not (in general) define a coherent product of distributions, for example 
 

( ) 1
0x P

x
δ  × × = 

 
       

1
0P

x
δ δ  × × =  

  
      [ ]

0

1 ( )
lim

x

x
P dx

x xε
ε

φφ
→

≥

  = 
  ∫   (1) 
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For the case of the product of a Heaviside step function H(x) with the derivatives of the 
Delta function (and its derivatives ) we have to deal with the problem of divergent 
quantities, for example according to [2] we can define the product ( )mH δ×  , with the 
aid of a test function ( ) ( )x C Rφ ∞∈  as the recurrence 
 

( ) ( ) ( 1) ( 1)

0 0

( ) ( ) ( ) ( ) ( ) (0) (0) ( ) '( )m m m mdxH x x x dx x x dx x xδ φ δ φ δ φ δ φ
∞ ∞ ∞

− −

−∞

= = − −∫ ∫ ∫     (2) 

 

The case m=0 is just  
1
2

H δ δ× =   , and comes from considering the Heaviside fucntion 

H(x) to be the derivative of ( )xδ  , so  ( )2 21 1
( ) ( ) ( ) ( )

2 2
dxH x x H Hδ

∞

−∞

= ∞ − −∞ =∫  

 
If we use the ‘Convolution theorem’  [5 ] in a formal sense, so it can be regarded as 
valid even for the case that the Fourier transform are defined ONLY as distributions 
 

( ) { }2(2 ) ( ) ( ) ( )m n m n m n m ni D D F x x AF dtt x tω ωπ δ ω δ ω
∞+

−∞
= ∗ = −∫   (3) 

 
Here ‘A’ is a normalization (finite) constant that depends on the definition you take for 

the Fourier transform, but it can not be dependent on m or n and 
d

D
dx

= . Unfortunately 

(3) makes no sense (even using distribution theory)  since the integral over ‘t’ is 
DIVERGENT and needs to be regularized, if we use the Binomial theorem on ( )m nt x t−  
for m and n integres 
 

0

( ) ( ) = ( )( 1) (0)
n

m n m n m k n k k n k m k

k

n
i D D i AD i D

k
δ ω δ ω δ ω δ+ + − − +

=

 
− 

 
∑    (4) 

 

The problem here is that (0)
2

m k
m k m ki

D x dxδ
π

∞+
+ +

−∞

= ∫  is infinite and would need to be 

regularizad in order to make sense inside (3) or (4) , for m+k being an Odd integer, 

using Cauchy’s principal value definition 2 1. 0nP v x dx
∞

+

−∞

 
= 

 
∫  n N∈   (this imposes the 

condition that only +1 or -1 can appear inside (4) as the ‘i’ on both sides cancel ) , the 

problem is that 2

0

2 nx dx
∞

∫  is still divergent , the same problem happened inside (2) where 

one needs to to regularize expressions ( 1) (0)mδ −  in order to define a coherente product   
of distributions involving Heaviside step-function and Dirac delta and its derivatives. In 
general (4) will be non-commutative so we can in general expect  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )m n n mu u u uδ δ δ δ× ≠ × example  
 

(1) (1)( ) ( ) (0) ( )regu u uδ δ δ δ× =      but    (1) (1)( ) ( ) ( ) (0) 0regu u uδ δ δ δ× = =     (5) 
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The last equality in (5) comes from the fact that ( ) 1
(0) 2i xdxδ π

∞
−

−∞

′ = ∫  is 0 by using 

Cauchy’s principal value , the case m=n=0 is just the square of delta function 
2

2
Aδ δ δ δ
π

× = =  , this can be obtained from the zeta regularization 

00

2 2 1 1
n reg

dx dx
∞ ∞ ∞

=−∞

 
= = = 

 
∑∫ ∫  as we will see in the next section  

 
 

o Zeta regularization for divergent integrals: 
 
In our previosu paper [4] we used the Euler-Maclaurin summation formula with 
( ) m sf x x −=  in order to stablish 

 

1

1

22

1

( )
2

( 1)
( 2 1 )

(2 )! ( 2 2 )

a
m s m s m s m s

ka a

m r sr

r a

m s
x dx x dx s m a k

B m s
m r s x dx

r m r s

ζ
∞ ∞

− − − − −

=

∞∞
− −

=

−
= + − + −

Γ − +
− − + −

Γ − + −

∑∫ ∫

∑ ∫
      { }0a Z +∈ −  (6) 

