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 ABSTRACT: Using the theory of distributions and Zeta regularization we manage to give 
a definition of product for Dirac delta distributions, we show how the fact of one can be 
define a coherent and finite product of dDirac delta distributions is related to the 

regularization of divergent integrals 
0

m sx dx


 and Fourier series, for a Fourier series 

making a Taylor substraction we can define a regular part  ( )regF u defined as a

function for every ‘u’ plus a dirac delta series ( )

0

( )
N

i
i

i

c u

 , which is divergent for u=0 , 

we show then how ( ) (0)i can be regularized using a combination of Euler-Mclaurin 

formula and analytic continuation for the series 
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PRODUCT OF DIRAC DELTA DISTRIBUTIONS ( ) ( )m x x ( ) ( )n x

One of the problems with distributions , as proved by Schartz  (see ref [1] ) is that we 
can not (in general) define a coherent product of distributions, for example
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For the case of the product of a Heaviside step function H(x) with the derivatives of the 
Delta function (and its derivatives ) we have to deal with the problem of divergent 
quantities, for example according to [2] we can define the product ( )mH  , with the 
aid of a test function ( ) ( )x C R  as the recurrence

( ) ( ) ( 1) ( 1)

0 0

( ) ( ) ( ) ( ) ( ) (0) (0) ( ) '( )m m m mdxH x x x dx x x dx x x       
  

 



          (2)

The case m=0 is just  
1

2
H      , and comes from considering the Heaviside fucntion 

H(x) to be the derivative of ( )x , so   2 21 1
( ) ( ) ( ) ( )

2 2
dxH x x H H





    

If we use the ‘Convolution theorem’ [5 ] in a formal sense, so it can be regarded as 
valid even for the case that the Fourier transform are defined ONLY as distributions
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
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Here ‘A’ is a normalization (finite) constant that depends on the definition you take for 

the Fourier transform, but it can not be dependent on m or n and 
d

D
dx

 . Unofrtunately 

(3) makes no sense since the integral over ‘t’ is DIVERGENT and needs to be 
regularized, if we use the Binomial theorem on ( )m nt x t for m and n integres
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The problem here is that (0)
2

m k
m k m ki

D x dx



 



  is infinite and would need to be 

regularizad in order to make sense inside (3) or (4) , for m+k being an Odd integer, 

using Cauchy’s principal value definition 2 1. 0nP v x dx






 
 

 
 (this imposes the 

condition that only +1 or -1 can appear inside (4) ) , the problem is that 2

0

2 nx dx


 is still 

divergent , the same problem happened inside (2) where one needs to to regularize 
expressions ( 1) (0)m  in order to define a coherente product   of distributions involving 
Heaviside step-function and Dirac delta and its derivatives. In general (4) will be non-
commutative so we can in general expect  ( ) ( ) ( ) ( )( ) ( ) ( ) ( )m n n mu u u u      example 

(1) (1)( ) ( ) (0) ( )regu u u          but    (1) (1)( ) ( ) ( ) (0) 0regu u u          (5)
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The last equality in (5) comes from the fact that   1
(0) 2 xdx 






   is 0 by using 

Cauchy’s principal value , the case m=n=0 is just the square of delta function 

2

2

A   
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    , this can be obtained from the zeta regularization 
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  as we will see in the next section 

o Zeta regularization for divergent integrals:

In our previosu paper [4] we used the Euler-Maclaurin summation formula with 
( ) m sf x x  in order to stablish
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The idea is , given a fixed ‘m’ we define an s sufficiently large so the integral m s

a

x dx




and the series 
0

( ) m s

i

s m i






  converge , and then use the analytic continuation to 

extend the definition of the sum as the negative value of the Riemann Zeta 

0

( ) m

i

m i




  , in order to regularize , using (5) the divergent integrals, if ‘m’ is an 

integer we can set a=0 and (5) becomes an easier expression 
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The case m-s=-1 inside (6) can not be regularized inmediatly due to the pole 

1
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
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

   , hence to regularize 
0

dx

x a



 we integrate with respect to ‘a’ to find 

0

log( )aC dx x a


  , using Euler-Maclaurin summation formula plus the regularization 

of Hurwitz Zeta function 
0

log( ) (0, )s
n

x a a

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   and taking the derivative respect to 

‘a’                
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The first three terms of the recurrence (7) are  
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1/ 2 dx
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With  
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  
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n

B xx

e n






  being the Bernoulli numbers 

2 1 0nB   , from the definition of our product of Dirac delta distributions given in (4) 

and since we want the identity 
1

2
H    to be true for every test function , we can 

identify (0) (0)reg  , (0) 0reg   and    2 212 (0) (0) 2 ( 1) 0reg B a       
from the point of view of Zeta regularization. Although we have used only a definition 
for distributions on R , it can be generalized to Rn by using the definition of Dirac delta 

function and Heaviside function in several variables  
1

( )
n

j
j
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
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1