The idea is , given a fixed ‘m’ we define an s sufficiently large so the integral m s

a

x dx
∞

−∫  

and the series 
0

( ) m s

i

s m iζ
∞

−

=

− =∑ both converge , and then use the analytic continuation 

to extend the definition of the sum as the negative value of the Riemann Zeta 

0

( ) m

i

m iζ
∞

=

− =∑  , in order to regularize , using (5) the divergent integrals, if ‘m’ is an 

integer we can set a=0 and (5) becomes an easier expression in the limit  0s →  
 

1 22

10 0 0

( 1)
( ) ( 2 1)

2 (2 )! ( 2 2)
m m m rr

r

B mm
x dx x dx m m r x dx

r m r
ζ

∞ ∞ ∞∞
− −

=

Γ +
= + − − − +

Γ − +∑∫ ∫ ∫    (7) 

 
The case m-s=-1 inside (6) can not be regularized inmediatly due to the pole 

1

0

(1)
i

iζ
∞

−

=

= = ∞∑  , hence to regularize 
0

dx
x a

∞

+∫  we integrate with respect to ‘a’ to find 

0

log( )aC dx x a
∞

+ +∫  , using Euler-Maclaurin summation formula plus the regularization 

of Hurwitz Zeta function 
0

log( ) (0, )s
n

x a aζ
∞

=

+ = −∂∑  and taking the derivative respect to 

‘a’                 
2 2 1

2
2 1

1 00

1 (0, ) 1
2 (2 )!

r
r

r
r x

Bdx a d
x a a s a r dx x a

ζ∞ −∞

−
= =

∂  = − − +  + ∂ ∂ + 
∑∫        (8) 
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The first two terms of the recurrence (7) are   
 

0

1/ 2 1 (0) dxζ
∞

= + = ∫                   
0

1 1
(0) ( 1)

2 2
xdxζ ζ

∞

+ + − = ∫        (9) 

 

With  
( 1)

( 2 2)mr
ma

m r
Γ +=

Γ − +
 and 

01 !

n
n

x
n

B xx
e n

∞

=

=
− ∑  being the Bernoulli numbers 

2 1 0nB + =  , from the definition of our product of Dirac delta distributions given in (4) 

and since we want the identity 
1
2

H δ δ× =  to be true for every test function , we can 

identify (0) 1 (0)regπδ ζ= +  , (0) 0regδ ′ =  and ( ) ( )2 212 (0) (0) 2 ( 1) 0reg B aπδ ζ ζ ζ′′− = + − −  
from the point of view of Zeta regularization. Although we have used only a definition 
for distributions on R , it can be generalized to Rn by using the definition of Dirac delta 

function and Heaviside function in several variables  
1

( )
n

j
j

xδ
=
∏     

1

( )
n

j
j

H x
=
∏     , in any 

case we have chosen the regularization ( )2 (0)m m mi x dxπ δ
∞

−∞

= ∫  for ‘m’ integer odd or 

even, other definition for the Fourier transform can make a factor different to 2π  

appear in (4) for example 2 ( )iuxdxe uπ δ
∞

−∞

=∫  

 
REGULARIZATION OF FOURIER INTEGRAL USING  DISTRIBUTIONS 

 
Let be nR , then we can regularize the Fourier transform . ( ) ( )

n

n iu k

R

d ke f k F u=∫
rr

 via a 

taylor series substraction with the definition . .| ( ) ( )
n

iu k n iu k

R

e f k d ke f k= ∫
r rr r

 (see [6] ) 

 

( ) ( ). .| ( ) (0) | (0)
! !

iu k iu k

N N

k k
e f k f e f

α α

α α
α αα α< <

− ∂ + ∂∑ ∑
r rr r

    (10) 

 

1 2| | .... nα α α α= + + +     1 2! !. !.... !nα α α α=       1 2. ...... nαα αα∂ = ∂ ∂ ∂  is the multi-index  
notation to write down the definition of Taylor series (9) 
 
The Taylor series is finite and is truncated after a given N so 1( )

n

n N

R

d k f k +≈ Λ∫  

(ultraviolet divergence cut-off ) , this allows us to write down a regular part of the 
Fourier transform plus a distributional part for the Fourier transform 
 

( ).( ) ( ) (0)
!n

n iu k
reg

NR

k
F u d ke f k f

α

α
α α<

 
= − ∂  

 
∑∫

rr

       ( ) (0) ( )
!N

C
f i u

x

α
α

α α
α

δ
α<

 ∂
∂ − ∂ 

∑   (11) 

                (regularized part = function )                (singular part = distribution ) 
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The problem with (10) comes whenever the integral is divergent and we set u=0 , in this 
case we should have to evaluate ( ) ( )0mδ  and other divergent quantities, also since two 

distributions can not in general be multiplied then ( ) ( )F u G u×  can NOT be defined, 

only the ‘regular’ parts of both F and G ( ) ( )reg regF u G u×  or  ( ) ( ) ( )m
regF u uδ×  , 

( ) ( ) ( )m
regG u uδ×  can be defined, here we find the problem of giving a regularized 

definition to  ( ) ( ) ( ) ( )n mu uδ δ×  for integers (m,n) , this was discussed in  (4) (5) (6) and 

(7) and (8) formulae including on how to deal with with the infinite terms  ( ) ( )0mδ  via 
Zeta-regularization , an small problem we find here is that depending on the definition 
of the Dirac delta function via Fourier transform an extra term proportional to 2π  or 
similar could appear, this happens because usually the definition of the Fourier 
transform is not universal (up to a factor proprtional to 2π  or square root of  2π ) . So 
in general depending on the definition for the Fourier transform we should make the 
replacement  2u uπ→ to get the correct results. 
 

 
 

PRODUCT OF DISTRIBUTIONS ( ) 1
u P

u
δ  ×  

 
 , 

1 1
P P

u u
   ×   
   

, ( ) 1
u P

u
δ  ′ ×  

 
 

 
Applying the convolution plus the zeta regularization algorithm and the Fourier 

transform for the Heaviside function  
1

( ) ( )iuxdxH x e u iP
u

πδ
∞

−

−∞

 = +  
 ∫  we can extend our 

definition of (regularized) product of distribution to include the Principal value 

distribution 
1

P
u
 
 
 

 related to Cauchy’s principal value of the integral 

[ ]1 ( )x
P pv

u x
φφ

∞

−∞

  = 
  ∫  , using again the Fourier transform convolution theorem 

 

• Product of  ( ) 1
u P

u
δ  ×  

 
 : in this case using the convolution definition 

1
( ) ( ) ( ) ( ) ( (0) 1) ( )u u iP AF dtH x t iA u A u

u
δ πδ δ ζ δ

∞

−∞

    ′× + = − = + +   
    

∫    (12) 

 

• 
1

( )P u
u

δ × 
 

 : using again the Fourier transform for H(x) 

        

       
1 1 (0)

( ) ( ) ( ) ( )
2

u iP u AF dtH t A u
u

ζ
πδ δ δ

π

∞

−∞

   + + × = =   
    

∫      (13) 
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• 
1 1

P P
u u
   ×   
   

: this case is a far bit more complicated to obtain this product we 

need the identity ( ) ( ) (0) ( )dtH t H x t H xH x
∞

−∞

− =∫   H(0)= 1/2 

        

          2

1 1 1
( ) ( ) (0) ( ) (0)u iP u iP AH i u AH P

u u u
πδ πδ πδ        ′+ × + = +        

        
  (14) 

 

• 
1

( ) ( )i u u iP
u

δ πδ  ′ × +   
  

 and 
1

( ) ( )u iP i u
u

πδ δ   ′+ ×  
  

 , again using the 

appropiate form of the convolution theorem 
 

           1

1 ( )
( ) ( ) ( )

2
u

i u u iP AI u A
u

δδ πδ δ
′′  ′ × + = − −  

  
    (15) 

 

           1

1
( ) ( ) (0) ( ) ( )u iP i u iA u I u A

u
πδ δ ζ δ δ   ′ ′+ × = −  

  
       (16) 

 

• 2

1
( )u P

u
δ  ′ ×  

 
 and  2

1
( )P u

u
δ  ′× 

 
: using  2( ) ( ) ( )iuxdxe H x x i u P uπ δ

∞
− −

−∞

′= +∫  

and the convolution theorem we can write down 
 

            12

1
( ) ( ) ( ) (0) ( )u iP i u i u A I u

u
πδ δ δ ζ δ  ′ ′ ′+ × = −  

  
   (17) 

 

             12

1 1
( ) ( ) ( ) ( )

2
i u i u P u A AI u

u
δ πδ δ δ  ′ ′ ′′× + = − −  

  
  (18) 

 