( )
n

j
j

H x

     , in any 

case we have chosen the regularization ( )2 (0)m m mi x dx 




  for ‘m’ integer odd or 

even, other definition for the Fourier transform can make a factor different to 2

appear in (4) for example 2 ( )iuxdxe u 






REGULARIZATION OF FOURIER INTEGRAL USING DISTRIBUTIONS

Let be nR , then we can regularize the Fourier transform . ( ) ( )
n

n iu k

R

d ke f k F u


via a 

taylor series substraction with the definition . .| ( ) ( )
n
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R

e f k d ke f k 
  

(see [6] )
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1 2| | .... n           1 2! !. !.... !n          1 2. ...... n      is the multi-index  

notation to write down the definition of Taylor series (9)

The Taylor series is finite and is truncated after a given N so 1( )
n

n N

R

d k f k  
(ultraviolet divergence cut-off ) , this allows us to write down a regular part of the 
Fourier transform plus a distributional part for the Fourier transform
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                (regularized part = function )                (singular part = distribution )
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The problem with (10) comes whenever the integral is divergent and we set u=0 , in this 

case we should have to evaluate    0m and other divergent quantities, also since two

distributions can not in general be multiplied then    F u G u can NOT be defined, 

only the ‘regular’ parts of both F and G    reg regF u G u or       m
regF u u , 

     m
regG u u can be defined, here we find the problem of giving a regularized 

definition to         n mu u  for integers (m,n) , this was discussed in (4) (5) (6) and 

(7) and (8) formulae including on how to deal with with the infinite terms     0m via 

Zeta-regularization , an small problem we find here is that depending on the definition 
of the Dirac delta function via Fourier transform an extra term proportional to 2 or 
similar could appear, this happens because usually the definition of the Fourier 
transform is not universal (up to a factor proprtional to 2 or square root of  2 ) . So 
in general depending on the definition for the Fourier transform we should make the 
replacement  2u u to get the correct results.

PRODUCT OF DISTRIBUTIONS   1
u P

u
    

 
, 

1 1
P P

u u
      
   

,   1
u P

u
     

 

Applying the convolution plus the zeta regularization algorithm and the Fourier 

transform for the Heaviside function  
1

( ) ( )iuxdxH x e u iP
u








    
  we can extend our 

definition of (regularized) product of distribution to include the Principal value 

distribution 
1

P
u

 
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 

related to Cauchy’s principal value of the integral 

 1 ( )x
P pv

u x






   
   , using again the Fourier transform convolution theorem

 Product of    1
u P

u
    

 
: in this case using the convolution definition

1
( ) ( ) ( ) ( ) (0) ( )u u iP AF dtH x t iA u A u

u
    





                
    (12)


1

( )P u
u

  
 

: using again the Fourier transform for H(x)

       

       
1 (0)

( ) ( ) ( ) ( )
2

A
u iP u AF dtH t u

u

  






             
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
1 1

P P
u u

      
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: this case is a far bit more complicated to obtain this product we 

need the identity ( ) ( ) (0) ( )dtH t H x t H xH x




    H(0)= 1/2

       

          
2

1 1 1
( ) ( ) (0) ( ) (0)u iP u iP AH i u AH P

u u u
                      

        
  (14)


1

( ) ( )i u u iP
u

        
  

and 
1

( ) ( )u iP i u
u

       
  

, again using the 

appropiate form of the convolution theorem

           1

1 ( )
( ) ( ) ( )

2

u
i u u iP AI u A

u

  
         

  
   (15)

           1

1
( ) ( ) (0) ( ) ( )u iP i u iA u I u A

u
             

  
       (16)


2

1
( )u P

u
     

 
and  

2

1
( )P u

u
   

 
: using  2( ) ( ) ( )iuxdxe H x x i u P u 


 



 
and the convolution theorem we can write down

            12

1
( ) ( ) ( ) (0) ( )u iP i u i u A I u

u
             

  
   (17)

             12

1 1
( ) ( ) ( ) ( )

2
i u i u P u A AI u

u
             

  
  (18)


2 2

1 1
P P

u u
      
   

: using (14) (17) (18) and the product  

2 2

1 1
( ) ( ) ( ) ( )( )i u P i u P AF dtH x t H t x t t

u u
   





                            
 (19)

The last expression in (19) is just 
4

( ) 1

6

i A u
AP

u

      
 

,again we have used the 

identity ( ) ( ) (0) ( )dtH t H x t H xH x




  together with (4) and (5) in order to give a 

finite meaning for the product  
2 2

1 1
P P

u u
      
   

, note that in expressions (12-18) we 

need to evaluate products of the form  ( ) ( )( ) ( )m nu u  which need to be regularized by 
(4) 
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Depending on the order in which convolution is taken we may find  H(x-t) or H(t) (x-t) 
or simply ‘t’ inside (12-18) , here as always A is a number introduced by the definition 

taken for the convolution and   1

0

(0)
( 1)

2
reg

xdx I
 

 
    