• 2 2

1 1
P P

u u
   ×   
   

 : using (14) (17) (18) and the  product   

 

2 2

1 1
( ) ( ) ( ) ( )( )i u P i u P AF dtH x t H t x t t

u u
π δ π δ

∞

−∞

       ′ ′+ × + = − −       
        

∫  (19) 

 

The last expression in (19) is just 4

( ) 1
6

i A u
AP

u
π δ ′′′−  +  

 
 ,again we have used the 

identity ( ) ( ) (0) ( )dtH t H x t H xH x
∞

−∞

− =∫  together with (4) and (5) in order to give a 

finite meaning for the product  2 2

1 1
P P

u u
   ×   
   

 , note that in expressions (12-18) we 

need to evaluate products of the form  ( ) ( )( ) ( )m nu uδ δ×  which need to be regularized by 
(4)  
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Depending on the order in which convolution is taken we may find  H(x-t) or H(t) (x-t) 
or simply ‘t’ inside (12-18) , here as always A is a number introduced by the definition 

taken for the convolution and   1
0

1 (0)
( 1)

2
reg

xdx I
ζ ζ

∞ +
+ − = = 

 
∫ , 

0

(0) 1
reg

dxζ
∞ 

+ =  
 
∫ are 

finite corrections (regularizations ) for the divergent integrals that appear when we try  
to define a correct product of distributions , from these formulae above together with the 
Lebiniz formula (considered to be valid at least in a formal sense)  
( )d A B dA dB

B A
du du du

×
= × + × , we can define also ( ) 2

1
u P

u
δ  ×  

 
 or similar products 

 

• ( ) 1
( )m u P

u
δ  ×  

 
 and   ( )1

( )mP u
u

δ × 
 

for arbitrary ‘m’  , 
1

( )H u P
u
 ×  
 

 

 

          
( 1) 1

( ) 1 ( )
( ) ( ) ( )( 1)

1

m m
m m m m

m

u i
i u P AF dtH x t t u I

u m
δ

δ δ
∞ + +

−∞

  × = − = − +   +   
∫    (20) 

 

         ( ) ( )

0

1
( ) ( ) ( ) ( 1) ( )

m
m m m m k k k

m k
k

m
P i u AF dt x t H t A I i u

ku
δ δ

∞
−

−
=−∞

    × = − = −    
    

∑∫  (21) 

 

Here m
m

reg

I t dt
∞

−∞

 
=  
 
∫  these integrals can be regularized via formula (6) or (7) However 

if we put m=-1 in order to evaluate ( ) 1
H u P

u
 ×  
 

 inside (20) and (21) we will find 

several oddities that prevent us from defining a coherent expression , however the 
derivative of this product of distribution satisfy 
 

2 2

1 1 1 1 1 1d
H P P H P H P P P H

dx u u u u u u
δ δ            × + × = × − × + × − ×            

            
  (22) 

 

Another possibility is to define ( ) 1
( )aH u a P T u

u
 − × = 
 

 so its derivative 

( ) ( )1 adT u
u a P

u dx
δ  − − × = 

 
 , using the Taylor distributional series given in [2] 

( )

0

( )
( ) ( )

!

n
n

n

a
u u a

n
δ δ

∞

=

−
= −∑  , using formulae (21) and (22) and integration with respect 

to ‘a’ we can get  ( ) 1
( )aH u a P T u

u
 − × = 
 

up to some constant  aC . Also if we knew 

how to multiply ( ) 1
( )aH u a P T u

u
 − × = 
 

 for some a >0 , (to avoid the singular point 

u=0 ) , using the Taylor distributional series  ( 1)

1

( )
( ) ( ) ( )

!

n
n

n

a
u H u H u a

n
δ

∞
−

=

−
+ = −∑  and 
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then using (21) (22) . Although we have only considered the 1-D case, the Convolution 
theorem, Binomial theorem and similar can be defined also in  nR  , also we must take 
into account that in general for divergent integrals a change of variable could not work 

2
1

0 0

sin cosm n m n n mx dx y dy dr r d
π

α α α
∞ ∞ ∞

+ +

−∞ −∞

≠∫ ∫ ∫ ∫  , the best method would be to use a 

Feynmann parametrization to define the product of n integrals 
 

( )
( )

1 1 1
1

1 2
1 2 1 10 0 0

........... 11
( 1)! .......

....... ...........
n

n
n n n

u u
n du du du

A A A u A u A

δ + −
= −

+∫ ∫ ∫      (23) 

 

With 
0

( )nA x dxµµ
∞

= ∫  being a divergent integral that can be regularized  ( 0µ >  )  via 

Zeta-regularization 
 
 

CONCLUSIONS AND FINAL REMARKS 
 
Using the zeta regularization algorithm (6) (7) we have managed to give a finite (Non-
commutative) product of dirac delta distributions  ( ) ( )( ) ( )m nu uδ δ×  , and  

( ) ( ) ( )m u H uδ ×  , with ‘H’ being the Heaviside step-function , since the product is non-
commutative we should also take care when taking the products 

( )( ) ( ) ( ) ( ) ( ) ( )( )m n k m n kδ δ δ δ δ δ× × ≠ × ×  so associativity will not always hold , using the 

Convolution theorem plus the use of Fourier transform, with the m-th and n-th powers 

of ‘x’ ( )* ( )m n n mF x x AF dt x t t
∞

−∞

 
= − 

 
∫  A = normalization constant ,  will allow us to 

compute the product  ( ) ( )m nδ δ×  up to several divergent quantities ( ) (0)mδ  , which are 

proportional to the divergent integral mx dx
∞

−∞
∫  , this integral can be regularized [4] using 

the zeta regularization algorithm in order to ‘substract’ finite quantities proportionals to 
( )mζ −  m=0,1,2,3,........  . Although we have only examinated the case of dirac delta 

and its derivatives , in several cases it could appear the distribution  
 

| |
sin ( ) ( ) ( )

iuxe d u
dx g u H u H u

x du
π π π π

∞

−∞

= = = − −∫        (24)    

 

Although we have not mentioned the case 
0

( ) iuxdxf x e
∞

∫  , this integral can be reduced to 

the calculation of a Fourier integral by setting 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )f x H x f x H x f x f x g x+ −+ − − = + =    
0

1
( ) ( )

2
iux iuxdxg x e dxf x e

∞ ∞

−∞

=∫ ∫  (25) 
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In this case we will encounter divergent terms  ( ) (0)mδ  , when using the Leibniz’s 

formula to perform the Taylor substraction near x=0  ( )
0

. .
n k n kn

n k n k
k

nd d f d H
f H

kdx dx dx

−

−
=

 
=  

 
∑  

since the derivative of an step funciton involves a dirac delta , again we will need 
formula (5) (6) and (7) to get some finite results. 
 

If the integral of f(x) has some logarithmic divergence so 
0

( ) logdxf x
Λ

≈ Λ∫  , then we 

may have to regularize the distribution 1( )H x x−  as 
 

1

1

( ) (0) ( )
. | (0) log

H x x
P f dx dx

x x xε

φ φ φφ φ ε
∞−  = − + + 

  ∫ ∫          (26) 

 
And then ignoring all the divergent terms proportional to logε  (via counterterms) 

inside (12) so only finite contributions will appear inside  
0

( )dxf x
∞

∫ . 

 
Why this method should work ? , the justification would be the following , let  ( )n xϕ  

and  ( )n xφ a family of smooth function depending on the parameter ‘n’ let us assume 

that in the limit as n tends to infinity lim ( ) ( )nn
x S xϕ

→∞
=  ,  lim ( ) ( )nn

x T xφ
→∞

=  with S(x) and 

T(x) being distributions, for n finite the convolution theorem will hold so 
 

( ) ( ) ( )1 1( ) ( ) ( )n n n nx u AF dtF t F x tϕ φ ϕ φ
∞

− −

−∞

 
= − 

 
∫      (27) 

 
With  ( )( )F f x  being the Fourier transform of the function f(x) , for finite ‘n’ (27) will 

give finite results, in the limit  n→∞  , the integrals inside the convolution will be 
divergent and will need to be regularized, for example in the case of the Dirac delta 
distributions and its derivatives ( ) ( )k xδ  , for ‘k’ a natural number , these integrals 

appear in the form lim
n

k

n
n

dxx
→∞

−

 
 
 
∫ , Zeta regularization can be used to handle the difficulty 

of divergent integrals and is a powerful method (together with Convolution theorem) to 
define an acdequate definition of the product of 2 distributions, as we have shown in 
equations ( 12-22 ) . For the case of the Zeta regularization algorithm and how it can be 
applied , we strongly recommend [3] ,anyway Zeta-regularization can be easily 

explained in this way, in the limit  n→∞  for the series 
1

n
k

i

i
=
∑  we make the replacement 

1

( ) ( , 1) ( )
n

k

i

i k k n kζ ζ ζ
=

= − + − + → −∑      so   ( , 1) 0k nζ − + =     k R∀ ∈      (28) 