 
 ,  

0

(0)
reg

dx
 

  
 
 are 

finite corrections (regularizations ) for the divergent integrals that appear when we try 
to define a correct product of distributions , from these formulae above together with the 
Lebiniz formula (considered to be valid at least in a formal sense)  
 d A B dA dB

B A
du du du


    , we can define also   2

1
u P

u
    

 
or similar products

 ( ) 1
( )m u P

u
    

 
and   ( )1

( )mP u
u

  
 

for arbitrary ‘m’  , 
1

( )H u P
u

   
 

          
( 1) 1

( ) 1 ( )
( ) ( ) ( )( 1)

1

m m
m m m m

m

u i
i u P AF dtH x t t u I

u m

 
  



             
    (20)

         ( ) ( )

0

1
( ) ( ) ( ) ( 1) ( )

m
m m m m k k k

m k
k

m
P i u AF dt x t H t A I i u

ku
 







            
    

 (21)

Here 
0

m
m

reg

I t dt
 

  
 
 these integrals can be regularized via formula (6) or (7) However 

if we put m=-1 in order to evaluate   1
H u P

u
   
 

inside (20) and (21) we will find 

several oddities that prevent us from defining a coherent expression , however the 
derivative of this product of distribution satisfy

2 2

1 1 1 1 1 1d
H P P H P H P P P H

dx u u u u u u
                                   

            
  (22)

Another possibility is to define   1
( )aH u a P T u

u
    
 

so its derivative 

  ( )1 adT u
u a P

u dx
      

 
, using the Taylor distributional series given in [2] 

( )

0

( )
( ) ( )

!

n
n

n

a
u u a

n
 






  , using formulae (21) and (22) and integration with respect 

to ‘a’ we can get    1
( )aH u a P T u

u
    
 

up to some constant  aC . Also if we knew 

how to multiply   1
( )aH u a P T u

u
    
 

for some a >0 , (to avoid the singular point 

u=0 ) , using the Taylor distributional series  ( 1)

1

( )
( ) ( ) ( )

!

n
n

n

a
u H u H u a

n








   and 



8

then using (21) (22) . Although we have only considered the 1-D case, the Convolution 
theorem, Binomial theorem and similar can be defined also in  nR , also we must take 
into account that in general for divergent integrals a change of variable could not work 

2
1

0 0

sin cosm n m n n mx dx y dy dr r d


  
  

 

 

    , the best method would be to use a 

Feynmann parametrization to define the product of n integrals

 
 

1 1 1
1

1 2
1 2 1 10 0 0

........... 11
( 1)! .......

....... ...........
n

n
n n n

u u
n du du du

A A A u A u A

  
 

        (23)

With 
0

( )nA x dx


  being a divergent integral that can be regularized  ( 1   )  via 

Zeta-regularization

CONCLUSIONS AND FINAL REMARKS

Using the zeta regularization algorithm (6) (7) we have managed to give a finite (Non-
commutative) product of dirac delta distributions  ( ) ( )( ) ( )m nu u  , and  

( ) ( ) ( )m u H u  , with ‘H’ being the Heaviside step-function , since the product is non-
commutative we should also take care when taking the products 

 ( ) ( ) ( ) ( ) ( ) ( )( )m n k m n k          so associativity will not always hold , using the 

Convolution theorem plus the use of Fourier transform, with the m-th and n-th powers 

of ‘x’  * ( )m n n mF x x AF dt x t t




 
  

 
 A = normalization constant ,  will allow us to 

compute the product  ( ) ( )m n  up to several divergent quantities ( ) (0)m , which are 

proportional to the divergent integral mx dx



 , this integral can be regularized [4] using 

the zeta regularization algorithm in order to ‘substract’ finite quantities proportionals to 
( )m  m=0,1,2,3,........  . Although we have only examinated the case of dirac delta 

and its derivatives , in several cases it could appear the distribution 

| |
sin ( ) ( ) ( )

iuxe d u
dx g u H u H u

x du
   





           (24)   

Although we have not mentioned the case 
0

( ) iuxdxf x e


 , this integral can be reduced to 

the calculation of a Fourier integral by setting

( ) ( ) ( ) ( ) ( ) ( ) ( )f x H x f x H x f x f x g x          
0

1
( ) ( )

2
iux iuxdxg x e dxf x e

 



  (25)
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In this case we will encounter divergent terms  ( ) (0)m , when using the Leibniz’s 

formula to perform the Taylor substraction near x=0  
0

. .
n k n kn

n k n k
k

nd d f d H
f H

kdx dx dx






 
  

 


since the derivative of an step funciton involves a dirac delta , again we will need 
formula (5) (6) and (7) to get some finite results.

If the integral of f(x) has some logarithmic divergence so 
0

( ) logdxf x


  , then we 

may have to regularize the distribution 1( )H x x as

1

1

( ) (0) ( )
. | (0) log

H x x
P f dx dx

x x x

    
      

             (26)

And then ignoring all the divergent terms proportional to log (via counterterms) 

inside (12) so only finite contributions will appear inside  
0

( )dxf x



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