 
However (28) is only true for Re (k) >1 otherwise the last expression is divergent , the 
idea of Zeta regularization is to set  ( , 1) 0k nζ − + =  by imposing analytic continuation 
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of the Hurwitz Zeta function  as n→∞  , a simpler example is the following , let be 
( ) 0sf s =  , this function is not continuous (pole) at s=0 , however we can avoid this 

singularity by imposing  (0) 1f =  and the functional equation ( ) ( )f s f s= −  , so for 
every ‘s’ we would have  ( ) 0regf s = . If we simply put down all the positive powers of n 

as n→∞ , then we would find the trivial result  1

1

( ) 0
1

k k

i

B
i k

k
ζ

∞
+

=

→ − + =
+∑  , which 

clearly contradcit the spirit of the Zeta regularization algorithm that gives a finite but 
nonzero value to the divergent sums of integer powers. In general the regularized value 

of the integral  
0

mx dx
∞

∫  will depend on a linear combination of the values ( )kζ −  for 

k=0,1,2,3,...,m  if we replace the value ( )kζ −  by the discrete sum 
1

1

n
k

i

i
−

=
∑  and use the 

Euler-Maclaurin summation formula, then the result  
1

0 1

n k
k n

x dx
k

+

=
+∫  for , positive or k=0 

is recovered , in case we need to evaluate more complicate integrals like the following 

0

( ) ( ) ( )sx a f x dx F s
∞

−+ =∫  as 0s → , we simply may expand it into a convergent Laurent 

series for x >0 , ( )
m

i s
i

i

c x a −

=−∞

+∑  the value i=1 is just the logarithmic divergence of the 

integral and can be regularized by setting the value –log(a)  , the coefficients [0, ]i m∈  
are the UV (ultraviolet) divergences of the integral, which can be regularized by means 

of (6) and (7) and the term 
2

( )i s
i

i

c x a
−

−

=−∞

+∑  is a finite part of the integral as 0s → , the 

idea is to separate the divergent part from the finite part in order to regularize every 

divergence . As an example let be the Laurent series for ( )2 2x a
α

+  

 

( )
2 22

2 2

0

( 1)
( 1) ( 1)

n

n

a x
x a

n n a

ααα α
α

−∞

=

Γ +  + =  Γ + Γ − +  
∑    valid for  2| |x a>    (29) 

 

Formula (29) can be used to evaluate the integral ( )2 2

1

m s

a

x a x dx
α

∞
−

+

±∫  (m positive) , 

using expansion (29) valid for x > a then one can isolate the divergent parts  

2 2

1

m s n

a

x dxα
∞

− + −

+
∫  and then use (6) to express these integrals in terms of the values of the 

Riemann Zeta function  ( 2 2 )m s nζ α− + − and the logarithm  log( 1)a− +  , the limit 
0s → is then taken afterwards . In case 0α <  there is an IR (infrared) divergence inside 

the integral ( )
1

2 2

0

a
m sx a x dx

α
+

− −∫  , using again the Euler-maclaurin summation formula 

this divergence may be avoided and we would find the (approximate)  finite value 
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( ) ( ) ( )
2 11(*)

2 2 2 2 12
02 1

0 1

( 1) 1 2
( )

2 (2 )!

m ra N
m m ar

r
i r

a a i B
a i i i x a i x

r x

α
α αε

ε ε
−+

+
−

= =

+ − − + ∂
− + − − + −

∂∑ ∑         

                                                                                                                                     (30) 
 
Here the asterisk (*) means that we have excluded the value i=a from the summation 
inside (30) (in case a is a non-integer this problem would not appear)  , if ‘m’ were 
negative then there is a pole at the point x=0 , and in order to regularize the integral  

1

0

a

m

dx
x

+

∫  we make a change of variable  
1

x
q

→  so it becomes 
( ) 1

2

1

m

a

q dq
−

∞
−

+
∫  1m ≠  , which 

is now UV divergent.  
 
 

APPENDIX A: HURWITZ ZETA FUNCTION AND THE SUMS  
0

log ( )k

n

n a
n a

∞

=

+
+∑  : 

 

We have studied the regularization of the Harmonic sum  
0

1 '
( )

n

a
n a

∞

=

Γ
= −

+ Γ∑  , the idea 

is to see if using the definition of Zeta-regularized determinant for the Hurwitz zeta 

function  ( ) (0, )

0

H a

n

n a e ζ
∞

′−

=

+ =∏  , from the definition of the Hurwitz Zeta , taking 

logarithm to both sides and taking derivatives we reach to the result 
 

( )1( ) log ( ) ( 1) ( ) ( , )
s

s
s Hs

d
z z s s z

dx
ζ−Ψ = Γ = − Γ       (A.1) 

 
Taking derivatives with respect to ‘s’ inside the Hurwitz Zeta function  and using the 
definition given in (A.1) gives   
 

0

( , )log ( )
( 1)

( )

kk
k H

s k
n

d s an a
n a ds

ζ∞
−

=

+
= −

+∑     1
0

log ( ) ( 1)
( 1) ( )

( ) ( )

k k s
k

ss k
n

n a d
a

n a ds s

−∞
−

−
=

 + −
= − Ψ + Γ 

∑      

                                                                                                                                   (A.2) 
 

The main problem here is to define for every real ‘s’ the function ( )1 s i se π− =  , a 

possibility is to take only the real part of the function ( )cos sπ , in  order to define for 

every ‘s’ the function  ( )log ( )
s

s

d
z

dx
Γ  , we can use the definition of the Grunwald-

Letnikov differintegral  replacing the k-th derivative by the k-th difference 
 

( ) ( )
0

0

1 ( 1)
log ( ) lim 1 log ( ( ) )

( 1) ( 1)

s
m

s sh
m

d s
z z s m h

dx h m s m

∞

→
=

Γ +
Γ = − Γ + −

Γ + Γ − +∑     (A.3) 

 
If we put an small ‘h’ we can compute an approximate s-th fractional derivative 
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Another possibility to define the regularization of the series  
0

log ( )k

n

n a
n a

∞

=

+
+∑  is to 

consider the regularized integral 
1

0

log ( ) log ( )
( 1)

k kdx x a a
x a k

∞ ++
= −

+ +∫  and use the Euler-

Maclaurin summation formula to obtain the finite (regularized ) value a > 0 
 

1 2 1
2

2 1
0 1 0

log ( ) log ( ) log ( ) log ( )
2 ( 1) (2 )!

k k k r k
r

r
n r x

Bn a a a x a
n a a k r x x a

+ −∞ ∞

−
= = =

 + ∂ +
= − −  + + ∂ + 

∑ ∑      (A.4) 

 
In general, for the logarithmic divergences, we must introduce an energy scale µ so the 

functional determinant of a differential operator A  
0

det n

i

A
λ
µ

∞

=

=∏  has no dimension , so 

for k =1 and for every real ‘k’ (either positive or negative) 
 

1 1

0

log ( ) log ( ) log ( )
( 1) ( 1)

k k kdx x a a
x a k k

µ∞ + ++
= − +

+ + +∫      
0

log
log

( ) log( ) log
dx

x a x a a
µ∞  

=  + +  
∫    (A.5) 

 
For the case of the logarithmic integral , we can use another trick based on the Padé 

approximants for the square root , for example we write  
1 1 1

.
x a x a x a

=
+ + +

 and 

use the identity ( )( )1 1 1x x x+ − = −  we can approximate the inverse square root by 

( )
( )

1 P x

Q xx
≈  here P(x) and Q(x) are Polyonomials of degree ‘m’ and ‘n’ respectively , 

from this the logarithmic divergent integral becomes 
( )

( )c

P x a dx

x aQ x a

∞ +

+ +∫  here ‘c’ can be 

chosen so Q(x) has no roots on the interval )[ ,c ∞  expanding 
( )
( )

j
j

j m n

bP x a

Q x a x

∞

=− +

+
=

+ ∑ into a 

Laurent series valid for x >c  and using formula (6) to evaluate the divergent integrals 

1/ 2j
c

dx
x

∞

+∫  since ‘j’  is an integer, the pole of the Riemann Zeta at s=1 does not appear 

inside 
1
2

jζ  + 
 

 , for other functions like  ( )log x a+  a similar method of using Padé 

approximants could be used ,since 
( )
( )

P x a

Q x a

+

+
 is a Rational function only a finite number 

of positive powers of ‘x’ will appear into its Laurent series. 
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